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We study the topological properties of Calabi-Yau threefold hypersurfaces at large h1,1.

We obtain two million threefolds X by triangulating polytopes from the Kreuzer-Skarke

list, including all polytopes with 240 ≤ h1,1 ≤ 491. We show that the Kähler cone of X

is very narrow at large h1,1, and as a consequence, control of the α′ expansion in string

compactifications on X is correlated with the presence of ultralight axions. If every

effective curve has volume ≥ 1 in string units, then the typical volumes of irreducible

effective curves and divisors, and of X itself, scale as (h1,1)p, with 3 . p . 7 depending

on the type of cycle in question. Instantons from branes wrapping these cycles are

thus highly suppressed.
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1 Introduction

As a step toward understanding general properties of quantum gravity in four spacetime

dimensions, one can study compactifications of weakly-coupled string theories on six-

manifolds whose curvatures are small in string units. Understanding what is possible

in such compactifications can shed light on what is possible in quantum gravity.

Bounds on topological or geometric properties of a class of compactifications can

imply interesting statements about the corresponding effective theories, such as bounds

on the number of fields, the rank of the gauge group, or the diameter of moduli space.

Moreover, an understanding of generic properties of compactifications can inform low-

energy model building, e.g. the fact that typical Calabi-Yau threefolds have scores or

hundreds of moduli and axions suggests considering inflationary and dark sectors that

might be discarded as excessively complicated from a bottom-up perspective.

The Kreuzer-Skarke database of four-dimensional reflexive polytopes [1] is a fount

of data on Calabi-Yau compactifications. A fine, regular, star triangulation (FRST) of

any of the 473,800,776 polytopes ∆◦ in the list determines a toric variety V , in which a

generic anticanonical hypersurface is a smooth Calabi-Yau threefold X. However, only

the most elementary data, such as the Hodge numbers of X, can be obtained directly

from the database without computation. To more fully characterize a compactification

on X, one needs to compute and manipulate an FRST of ∆◦.

A key measure of the difficulty of this computation is the number N of relevant

lattice points in ∆◦, or equivalently the Picard number h1,1 of X: when X is favor-

able, N = h1,1 + 4. The number of possible triangulations of a given ∆◦, and the

complexity of each triangulation, both grow rapidly with N . Most publicly-available

software, such as Sage, is effective only for N . 10. Through a major computational

effort, Altman et al. obtained the data of all compactifications with N ≤ 10 [2]. How-

ever, there have been few studies, none systematic, of compactifications on Calabi-Yau

threefold hypersurfaces with h1,1 � 1. This is a critical gap in our understanding:

the Kreuzer-Skarke list contains threefolds with h1,1 as large as 491, and vast numbers

of triangulations — corresponding to potentially-distinct threefolds — are possible at

h1,1 � 1. To the best of our knowledge, most Calabi-Yau threefold hypersurfaces have

not yet been examined.

In this work we initiate a study of Calabi-Yau threefold hypersurfaces with large

Picard number. We obtain FRSTs of 2,031,335 reflexive polytopes with 2 ≤ h1,1 ≤ 491,

including one triangulation for each polytope with 240 ≤ h1,1 ≤ 491.1 We compute

the Mori cones of the associated toric varieties V , and for 2 ≤ h1,1 ≤ 100 we compute

the intersection numbers of Calabi-Yau hypersurfaces X ⊂ V .

We first use these data to bound the Kähler cone KX of X. We know of no efficient

1Huang and Taylor have shown that all Hodge number pairs with h1,1 ≥ 240 in the Kreuzer-Skarke
list can be realized by elliptically fibered Calabi-Yau threefolds [3].
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algorithm to compute KX directly in a hypersurface with h1,1 & 10, so we instead place

upper and lower bounds by computing cones containing KX , and contained in KX . The

Kähler cone KV of V obeys KV ⊂ KX , while a cone K∩ associated to the intersections

of divisors D̂ ⊂ V (see §2 for a precise definition) obeys KX ⊂ K∩.
Equipped with bounds on the Kähler cone of X, we examine the α′ expansion in

a compactification of string theory2 on X. For the α′ expansion to be under control,

we will require that every holomorphic curve Σ on X has volume obeying

Vol(Σ) ≥ (2π)2c α′ ≡ c `2
s , (1.1)

with c a dimensionless constant, so that worldsheet instantons wrapping Σ give cor-

rections to the effective action . e−2πc. Although we will suppose that c is of order

unity, one can immediately extend our findings to any desired numerical value of c.

We henceforth set `2
s = 1 and c = 1, and so the constraint (1.1) reads

Vol(Σ) ≥ 1 . (1.2)

We argue in §2 that (1.2) is a useful proxy for control of perturbative and nonpertur-

bative corrections in the α′ expansion.

The requirement that (1.2) holds for all Σ typically implies that some irreducible

holomorphic curves have volumes � 1. Moreover, some irreducible effective divisors

have even larger volumes, and the total threefold volume V is larger still. At first

glance these trends appear unsurprising: the number of nonvanishing triple intersection

numbers κijk must grow with h1,1, and so too should V = 1
6
κijkt

itjtk, where ti, i =

1, . . . , h1,1, are the volumes of a basis of H2(X,Z). However, obtaining the intersection

numbers κijk for a hypersurface with h1,1 � 1 is computationally expensive, so prior

studies of this point have been very limited. In this work we precisely quantify the

growth of curve, divisor, and threefold volumes with h1,1: our computation of K∩ leads

to lower bounds on these quantities. The volumes grow far more quickly with h1,1 than

can be accounted for by the growth of the intersection numbers alone. We find that

there are only O(h1,1) nonvanishing intersection numbers in each geometry, with mean

size independent of h1,1, yet we find that V grows as (h1,1)p with p ∼ 7: see §6.

The primary cause of this rapid growth of volumes is the narrowness of the Kähler

cone. The Kähler cone conditions enforce inequalities relating the various curve vol-

umes, and with increasing h1,1, this effect becomes more pronounced, because the

number of inequalities grows. Intuitively, the Kähler cone becomes very narrow for

h1,1 � 1, so to be well-separated from every wall one must be very far from the origin

of the cone.

One physical consequence of this finding is that requiring control of the α′ ex-

2For specificity one can imagine type IIB string theory on an orientifold of X, but most of what
follows is purely geometric, and applies, mutatis mutandis, in other string theories.
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pansion, in the sense of (1.2), typically leads to ultralight axions, unless h1,1 is small.

As an example, in a compactification of type IIB string theory on an orientifold of

a hypersurface X, the Ramond-Ramond four-form C4 gives rise to axion fields that

are massless to all orders in perturbation theory, and acquire mass from Euclidean

D3-branes. Suitable holomorphic four-cycles (i.e., suitable effective divisors) support

superpotential contributions [4], which are well-understood, while non-holomorphic

four-cycles can support contributions to the Kähler potential. We find that for typical

geometries in our ensemble, every basis constructed from generators of the cone of

effective divisors (cf. §4) contains elements with volume & (h1,1)3: see Figure 6. Thus,

superpotential couplings3 give extremely small masses to some of the axions. In every

geometry in our ensemble with h1,1 > 22, the lightest axion is essentially massless,

with m < 10−33 eV.

An important caveat is that our finding of rapid growth of volumes with h1,1 is

a consequence of the requirement (1.2). It is possible that α′ corrections to the four-

dimensional action are small in some cases even if some effective curves have volumes

violating (1.2). Constraining this possibility would be worthwhile, but would likely

require advances in computing perturbative corrections in the α′ expansion. Moreover,

our qualitative results would be unaffected unless most curves can be made small in

string units.

We also study the radius of the axion fundamental domain for each geometry in

our ensemble. Understanding whether super-Planckian displacements of an inflaton

field can occur in well-controlled compactifications is a pressing problem, and one way

forward is to search for geometries in which the axion field space has radius R �Mpl.

Prior work in [5] has shown that R . O(1) in every Calabi-Yau hypersurface with

h1,1 ≤ 4. Here we extend the analysis of [5] to 2×106 hypersurfaces with 5 ≤ h1,1 ≤ 100.

We show that R . Mpl for most of the geometries in our ensemble. However, in a

small fraction of cases we cannot exclude the possibility of radii R � Mpl in the

parameter regime where (1.2) holds and the α′ expansion is well-controlled. Obtaining

definitive results in these intriguing cases would require advances in computing the

Kähler cones of Calabi-Yau hypersurfaces per se, rather than just the Kähler cones of

the corresponding ambient toric varieties.

The organization of this note is as follows. In §2 we review basic facts about

the Kähler cone of a Calabi-Yau hypersurface in a toric variety. In §3 we introduce

the notion of a stretched Kähler cone, and in §4 we explain how upper bounds on

axion masses can be obtained by computing cycle volumes in an appropriate stretched

Kähler cone. In §5 we describe our algorithm for computing the Kähler cones, and

approximations to the Kähler cones, in an ensemble of Calabi-Yau threefold hyper-

surfaces constructed from the Kreuzer-Skarke database. We present our results in §6.

3We argue in Appendix A that contributions to the axion masses from Kähler potential instantons
are plausibly comparably suppressed.
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In §7 we explore the implications of our findings for the axion mass spectrum in type

IIB compactifications. We conclude in §8. Although our findings directly involve the

volumes of holomorphic cycles, in Appendix §A we discuss how instantons wrapping

non-holomorphic volume-minimizing chains could be governed to good approximation

by the growth of volume that we establish in the holomorphic case.

2 The Effective, Kähler, and Mori Cones

In this section we recall the definitions and basic properties of the effective cone, the

Kähler cone, and the Mori cone of a projective algebraic variety X, and we explain

how to compute approximations to these cones when X is a Calabi-Yau threefold

hypersurface in a toric variety. From the data of these convex cones one can read off

properties of the effective theory arising in a string compactification on X.

2.1 The effective cone

Let X be a projective algebraic variety of complex dimension n. A Weil divisor D on

X is a finite formal sum of irreducible codimension-one subvarieties DA,

D =
∑
A

nADA nA ∈ Z . (2.1)

The divisor D is called effective if the nA are all nonnegative. We define the effective

cone Eff(X) to be the convex cone in H2n−2(X,R) spanned by the classes of effective

divisors.

The relevance of the effective cone is that a Euclidean D3-brane wrapping a divisor

D in an orientifold of a Calabi-Yau threefold X can contribute to the superpotential

only if D is effective. Intuitively, effective divisors consist of finite collections of irre-

ducible holomorphic hypersurfaces, each of which can support BPS D-branes.

2.1.1 Effective divisors of a Calabi-Yau hypersurface

Let ∆◦ be a four-dimensional reflexive polytope. An FRST of ∆◦ defines a fan that

corresponds to a simplicial toric fourfold V . The generic anticanonical hypersurface

X ⊂ V is a smooth Calabi-Yau threefold [6].

Each lattice point vI on the boundary of ∆◦ corresponds to a homogeneous toric

coordinate xI , whose vanishing defines a prime toric divisor D̂I . The prime toric

divisors are irreducible effective divisors on V . A subset {vA} ⊂ {vI} of the points on

the boundary of ∆◦ are not interior to 3-faces (facets) of ∆◦, but instead lie in faces

of dimension ≤ 2. Each such lattice point vA not interior to a facet corresponds to a

prime toric divisor that intersects X transversely. The restriction to X then defines a

divisor DA ⊂ X,

DA := D̂A ∩X , (2.2)
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that is effective on X. Points interior to facets, on the other hand, define divisors of

V that do not intersect a generic Calabi-Yau hypersurface X. In triangulating ∆◦ we

may therefore ignore lattice points interior to facets; such a triangulation corresponds

to a maximal projective crepant partial (MPCP) desingularization, in the sense of [7].

We will restrict ourselves to such partial desingularizations.

In general, DA may be a reducible divisor on X, even though D̂A is irreducible

on V . This occurs if and only if vA corresponds to a point in the strict interior of a

2-face f ⊂ ∆◦, and `∗(f ◦) > 0, where `∗(f ◦) is the number of lattice points in the strict

interior of the dual face f ◦ ⊂ ∆. The condition that all of the prime toric divisors D̂A

on V that intersect X in fact restrict to irreducible divisors on X is thus∑
f⊂∆◦

`∗(f)`∗(f ◦) = 0 , (2.3)

where the sum is over all 2-faces f ⊂ ∆◦ . A polytope obeying (2.3) is called favorable,

and by extension we refer to the associated V and X as being favorable.

For simplicity we will confine our attention to the case where X is favorable,

though we expect the results of our analysis to extend into the non-favorable regime.

For X favorable, there are exactly h1,1(X) + 4 prime toric divisors D̂A. We call

{DA} := {D̂A ∩X} A = 1, . . . , h1,1(X) + 4 (2.4)

the inherited prime toric divisors on X.

The set {DA}, A = 1, . . . , h1,1(X) + 4, provides a complete set of generators for

H4(X,Z). Since dimH4(X,Q) = h1,1(X), by reordering the DA we can ensure that

{Di}, i = 1, . . . , h1,1(X), is a basis for H4(X,Q).

2.1.2 Inherited and autochthonous divisors

The inherited prime toric divisors DA of a Calabi-Yau threefold hypersurface X ⊂ V

are effective divisors on X that are inherited from effective divisors on V . We call

the cone in H4(X,R) generated by the classes of the {DA} the inherited effective cone

Effι(X). Clearly, Effι(X) ⊆ Eff(X). Because V is specified by combinatorial data, it is

straightforward to compute Effι(X). However, in many cases Effι(X) ( Eff(X): that

is, there are effective divisors on X that are not inherited from any effective divisor on

V . We call such a non-inherited divisor an autochthonous divisor.

In this work, we approximate Eff(X) by Effι(X). In particular, in computing ax-

ion masses in compactifications of type IIB string theory on X, we here consider only

Euclidean D3-branes wrapping inherited effective divisors. Autochthonous divisors of

Calabi-Yau hypersurfaces are studied in our forthcoming work [8]. Among other things,

we show there that Euclidean D3-branes wrapping autochthonous divisors do not sig-
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nificantly affect the axion mass hierarchies found here, and so for present purposes it

suffices to study the conceptually and computationally simpler inherited effective cone.

2.2 The Kähler cone and the Mori cone

Let X be a projective algebraic variety, and let J ∈ H1,1(X,R) be a closed (1,1)-form

on X. For a k-dimensional subvariety U ⊂ X, we define

VolJ(U) :=
1

k!

∫
U

∧kJ . (2.5)

We define the Kähler cone of X, KX , as the subset of H1,1(X,R) consisting of coho-

mology classes of Kähler forms J on X, i.e. J such that VolJ(U) > 0 for all subvarieties

U . The Kähler cone KX , also called the ample cone, is an open convex cone whose

closure KX is the cone of nef (1,1) classes.4

We next define the Mori cone of X, MX , to be the cone in H2(X,R) generated

by irreducible algebraic curves Ca on X. (The Mori cone of X is often denoted NE(X)

in other parts of the literature.) The Kähler cone and the Mori cone are related by

M∨ = KX , (2.6)

i.e. the dual of the Mori cone is the closure of the Kähler cone.

When X is a Calabi-Yau threefold hypersurface, the subvarieties of interest are the

curves Ca, the divisors DA, and the threefold itself. The volumes of these subvarieties

are

ta :=VolJ(Ca) =

∫
Ca

J ,

τA :=VolJ(DA) =
1

2

∫
DA

J ∧ J ,

V :=VolJ(X) =
1

6

∫
X

J ∧ J ∧ J .

(2.7)

It is convenient to expand J in terms of the Poincaré duals [Di] of the divisors Di,

J = ti[Di] . (2.8)

Defining
Mai :=#Ca ∩Di ,

κAjk :=#DA ∩Dj ∩Dk ,

κijk :=#Di ∩Dj ∩Dk ,

(2.9)

4See [9] for a more detailed treatment.
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the volumes (2.7) are then written as

ta =Mait
i ,

τA =
1

2
κAjkt

jtk ,

V =
1

6
κijkt

itjtk .

(2.10)

The h1,1 Kähler parameters ti, which are not necessarily positive when J is inside the

Kähler cone, should not be confused with the curve volumes ta, which are positive for

J ∈ KX .

3 The Stretched Kähler Cone

One of the aims of this work is to determine the volumes of holomorphic submanifolds

in X, when every effective curve in X is constrained to have volume > 1, as in (1.2).

We therefore need to determine the cone of effective curves, i.e. the Mori cone MX .

To our knowledge there is no established algorithm for computing MX , even for

the well-studied ensemble of Calabi-Yau threefold hypersurfaces. However, we will

identify two cones Min and Mout that bound MX on the inside and the outside,

respectively, i.e.

Min ⊆MX ⊆Mout , (3.1)

and it is these bounding cones that we will study. The duals of these cones will then

provide cones that bound KX on the outside and the inside, respectively: defining

Kin :=M∨
out and Kout :=M∨

in, and writing Kin for the interior of Kin, and Kout for the

interior of Kout, we have

Kin ⊆ KX ⊆ Kout . (3.2)

As we shall see, the Kähler cone KV of the ambient toric variety V can play the role

of Kin, while a new cone, K∩, provides the outer bound Kout [10].

KV :

Although computing MX is challenging, the Mori cone MV of the toric variety V

can be computed efficiently from the fan using an algorithm due to Berglund, Katz,

and Klemm [11], which is equivalent to the classical algorithm of Oda and Park [12].

By (2.6), the dual of MV is the closure KV of the Kähler cone KV of V . Restricting

the Kähler parameters ti so that ti[Di] ∈ KV ensures that all holomorphic submani-

folds of V have positive volume, and therefore this restriction also guarantees that all

holomorphic submanifolds of X have positive volume. We therefore have

KV ⊆ KX . (3.3)
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We remark that subvarieties of V that correspond to simplices interior to facets

do not intersect a generic X, and therefore any triangulations of ∆◦ that differ only

by simplices interior to facets define isomorphic Calabi-Yau hypersurfaces, but with

different toric ambient spaces Vα. It is then natural to glue the Kähler cones KVα
together and define K∪ [7]:

K∪ :=
⋃
α

KVα . (3.4)

However, such a process appears prohibitively complicated at large h1,1, and will not

play a role in our analysis.

K∩:

Consider the following set of surfaces in V :

{ŜAB} := {D̂A ∩ D̂B, A,B = 1, . . . , h1,1 + 4, A 6= B} . (3.5)

The intersection of any of the ŜAB with a generic anticanonical hypersurface X, if

nonempty, is transverse and defines a corresponding curve in X,

CAB = DA ∩DB ⊂ X (A 6= B) . (3.6)

The curve CAB lies in MX , but in general not every element of MX can be written

in the form (3.6). Because the {CAB} are the curves inherited from intersections of

distinct prime toric divisors, we call the {CAB} toric intersection curves. The volumes

of the toric intersection curves are

Vol(CAB) ≡ tAB :=

∫
DA∩DB

J . (3.7)

We define the intersection cone K∩ as the space of Kähler parameters ti for which the

volumes V , τA and tAB are all positive:

K∩ := {J | V , τA, tAB > 0} . (3.8)

As these conditions are necessary, but in general not sufficient,5 to ensure that ti[Di] ∈
KX , we have the inclusions

KV ⊆ KX ⊆ K∩ . (3.9)

The stretched Kähler cone:

In order to study the effect of demanding that all cycles satisfy the minimal volume

constraint (1.2), we introduce the notion of a stretched Kähler cone. Let X be a

5In a few cases, K∪ = K∩ and we may therefore determine KX exactly, but this is far from generic.
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projective algebraic variety, let J ∈ H1,1(X,R) be a closed (1,1) form on X, and let

W = {W} be a set of subvarieties W ⊂ X. Given a number c > 0, we define the

(c,W)-stretched Kähler cone of X,

K̃X [c,W ] :=
{
J ∈ H1,1(X,R)

∣∣∣VolJ(W ) ≥ c ∀ W ∈ W
}
. (3.10)

The first stretched Kähler cone we consider is the stretched Kähler cone of X,

K̃X := K̃X [1, {C ∈MX}] . (3.11)

We next define the stretched intersection cone

K̃∩ := K̃X [1, {CAB, DA, X}] , (3.12)

as the region in which all intersection curves CAB, all inherited prime toric divisors

DA, as well as X itself, have volume ≥ 1. In all cases we have K̃X ⊆ K̃∩, but because

the curves CAB typically do not generate MX , we typically have K̃X ( K̃∩. Finally,

noting that for favorable X, H1,1(V,R) can be naturally identified with H1,1(X,R), we

define the stretched Kähler cone of V,

K̃V := K̃V [1, {Ĉ ∈MV }] , (3.13)

i.e. K̃V is the subset of H1,1(X,R) ∼= H1,1(V,R) in which all curves Ĉ on V have volume

≥ 1.6

In a complete toric variety, any curve is rationally (and thus numerically) equiva-

lent to an effective sum of toric curves [13]. A curve Ĉ ⊂ X ⊂ V is also a curve in V ,

and so in homology Ĉ can be expressed as a non-negative integral linear combination

of toric curves. It follows that K̃V ⊂ K̃X .

We have therefore bounded the stretched Kähler cone:

K̃V ⊆ K̃X ⊆ K̃∩ . (3.14)

4 Axion Couplings

Consider a compactification of type IIB string theory on an orientifold7 of a Calabi-

Yau threefold hypersurface X. The four-dimensional theory contains h1,1 axions from

6In a general computation of K̃V using the algorithm of [11], care would be needed to ensure that

toric curves Ĉ that can be singular in V obey the constraint (1.2) with c = 1, rather than with some
fractional c. However, for our analysis it suffices to require that smooth toric curves obey (1.2), and
this is readily checked using [11].

7For simplicity we suppose here that h1,1− = 0.
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reduction of the Ramond-Ramond four-form C4. In this section we explain how the

kinetic and potential couplings of the axion fields are computed from geometric data.

4.1 Kinetic term

In terms of a basis {Di}, i = 1, . . . , h1,1 for H4(X,Z), we define

θi :=

∫
Di

C4 (4.1)

to be the corresponding dimensionless axions. The Kähler coordinates on Kähler mod-

uli space are the complexified divisor volumes

Ti := τi + iθi , (4.2)

with τi = 1
2

∫
Di
J ∧ J , cf. (2.7). The axion kinetic term is then8

Lkin = −
M2

pl

2
Kij∂

µθi∂µθ
j , (4.3)

where the Kähler metric Kij is obtained from the Kähler potential K = −2 log V .

4.2 Nonperturbative superpotential

The axions are perturbatively massless and receive mass only nonperturbatively, from

instantons: specifically, from Euclidean D3-branes wrapping four-cycles.9

The leading-order bosonic action S for a Euclidean D3-brane is given by the Dirac-

Born-Infeld action plus an imaginary Chern-Simons term that provides the coupling

to the axion (see e.g. [14]). Consider Euclidean D3-branes wrapping the four-cycles

Σα := n i
αDi , (4.4)

for some n i
α ∈ Z, α = 1, . . . ,N , and for some N > 0. The action Sα of the Euclidean

D3-brane wrapping Σα is then

Sα = 2πVol(Σα) + 2πi

∫
Σα

C4 = 2πVol(Σα) + 2πin i
α θi . (4.5)

Although one can in principle consider Euclidean D3-branes wrapping any four-cycle

Σα ∈ H4(X,Z), the situation is best-understood when Σα is an effective divisor,

i.e. when [Σα] ∈ Eff(X): precisely in that case, Σα is calibrated by the Kähler form J ,

8Indices on τi and θi are raised with the identity matrix.
9Strong gauge dynamics on a stack of D7-branes wrapping a four-cycle can also produce a non-

perturbative contribution to the axion potential. Our considerations apply equally to Euclidean
D3-branes and to D7-branes, but for simplicity of language we only refer to the former.
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and so obeys

Vol(Σα) =
1

2

∫
Σα

J ∧ J = n i
α τi , (4.6)

so that Sα = 2πn i
α (τi + iθi) = 2πn i

αTi.

If instead [Σα] 6∈ Eff(X), determining the volume of the minimum-volume rep-

resentative of the class [Σα] is in general very difficult, as we explain in Appendix A.

Moreover, Euclidean D3-branes wrapping a representative Σα of a class [Σα] 6∈ Eff(X)

cannot contribute to the superpotential. They may contribute to the Kähler potential,

but such effects are not well understood.

For now we will focus on effective divisors, and we suppose that superpotential

terms arise from Euclidean D3-branes wrapping the divisors

Dα := q i
αDi ∈ Effι(X) , (4.7)

for some q i
α ∈ Z, α = 1, . . . , p, and for some p > 0. The superpotential then takes the

form [4, 15]

W = W0 +
∑
α

Aα exp
(
− 2πq i

α Ti
)

(4.8)

where W0 is the classical flux superpotential [16]. The Pfaffians Aα depend on the

complex structure moduli, and will be set to unity in our analysis. The axion potential

can then be written as

V = −8π

V2

[∑
α

q i
α τiW0e

−2πq i
α τi cos

(
2πq i

α θi
)

+
∑
α>α′

(
π(K−1)ijq

i
α q

j
α′ + (q i

α + q i
α′)τi

)
e−2πτi(q

i
α +q i

α′ ) cos
(
2πθi(q

i
α − q i

α′)
)] (4.9)

We will make the conservative choice W0 ∼ 1: a smaller value of the flux superpo-

tential would make our upper bounds on axion masses more stringent. Performing a

GL(h1,1,R) transformation φi = MplM
j
i θj such that φ has canonical kinetic term, we

arrive at

L = −1

2
∂µφi∂µφ

i − V (φ) . (4.10)

The Hessian of the canonically-normalized axions is

Hij :=
∂2

∂φi∂φj
V (φ) , (4.11)

and we denote its eigenvalues by h2
1 ≤ . . . ≤ h2

h1,1 . The potential (4.9) has a rich

structure of minima and critical points, cf. e.g. [17–19], and finding the global minimum

numerically is expensive when h1,1 � 1 and p � h1,1 (for p slightly larger than h1,1,

which does not hold here, the methods of [19] could be used). In the remainder, by
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axion masses-squared we mean the Hessian eigenvalues h2
i , evaluated at the origin ~0,

i.e. at θ1 = θ2 = · · · = θh1,1 = 0. By minimum axion mass-squared we mean

m2
min := min

i
|h2
i (~0)| . (4.12)

One should bear in mind that these quantities could change slightly upon shifting the

axion vev to a minimum, but we have found no evidence for changes large enough to

invalidate our parametric results.

4.3 Geometric field ranges

The effective Lagrangian for the axions is usefully rewritten as

L = −
M2

pl

2
Kij∂

µθi∂µθ
j −

P∑
a=1

Λ4
a

(
1− cos(Q i

a θi)
)
, (4.13)

where the mass scales Λa are determined by the instanton actions Sα, and the charge

matrix Q has the entries

Q i
a = 2π

(
q i
α

q i
β − q i

γ

)
, (4.14)

where a = 1, . . . p(p+ 1)/2 ≡ P . The rows involving q i
β − q i

γ arise from cross terms in

the F-term potential, see [5, 20].

Because the potential is periodic it is natural to define the axion fundamental

domain F [5, 20], given by the hyperplane constraints:

F = {θi | − π ≤ Q j
a θj ≤ π} . (4.15)

The fundamental domain is compact when Q has rank h1,1.

A quantity of key interest for axion inflation is the geometric field range, i.e. the

maximum distance R from the origin to the boundary of F , measured with respect to

Kij. That is,

R := max
ρ

√
dTρ ·K · dρ , (4.16)

where dρ is the matrix of the vertices of F , and K is the Kähler metric. The walls

and vertices of F are determined by the integers q i
α , i.e. by the set of effective divisors

{Dα} in (4.7) that support superpotential terms. The problem of identifying those

effective divisors of a Calabi-Yau threefold hypersurface that support nonvanishing

superpotential terms has not been fully solved, cf. [21]. For the purposes of the present

work we will assume that every prime toric divisor DA supports a Euclidean D3-brane

superpotential term, cf. [5].

Computing R directly from (4.16) is prohibitively expensive at large h1,1, since

the number of vertices that must be checked is at least 2h
1,1−1. We will instead consider
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an upper bound on R. By performing a basis transformation

θi = (Q−1) j
i ϑj , (4.17)

where Q is a rank h1,1 subblock of Q, we can trivialize 2h1,1 of the hyperplane con-

straints. The metric in the ϑ basis is then

Ξ = (Q−1)T ·K · (Q−1) , (4.18)

with eigenvalues ξ2
1 ≤ · · · ≤ ξ2

h1,1
. An upper bound for R is then given by

R ≤ Rbound = π
√
h1,1ξh1,1 , (4.19)

where ξ2
h1,1 is the largest eigenvalue of Ξ. When Q is not square, Rbound depends on

the choice of Q, but each choice does provide an upper bound on R. Because we have

assumed that each of the DA supports a Euclidean D3-brane superpotential term, we

can choose h1,1 of the toric coordinates for Q, in such a way that Q is the h1,1 × h1,1

identity, and Ξ = K.

4.4 Masses

Suppose that, for some specified Kähler form J , and for some positive number L,

every basis of H4(X,Z) contains at least k ≥ 1 members Σα with Vol(Σα) > L in

string units. Then at least k axions must have mass . e−2πL. One can therefore place

upper bounds on the masses of the lightest axions by placing lower bounds on the

volumes of four-cycles furnishing bases for H4(X,Z).

Let us first consider placing upper bounds on superpotential contributions to

axion masses, by placing lower bounds on the volumes of effective divisors. As ex-

plained in §2.1.2, in this work we approximate Eff(X) by Effι(X); corrections to

this approximation will be described in [8]. The inherited prime toric divisors {DA},
A = 1, . . . , h1,1 + 4, provide a set of generators of Effι(X), and also, in the above

approximation, of Eff(X). For any J ∈ H1,1(X,R), not necessarily inside KX , we can

compute the volumes τA := 1
2

∫
DA

J ∧ J . There are at most
(
h1,1+4
h1,1

)
sets {Di} of h1,1

prime toric divisors that furnish bases for H4(X,Q), and for each such basis B we can

compute the volumes τB1 ≤ · · · ≤ τBh1,1 of the basis generators. Define Bmin to be the

basis choice that minimizes τBh1,1 . Roughly speaking, Bmin is a minimum-volume basis

of generators of the effective cone. We write

τlast(J) := τBmin

h1,1 , (4.20)

denoting explicitly the dependence on the choice of J . We can now give an upper bound

on the magnitude of the leading superpotential term involving the lightest axion, for
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the given J :

|W | ≤ exp
(
−2πτlast(J)

)
. (4.21)

Furthermore, given any region R ⊂ H1,1(X,R), not necessarily inside KX , we can

compute

τRlast := min
J∈R

τlast(J) . (4.22)

We then write

τVlast := τ K̃Vlast , (4.23)

τXlast := τ K̃Xlast , (4.24)

τ∩last := τ K̃∩last . (4.25)

Using (3.14), we have τ∩last ≤ τXlast ≤ τVlast. Thus, when the condition (1.2) for control

of the α′ expansion is imposed, the superpotential for the lightest axion is bounded

above by

|W∩| := exp (−2πτ∩last) . (4.26)

For h1,1 � 1 the exponentials in (4.9) are parametrically dominant, and in evaluating

the dependence of (4.9) on the lightest axion we can omit factors that are only polyno-

mial in the volumes, including the effect of canonical normalization.10 We then arrive

at an upper bound on the mass-squared m2
min of the lightest axion from (4.26),

m2
min . |W∩| . (4.27)

One of our main results is the computation of the bound m2
min for the geometries in

our ensemble.

What about axion mass terms from instanton contributions to the Kähler poten-

tial, resulting from Euclidean D3-branes wrapping classes [Σα] ∈ H4(X,Z) that are

outside Eff(X), and admit no holomorphic representative? Could such instantons give

masses� mmin? We discuss this question in Appendix A, and find that present knowl-

edge of minimum-volume representatives of classes outside Eff(X) is not sufficient to

give a definite answer, but at the same time there is no evidence of such a parametric

enhancement in known threefolds. We find it plausible that masses from K are least

parametrically comparable to those from W , and so are approximately given by (4.27).

5 Computation

We obtained the topological data of Calabi-Yau threefold hypersurfaces as follows. For

each value of h1,1 that we studied, we drew a number N (h1,1) of polytopes at random

10We will verify in §6 that this is an excellent approximation, see Figure 12.
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from the Kreuzer-Skarke database: see Table 1.11 We manipulated the polytopes using

Sage [22]. For each polytope that was favorable, we used TOPCOM to obtain a fine and

regular (but not star) triangulation. We removed the lines in the strict interior of

the polytope and included a line from the origin to each point in the polytope, thus

producing an FRST T̂ [23]. Such a triangulation defines a fan, and in turn defines

a toric variety V . As explained in §2.1.1, to study a generic Calabi-Yau threefold

hypersurface, one can omit simplices of T̂ that pass through facets of ∆◦. We denote

the set of remaining simplices by T , and abuse language slightly in calling T an FRST

as well.

Because we have restricted to favorable polytopes, there are h1,1 + 4 prime toric

divisors D̂A ⊂ V , each corresponding to a ray of the fan determined by T . We picked

a basis for H4(X,Q) by selecting a set of h1,1 of the inherited prime toric divisors

DA := D̂A ∩ X that are linearly independent. Using Sage, we computed the triple

intersection numbers κijk in the chosen basis. Finally, we computed the Mori cone

MV of the toric variety in Mathematica using the algorithm described in [11], which

is equivalent to that of [12], but easier to implement.

With this data in hand, we turned to analyzing the resulting cones. For each geom-

etry the stretched cones K̃V and K̃∩ were constructed as described in §3. We minimized

the volumes τA and V inside K̃V and K̃∩ using IPOPT, a software package for large-

scale nonlinear optimization, which is included in version 11 of Mathematica. Because

IPOPT uses an interior point algorithm that finds a local solution to the optimization

problem, we performed the minimization multiple times, from different starting points,

in an attempt to find the global minimum. Finding even one feasible starting point

for the optimization algorithm is challenging at large h1,1, as the cones K̃V and K̃∩
become very narrow. We made use of IBM’s optimization software CPLEX as well as

the LinearProgramming function of Mathematica to find such points.

Note that we computed one FRST for each favorable polytope studied. With

our methods it takes of order a day to obtain the topological data of all FRSTs of all

threefolds with h1,1 ≤ 6, but for larger h1,1 it quickly becomes infeasible to compute

all triangulations. In order to provide a better point of comparison for the data we can

obtain at h1,1 � 1, we limited ourselves to one FRST per polytope even for small h1,1.

The values of h1,1 that we studied, and the numbers N (h1,1), were chosen to

balance the computational expense at h1,1 � 1 against the potential for illuminating

scaling laws. Obtaining more extensive data at large h1,1 is an obvious next step [8].

In fact, the present work has established the feasibility of obtaining the topological

data of at least one threefold (i.e., one FRST) for each polytope in the Kreuzer-Skarke

database. A very rough estimate is that such a computation could require a few CPU-

centuries, absent any improvements to the algorithms.

11We remark in passing that the Euler number χ of X is negative in more than 99% of the geometries
in our ensemble with h1,1 ≤ 18, but by h1,1 = 100 less than 2% of geometries have χ < 0.

16



h1,1 # of polytopes in KS database # of polytopes studied # of favorable polytopes # of volume minimizations
2 36 36 36 36
3 244 244 243 243
4 1197 1,197 1,185 1,185
5 4,990 4,990 4,987 3,000
6 17,101 17,101 16,608 3,000
7 50,376 50,376 48,221 3,000
8 128,165 128,165 120,759 3,000
9 285,929 285,929 264,558 3,000
10 568,078 568,078 515,319 3,000
11 1,022,264 300,000 261,541 3,000
12 1,685,784 100,000 86,860 3,000
13 2,580,222 100,000 84,923 3,000
14 3,697,767 100,000 82,939 3,000
15 5,011,933 100,000 80,415 3,000
16 6,473,431 100,000 78,756 3,000
17 7,989,780 100,000 76,749 3,000
18 9,561,562 100,000 75,109 3,000
19 11,054,578 100,000 73,454 3,000
20 12,434,427 100,000 71,656 3,000
21 13,652,664 20,000 14,136 3,000
22 14,677,475 20,000 13,844 3,000
23 15,484,811 3,000 2,047 2,047
24 16,088,119 3,000 2,025 2,025
25 16,495,690 3,000 1,988 1,988
30 15,914,795 3,000 1,907 1,907
35 12,955,936 3,000 1,866 1,866
40 9,620,216 3,000 1,808 1,808
45 6,787,275 3,000 1,774 1,774
50 4,659,208 3,000 1,729 1,729
55 3,171,468 3,000 1,700 1,700
60 2,174,347 3,000 1,654 1,654
65 1,494,731 3,000 1,634 1,634
70 1,018,865 3,000 1,641 1,641
75 762,815 3,000 1,627 1,627
80 487,805 3,000 1,655 1,655
85 339,574 3,000 1,641 1,641
90 246,570 3,000 1,604 1,604
95 179,981 3,000 1,629 1,629
100 129,605 3,000 1,626 1,626
105 92,887 3,000 1,597 0
110 68,453 3,000 1,627 0
115 51,509 3,000 1,619 0
120 39,847 3,000 1,602 0
130 23,001 3,000 1,597 0
135 16,731 3,000 1,659 0
140 12,392 3,000 1,626 0
145 9,411 3,000 1,596 0
155 5,440 3,000 1,646 0
160 4,101 3,000 1,697 0
165 3,160 3,000 1,717 0
170 2,502 2502 1,403 0
180 1,486 1486 899 0
185 1,318 1318 750 0
190 1,209 1209 685 0
195 830 830 497 0
205 535 535 324 0
210 483 483 276 0
215 392 392 233 0
220 356 356 208 0
230 219 219 113 0
235 172 172 113 0

240-491 4,358 4,358 2,671 0

Table 1: The dataset.
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6 Results

The primary topological data produced by our analysis are the generators of the Mori

cones MV of toric varieties V , and the intersection numbers κABC of inherited prime

toric divisors DA of Calabi-Yau hypersurfaces X ⊂ V . Taking these data and imposing

the condition (1.2), we can compute the stretched Kähler cones K̃V and K̃∩, which

bound the stretched Kähler cone K̃X of X from the inside and the outside, respectively,

cf. (3.14). Then, for any holomorphic 2k-cycle Σ2k (1 ≤ k ≤ 3) in X, K̃∩ determines a

lower bound on Vol(Σ2k) ≡ 1
k!

∫
Σ2k
∧kJ .

In this section we report salient features of the intersection numbers, Mori cones,

volumes of holomorphic cycles, geometric field ranges, and masses in our ensemble.

Topological Data:

The volumes V , τA and tAB depend on the intersection numbers κijk, as given in (2.7).

Since κijk depends on a choice of basis of H4(X,Z), we instead report the statistical

properties of κABC , which is basis-independent.

We first examine the sparseness of κABC . The number of nonvanishing intersection

numbers per geometry increases approximately linearly with h1,1, as shown in Figure 1.

As a result, κABC becomes very sparse at large h1,1. In Figure 2 we show the root mean

square (RMS) size of the nonvanishing intersection numbers for each geometry.

The cone KV is given by the intersection of the half-spaces defined by the linear

inequalities

Mait
i > 0. (6.1)

As h1,1 increases, the number of inequalities grows and KV becomes very narrow. A

conceptually straightforward way to quantify the narrowness of the cone KV would

be to analyze the behavior of the solid angle subtended by KV as a function of h1,1.

However, this becomes computationally expensive when h1,1 & 15. Instead, we char-

acterize the narrowness of KV by computing the cosine of the smallest angle between

two hyperplanes, denoted Ma and M b:

cos(θmin) := min
a,b

(
Ma ·M b

|Ma||M b|

)
. (6.2)

As the angle θmin between two hyperplanes approaches zero, the cone becomes infinitely

narrow. This can also be understood from the perspective of the dual coneMV . When

MV has two generating rays Ma and M b that are almost antiparallel (such that KV
has facets whose normals are almost antiparallel), it is difficult to find a Kähler form J

such that both of the associated curves have positive volumes simultaneously. Figure

3 shows cos(θmin) as a function of h1,1.
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Figure 1: Number of nonzero entries of κABC , cf. (2.9), vs. h1,1.

Figure 2: Root mean square size of nonzero entries of κABC vs. h1,1.

Figure 3: cos(θmin), defined in (6.2), vs. h1,1.
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Figure 4: log10(dVmin), defined in (6.3), vs. h1,1 and vs. log10(h1,1). The fit is
log10(dVmin) = −1.7 + 3.1 log10(h1,1).
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Figure 5: log10(d∩min), defined in (6.4), vs. log10(h1,1). The fit is log10(d∩min) = −1.4 +
2.5 log10(h1,1).

AsKV becomes more narrow, the stretched cone K̃V , defined in (3.13), gets pushed

further away from the origin. Another measure of the size ofKV is therefore the shortest

distance dVmin between the origin and any point of K̃V ,

dVmin := min
ti

{√
titi

∣∣∣ ti[Di] ∈ K̃V
}
, (6.3)

and we denote the minimum-distance point by tVd . See Figure 4.

Although KV is computationally accessible (even for h1,1 = 491), and the size

of KV is generally correlated with the size of KX , KV can in principle be much more

narrow than KX . Analysis of KV alone can therefore provide only estimates of the

volumes of holomorphic cycles in X, for ti[Di] ∈ KX , rather than definite bounds. To

obtain lower bounds on cycle volumes, we instead examine K∩, which contains KX .

The tradeoff is that K∩ is a complicated cone defined by linear, quadratic and cubic

constraints, and defining a quantity analogous to θmin is difficult. We can, however,

compute d∩min, the shortest distance between the origin and any point of K̃∩,

d∩min := min
ti

{√
titi

∣∣∣ ti[Di] ∈ K̃∩
}
, (6.4)

and we denote the minimum-distance point by t∩d . See Figure 5.

Volumes:

To compute lower bounds on τlast and V , for each prime toric divisor DA we numerically

minimize the divisor volume τA in K̃V and in K̃∩. We then calculate τVlast and τ∩last as

described in §4 and §5. The resulting bounds are shown in Figures 6-9.12

12We omit cases in which the only K∩ constraint on V is the trivial one V > 1, cf. (3.12): for these
geometries a direct computation of KX is plausibly necessary.

21



(a) log10(τVlast) vs. log10(h1,1). The fit is log10(τVlast) = −1.9 + 4.3 log10(h1,1).

(b) log10(τ∩last) vs. log10(h1,1). The fit is log10(τ∩last) = −1.7 + 3.2 log10(h1,1).

Figure 6: Lower bounds on τVlast, defined in (4.23), and τ∩last, defined in (4.25), vs. h1,1.
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(b) log10(τ∩last).

Figure 7: τVlast (left) and τ∩last (right) for h1,1 = 10 (leftmost peak), 30 (center peak),
and 50 (rightmost peak).
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(a) log10(VV ) vs. log10(h1,1). The fit is log10(VV ) = −3.4 + 7.2 log10(h1,1).

(b) log10(V∩) vs. log10(h1,1). The fit is log10(V∩) = −3.8 + 6.2 log10(h1,1).

Figure 8: Lower bounds on V , defined in (2.7), vs. h1,1 in K̃V (top) and K̃∩ (bottom).
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Figure 9: Lower bounds on V in K̃V (left) and K̃∩ (right) for h1,1 = 10 (leftmost
peak), 30 (center peak), and 50 (rightmost peak).
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Geometric field ranges:

As explained in §4, we estimate the radius R (4.16) of the axion fundamental domain

F by assuming that all prime toric divisors DA contribute to the superpotential. The

radius depends on the Kähler parameters ti, and we report upper bounds on R at two

locations. We define tVV and t∩V to be the points in K̃V and K̃∩, respectively, where the

threefold volume V is minimized, and we define

RV := R(tVV ), R∩ := R(t∩V) . (6.5)

We first compute the Kähler metric Kij at tVV . We next trivialize 2h1,1 of the hyperplane

constraints, as in (4.17), taking Q to be the h1,1 × h1,1 identity subblock of the charge

matrix Q corresponding to a choice of h1,1 of the toric coordinates. This yields an

upper bound RV
bound ≥ RV , shown in Figure 10. Computing Kij instead at t∩V and

repeating the trivialization, we obtain the upper bound R∩bound ≥ R∩, shown in Figure

10.

(a) RVbound vs. h1,1. (b) R∩bound vs. h1,1.

Figure 10: Upper bounds on the geometric field range, cf. (6.5), vs. h1,1. Left:
log10(RV

bound). Right: log10(R∩bound). 5th, 50th, and 95th percentiles are shown.

Axion masses:

Now consider type IIB string theory compactified on an orientifold of a hypersurface

X from our ensemble. The large divisor volumes lead to powerful suppression of

superpotential contributions to the potential for C4 axions θi. We find that in every

geometry in our ensemble13 with h1,1 > 22, the lightest axion is essentially massless,

with the canonically-normalized field having mass

m < 10−33 eV . (6.6)

13One must bear in mind that we have examined a very limited sample of the Kreuzer-Skarke list,
and so our findings should be understood as indicating typical behavior, not establishing a no-go.
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(a) log10(ξVh1,1) vs. h1,1. (b) log10(ξV1 ) vs. h1,1.

(c) log10(ξ∩h1,1) vs. h1,1. (d) log10(ξ∩1 ) vs. h1,1.

Figure 11: Maximum (left) and minimum (right) eigenvalues of the kinetic matrix Ξ,
defined in (4.18), vs. h1,1, evaluated at tVV (top) and t∩V (bottom).

Figure 12: ln(mmin) evaluated at t∩d , cf. (4.12), vs. τ∩last. The edge is at ln(mmin) =
−πτlast.
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Let us also give a heuristic estimate of the expected mass of the lightest axion.

By the definition (4.22), every basis for H4(X,Q) consisting of elements of Eff(X) has

members with volume ≥ τ∩last. As seen from the fit in Figure 6, τ∩last ∼ 0.02(h1,1)p with

p ∼ 3. Hence, one or more of the h1,1 axions θi receives no superpotential contributions

larger than

|W∩| ≡ exp(−2πτ∩last) ∼ exp
(
−0.1(h1,1)3

)
. (6.7)

The exponent p changes, within the range 3 . p . 6, depending on whether one exam-

ines τ∩last — which is the most direct and conservative — or instead a more computable

proxy such as τVlast or (dVmin)2. However, such changes do not alter our central finding

that one or more axions are extremely light when h1,1 � 1 and J ∈ K̃∩.

Summary:

A root cause of our findings is that the Kähler cones of Calabi-Yau threefold hyper-

surfaces are very narrow for h1,1 � 1, as shown in Figure 3. The condition (1.2) that

every effective curve has volume ≥ 1, which we have used as a proxy for control of the

α′ expansion, then implies that the Kähler form J ∈ H1,1(X,R) is far from the origin

in H1,1(X,R), in the sense of (6.3): see Figures 4 and 5. In turn, many irreducible

effective curves and irreducible effective divisors have large volumes, see Figures 6-7.

Furthermore, the volume V of X itself is large (Figures 8-9), the geometric field range

is generally small (Figure 10), and the eigenvalues of the axion kinetic matrix are

small (Figure 11). The minimum axion mass is small, and strongly correlated with

τ∩last (Figure 12).14

7 Implications for Axion Cosmology

The overall picture that emerges from our analysis is that in a compactification of

type IIB string theory on an orientifold of a Calabi-Yau threefold hypersurface X with

h1,1 � 1, in the regime of control of the α′ expansion, X and most of its subvarieties

have very large volumes in string units. The resulting effective theory has many ax-

ions, some of which are essentially massless,15 with m � 10−33 eV. The axion kinetic

matrix has small eigenvalues, and the radius of the axion fundamental domain is sub-

Planckian.16 In summary, we find an axiverse with hundreds of axions, some of them

14In fact, mmin(t∩d ) is almost perfectly correlated with τlast(t
∩
d ). Note that by (4.20), τ∩last 6= τlast(t

∩
d ).

15Many authors use the term ‘ultralight axion’ for axions with m & 10−33 eV that could make up
part of the dark matter, as in [24, 25]. We avoid the term ‘ultralight’ when speaking of the far lighter
axions found here, with m� 10−33 eV; these we instead call ‘massless’, even though strictly speaking
their masses are negligibly small, not zero.

16As explained in §6, in a small fraction of cases we cannot exclude the possibility of super-Planckian
radii, but neither can we prove that all curves in X have positive volume in these cases. For the
present discussion we consider only the better-established examples with J ∈ K̃V , for which the radii
are sub-Planckian.
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massless, and all with small periodicities. In this section we will mention a few of the

implications of these findings for the cosmology of compactifications with h1,1 � 1.

Axions and axion-like particles with appreciable couplings to the Standard Model

are strongly constrained by a wealth of data from diverse channels, including terres-

trial appearance experiments such as helioscopes and haloscopes; red giant evolution;

supernovae; CMB spectral distortions; and X-ray production in galactic or cosmologi-

cal magnetic fields. See [26] for a review. To apply these constraints to the large-h1,1

axiverse that we have described, it would be necessary to make specific assumptions

about the realization of the Standard Model, and its couplings to the axion sector.

While very interesting, such an analysis is extremely model-dependent.

Cosmological effects of the gravitational couplings of axions present a more direct,

but still somewhat model-dependent, set of constraints. Sufficiently light axions, with

m � 10−33 eV, are indistinguishable from vacuum energy unless excitations of the

axion field (i.e., particles) are produced as dark radiation, for example through the

decay of an associated modulus. The limits on dark radiation are rather stringent,

cf. [27–29], but again depend on the details of post-inflationary evolution. For example,

if the lightest modulus decays only to a single axion, as well as to Standard Model

particles, the dark radiation constraints are insensitive to the existence of other axions

and moduli [29], but can be severe nonetheless [27, 28]. Axions with m ∼ 10−33 eV

can be quintessence fields [30], and in special cases could even alleviate the “why now”

problem [31]. Axions with m ∼ 10−22 eV could constitute a portion of the dark matter,

and could give rise to small-scale structure in better agreement with observations than

that predicted by cold dark matter models [24] (for recent work, see e.g. [25, 32–

34]). Overproduction of axion dark matter — and in some mass ranges, isocurvature

perturbations in the CMB — provide serious constraints [35–37], especially in models

with many axions [38].

Perhaps the most interesting constraints on the large-h1,1 axiverse come from

black hole superradiance [39]. Axions in the mass range 10−10 eV − 10−20 eV, even if

not present as a cosmologically abundant population, can trigger instabilities of black

holes. Detailed modeling of moduli stabilization would be necessary to make precise

statements, but as a rough estimate, we find that approximately half the geometries in

our ensemble have an axion in the mass range 10−10 eV ≤ m ≤ 10−20 eV. Superradi-

ance limits on many-axion theories have been obtained in [40]. However, the analysis

of [40] is only directly applicable to theories with relatively large decay constants,

f & 1014 GeV. Axions with smaller periodicities suffer from nonlinear interactions,

potentially changing the limits of [40]. A dedicated study of superradiance constraints

on the Kreuzer-Skarke axiverse would be a worthwhile topic for the future.
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8 Conclusions

We have initiated a survey of compactifications on Calabi-Yau threefold hypersurfaces

with arbitrary h1,1, i.e. of the entire Kreuzer-Skarke list.

This work extends and complements the complete enumeration carried out by

Altman et al. [2] for h1,1 ≤ 6. The large h1,1 regime presents evident computational

challenges, a few of which we have overcome. Publicly-available software such as Sage

[22] generally produces FRSTs only for h1,1 . 10, and the improved triangulation al-

gorithms that have been implemented on a large scale in the past are expensive, and

function only for h1,1 . 30 [2, 41]. Moreover, the sheaf cohomology computations

needed for studying divisors D ⊂ X likewise explode in difficulty for h1,1 & 10. These

limitations have led to a perception that systematic enumeration and study of hyper-

surfaces with h1,1 � 10 — corresponding to the bulk of the Kreuzer-Skarke database

— is not possible at present. In this work we have demonstrated, on the contrary, that

large-scale studies are feasible for any range of h1,1 arising in the Kreuzer-Skarke list,

given only modest computational resources.

A key step was implementing the triangulation algorithm described in [23], which

allowed us to obtain fine regular star triangulations ∼ 5 · 103 times faster (per CPU)

than was possible in [2, 41]. With our methods, finding one FRST takes just seconds

even for h1,1 = 491.17 However, although we can efficiently generate large numbers

of compactifications at any desired h1,1, several challenges remain. In this work, we

used Sage to obtain the intersection numbers of hypersurfaces with h1,1 ≤ 100, at a

computational cost of order half a CPU-hour per hypersurface at h1,1 = 100. Significant

further gains are possible in this area, and allow efficient computation of intersection

numbers for any h1,1 ≤ 491, as we will show in [8]. Even so, one thing that remains

out of reach is a complete enumeration of hypersurfaces at large h1,1, simply because

the number of such hypersurfaces — corresponding to the number of inequivalent

triangulations of reflexive polytopes with many lattice points — appears to be vast.

The principal raw data produced by our analysis are FRSTs of four-dimensional

reflexive polytopes; the Kähler cones of the corresponding toric varieties V ; and the

intersection numbers of generic Calabi-Yau threefold hypersurfaces X ⊂ V . These data

provide a wealth of information about four-dimensional effective theories arising from

string compactifications on such X. In this paper we studied two of the most salient

physical findings, axion mass hierarchies and axion field ranges, leaving a complete

characterization of the physical implications of our topological and geometric data as

a significant task for future work.

The first observable we studied is the set of relations among cycle volumes enforced

by the Mori cone conditions, which control the structure of the potential generated by

17Given such a triangulation, the results of [21] allow immediate study of the Hodge numbers of
square-free divisors of the corresponding threefold.
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instantons. We found that enforcing that every effective curve has volume at least one

in string units, as a proxy for ensuring control of the α′ expansion, has — for h1,1 � 1

— a striking consequence: the volumes of many irreducible curves and divisors on X,

and of X itself, become extremely large. We found that these volumes scale roughly

as (h1,1)p, with the exponent 3 . p . 7 depending on the type of cycle considered.

One consequence is that in a compactification of type IIB string theory on an

orientifold of a typical Calabi-Yau threefold hypersurface with h1,1 � 1, one of the

following holds:

1. One or more axions are effectively massless.

2. Many effective curves have volumes . 1.

3. The axion mass terms produced by Euclidean D3-branes wrapping non-holomorphic

four-cycles are parametrically larger than those from holomorphic four-cycles.

When condition (3) holds, the breakdown of the α′ expansion cannot be detected by

computing the volumes of calibrated cycles, while condition (2) suggests but does not

guarantee the existence of large perturbative and nonperturbative corrections in the

α′ expansion. Thus, we have established a tension between nonvanishing masses for

all axions, and manifest control of the α′ expansion.

The second observable we studied is the metric on Kähler moduli space, which

is relevant for understanding quantum gravity constraints on large-field inflation. We

found that the eigenvalues of the axion kinetic matrix are typically small at large

h1,1, primarily because of the large volume of X. In each geometry we computed an

approximation to the radius of the axion fundamental domain. The radius depends

strongly on how restrictive a condition one imposes on the Kähler form J . For Kähler

forms such that every curve in the ambient toric variety V has volume ≥ 1, we found

field ranges � Mpl in every example. In the less restrictive case of Kähler forms in

the region defined by (3.12), corresponding to the outer approximant to the stretched

Kähler cone of X, we found super-Planckian axion field ranges in a small fraction of

geometries, at each h1,1. While intriguing, this finding cannot be taken as evidence for

large field ranges in the regime of control of the α′ expansion, because without a direct

computation of KX we cannot exclude the possibility that in each example giving an

apparent large field range, one or more effective curves C ∈ MX has volume < 1, or

indeed < 0.18 Overcoming this limitation is an important task for the future.

Because our results are drawn from a statistical study of an ensemble of geome-

tries, they should be taken as statements about typical compactifications, and there

can be special Calabi-Yau threefolds that violate the behavior observed in this work.

18Note that because KX ⊂ K∩, computing K∩ is sufficient to place definite lower bounds on volumes,
or upper bounds on field ranges. However, because KX ( K∩ in general, any examples with J 6∈ KV

are necessarily provisional, and await a direct computation of KX .
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For instance, the Mori cone constraints in the geometry studied in [42] are much milder

than those of a typical hypersurface, possibly because the Kähler moduli space in [42]

has a symmetry corresponding to exchanging the Kähler moduli that correspond to

blowups. It would be interesting to understand the incidence of such geometries.

Our results give a sharper picture of the spectrum of axion masses and decay

constants arising in geometric compactifications of string theory. Reasonable a priori

estimates of these spectra, as well as studies in families of examples, have been made

and used in the study of the string axiverse [29, 39, 43–45], and our ensemble provides

a foundation for refining these estimates.

There are several directions for future work. By applying computational resources

on a larger scale, one could more finely sample the Kreuzer-Skarke database. A rough

estimate is that in under a few hundred CPU-years one could find one FRST for every

one of the 473,800,776 polytopes in the list. Intersection numbers could be obtained at

comparable cost given the improved methods of [8]. As we have stressed, however, the

number of distinct triangulations is plausibly vastly larger than the number of poly-

topes, and so it remains to be seen whether it is possible even to store the topological

data of every compactification arising from the Kreuzer-Skarke database.

The geometric data obtained here can serve to answer questions about which sorts

of effective theories are possible in compactifications on Calabi-Yau hypersurfaces. To

answer such questions, it would be natural to use machine learning [46–53], among

other tools, given the scale and complexity of the data.
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A Non-holomorphic Instantons

We noted in §2 that computing contributions to the superpotential from Euclidean D3-

branes wrapping holomorphic four-cycles (i.e., effective divisors) is much simpler than

computing contributions to the Kähler potential from Euclidean D3-branes wrapping

non-holomorphic four-cycles. On the physics side, one reason for the disparity is that

superpotential terms are constrained by holomorphy. Geometrically, the difference

between the two computations is that a holomorphic four-cycle Σ4 is calibrated by the

Kähler form J , and enjoys the relation

Vol(Σ4) =
1

2

∫
Σ4

J ∧ J , (A.1)

so that once J is given, Vol(Σ4) is determined by topological data. Similarly, an

antiholomorphic four-cycle Σ4 has orientation opposite to that of a holomorphic cycle,

and obeys

Vol(Σ4) = −1

2

∫
Σ4

J ∧ J , (A.2)

However, it is much more difficult to compute the volume of a cycle that is neither

holomorphic nor antiholomorphic, as we now explain.

A.1 Volume-minimizing currents

Suppose that X is a compact Kähler manifold of dimension n,19 with Kähler form

J , and consider a class [α] ∈ H2n−2(X,Z). By definition, [α] can be represented

by some effective divisor D if and only if [α] ∈ Eff(X). So suppose, henceforth,

that [α] 6∈ Eff(X), and also −[α] 6∈ Eff(X). Then [α] admits neither a holomorphic

representative nor an antiholomorphic representative.

Writing Vol(α) for the volume of a given representative α of the class [α], one

might attempt to define

MinVol([α]) = min
α∈[α]

Vol(α) , (A.3)

i.e. MinVol([α]) is the volume of the smallest-volume representative of the class α.

However, it is not obvious that the variational problem implied by (A.3) is well-

posed: does one search over all representatives of α, or just representatives obeying an

appropriate smoothness condition? It is also not clear a priori how smooth the volume-

minimizing configuration will be: in fact, one can easily find examples in which the

volume-minimizing configuration has singularities, at least at complex codimension

one.

19Assuming that X is Calabi-Yau, and/or that n = 3, does not lead to appreciable simplifications,
and so we shall not make these assumptions in this section.
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Fortunately, the problem of finding the minimum-volume representative of a given

homology class is one of the central questions of geometric measure theory, and was

put on sound footing in the 1960s by Federer and Fleming. They defined objects

called integral p-currents, which roughly correspond to formal sums of p-dimensional

submanifolds, except for sets of p-dimensional Hausdorff measure zero. Federer and

Fleming showed that the class of integral p-currents has a compactness property that

is very useful in formulating variational problems: in fact, they proved that for each

class20 [α] ∈ H2n−2(X,Z), there exists an integral current of least volume [54]. In other

words, (A.3) actually does define the solution of a well-posed variational problem,

provided that α is understood to vary over integral currents, not just over smooth

submanifolds.

A.2 Non-holomorphic instantons and volume reduction

Consider a Euclidean D3-brane in a homology class [α] 6∈ Eff(X), which necessarily

cannot contribute to the superpotential, but may contribute to the Kähler potential.

The real part of the action of such a Euclidean D3-brane is plausibly proportional

to MinVol([α]), which is well-defined thanks to geometric measure theory. Even so,

computing MinVol([α]) is nontrivial.

As a toy example, suppose that X is such that four-cycles α1 and α2 are a basis

for H4(X,Z) = Z2, and α1 and α2 also generate Eff(X). For a given Kähler form J ,

define τi := 1
2

∫
αi
J ∧ J and θi :=

∫
αi
C4, i = 1, 2. If J is such that τ1, τ2 � L for some

L� 1, then Euclidean D3-brane terms in the superpotential are no larger than e−2πL.

In this situation, one should ask about contributions to the Kähler potential from

Euclidean D3-branes wrapping a representative γ of a non-effective class such as [γ] :=

[α1 − α2] 6∈ Eff(X). Because α1 and α2 are calibrated by J , we have MinVol([αi]) =

τi � L. The action of instantons on γ is determined by τγ := MinVol([γ]). However,

we cannot conclude that

τγ ≥ τ1 + τ2 . (A.4)

If α1 and α2 are disjoint, then (A.4) actually does hold, but more generally the inter-

section locus of the minimum-volume representatives of [α1] and [α2] can be deformed

to produce a representative of [γ] with volume < τ1 + τ2. When τγ = τ1 + τ2 − ∆τ

for ∆τ > 0, we will say that recombination has led to volume reduction by an amount

∆τ > 0.

The question of volume reduction is best-understood for two-dimensional currents.

Building on work of Almgren [55], Chang proved that in any Riemannian manifold,

the singular set of a volume-minimizing two-dimensional current consists of isolated

branch points [56]. It is therefore tempting to conjecture that in a Kähler manifold,

20Federer and Fleming’s theory of integral currents is is not limited to the case that X is Kähler, nor
even complex, nor does it require that [α] is dual to a hypersurface, but for simplicity of presentation
we state what their results imply for the case of present interest.
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a volume-minimizing two-dimensional current consists of a union of holomorphic and

antiholomorphic curves, intersecting at points; one consequence would be that there

is no volume reduction for two-dimensional currents in a Kähler manifold. However,

in [57], for X a K3 surface, Micallef and Wolfson gave an explicit example of a non-

effective class [α1 − α2] ∈ H2(K3,Z) whose minimum-volume representative is not

a union of holomorphic and antiholomorphic curves,21 and for which MinVol([α1 −
α2]) < MinVol([α1])+MinVol([α2]). The volume reduction is proportional to the small

parameter ε measuring the deviation from the orbifold limit of K3.

The issue, returning to four-cycles, is then the following. If a significant volume

reduction ∆τ ∼ O(τ1, τ2) could occur in some setting, so that τγ � τi, then ensuring

τ1, τ2 � L would not place any upper bound on the size of Euclidean D3-brane terms in

the Kähler potential. The axion masses from non-holomorphic instantons in K would

be parametrically larger than those from holomorphic instantons in W .

Although the Micallef-Wolfson construction proves that nonzero volume reduc-

tion can occur in a Calabi-Yau compactification, we are not aware of any example of

parametrically large volume reduction in a comparable setting. Moreover, the cycle

volume determines only the leading semiclassical action of a Euclidean D-brane, and

one should compute corrections to this action, such as the fluctuation determinant,

before drawing conclusions about the relative sizes of physical effects.22

In summary, determining whether Euclidean D3-branes wrapping non-holomorphic

cycles can contribute axion masses that are parametrically larger than those arising

from holomorphic cycles is an open problem. The available evidence does not exclude

this possibility, but also does not, in our view, strongly support it. Our results on

axion masses rely on our computation of the volumes of holomorphic cycles, and could

be affected if large volume reduction occurs and causes non-holomorphic instantons to

dominate in the potential. This proviso should be kept in mind when interpreting our

findings.
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