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Abstract: This study presents a novel neural network (NN)-based non-linear adaptive control strategy for the global stability of
multi-input—multi-output state-control homogeneous bilinear system (BLS) at the equilibrium position. Although this class of non-
linear system is neither piecewise nor feedback linearisable, conditionally stabilisable control system design can be utilised to
generate multiple state transitions and corresponding control gains. The collected data was used to train a NN to obtain an
optimal gain estimator. Then the optimal gain estimator was integrated into real-time control system operation to adaptively
compute control gains, ensuring that the controller is continuously adjustable to changing behaviour of the system. The
proposed design was shown, through an illustrative example, to overcome the stability limitations of traditional controllers for the
investigated class of BLS. Furthermore, discussions about the utility of the traditional control and learning system integration, as
well as stability analysis of the proposed scheme were presented.

1 Introduction

A bilinear system (BLS) can be described as a linear system with
state and control input coupling terms [1-3]. Although these
systems are linear in state as well as in control, they are jointly
non-linear. Interest in the study of such systems has been sustained
largely because of several real-world dynamical systems exhibiting
bilinear behaviour. They include biological, chemical, nuclear and
thermal processes [4, 5]. For instance, biochemical reactions
exhibit bilinear behaviour in that the enzyme concentration (control
variable), and both the substrate concentration and the
decomposing complex (the state variables), are jointly non-linear.
A similar phenomenon is exhibited in the regulation of thyroxin in
the human body, where the control variable is the concentration of
the free protein, and the states are the free thyroxin and protein-
bound thyroxin concentrations. In nuclear fission processes, the
rate of change of neutron population is bilinear in nature. In that
case, the neutron multiplicative factor (control variable) is jointly
non-linear with the neutron population and the precursor (the state
variables).

Whereas a general solution to the BLS control problem is still
open research, control techniques for certain classes of BLS have
been reported. These include piecewise linearisation methods,
feedback linearisation techniques, and Lyapunov-based non-linear
control schemes. In [6], a static linear state-feedback control was
designed for BLS by solving complex optimisation problems
which utilise the linear matrix inequalities (LMIs). However, only
local stability is guaranteed and the polytopic region must be
within the domain of attraction of the equilibrium. The authors of
[7] proposed a piecewise constant control method for planar BLS
using the switching control approach. In [8], convex optimisation
procedure for the stability of BLS with binary inputs was proposed
with only local stability guaranteed.

An output feedback controller based on backstepping strategy
was designed in [9] to stabilise multi-variable systems with bilinear
stochastic coupling, invariably attenuating the stochastic coupling
of the output and ensuring that the closed-loop trajectories are
bounded. In [10], the passive control scheme was applied to the
feedback stabilisation of BLS with bounded inputs and
multiplicative noise, where a bounded nonlinear feedback
controller was introduced based on the storage function strategy.
And the problem of establishing a minimum-time control for near-
controllability of BLS was addressed in [11]. In [12], neural
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network (NN) was used to find the solution of Hamilton—Jacobian—
Bellman (HJB) equation by estimating the value function
parameters. This, in turn, was used to stabilise BLS for which
optimal control solution with static parameters exists. Also, NN
was utilised in [13] to approximate the system behaviour of
hyperbolic systems of conservation laws (HSCL) class of BLS with
nonstandard boundary conditions. The NN was used for
computational modelling of the system dynamics, whereas
Lyapuvnov function was utilised for controller synthesis. Although
NN has been integrated into the control system, the control action
was still computed using the traditional approach.

To the best of authors’ knowledge, a class of BLS for which
there is no reported global stability solution is the multiple-input—
multiple-output (MIMO) state-control homogeneous BLS (HBLS).
This class of BLS has neither linear state nor linear control
components, but only the state-control coupled terms. As a result,
they are neither piecewise linearisable nor feedback linearisable.
Moreover, existing control schemes only achieved conditional
stability as presented in Section 3. Therefore, in this work, an NN-
based non-linear adaptive control method has been proposed.

In contrast to ordinary controllers, the parameters of adaptive
controllers are continuously adjusted on-line based on the changing
system dynamics. Therefore, rather than having a single controller,
a family of controllers is realised due to the tunability of the
controller parameters. However, there has been little success with
the application of adaptive control to general non-linear systems.
For the classes of systems where solutions exist, the following
conditions must be satisfied: (1) non-linear dynamics of the plant
can be linearly parameterised, (2) full plant state must be
measurable, and (3) control input must be able to cancel non-
linearities with no unstable hidden nodes or dynamics if the
parameters are known [14]. As analysed in Section 4 of this paper,
MIMO state-control HBLS does not satisfy conditions 1 and 2.

The development of learning models has presented tools for
advanced decision making in adaptive control designs. For
example, learning models have been deployed in the control of
modern systems such as autonomous vehicle navigation [15] and
robotics [16, 17]. In order to stabilise and achieve tracking control
of switched non-strict-feedback non-linear systems with unknown
non-linearities, dead zones and unmeasured states, the authors of
[18] proposed an observer-based fuzzy output feedback control
scheme. The unknown functions were approximated using fuzzy
logic systems, the unmeasurable states were estimated by a fuzzy
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switched state observer, and backstepping control design strategy
was utilised. However, BLS was not considered in the problem
formulation as the states and control input were not multiplicative.

In [19], a decentralised adaptive NN output-feedback controller
was designed for the stabilisation and tracking control of non-linear
systems. Whereas the NN was utilised by the authors to model
unknown nonlinear functions and the adaptive backstepping design
strategy was employed, our proposed scheme employed NN to
adaptively compute the control input. Although the interconnecting
terms are unknown, the states and the control input were not
multiplicative, indicating that BLS was not considered in the
problem formulation. The effect of multiple fading channels on the
state estimator performance of periodic NNs was investigated in
[20]. Specifically, two sufficient conditions were provided to
ensure that the estimation error system is stochastically stable and
meets specified H,, performance, and the estimator gains were
obtained. The NN was used to approximate intermediate control
functions in [21] to realise an adaptive finite-time decentralised
control scheme. Backstepping strategy was integrated with the
Lyapunov control theory to achieve desired control of large-scale
non-linear systems with input saturation and time-varying output
constraints in finite time. However, BLS was not considered.

Therefore, due to the capability of NN models to characterise
highly non-linear behaviour once a pattern exists [22-24], it was
employed in this work as a universal approximator [25] to compute
adaptive controller parameters for MIMO state-control HBLS. By
non-linear mapping of the system state transitions to stabilising
controller gains across different domains of the state space, time-
varying state-adaptive controller parameters for global stability of
the equilibrium position are obtained. The block diagram of Fig. 1
gives a high-level description of the nonlinear adaptive controller
optimisation technique. And an illustrative example is presented in
Section 3 to demonstrate the effectiveness and superiority of the
proposed strategy over the traditional scheme, with comparative
stability and tracking control performance.

The contributions of this work are (1) design of an NN-based
non-linear adaptive control system, (2) control of non-piecewise
linearisable and non-feedback linearisable system to achieve global
stability, and (3) demonstration of achieving global stability of the
MIMO state-control homogeneous BLSs at the equilibrium
position using the proposed control design.

The remainder of the paper is organised as follows: Section 2
describes the control problem and presented the proposed solution.
The effectiveness and comparative advantage of the control scheme
are investigated with an illustrative example in Section 3. Section 4
discusses the utility and merits of the proposed methodology.
Section 5 contains the conclusion and future work.

2 Problem formulation and the proposed control
design

The general MIMO BLS model is described by the following state-
space equation:

P
(1) = Ax() + Y Nyx(Ou,(t) + Bu(r) (1)
p=1

where x(f) € R is the state vector; u(f) € R” is the control input
vector; A € R**“ is the state matrix; N € R**” is the weighting
matrix of the coupling between the control and the state vectors;
otherwise known as the bilinearity; B € R**” is the control input
matrix and p is the summation index.

The general observation equation is described as

¥(0) = Cx(t) + Du(t) @

where y(f) € R” is the output vector; C € R"* is the output
matrix; D € R”*” is the direct transmission matrix usually zero.

In (1), if B is zero, the system becomes state homogeneous, and
if A is also equal to zero, the system is said to be state-control
homogeneous [26] as defined in the following equation:

State transition data X
initialised at domain i,
where i=1,2,...m

Stabilising controller gain Ki
for systems initialised at
domain i, where i=1,2,...m

input features output label

Neural Network
Training

optimal
parameters

Neural Network-
Based Gain
Estimator

Desired state
transition input X4 ——
at any domain i

Optimal adaptive
control gain K*

.

Fig. 1 Block diagram of the NN-based adaptive control gain estimation
scheme

»
1) =Y Nyx(Ouy(t) 3)
p=1

For general non-linear systems, when the region of operation is
around the equilibrium point, the behaviour of the system in such
neighbourhood can be linearly approximated. The behaviour of the
equilibrium point and its stability are given in Definitions 1 and 2.

Definition 1: A point x € R® is defined as an equilibrium point
if for a constant i € R, f(x, i) =0, for all the time ¢, where fis a
mapping function.

Definition 2: A non-linear system is said to be conditionally
stable at  the  equilibrium  point if for  some
x(0) € Q, lim;_ o, || x(?) || =0, where Q is a set of initial states.
However, if for any x(0), the condition of Definition 2 is satisfied,
then the system is said to be globally stable at the equilibrium
point.

According to Definition 1, if x is an equilibrium point, and we
apply a constant input i, the state derivative will be zero; that is,
the state of the system will remain unchanged. This behaviour is
often used to approximate the response of nonlinear systems within
a certain operating range, such that well established linear control
strategies can be applied. Definition 2 is an extension of Definition
1 where stability at equilibrium depends on the initial state
conditions. More details about the Definitions and application of
equilibrium point and stability are reported in [27, 28] and Section
4 of this paper.

For MIMO state-control HBLS, both the Jacobian linearisation
and feedback linearisation control techniques fail as analysed in
Section 4. Moreover the Lyapunov-based method is insufficient as
only conditional stability could be achieved as shown in Section 3.
Since traditional control techniques have proved inadequate for the
solution of MIMO state-control HBLS, NN was employed and
integrated into this work as an adaptive state feedback controller
gain estimator owing to its powerful non-linear mapping
capabilities. Whereas the Lyapunov-based state feedback method
achieves only conditionally stabilisable control system, its state
feedback control gain establishes a trajectory pattern in phase
portraits, which provides useful insight and efficiency with respect
to generating training data across different domains.

In order to adaptively compute the control input, time step
measurements of multi-dimensional variables {x(z), x(t + 7), K(¢)}
are taken for several sequences of conditionally stable MIMO
state-control HBLS. The NN input variables x(¢) and x(z + 7) are
the current state and the next state effected by the control input
application, respectively. The output variable K(#) is the control
gain that caused the state transition. The training model is
described using a feed-forward NN model with four input
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Input layer 1 =0

hidden layers 0 <l <L  Outputlayerl=L

Fig. 2 Feedforward NN structure

r(t) elt)

Controller

NN Estimator

Fig. 3 NN-based non-linear adaptive control system

variables, two hidden neurons and four output neurons, as shown in
Fig. 2.

It should be noted that the number of input and output variables
for any MIMO state-control HBLS model are o and fXa,
respectively.

The neurons are the processing units with non-linear activation
functions 6 having weighted interconnections between them.
Multiple sequences of data are obtained by varying the conditional
control gain matrix for every run. A percentage of the sample data
is used to train the model by minimising the sum of squares of
output deviations as in (4), that is, obtain optimal weights that will
map each state transition to the optimal control input

N
~(L)
=Y Ik -K, IF 4)

n=1

where 5 denotes the loss function, # is the neuron index for a layer
[, N is the total number of neurons and L is the final layer, which is
the output layer.

For the traditional state feedback system

u(®) = Kx(t) (%)

where the control gain K is static.
By iteratively training the NN, the elements of the adaptive
controller gain matrix can be computed as
~ (L)
K" = 0Gs")
s = WP 4 b
"= 00"

- - 0 L-1
S;,L l)zw;lL I)X(>+b( )

(6)

where I%(,,L) is the output from neuron #n of layer L; 0 is an activation
function; s is the input into neuron # of layer L; w® is the weight
vector from layer L — 1 to unit n of layer L; A" is the output of
the hidden node of layer L — 1; bP is the bias from layer L—1 to

unit n of layer L; X is the input vector which are the state
transition variables in this work.

For online operation as shown in Fig. 3, the input variable next
state x(¢ + 7) is substituted with the desired state x,(¢) to obtain the
optimal time-varying control gain function
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K@) = £x(0), x,(0) @)

Hence, substituting for K in (5), the control input for a MIMO
system becomes

u(t) = f(x(1), x4(1)) X x(1) (®)

Furthermore, the stability of a non-linear system can be analysed
by evaluating the trajectory at the equilibrium point. However, the
Jacobian of the closed-loop MIMO state-control HBLS is
degenerate, with all elements equal to zero according to the
following analysis.

By substituting for u,() in (3) based on the NN output

P Pxp
X0 = Zpr(t)( >

Kn(t)xn(t)) ©
p=1 n=PXp—-P+1
where 7 is the index of output neurons, i.e. matrix element index of
the control gain, and P is the total number of control inputs.

The Jacobian of the closed-loop system is therefore

P Pxp
Jx) = 2 N,,( Z

p=1 n=PxXp—-P+1

Kn(t)xn(t))
(10)

P PXxp
+y pr(t)( > Kn(t))
p=1 n=PxXp-P+1

Therefore, at the equilibrium point, J(0) = 0. The eigenvalues are
invariably zeros and the system is said to be degenerate, having an
equilibrium subspace [29]; hence expanded and more laborious
trajectory analysis is required to evaluate the global stability of the
equilibrium point by computing the state derivative (9) of the state
space grid, which gives the direction of the state vector at specified
points, thereby characterising the stability behaviour of the system.

3 lllustrative example

In this section, the effectiveness of the proposed method for global
stability of MIMO state-control HBLS at the equilibrium position
is presented using an illustrative example.

3.1 Setup

Consider a MIMO state-control HBLS described by the following
state-space equation:

X1 =X+ (=X — Xy

(1D

X, = 2x; + )y + xu,

It can be seen that the system has only non-linear state and control
coupling terms with no linear term.

3.2 Benchmark: traditional control design

Although the system of (11) is neither piecewise linearisable nor
feedback linearisable as presented in Section 4 of this work,
conditional state feedback control gain was obtained by the author
of [30] as

K= 04 -0.8 1
T2 -2 (12)
which results in the closed-loop state equation
i= —0.8x5 +2x;
: > ) (13)
X, = 0.8x; — 2.8x;
with the conditionally stable domain given as
Q = {x +0.6720x, > 0} N {x, + 0.4762x, > 0} (14)
3
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Table 1 Adaptive control gain parameters

Parameter Value
0 -32
[—4.849]
wh 58.726 34.833 58.803 46.445
[0.861 —-0.267 —-1.526 —0.968]
»® —-0.305
1.926
—1.262
4.36
wo 0326 0424
—-0.326 —-2.044
0.326 1.38
—0.326 —4.478
A —13.506
-12
—13.506
—-8.33
12 0.078
0.083
0.078
0.111
p -1
£ -1
¢ 0.7
0.35
0.233
0.14
% -1.632
—2.448
—4.896
—-6.12

Best Validation Performance is 0.0032527 at epoch 186

10-1 |
—+—Train
5 —=— Validation
g —e— Test
e 1 ee—" " Best
i
£
w
3 102
S
©
=
(=2
%)
c
§ )
103t ; ‘ ‘
0 50 100 150
187 Epochs

Fig. 4 Mean square error plot of the trained NN model

3.3 Proposed NN controller

By applying the proposed NN-based adaptive control strategy as
described in Section 2, stability for all regions of initial states was
achieved. The state transition and control gain matrices were
sampled for 30 sequences of 1000 time steps, making a total of
30,000 data examples. The states and the next states
{x:1(8), :(2), x,(¢ + k), x,(t + k)} are the input features whereas the
adjustable control gain matrices are the output. NN model training
was done using the MATLAB NN toolbox. Data was divided into
70% training, 15% validation and 15% testing, and the tan-sigmoid
symmetric activation function was used. The model has one hidden
layer, two hidden neurons and the training algorithm was

Levenberg—Marquerdt [31-33]. The adaptive control gain function
was then obtained as

B+ W x0(s) — &

K@) = 5 +y (15)

where 0= (2/(1 —¢€*)) — 1 is the sigmoid symmetric activation
function, s =b" + W x [(X(#) — A)p + p] is the hidden layer
input.

X(¢) is the desired state transition input vector at time ¢, where
A, pu and p are the offset, gain and minimum values of the
normalised input vector, respectively. Similarly, y, ¢p and A are the
offset, gain and minimum values of the normalised output gain
vector, respectively. W and W are the hidden and output layer
optimal weights, respectively, obtained after training the NN;
whereas b and b are the NN biases for hidden and output layers,
respectively. The control parameters were obtained by optimising
the interconnecting weight and bias vector among input, hidden,
and output variables as described in Section 2. However, at the
beginning of the NN training, the weights should be initialised to
non-zero random numbers, otherwise only the scale of the weight
will change but not the gradient which determines the direction.
Furthermore, the more the control design parameters deviate from
the obtained optimal values, the more the control performance
deteriotes.

The gain function with parameters given in Table 1 was
integrated into the adaptive control structure of Fig. 3 as a powerful
estimator, and the simulation results are shown in Section 3.4.

3.4 Simulation results

The simulations were done using the Matlab—Simulink, as shown
in the Appendix. A measure of the predictive performance of the
NN-based control gain estimator is shown in Fig. 4. It can be seen
that the training, validation and test mean squared errors are very
small at the termination of training, which indicates optimality.
Furthermore, there is alignment among the training, validation, and
test mean square errors especially at the termination of training,
which indicates strong generalisation of the obtained gain function.
The control system output for the traditional controller and the
proposed NN-based adaptive controller are shown for various
domains of initial system states in Figs. 5-7. Figs. 5 and 6 show
that at the initial states x(0)=(1, 2), x(0)=(1, —0.4), and x(0)=
(=0.6, 2), both control schemes stabilised the system, and their
output performance is similar. That is, when the initial states are
both positive and when they are of opposite signs, both controller
designs are able to stabilise the states near the zero target with good
transient and steady-state performance and no oscillations.
However, for initial states x(0) =(—0.1, —0.2) and x(0) = (-2, —1) in
Fig. 7, where the initial states are both negative, only the NN-based
controller stabilised the system, and the performance of the
traditional state-feedback control system is unstable, as shown to
have significantly diverged away from the target zero state.
Furthermore in Figs. 8 and 9, control input computed by the
different control schemes is similar in the region where both
strategies stabilise the system states. Significant control input is
applied at the beginning to compensate for the initial state error
without causing oscillations and diminishes as the states stabilise
near the target value. However, when the initial states are both
negative, excessive control input was supplied by the traditional
state-feedback system, whereas the NN-based adaptive control
system provided appropriate control input to stabilise and control
the system states as shown in Fig. 10. Figs. 11 and 12 show the
time-varying adaptive control gain trajectories. It can be seen that
the control input is not varying only according to the state error but
also according to the optimal gain computed by the NN, based on
the region of the states. To further investigate the stability of the
control methods, the phase portraits are shown in Fig. 13. Whereas
the traditional state-feedback control system shows strong
divergence at the lower left quadrant of the phase portrait
explaining why stability is not achieved when the states are both in
the negative region, the NN-based adaptive control system has an

Cogn. Comput. Syst., 2020, Vol. 2 Iss. 1, pp. 1-11

This is an open access article published by the IET in partnership with Shenzhen University under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



0 : : ‘ I |
0 5 10 - ? : 3
time t
a
1 ‘
T x,(t)
0.8 :
| ——X,(t)
061"
’
04r N,
:>:<,/ - g T
02} M.
ol
02}
-0.4 : | ‘ K |
0 5 a9 L * : i
time t

Fig. 5 Comparative control system output

(a) Traditional state feedback control system output for x(0) =[1, 2],
(b) NN-based adaptive control system output for x(0) =1, 2],

(¢) Traditional state feedback control system output for x(0) =[1, —0.4],
(d) NN-based adaptive control system output for x(0)=[1, —0.4]

20 25
time t

Fig. 6 Comparative control system output

(a) Traditional state feedback control system output for x(0) =[—0.6, 2],

(b) NN-based adaptive control system output for x(0) = [-0.6, 2]

equilibrium subspace and a stable node, thereby ensuring global
stability of the equilibrium position.

4 Discussion

In classical adaptive control, the two main structures are model-
reference adaptive control (MRAC) scheme and the self-tuning
controllers (STCs). In MRAC, the estimation of the adjustable
controller parameters is based on the reference model output which

Cogn. Comput. Syst., 2020, Vol. 2 Iss. 1, pp. 1-11

This is an open access article published by the IET in partnership with Shenzhen University under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

30

0 : | ‘ I
0 5 10 b # “ ;
time t
b
1
R x, (t)
08p :
| ——Xx,(t)
06" 7
04
\:_-(‘, e = bt 2 -
02} o 7
ol
02}
0.4 ; | ‘ ’
0 5 10 12 20 * ’
time t
d

20 25 30

specifies the ideal plant response and the actual plant response. On
the other hand, in STC, the adjustable controller parameters are
estimated based on the past control input and the output.
Nonetheless, the two classes of adaptive control systems have a
unified framework in the sense that they both have control inner
loop and estimation outer loop [14]. The proposed NN-based
adaptive non-linear controller whose block diagram is shown in



80

60 [

40

20+ :

x(t)

0 0.5 1 1.5 2

i x10*

05}

0 0.2 04 0.6 0.8 1 12
time t

Fig. 7 Comparative control system output

(a) Traditional state feedback control system output for x(0) =[-0.1, —0.2],
(b) NN-based adaptive control system output for x(0) =[-0.1, —0.2],

(¢) Traditional state feedback control system output for x(0) =[-2, —1],

(d) NN-based adaptive control system output for x(0) =[-2, —1]

0.5 T T

39!
-2.5
3 . L . ) ;
0 (5] 10 15 20 25 30
time t
a

Fig. 8 Comparative control input
(a) Traditional state feedback control input for x(0) =1, 2],
(b) NN-based adaptive control input for x(0) =[1, 2]

Fig. 3 belongs to the category of MRAC as online estimation is
based on the desired system state and the actual system state.

The traditional non-linear adaptive control methods require that
the following three conditions be satistied:

(1) Non-linear dynamics of the plant must be linearly
parameterisable.
6

-0.02 - q

x(t)

14
A6
18§
D) . L
0 10 20 30 40 50
time t
d
0.5 ; ;

-2
-2.5
3 . . : : .
0 5 10 15 20 25 30
time t
b

(i1) Provided the parameters are known, control input must stably
cancel non-linearities without unstable hidden dynamics or nodes.
(iii) System's full state must be measurable.

(iv) However, the class of BLS considered in this work does not
satisfy conditions (1) and (2). The proof is given below.
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25

-0.5 s
0 5 10 15 20 25 30
time t
a
1
0 [
-1
----- u, ()
= 1
i —u,0)|]
2
-3
-4
-5 L
0 5 10 15 20 25 30
time t
1o

Fig. 9 Comparative control input

(a) Traditional state feedback control input for x(0) =[1, —0.4],
(b) NN-based adaptive control input for x(0) =[1, —0.4],

(¢) Traditional state feedback control input for x(0) =[—0.6, 2],
(d) NN-based adaptive control input for x(0) =[—0.6, 2]

If a system starts in the neighbourhood of x, such that the deviation
variables are
O,(1) = x(1) — X

o) =u(t)—u (16)

Substituting for x and u in (3), and applying Taylor expansion with
higher-order terms neglected

aif aif
ox du

X+ 0,(0) = f(&, i) +

W) + (1) (17)

Since f(x,u) = ZL 1 Npx(H)u,(t) = 0 at equilibrium, the linearised
system is expressed as

6}(0) = J,0(8) + J,0,(8) (18)

where the Jacobian coefficients J, and J, were obtained as

X

»
Jo= ) Nyudp=5=0
p=1 u

(19)

x=x=(
u=i

P
Ju= ), Npx(t)
p=1

Because the Jacobian coefficients are both equal to zero, the
piecewise control method cannot be applied to MIMO state-control

Cogn. Comput. Syst., 2020, Vol. 2 Iss. 1, pp. 1-11

25

-0.5 L
0 5 10 15 20 25 30
time t
b
1
=4 00 |7 U1 (t)
=
——u,()
-3
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0 5 10 15 20 25 30
time t
d

HBLS, i.e. they are not linearly parameterisable (violation of
conditionl).

Whereas piecewise linearisation involves point-by-point linear
approximation of the non-linear dynamics, feedback linearisation
involves state transformations and feedback. It essentially cancels
the non-linearities and transforms the system dynamics into a linear
form. However, it is only applicable to systems that can be
expressed in controllability canonical form [34] as follows:

X7 = f(x) + g(x)u (20)

where x is the observed scalar output, f(x) and g(x) are non-linear
functions of x, u is the scalar control input, and x = [x, x, ...x“~"]"
is the state vector. Then, the non-linearities are cancelled using the
control input

1
u—@(v—f(x)) (21)
which implies
X9 =y (22)

Therefore, the linear control law can be designed with
V= —kx — kX — o —ky_,x°7Y 23)

such that the following dynamics is exponentially stable with roots
strictly in the left-hand-side (LHS) of the complex plane:

This is an open access article published by the IET in partnership with Shenzhen University under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



x(a)+k6_lx(o—l)+ ,,,+kox=0 (24)
Taking the time derivative of (3) keeping u, constant
P
X0 =Y Nyu(0%(0) (25)
p=1
and by substituting for x(¢) also from (3) into (25)
P P
X0 = D N0 X Y Npx(u(t) (26)

p=1 p=1

Hence, as shown by (26), transformation to the controllability
canonical form of (23) cannot be obtained from MIMO state-
control HBLS (violation of condition 2). Furthermore, the
Lyapunov-based linear state feedback is reported and shown to
achieve only conditional stability in Section 3.

The NN-based adaptive controller is effective for the class of
BLS considered in this paper because it only requires the third
condition in addition to the existence of conditionally stabilising
control gain. The simulation results demonstrate its superiority
over the traditional method as global stability was achieved
irrespective of the initial state conditions. Since the training data
for the NN is generated from the stabilised system, ‘good’ data
were obtained which provides training efficiency as the complete
dataset is relevant to the estimator training. Moreover, the NN-
based estimator needs to be trained only once offline. Furthermore,
the risk of oscillatory or slower convergence associated with an

300
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150t
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50

x10*

0 0.2 0.4 0.6 0.8 d 12
time t

Fig. 10 Comparative control input

(a) Traditional state feedback control input for x(0) = [-0.1, —0.2],
(b) NN-based adaptive control input for x(0) =[-0.1, —0.2],

(¢) Traditional state feedback control input for x(0) =[-2, —1],

(d) NN-based adaptive control input for x(0) =[-2, —1]

otherwise online estimator is eliminated and we also avoid the
challenge of insufficient data, especially at the early stages of an
otherwise online estimation. However, if the system is absolutely
not conditionally stabilisable by the traditional method, it becomes
challenging to generate ‘good’ data. That, in turn, prolongs the
training process of the NN-based estimator.

5 Conclusion

A novel NN-based non-linear adaptive control system scheme for
MIMO state-control homogeneous BLS has been proposed in this
work. State transition data and corresponding control gain data
were utilised for training an NN model integrated into the control
system as a powerful time-varying non-linear gain estimator.
Provided the system states are measurable and conditionally stable
control gain exists, it was shown that the global stability of the
considered BLS could be achieved at the equilibrium point. In
addition, because the estimator is pre-trained offline, estimator
sophistication is not restricted and the challenge with parameter
oscillations and slow convergence associated with an otherwise
online estimator was avoided. Through the case study presented,
the effectiveness of the proposed strategy was demonstrated, and
stability analysis was done by plotting the trajectory of the state
derivatives. Future work will investigate the realisation of NN-
based gain estimator when a conditionally stabilisable traditional
control gain cannot be obtained. Furthermore, the improvement of
the strategy for the stability of non-linear, environmentally
dependent systems will be investigated.
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8 Appendix

The MATLAB simulation block diagram for the proposed strategy
is shown in Fig. 14.
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Fig. 14 Simulation block diagram of the NN-based adaptive control system
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