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Abstract—Network Function Virtualization (NFV) has the po-
tential to offer service delivery flexibility and reduce overall costs
by running service function chains (SFCs) on commodity servers
with many cores. Existing solutions for placing SFCs in one server
treat all CPU cores as equal and allocate isolated CPU cores to
different network functions (NFs). However, advanced servers
often adopt Non-Uniform Memory Access (NUMA) architecture
to improve the scalability of many-core systems. CPU cores are
grouped into nodes, incurring performance bottleneck due to
cross-node memory access and intra-node resource contention.
Our evaluation shows that randomly selecting cores to place
NFs in an SFC could suffer from 39.2% lower throughput
comparing to an optimal placement solution. In this paper,
we propose Octans, an NFV orchestrator to achieve maximum
aggregate throughput of all SFCs in many-core systems. Octans
first formulates the optimization problem as a Non-Linear Integer
Programming (NLIP) model. Then we identify the key factor for
problem solving as evaluating the throughput drop of an NF
caused by other NFs in the same SFC or different SFCs, i.e.
performance drop index, and propose a formal and precise pre-
diction model based on system level performance metrics. Finally,
we propose an efficient heuristic algorithm to quickly find near-
optimal placement solutions. We have implemented a prototype
of Octans. Extensive evaluation shows that Octans significantly
improves the aggregate throughput comparing to two state-of-
the-art placement mechanisms by 26.7%∼51.8%, with very low
prediction errors of SFC performance (an average deviation
of 2.6%). Moreover, Octans could quickly find a near-optimal
placement solution with tiny optimality gap (1.2%∼3.5%).

I. INTRODUCTION

Network Function Virtualization (NFV) was recently intro-
duced to address the limitations of traditional middleboxes.
NFV runs network functions (NFs) on commodity servers
with general-purpose processors such as Intel x86 to improve
service delivery flexibility and reduce overall costs. In NFV,
packets are usually processed by a sequence of NFs, which
form a service function chain (SFC).

Nowadays, commodity servers used in NFV are high-
performance and high-density with multiple CPU cores [1],
which we refer to as many-core systems. One such server
has the capability of accommodating an entire SFC or even
multiple SFCs [2]. In this situation, current solutions for the
placement of NFs in one server is to treat all CPU cores as
equal, and allocate isolated CPU cores to different NFs, in
order to avoid performance affection between NFs [2], [3].

However, above solutions overlook the fact that CPU cores
in a many-core system are actually unequal. Using the differ-
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Fig. 1: A high-level view of a typical many-core system.

ent core sets to support the same SFC could result in signifi-
cantly different throughput. This is because many-core systems
today usually adopt Non-Uniform Memory Access (NUMA)
architecture for high scalability [4]. Fig. 1 shows a typical
architecture of the Intel x86 many-core system. CPU cores are
grouped into nodes. Each node contains multiple cores and its
own local memory. Randomly selecting CPU cores to support
an SFC could suffer from seriously compromised throughput
due to the following two reasons.

(1) Bottleneck incurred by cross-node memory access. While
CPU cores in one node can access the memory in another
node via Intel QuickPath Interconnect (QPI), local memory
access inside one node is much faster than remote access.
To study its effect on the performance of NFV, we place a
simple SFC (Router → NIDS) on a many-core system with
two nodes in four ways shown in Fig. 2(a) and evaluate their
performance. As illustrated in Fig. 2(b), the performance of
worst-case placement (i.e., P-B) achieves less throughput than
the best-case placement (i.e., P-A) by 39.2%. An intuitive
solution is to place all NFs in an SFC in the same node to avoid
remote memory access. However, the number of cores in one
node is limited. An SFC may be placed across multiple nodes
for better resource utilization [1]. Moreover, we can observe
from Fig. 2(b) that even switching the node assignment of two
NFs (P-B and P-C) could lead to different SFC performances.
This is because different NFs expose different performance
sensitivity to cross-node memory access.

(2) Bottleneck incurred by intra-node resource contention.
As shown in Fig. 1, CPU cores in each node may contend to
shared resources such as last-level cache (LLC), integrated
memory controller (iMC), and QPI. Some recent research
efforts [5]–[7] have revealed that co-locating multiple NFs in
the same node could decrease the throughput of a single NF
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(a) Four ways of SFC placement.
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(b) SFC performance

Fig. 2: Effect of remote memory access on SFC throughput.
The Network Interface Card (NIC) is connected to Node #0.
So we call Node #0 local node, and Node #1 remote node.

by 12.36% to 50.3% due to resource contention.
Above observations motivate us to design an optimal mech-

anism to place multiple SFCs in a many-core system, with
the goal of achieving maximized aggregate throughput of all
SFCs. Many research efforts have been devoted to addressing
the placement problem in NFV [8]–[10]. However, they all
focused on finding right servers for SFC placement, while
ignoring the placement inside one server. Meanwhile, the
problem of placing multiple threads in many-core systems to
achieve optimal execution performance has been well studied
in the system and architecture community [11]–[14]. However,
they relied on frequent migration of threads for optimality,
while migrating NFs in the NFV context brings significant
performance overhead [15]. We present more details in § II.

In this paper, we propose Octans, an NFV orchestrator for
optimal SFC placement inside one server. To understand the
key factors in the optimization problem, we start by formu-
lating the problem with a Non-Linear Integer Programming
(NLIP) model. Then we identify the key factor for problem
solving as evaluating how much the throughput of an NF is
affected by NFs in the same SFC or other SFCs, which we
refer to as performance drop index. This task is challenging in
two aspects: (1) to evaluate the throughput drop of NFs caused
by resource contention, we are challenged to find a unified
set of system-level metrics that represent the performance
of massive and heterogeneous NFs in NFV; and (2) the
NFs with different chaining methods could introduce different
types of shared resources, which will affect the aggregate
performance of SFCs. We are challenged to precisely model
NF performance under the SFC context. To address above
challenges, we use a formal approach to find performance
metrics and construct a comprehensive model for accurate
performance drop prediction. Finally, due to the NP-hardness
of our problem, we propose a heuristic algorithm to quickly
find an optimal or a near-optimal solution.

Octans makes the following major contributions:
• We identify the problem of optimal SFC placement in a

many-core system, and present Octans, an NFV orchestra-
tor, to maximize aggregate throughput of SFCs. We intro-
duce related work and highlight the novelty of Octans (§ II).

• We formulate the optimization problem using an NLIP
model (§ III). To evaluate the performance drop index
due to resource contention and chaining, we introduce a
formal approach to find performance metrics, and present an
accurate model for performance drop prediction. Finally, we

design an online placement algorithm to efficiently produce
an optimal or near-optimal solution. (§ IV)

• We introduce the architecture and workflow of Octans
(§ V). Extensive evaluation results show that Octans can
achieve reasonably prediction results for different NFs
(2.3% prediction error on average) and different numbers
of SFCs with varied lengths (2.6% prediction error on
average). Moreover, Octans can improve the aggregate
performance comparing to two alternative placement mech-
anisms by 26.7% to 51.8%. Finally, Octans has a high
chance (58%∼70%) to find an optimal solution in a short
time (§ VI).

II. RELATED WORK AND Octans NOVELTY

This section summarizes state-of-the-art research on SFC
placement in NFV, optimal thread scheduling in many-core
systems, as well as works that touch upon the problem of
optimal NF placement on many-core systems. However, to
the best of our knowledge, Octans is the first to formally
model the optimization problem, thoroughly study and model
performance affection between NFs in many-core systems, and
propose an efficient algorithm to solve the problem.
SFC Placement in NFV. Many efforts have been devoted to
NF and SFC placement in NFV. Moens et al. [8] presented
an Integer Linear Programming (ILP) model to minimize the
number of used server in a service provider network. Cohen et
al. [9] proposed a near-optimal algorithm to minimize the hop
distance between a client and the NFs that process client’s
packets, as well as the setup costs of NFs. Kuo et al. [10]
jointly considered NF placement and chaining across servers
to better utilize network resource. Li et al. [16] focused on
providing guaranteed performance for NFs by placing NFs in
the right server. Sang et al. [17] aimed at minimizing the total
number of NFs for packet processing. Ma et al. [18] focused
on minimizing the maximum link load in the network with
respect to traffic changes among NFs.

However, all existing works optimized SFC placement by
mapping NFs to the right servers. Regarding SFC placement
within a server, above works treated all CPU cores as equal,
and did not consider the widely adopted NUMA architecture
in modern many-core systems. In contrast, Octans studies
the problem of placing one or multiple SFCs in a many-
core system, in order to maximize aggregate throughput of all
SFCs in a server. Octans deeply understands NF performance
with respect to cross-node remote memory access and intra-
node resource contention. Therefore, Octans could work with
existing works to map right NFs to right CPU cores.
Optimal thread scheduling in many-core systems. Opti-
mizing thread-to-core placement to maximize task execution
performance in a many-core system has been extensively
studied in the system and architecture community [11]–[14].
The key idea of above works is to measure the system
performance metrics (e.g., LLC misses and memory load) at
runtime, and dynamically re-schedule co-locating threads to
different cores for optimal thread-to-core mapping. For exam-
ple, Zhuravlev et al. [11] proposed dynamically scheduling
co-locating threads according to the change of LLC misses.
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Rao et al. [13] included more metrics such as data locality and
sharing overhead , and converted them into a unified parameter
for optimal VM scheduling in a shared server.

A natural question is whether above solutions can be
directly adopted to solve the SFC placement problem. Our
answer is no. Above solutions achieve optimal thread ex-
ecution performance by frequently migrating threads across
cores or nodes. While threads are light-weight and easy
to migrate, most NFs in NFV are stateful and suffer from
significant performance overhead during NF migration [15],
[19]. Moreover, to achieve high performance, advanced NFV
systems place NFs on dedicated CPU cores that cannot be
scheduled by the operating system. This makes it difficult to
migrate an NF among cores. Therefore, Octans maps NFs
to cores by designing a static placement mechanism [20].
Octans thoroughly investigates and models NF performance
in a many-core system and proposes an efficient placement
algorithm to maximize aggregate SFC throughput.
SFC placement in many-core systems. Some recent re-
searches [21]–[23] have revealed that placing NFs on different
cores in a NUMA system could result in different performance.
Sieber et al. [22] revealed the problem but did not present a
solution for optimal placement. Wang et al. [21] presented a
locality-first-mapping algorithm by placing an entire SFC in
one node to avoid cross-node overhead, but the impact of intra-
node contention was not considered. Hu et al. [23] investigated
how the performance of pipelined software components varies
when they are placed on different cores, and took NFV as an
example. However, their solution is also based on dynamically
scheduling, which could be impractical in real-world NFV
systems as we discussed above.

III. PROBLEM FORMULATION AND CHALLENGES

In this section, we first formulate the problem with a NLIP
model. Then we identify the key factors for problem solving
as evaluating NF performance drop index, and introduce the
challenges in retrieving this parameter in many-core systems.

A. Formulation of the Optimal Placement Problem

Placement requirement of SFCs. Placement requirement of
an SFC is usually described as an ordered sequence of NFs
in the chain. Assume there is a set of SFCs S that require
to be deployed, each of which is associated with an array of
chained NFs e(i), where i ∈ S.
A many-core system. Commonly in a many-core system,
there are multiple nodes numbered incrementally and equipped
with identical amounts of CPU cores. We generalize a many-
core system with K nodes and each node has C cores.
Performance decomposition. We set a binary variable xk

ij

to indicate whether NF j of chain i is located on node k.
When this NF runs without contention, the performance it can
achieve is referred to as ideal performance and is defined as
P k
ij . As introduced in some work [5], [16], P k

ij of each NF
can be measured by placing the NF on different nodes since
no contention exists. Furthermore, when an NF co-locates
with other NFs in node k, its performance is referred to as
interfered performance and is defined as φk

ij . It is obvious

that the interfered performance of an NF is a reduced value of
ideal performance. Thus, we define a performance drop index
(denoted by λk

ij) to relate these two variables for the NFs that
co-locate on node k (shown in Eqn. 2)

Similar to an end-to-end system, the processing capacity
of an SFC is determined by the bottleneck element in the
chain [24], i.e., the NF with the lowest performance. Hence,
the objective is to maximize the aggregate performance across
all required SFCs when deploying, which is formulated as,

max
∑
i∈S

min
j∈e(i)

{φk
ij} (1)

where

φk
ij =

∑
k∈K

xk
ij · P k

ij · (1− λk
ij), ∀i ∈ S, j ∈ e(i) (2)

s.t. ∑
k∈K

xk
ij ≤ 1, ∀k ∈ K, i ∈ S, j ∈ e(i) (3)

∑
i∈S,j∈e(i)

xk
ij ≤ C, ∀k ∈ K (4)

More specifically, Eqn. (2) describes the relationship be-
tween ideal performance and interfered performance. Con-
straint (3) prevents any NF from being repeatedly deployed.
Constraint (4) specifies the capacity of a many-core system
during deployment.

B. Key Factors for Problem Solving and Challenges

Problem formulation gives us a solid starting point for
finding optimal placement for S. However, a critical parameter,
i.e., λk

ij needs to be predicated for problem solving. However,
predicting performance drop in the NFV context is not-trivial
due to the following two challenges.
The heterogeneity of NFs: As introduced in § II, NFs
are usually stateful and deployed on dedicated cores, which
reveals that the placement should be static to avoid distractions
from other complexities, such as state migration and careful
packet buffering design. For the prediction of static placement,
the inputs we have are only the types and counts of NFs
(i.e., which NFs and how many of them) that might co-
locate. However, it is tricky to adopt these inputs directly for
the prediction model since they are not quantifiable. Some
work [5] shows that we can use a manually analyzed and
calculated system-level performance metric value (i.e., LLC
references per packet) to quantify an NF. However, manual
analysis and metric value calculation could be burdensome and
platform dependent. Furthermore, this problem could be worse
in the NFV context because NFs are usually heterogeneous and
diverse.
SFC complicates the prediction: Performance drop of an ap-
plication (NF) in an interference environment is usually related
to the shared resources contention and its competitors [11],
[13]. However, the chain in an SFC can change the shared
resources of an NF, in contrast to which NFs are separated.

For example, consider six co-locating NFs on two nodes (the
nodes where packets come in are usually called local nodes,

309

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on August 10,2020 at 04:51:35 UTC from IEEE Xplore.  Restrictions apply. 



�
�
�*� �*� �*�

�����
���


&
���

���


���

����+�


�
�
�*, �*- �*.

���

(a) An placement example on two
nodes

�
�
�*� �*� �*�

���

���

�
�
�*, �*- �*.

���

(b) Shared resources on lo-
cal node

�
�
�*� �*� �*�

���

���

�
�
�*, �*- �*.

���

(c) Shared resources on re-
mote node

�
�
�*� �*� �*�

���

���

�
�
�*, �*- �*.

���

(d) Shared resource changes
due to cross-node chaining

�
�
�*� �*� �*�

���

���

�
�
�*, �*- �*.

���

(e) Shared resource changes
due to cache-prefetching
chaining

Fig. 3: Different shared resources in different NF and SFC configurations, which are highlighted with orange-red.

Metric Description
CPU CLK UNHALTED Clock cycles when not halted

INST RETIRED Number of instructions retired
RESOURCE STALLS Cycles during which resource stalls occur

LLC MISSES Cache misses in LLC
L2 MISSES Cache misses in Level 2 cache

IPC Instructions per CPU cycle

TABLE I: A non-exhaustive list of commonly used metrics,
which can be profiled by existing tools such as OProfile [25]

and Intel PCM [26].

others are relatively remote nodes.) as shown in Fig. 3(a).
For separated NFs, of which (i) in the local node can be
considered as sharing LLC between NF1∼NF3 and main
memory controller between NF1∼NF6 (Fig. 3(b)), and (ii) in
the remote node can be considered as sharing QPI between
NF4∼NF6 (Fig. 3(c)). We can see that all NFs in the same
node have the same type of shared resources and competitors,
thus one general model for these NFs might be accurate [5].
However, this model could be inaccurate when NF chaining is
introduced. Fig. 3(d) shows that (iii) cross-node chaining be-
tween two NFs can change shared resources of the subsequent
NFs (i.e., NF2) in a local node to be more stressed on main
memory controller and almost no LLC benefit, which could
incur performance drop. Moreover, Fig. 3(e) shows that (iv)
cache-prefetching chaining can change shared resources of the
subsequent NFs (i.e. NF6) to be less competing and benefit
the performance improvement from packet memory cache hits
in the remote LLC.

Therefore, we can see that more specific considerations are
required in the prediction model due to the changes on shared
resources and competitors introduced by SFC.
Octans. To address above problems, we propose Octans. For
performance prediction, Octans takes the performance metric
of each NF as the input for the prediction model as well as
considering the specific features from SFC. Moreover, Octans
adopts a heuristic-based placement algorithm to search optimal
or near-optimal solutions to meet the requirement of online
deployment. Next, we will introduce the design of Octans.

IV. Octans DESIGN

In this section, we present the design of Octans. We
first show how to automatically find performance metrics for
NFs even they are heterogeneous, and what metrics is used
in Octans (§ IV-A). Then, we introduce the performance
prediction model (§ IV-B). Finally, we present the online
placement algorithm in Octans (§ IV-C).

A. Relating NF with Performance Metrics

As mentioned in § III, the type of NFs cannot be used
directly as the input of a prediction model. Instead, we should
find some performance metrics to describe an NF. Moreover,
as Table I shows, many potential system-level metrics can
be adopted [13], [27]. Therefore, we should formally and
automatically detect the appropriate metrics. To achieve this
goal, we first identify the requirements these metrics should
meet.

R1: The metric value should not vary even with contention.
Since the metric we try to find should be able to describe an
NF, its value should not vary when co-locating with other NFs.
For example, if a metric value is measured as v0 when an NF
runs solely, all values (v1 ∼ v6) measured when co-locating
with other 1∼6 NFs should be near to v0.

R2: The metric value should be sensitive to NF changes.
This describes an intuition that different NFs should have
different metric values. Here, we make a mild assumption
that the NFs with similar intrinsic properties such as program
complexity can achieve similar performance. Therefore, if the
measured performance and metric values of a set of NFs when
they run solely are (p1, p2, p3, ...) and (v1, v2, v3, ...), and
p1 �= p2 �= p3, the metric values should be approximately
regarded as v1 �= v2 �= v3.

With the help of above two requirements, we can use a
general but formal way to find metrics. We re-interpret the
two requirements as,
• Near-zero variance of metric values when measured in

competing environment: Guided by R1, for each candidate
metric, we calculate the variance (denoted by ρ2i ) of its
measured values when co-locating an NF with different
types and different numbers of NFs, i.e.,

ρ2i =

∑N
j=1(mij − μi)

2

N
(5)

where, mij is the j-th sample of the value of metric i and
μi is the mean value of all N samples. Moreover, all values
used in this equation are normalized to [0,1].

• Strong correlation between metric value and performance
when measured in non-competing environment: Guided by
R2, there should exist strong correlation between metric
value and performance when an NF runs solely (i.e., ideal
performance). For concise expression, we abuse Pj to define
the ideal performance of NF j. Some work [14], [27]
has demonstrated that there is linear correlation coefficient
between the value of some metrics and the performance. In
our work, we follow their findings and assume this linear
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(b) Validation for R2

Fig. 4: Requirement validation for the metric resource stalls.

correlation. We adopt Pearson Correlation Coefficient [28]
to calculate the correlation (denoted as r(Pj ,mi)), i.e.,

r(Pj ,mi) =
cov(Pj ,mi)

σPj
σmi

(6)

where, cov(Pj ,mi) is the cross-correlation of NF j between
the ideal performance and metric i , and σ2

Pj
= cov(Pj

2),
σ2
mi

= cov(m2
i ) are the variances of different measured

values of performance and metric.
Metrics used in Octans. We measured a bunch of metrics
and performance values according to Eqn. 5 and Eqn. 6.
The candidate metrics we used are from two performance
metric profiling tools, i.e., OProfile [25] and Intel Performance
Counter Monitor (PCM) [26]. Table I shows a subset of these
metrics. We empirically set ρ2i ≤ 0.01 as near-zero variance
and |r(Pj ,mi)| ≥ 0.9 as strong correlation. Metrics that meet
both conditions are considered as appropriate ones.

Experiments based on sampled data reveal that the appro-
priate metric is resource stalls. Note that we only choose the
best metric for easier modeling. Nevertheless, we find that it is
enough for our model to achieve accurate prediction (§ VI-B).
Furthermore, we check whether this metric meets the two
requirements defined before. Fig. 4(a) shows that for all
four NFs, resource stalls remains almost unchanged as the
number of competing NFs increases, which meets the first
requirement. Fig. 4(b) shows that resource stalls and the ideal
performance have near linear relationship, which can meet
the second requirement. Therefore, we choose resource stalls
as the performance metric, and use it as the input of our
prediction model.

B. Prediction Modeling

Preliminary analysis of the prediction model. Contention
to competing resources is the root cause of performance
degradation for co-locating NFs in a shared server [5], [13],
[27]. According to observations from Fig. 3, we classify
competing resources into two types of factors that could
cause performance drop including LLC misses and memory
contention (including memory controller and QPI). Moreover,
we utilize the system-level metric of NFs (i.e., resource stalls)
to predict performance drop index λ (we reuse λ here for
brevity). Next, we first show how to quantify the competing
level of an NF under one type of competing resource. Based
on that, we provide the model for λ. Finally, we refine
the model to improve prediction accuracy according to SFC
characteristics.
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(a) Performance drop with different
NFs (represented by resource stalls).
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(b) Performance drop with different
number of competitors.

Fig. 5: Performance drop with different NF type and number

Calculating the competing level of an NF under one type
of shared resource. We define a competing level function
f to map the metric value of competing NFs to performance
drop. To explore this function, we first check the relationship
between the competing level and metric value changes, i.e.,
how the competing level varies when the metric value changes.
It is hard to directly capture the change of competing level.
Instead, we use the performance drop to imply it. Fig 5(a)
shows that for different NFs, a smaller resource stalls incurs
higher performance drop, i.e., higher competing level. From
this observation, we define a property for this function,

• Property 1: The function shows negative correlation to
resource stalls.

Furthermore, we check that how the competing level varies
with the number of NFs changes, i.e., aggregate re-
source stalls. Fig. 5(b) shows that with the number of com-
peting NFs increases, the performance drops more, i.e., higher
competing level. Moreover, we can observe that the increasing
gradient of performance drop becomes small. Therefore, we
define another property for this function,

• Property 2: The function shows the increment property
and decreasing gradient with aggregate resource stalls
increases.

With the help of above two properties, we can approximately
describe the competing level function as,

f({x1, x2, ..., xn}) ≈
∑

1≤k≤n

1

xk
(7)

It can be easily proved that the function in Eqn. 7 meets the
two defined properties. Although this function seems simple
and intuitive, our evaluation (§ VI) shows it is accurate enough
to describe the competing level in the prediction model.
Modeling performance drop index under multiple com-
peting resources. According to [27], in an interference
environment, we could model the performance drop as a linear
function of different competing resources . Therefore, we
define λ as,

λ = α · f({mi|i ∈ NFLLC}) + β · f({mi|i ∈ NFmem}) +C
(8)

where, NFLLC and NFmem indicate the competitors on LLC
and memory. α, β and C are parameters to aggregate the effect
of competing level of LLC and memory. Since every NF could
be placed all nodes, there should be distrinct parameter groups
for the local and remote nodes due to the asymmetric cost of
LLC misses and memory access [12]. Thus, we define (αi

l ,
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βi
l , C

i
l ) for the case that NF i is deployed in the local node,

and (αi
r, βi

r, Ci
r) for the case of remote nodes. Here, we adopt

the same parameters for all remote nodes. It is because that
all remote nodes use the same interconnection (i.e., QPI) to
access the memory on a local node.
Fine-tuning prediction model under SFC characteristics.
As mentioned in § III, SFC will complicate the prediction
model since different chaining methods (e.g., cross-node)
could change the competitors of an NF. To address this
problem, we first introduce a general model for the NF in
a local or remote node, then tune this model to address the
challenge imposed by SFC for accurate prediction.

(1): A general prediction model. Let {ml} and {mr} denote
the measured resource stalls of those NFs locate in a local
node (NFl) and a remote node (NFr). Consider an NF in a
local node shown in Fig. 3(b), it will compete for LLC with
the NFs in the local node, and compete for memory controller
with all NFs inside the same server. For an NF in a remote
node, we set its LLC misses to “1”, i.e., no cache hit to packet
memory. This is because it cannot access the cache on the local
node. Moreover, since the bandwidth of QPI is lower than the
main memory controller, we consider QPI as the competing
resource and the NFs in the remote node as the competitors.
Therefore, we construct the model as,

λi =

{
αi
l · f({ml}) + βi

l · f({ml} ∪ {mr}) + Ci
l , ∀i ∈ NFl

αi
r · 1 + βi

r · f({mr}) + Ci
r, ∀i ∈ NFr

(9)
(2): Tuned model for SFC. As introduced in § III, two

chaining methods should be considered. The first one is cross-
node chaining. As shown in Fig. 3(d), for an NF (i.e., NF2)
in the local node, its upstream NF is in the remote node. This
makes the NF has no chance to read packets from its local
LLC. Thus, we set its cache misses to “1”, i.e.,

λi = αi
l · 1 + βi

l · f({ml} ∪ {mr}) + Ci
l (10)

The second method is cache-prefetching chaining. As shown
in Fig. 3(e), for an NF (i.e., NF6) in the remote node, we do
not regard it as other NFs (e.g., NF4) that have no chance to
read packets from LLC. This is because that its upstream NF
(i.e., NF5) could load packets into remote LLC as mimicking
a cache prefetcher [29]. As a result, NF4 has the chance to
access packet in remote LLC and no longer to be “1” for LLC
misses. Moreover, We consider the NFs in the remote node
as its LLC competitor. Thus, we tune the model for cache-
prefetching chaining as,

λi = αi
r · f({mr}) + βi

r · f({mr}) + Ci
r (11)

Moreover, due to NFs in a cache-prefetching chain share
the same piece of LLC, we regard these NFs as only one
competitor to other NFs for LLC sharing. Currently, we use
the first NF in this chain to calculate competing level.

One can see that if measuring samples are given, including
the placement of SFCs and performance drop index of each
NF, it is easy to approximate the parameters (α, β, C) for each
NF. In Octans, we use a fast learning algorithm, Least Mean
Squares (LMS), to approximate them.

Algorithm 1: Online Placement Algorithm
input : (S) - SFC sets
output : X - Placement of each NF on the SFCs

1 // 1: Initial placement
2 Xinit ← Binary-search all possible placement for s ∈ S with

Constraint 3 and 4.
3 // 2: Move some subchains in the remote nodes to local node
4 Perfopt ← 0 // The optimal performance
5 foreach x ∈ Xinit do
6 (Slocal, Sremote) ← The SFCs placed in the local and remote

node from x
7 Update Placement (Slocal, Sremote)
8 DFS(Slocal, Sremote)

9 function DFS (Slocal, Sremote)
10 foreach s ∈ Sremote do
11 NFbottleneck ← min {NF ∈ s} // The NF with lowest

performance
12 ssubchain ← s[0 : NFbottleneck] // The subchain
13 if Enough cores for ssubchain in the local node then
14 (tmp Slocal, tmp Sremote) =

(Slocal + Ssubchain, Sremote − Ssubchain)
15 Update Placement(tmp Slocal, tmp Sremote)
16 DFS(tmp Slocal, tmp Sremote)

17 function Update Placement (Slocal, Sremote)
18 Perfprediction ← Performance prediction from Eqn. 9, 10 and

11
19 if Perfopt < Perfprediction then
20 Perfopt = Perfprediction
21 X = {Slocal, Sremote} // updating placment

C. Online Placement Algorithm

So far, we have constructed the prediction model for the
performance drop index in Eqn. 2, which makes our formula-
tion solvable. A naive approach to finding optimal solution is
Brute-force search, but it can be expensive. Since one can see
that its time complexity is O(KN ) (K is the total number
of available nodes and N is the total number of NFs in
all SFCs). However, the network operator usually needs fast
response for placement requests [6], which implies a short
time for solution searching. Furthermore, our problem is a
Multidimensional Assignment Problem (MAP) (an NF can be
assigned any one of multiple nodes), which is a known NP-
complete problem [20]. Therefore, there is no polynomial-time
algorithm to find an optimal solution. Instead, we propose a
heuristic-based online placement algorithm to find the optimal
or near-optimal solution.

Our heuristic algorithm follows two major steps: (1) initial
placement: chain-based search. Instead of searching place-
ment for all NFs, we first try to place an entire chain on the
same node. It is based on an important observation that a
cache-prefetching chain always has lower performance drop
against a cross-node chain from Eqn. 10 and Eqn. 11. This is
because that the output of f({ml}) and f({mr}) is always
smaller than 1; and (2) moving subchains in a remote node to
the local node. A common sense is that an NF in the local
node usually has higher performance than in a remote node
due to benefiting from lower memory access latency (i.e., iMC
is faster than QPI). Hence, to improve the chance to find an
optimal solution based on the initial placement, we try to move
some subchains of entire chains in the remote node to the local
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Fig. 6: Architecture and workflow of Octans.

node, and the split point in an entire chain to form a subchain
is the bottleneck-NF (i.e., with the lowest performance).

We show the online placement algorithm in Algorithm 1.
It first produces the initial placement via binary-search for all
possible placements with entire SFCs across all nodes (line 2).
Then, iterate each initial placement to find potential placement
with higher aggregate performance by moving some subchains
from a remote node to the local node (lines 5-8). We adopt
deep-first search (DFS) to find the bottleneck-NF for each SFC
(lines 9-16), meanwhile update the potential optimal solution
if the moving operation produces higher performance (lines
17-21).

V. Octans ARCHITECTURE AND WORKFLOW

According to the design in § IV, we present the architecture
and workflow of Octans as shown in Fig. 6. Octans takes
SFC placement requests on a specific server (i.e., S) as the
input, and checks whether or not existing new NFs in inputing
SFCs. If existed, they are sent to a sandbox environment to
calculate the metric value (i.e., resource stalls) and generate
performance model, which is supported by two major modules,
Metric Profiler and Model Generator; If not, requests are
immediately sent to Placement Engine, to calculate placement
solution. Next, we show the detail of these three modules.
Metric Profiler: Metric Profiler automatically profiles re-
source stalls for every NF. In current implementation, it uses
OProfile [25] to measure the count of resource stalls. Since
Octans focuses on the performance in throughput, we generate
10 Gbps traffic (this rate can be set) with minimum size
packets (i.e., 64B). Metric Profiler records the total number
of packets it processed (excluding dropped packets) and the
total count of resource stalls after a period of running, then
calculates resource stalls per packet as the metric value.
Model Generator. Model Generator generates the three pa-
rameters (α, β, C) for every NF. First, it runs each NF solely
to record the performance as ideal performance (i.e., P k

ij in
Eqn. 2). Second, it co-locates this NF with different types
and numbers of NFs (including itself) to measure the inter-
fered performance φk

ij , meanwhile records the performance

drop index with calculation
Pk

ij−φk
ij

Pk
ij

as sampled data. After
sampling enough data (this might take a long time, but it can

be completed offline), this generator adopts LMS algorithm to
approximate the parameters. Finally, it updates the record of
Prediction Models, where stores the prediction model of every
NF.
Placement Engine. Placement Engine runs the online
placement algorithm (§ IV-C). It takes the placement re-
quests (i.e., S) as input, and retrieves the model of each
NF from Prediction Models. After an optimal or near-optimal
solution is found, it launches the required NFs in SFC requests
on assigned CPU cores of target servers.

VI. IMPLEMENTATION AND EVALUATION

A. Implementation and Experiment Setup

Implementation. We have implemented a prototype of
Octans. The infrastructure we used to run NFs and SFCs is
built on a high-performance NFV platform, OpenNetVM [2].
The NFs we used include IPv4Router (Router), Firewall (FW),
NIDS, and VPN. The three modules in Octans are written in
the Python language.
Experiment setup. We run Octans and OpenNetVM on the
same server, which is a two-node server that is equipped with
two Intel Xeon E5-2650 v4 CPUs (2.20 GHz, 12 physical
cores), 128GB total memory, and two dual-port 10G NICs (In-
tel X520-DA2, 40 Gbps in total). We use DPDK Pktgen [30] to
generate traffic, which runs on another server that has the same
configuration as the previous one. Both servers run Ubuntu
14.04 (with kernel 3.16.0-30), and DPDK version 18.02. The
two NICs are located on Node-0, hence we treat Node-0 as
the local node and Node-1 as the remote node. We allocate 1
CPU core to Octans, 1 core to the openNetVM manager, and
4 cores for networking I/O and packet forwarding. Herefore,
we have 6 available cores in the local node and 12 available
cores in the remote node.

We evaluate Octans with the following goals.
• Demonstrate that Octans can achieve accurate performance

drop prediction for a wide range of NFs and SFCs.
• Demonstrate that Octans can improve aggregate perfor-

mance by searching optimal or near-optimal placement
solution, compared with two alternative placement solutions.

• Demonstrate that Octans can search the solution in a short
time, and has reasonable chance to find the optimal solution.

B. Prediction Accuracy.

To demonstrate the prediction accuracy of performance
drop for NFs and SFCs, we compare the performance drop
between our prediction value (λpredicted) and the measured
value (λmeasured) by deploying them into our testbed. We

calculate the prediction error as |λmeasured−λpredicted|
λmeasured .

Prediction accuracy for different NFs. We first evaluate the
prediction accuracy for separated NFs when co-locating with
the competitors. We use a synthetic NF (ideal performance
between NIDS and Firewall) as the co-locating NF (competi-
tor) for our evaluated NFs. Fig. 7(a) shows the prediction
error of four NFs when they co-locate with different number
of competitors. From this figure, we can see reasonablely
accurate results, an average of 2.9%, 3.3%, 2.0% and 1.0%
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(a) Prediction error on different NFs.
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(b) Prediction error on different SFCs.
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(c) Prediction error on different length
of SFCs.
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(d) Prediction error on different num-
ber of SFCs.

Fig. 7: Prediction accuracy.

deviation from the measured performance drop for Router,
Firewall, NIDS and VPN, respectively. Also, we can observe
that with the number of competitors increases, the prediction
results become more accurate. For example, the prediction
error reduces from 8.7% to 2.3% for the Router. This is
because the gradient of performance drop becomes smaller
with the competing level increases, and our prediction model
can capture this feature.
Prediction accuracy for different SFCs. We then evaluate
the prediction accuracy for four customised SFCs and mark
them: SFC-1 (Router, Firewall, NIDS, VPN), SFC-2 (Firewall,
Router, NIDS, Firewall), SFC-3 (NIDS, Router, Firewall,
NIDS), and SFC-4 (Router, NIDS, Router, Firewall). We
randomly generate 20 types of placement for every SFC.
Fig. 7(b) shows the average prediction error of them. We can
see that all of them have reasonably accurate results, and the
worst-case of average error (SFC-3) is less than 5.1%.
Effect of the varied length of SFC. To show more reliable
prediction results, we evaluate whether the length of SFC has
the potential to incur higher prediction error. We use four
SFCs, and NFs in each SFC are the same. For different lengths
of SFC, we randomly generate 20 types of placement. Fig. 7(c)
shows the prediction error for the four SFCs with different
lengths. We can still see reasonably accurate results, which
range from 2.2% to 6.3%, 3.3% to 7.1%, 2.9% to 3.7%, and
2.9% to 4.2% for these SFCs, respectively.
Effect of the varied number of co-locating SFCs. Finally, we
evaluate the effect of the varied numbers of co-locating SFCs
on prediction results. We use an SFC with three NFs (Router,
Firewall, NIDS), and increase the number of co-locating SFCs
from 1 to 4. We still generate 20 types of placement for each
testing scenario. Fig. 7(d) shows that the prediction error varies
from 2.4% to 3.6%, which is also reasonably accurate result.

C. Improvement of aggregate performance

To demonstrate that Octans can improve the aggregate per-
formance by finding optimal or near-optimal SFC placement,
we compare it with two alternative placement mechanisms that
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(a) The SFC sets used in this evaluation.
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(b) Aggregate performance improvement of different SFC sets.

Fig. 8: Improvement of aggregate performance.

can be used in current systems: (1) node-balancing placement:
it places NFs by dividing them to all nodes for balancing the
core utilization on each node; and (2) node-first placement:
it tries to place NFs on the local node first until no core is
available, then places NFs on other nodes. We use 6 sets of
SFCs, each with different SFC requests (Fig. 8(a)).

Fig. 8(b) shows the normalized performance of Octans
and the two alternative mechanisms. We can see that in
SFC sets, Octans can achieve more aggregate performance
than Node-balancing placement by an average of 51.8% and
ranging from 37.4% to 66.3%. Also, comparing with node-first
placement, Octans can achieve more aggregate performance
by an average of 26.7% and ranging from 6.2% to 45.1%.

D. Efficiency of Online Placement Algorithm

Time cost of solution search. We compare the placement
algorithm in Octans to the naive brute-force search algorithm.
We use an SFC with 3 NFs and the varied number (1∼6) of
SFCs as the input for each algorithm. In each set of SFCs,
we randomly replace NFs and repeat 100 times. A many-
core system usually has 2 or 4 nodes [31]. Therefore, we also
evaluate the effect of the number of nodes (setting 10 cores
in each node) on calculation time. We only allocate one CPU
core (2.2 GHz) to run the algorithm.

Fig. 9(a) shows that in a 2-node server, even in the worst-
case (18 NFs in 6 SFCs), our algorithm can find a solution
with an average time of 0.017s, which takes 1853x less time
than the brute-force search algorithm (31.5s). Also, in a 4-
node server as shown in Fig. 9(b), Octans can find a solution
with an average time of 5.3s when in the worst-case, but the
brute-force search needs to spend more than 1858s (we use
the case with 4 SFCs as this value due to the long calculation
time of 5 and 6 SFCs).
The chance to find optimal solutions. Our algorithm is
heuristic based, hence it cannot guarantee an optimal solution.
We evaluate the chance that our algorithm can find optimal
solutions, and if a near-optimal solution can be found, and
what the deviation it is. The optimal solution is found by
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(a) Time cost with different number of SFCs in a
2-nodes server.
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(b) Time cost with different number of SFCs in a
4-nodes server.

	 
 � � 
 �

��

��

��


��
��

��
���

�

������ �	 ��
�

��)+,� �. ���-0)* ��*��-�+�

��1-)�-�+ �. +�)�����-0)* ��*��-�+�

(c) Optimality gap of our heuristic algorithm.

Fig. 9: The time cost and optimality gap of our algorithm.

brute-force search algorithm (but taking long time), and we
run the two algorithms with a simulated 2-nodes server. The
SFCs and NF generation is similar to the previous evaluation,
and we also repeat each set 100 times. Fig. 9(c) shows Octans
has a (58%∼70%) chance to find an optimal solution across
different numbers of SFCs. Moreover, we observe that when
even the solutions are near-optimal, they only have an average
of 1.2%∼3.5% deviation from the optimal solutions.

VII. CONCLUSION

We have presented Octans, an NFV orchestrator that
searches optimal or near-optimal placement for SFCs in a
many-core NFV system. Starting with an NLIP model, Octans
first constructs an accurate model to predict an unknown
parameter in this model with automatically identified metric
of NFs as the input. Then, it adopts an online placement
algorithm to quickly find a solution for the placement requests.
Our evaluation built upon openNetVM shows that Octans
provides accurate prediction results, significantly improving
the aggregate performance in the system, and has a high
chance to find optimal solutions in a short time.
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