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Abstract—The modularization of Service Function Chains
(SFCs) in Network Function Virtualization (NFV) could intro-
duce significant performance overhead and resource efficiency
degradation due to introducing frequent packet transfer and
consuming much more hardware resources. In response, we
exploit the lightweight and individually scalable features of
elements in Modularized SFCs (MSFCs) and propose CoCo,
a compact and optimized consolidation framework for MSFC
in NFV. CoCo addresses the above problems in two ways.
First, CoCo Optimized Placer pays attention to the problem of
which elements to consolidate and provides a performance-aware
placement algorithm to place MSFCs compactly and optimize
the global packet transfer cost. Second, CoCo Individual Scaler
innovatively introduces a push-aside scaling up strategy to avoid
degrading performance and taking up new CPU cores. To support
MSFC consolidation, CoCo also provides an automatic runtime
scheduler to ensure fairness when elements are consolidated on
CPU core. Our evaluation results show that CoCo achieves signif-
icant performance improvement and efficient resource utilization.

I. INTRODUCTION

Network Function Virtualization (NFV) [12] was recently
introduced by replacing traditional hardware-based dedicated
middleboxes with virtualized Network Functions (vNFs).
Compared to the legacy network, NFV brings benefits of
easy development, high elasticity, and dynamic manage-
ment. Meanwhile, network operators often require traffic to
pass through multiple vNFs in a particular sequence (e.g.
Firewall⇒NAT⇒Load Balancer), which is commonly referred
to as a Service Function Chain (SFC) [16]. To fasten the
development of vNFs, many recent research efforts [6], [7],
[9], [24] proposed to break traditionally monolithic Network
Functions (NFs) into processing elements, which could form
a Modularized Service Function Chain (MSFC). For example,
Intrusion Detection System (IDS) can be broken into a Packet
Parser element and a Signature Detector element. In this way,
new vNFs could be built based on a library of elements, which
could significantly reduce human development hours.

However, introducing modularization into NFV brings two
major drawbacks. First, in NFV networks, each vNF is usually
deployed in the form of Virtual Machine (VM) with separated
CPU cores and isolated memory resource [28]. When travers-
ing a SFC, a packet has to be queued and transferred between
VMs, which could introduce communication latency [13]. An
MSFC requires more times of packet transmission between
elements than its corresponding SFC, which may degrade the

chain performance. Second, due to modularization, to deploy
an MSFC, we need to consume much more (possible 2×
or more) hardware resources to accommodate all processing
elements compared with a SFC with monolithic vNFs, which
compromises resource efficiency.

Some research efforts have been devoted to addressing
the problems above. OpenBox [9] addressed the performance
problem by merging the common elements used by different
vNFs in an MSFC to decrease the latency. However, OpenBox
is constrained for limited cases where an MSFC comprises
repeated elements whose internal rules belonging to different
vNFs do not conflict with each other. NFVnice [15] addressed
the resource efficiency problem by consolidating several NFs
onto a CPU core with containers. However, it was designed at
NF-level and ignorant of the new problems of modularization
such as frequent inter-VM packet transfer. Also, it did not
consider the placement problem of which elements to consol-
idate, which is also significant to improve performance and
resource efficiency. Inappropriate consolidation may worsen
performance by transferring packets repeatedly.

At the same time, a closer look into the modularization
technique reveals some features of modularization that could
benefit both the performance and resource efficiency of MS-
FCs. Modularization introduces processing elements that are
lightweight and individually scalable [14], [21]. Therefore, we
could consolidate several lightweight elements on the same
VM, i.e. CPU core, to reduce hardware resource consumption
and improve resource efficiency. Also, by considering which
elements to consolidate, performance can be improved by
reducing inter-VM packet transfer inside MSFC. Furthermore,
in the situation where an element is overloaded, we can only
scale out the overloaded lightweight element itself individually
instead of its corresponding monolithic NF, which could sig-
nificantly reduce the scaling cost [11]. The scaled out replica
can also be consolidated onto an already working VM without
consuming an extra CPU core to further save resource.

Therefore, based on the above observations, we propose
CoCo, a compact and optimized element consolidation frame-
work to improve the performance and resource utilization effi-
ciency for MSFC in NFV. To the best of our knowledge, CoCo
is the first framework addressing the optimal consolidation for
MSFC in NFV. The key idea of CoCo is to reduce inter-
VM packet transfer and fully utilize the processing power of
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Fig. 1. CoCo Framework Overview

CPU by consolidating appropriate elements on the same VM.
However, we encounter three main challenges in our design:

∙ For SFC placement, to optimize the performance of MSFCs,
we are challenged to carefully analyze the cost of inter-VM
packet transfer via a virtual switch (vSwitch) [3]. Moreover,
we are challenged to design a performance-aware placement
algorithm to consolidate appropriate elements together.

∙ For SFC elasticity control, careless placing the scaled out
replica may introduce additional packet transfer between
VMs and frequent state synchronization among different
replicas of the element, which may degrade the performance
significantly (possibly up to tens of ms [11]). We are
challenged to avoid performance degradation.

∙ For runtime SFC management, when consolidating multiple
elements on the same CPU core, we need to ensure fairness
when scheduling CPU resources among elements. However,
traditional approach [15] requires manual configuration of
element priorities, which is time-consuming and lacks scal-
ability. We are challenged to design an automatic scheduler.

To address the above challenges, as shown in Fig. 1, we de-
sign the CoCo controller for performance-aware consolidation
placement (Optimized Placer) and elasticity control (Individual
Scaler), and the CoCo Infrastructure that supports automatic
resource scheduling. In Optimized Placer, CoCo models the
performance cost of inter-VM packet transfer and proposes
a 0-1 Quadratic Programming-based placement algorithm. In
Individual Scaler, CoCo proposes an innovative push-aside
element scaling up strategy as well as a greedy scaling out
method for efficient element scaling. Finally, we design an
Automatic Scheduler in the CoCo infrastructure that schedules
CPU resources based on the processing speed of each element.

In this paper, we make the following contributions:

∙ We introduce the problem of which elements to consolidate
and model the performance cost of inter-VM packet trans-
fer. We then design an Optimized Placer in CoCo controller
and propose a performance-aware placement algorithm to
achieve optimal performance of MSFCs. (Section II)

∙ We design an Individual Scaler in CoCo controller for
individual scaling of elements. We propose an innovative
push-aside scaling up strategy as well as a greedy scaling
out method to alleviate the hot spot with little performance
and resource overhead. (Section III)

∙ We design a runtime CPU Automatic scheduler in CoCo
infrastructure to automatically ensure fairness between mul-
tiple elements on the same CPU core with respect to their
different processing speed. (Section IV)

∙ We evaluate the effectiveness of CoCo framework. Evalu-
ation results show that CoCo could improve both perfor-
mance and resource efficiency. (Section V)

II. PERFORMANCE-AWARE MSFC PLACEMENT

In this section, we present the CoCo elements placement
algorithm inside Optimized Scaler of CoCo Controller for the
initial deployment of an MSFC. We have the following goal in
mind in our design: We prefer to consolidate adjacent elements
in an MSFC on the same VM and place the MSFC compactly
to reduce inter-VM packet transfer cost.

In the following, we first analyze the one-hop inter-VM
packet transfer cost due to vSwitch-based forwarding. We then
find the relationship between CPU utilization and processing
speed for an element. These two analyses serve as the fun-
damentals of placement algorithm of MSFC, which usually
contains multiple hops and multiple elements.

A. Packet Transfer Cost Analysis

In NFV implementation, usually elements are implemented
as VMs separately with dedicated CPU cores [28]. To simplify
the resource constraint analysis, we assume that each VM is
implemented on one CPU core, which could easily be extended
to situations where a VM is allocated with multiple CPU cores
(Section VII). When packets are consolidated on the same VM
with Docker Container [19], intra-VM packet transferring is
simple. With shared memory technique provided by Docker,
we can directly deliver the pointer on memory of packet
from one element to another with negligible latency (about
3 𝜇𝑠 under our implementation). However, when packets are
transferred between VMs, they must go through four steps, as
shown in Fig. 1. First, packets are copied from memory to the
virtual NIC (vNIC) on the source VM (Step 1 ). Next vNIC
transfers packets to vSwitch (Step 2 ). And then packets are
delivered reversely from vSwitch to the vNIC of destination
VM (Step 3 ) and finally from vNIC to memory (Step 4 ).
The total transfer delay (about 1 ms in our evaluation) degrades
the performance of MSFC significantly.

We use Delayed Bytes (DB) to represent the packet transfer
cost. Theoretically, 𝐷𝐵 is constrained by the minimum of
element throughput, memory copy rate (Step 1 and 4 ), and
packet transmission rate (Step 2 and 3 ). However, memory
copy rate and packet transmission rate (∼10 GB/s according
to [26]) are much greater than the SFC throughput (99% are
<1 GB/s in datacenters [22]). Thus 𝐷𝐵 is directly constrained
by the throughput between elements. We denote the throughput
as Θ and the additional four-step transfer delay as 𝑡𝑑. Thus

𝐷𝐵 = Θ ⋅ 𝑡𝑑 (1)

In the placement analysis, we will use the total sum of 𝐷𝐵
as our optimization target of performance overhead.
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Fig. 2. Two Examples of Processing Graph 𝒢 = (𝒱, ℰ)
B. Resource Analysis

Before globally optimizing the total sum of 𝐷𝐵, we need to
analyze and find the constraints on CPU resource utilization.
For a certain element, as the throughput increases, it will
consume more CPU resources to process. Thus for each type
of element 𝑖, we can measure a respective one-to-one mapping
function between CPU utilization 𝑟 and processing speed 𝑣:

𝑟𝑖 = 𝜙𝑖(𝑣𝑖) and 𝑣𝑖 = 𝜙−1
𝑖 (𝑟𝑖) (2)

In implementation, network administrators can measure the
mapping function for each type of element in advance, which
will be introduced in Section V-A.

Docker-based consolidation technique is lightweight and
takes few resources [28]. Thus, we can directly add up
respective CPU utilizations of elements to estimate the total
CPU utilization. Also note that Eq. 2 is an upper bound
estimation for CPU utilization given throughput. When several
elements are consolidated together, the alternate scheduling
mechanism by reusing the idle time caused by interrupts [26]
can enable a higher total throughput.

C. MSFC Placement Algorithm

We first abstract the packet processing in MSFCs as a
directed acyclic processing graph, denoted as 𝒢 = (𝒱, ℰ).
Each node 𝑘 ∈ 𝒱 represents an element and each edge in
ℰ represents a hop between elements in an MSFC. 𝑘 ∈ ℐ
represents the VMs, i.e. CPU cores. Service chains, denoted
as 𝒞, are defined by tenants. Fig. 2 shows two examples
of processing graph. There are two chains and six elements
in Fig. 2(a). Chain 1 is E1⇒E2⇒E5⇒E6 and Chain 2 is
E3⇒E4⇒E5⇒E6. To consolidate compactly, we assume that
the processing speed of each elements on the same chain
matches the throughput of the entire chain at initial placement.
We denote the throughput of chain 𝑗 as Θ𝑗 . Conservatively,
network administrators can estimate Θ𝑗 with its required
bandwidth according to Service Level Agreement [17].
𝛼𝑗
𝑖 ∈ {0, 1} indicates whether element 𝑖 is on chain 𝑗. 𝜋𝑗

𝑖

represents the upstream element of element 𝑖 on chain 𝑗, which
can be realized with a doubly linked list. To ensure robustness,
when 𝑖 is the first element on chain 𝑗, we set 𝜋𝑗

𝑖 = 𝑖. When
𝛼𝑗
𝑖 = 0, we set 𝜋𝑗

𝑖 = 0.
CoCo applies a 0-1 Integer Programming (0-1 IP) algorithm

to minimize the inter-VM overhead. 𝑥𝑖,𝑘 is a binary indicator
of whether placing element 𝑖 onto VM 𝑘. For chain 𝑗, we
analyze the performance overhead between each element 𝑖 and
its upstream element 𝜋𝑗

𝑖 on it. From Eq. 1, the hop from 𝜋𝑗
𝑖

to 𝑖 will incur an inter-VM cost of 𝐷𝐵𝑗 if and only if they
are not placed on the same VM, i.e.

𝑥𝑖,𝑘𝑥𝜋𝑗
𝑖 ,𝑘

= 0, ∀𝑘 ∈ ℐ
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Fig. 3. Individually scalability

Thus we can use
(
1−∑𝑘∈ℐ 𝑥𝑖,𝑘𝑥𝜋𝑗

𝑖 ,𝑘

)
∈ {0, 1} to indicate

whether element 𝜋𝑗
𝑖 and 𝑖 are consolidated together. Then we

add up 𝐷𝐵 of all inter-VM hops in chain 𝑗 and further add up
𝐷𝐵 of different chains as our objective function. CoCo aims
at minimizing the total inter-VM cost to improve performance:

min
∑
𝑗∈𝒞

∑
𝑖∈𝒱

𝛼𝑗
𝑖𝐷𝐵𝑗

(
1−

∑
𝑘∈ℐ

𝑥𝑖,𝑘𝑥𝜋𝑗
𝑖 ,𝑘

)
(3)

Meanwhile, the following constraints should be satisfied:
(1) 𝑥𝑖,𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝒱, 𝑘 ∈ ℐ
//An element is either consolidated on VM 𝑘 or not.
(2)
∑

𝑘∈ℐ 𝑥𝑖,𝑘 = 1, ∀𝑖 ∈ 𝒱
//An element can only be placed onto one VM.
(3)
∑

𝑖∈𝒱
[
𝑥𝑖,𝑘 ⋅ 𝜙𝑖

(∑
𝑗∈𝒞 𝛼

𝑗
𝑖Θ𝑗

)]
⩽ 1, ∀𝑘 ∈ ℐ

//Each CPU core cannot be overloaded at initial placement.
Note that if the estimated through of element 𝑖0 is so high

that it cannot be placed on one CPU core, i.e.
∃𝑖0 ∈ 𝒱, 𝑠.𝑡.

∑
𝑗∈𝒞

𝛼𝑗
𝑖0
Θ𝑗 > 𝜙−1

𝑖0
(1) (4)

constraint (2) and (3) may conflict. This is due to the incorrect
orchestration between flows and elements. Actually it rarely
happens in the real world and never happens in our evaluation.
In this situation, scaling out is needed. For overloaded element
𝑖0, if there is only one chain 𝑗0 containing it, CoCo scales out
⌈ Θ𝑗0

𝜙−1
𝑖0

(1)
⌉ replicas and performs load-balancing among them. If

there are several chains containing 𝑖0 (such as E5 in Fig. 2(a)),
CoCo scales it out to multiple replicas based on a knapsack
algorithm on chain. Then CoCo splits the overlapped chains
to different replicas and reconstructs processing graph 𝒢′ to
ensure that Eq. 4 does not hold for ∀𝑖 ∈ 𝒢′.

From the analysis above, we find that Eq. 3 is a 0-1
Quadratic Programming problem and can be solved within
limited time and space [10]. By solving the above formula-
tions, we can get the performance-aware optimized placement
solution. We evaluate this algorithm in Section V-C.

III. OPTIMIZED INDIVIDUAL SCALING

For monolithic NFs, all components must be scaled out
at the same time when overloaded, which will take up more
resources than needed. Also, continuously synchronizing nu-
merous internal states will introduce significant overhead [11].
After modularization, when traffic increases, only the over-
loaded elements need to scale out. For example, when the
detector element of IDS is overloaded, instead of scaling out
the whole IDS (Fig. 3(a)), we can only scale out the detector
element itself (Fig. 3(b)).
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However, deciding where to place the scaled out replica
is also important. Careless placement will degrade perfor-
mance and resource efficiency. In this section, CoCo Indi-
vidual Scaler provides two innovative scaling strategy includ-
ing performance-aware push-aside scaling up, and resource-
aware greedy scaling out, to efficiently alleviate the overload
situation. Push-aside scaling up can avoid the performance
degradation caused by additional inter-VM packet transfer.
Greedy scaling out can achieve resource efficiency by placing
replicas on existing VMs.

A. Push-aside Scaling Up

When scaling out, the traditional NF-level scaling method
taken by [11], [27] simply starts a new VM with taking a
new CPU core and scales out the overloaded element to the
new VM. For example, when the Stateful Payload Analyzer
in VM2 is overloaded (Fig. 4(a)), traditional method starts
VM3 and copies the element to it (Fig. 4(b)). However, this
will introduce additional latency overhead due to inter-VM
packet transfer. For example, in Fig. 4(b), a part of packets
will suffer 3 inter-VM hops to go through the total MSFC
(VM1⇒VM2⇒VM3⇒VM2). Also, frequent state synchro-
nization between replicas will also degrade the performance.

However, when an element in an MSFC is overloaded, the
VMs that its upstream or downstream elements placed on may
be underloaded. Enabled by the lightweight feature of element,
we can re-balance the placement of elements on the two
VMs. Thus, the key idea of push-aside scaling up is that the
overloaded element can push its downstream/upstream element
aside to its downstream/upstream VM and scale itself up to
alleviate the overload. As for Fig. 4(a), we can migrate Logger
to VM1 and release its CPU resource (Fig. 4(c)). By allocating
the newly released resource to Stateful Payload Analyzer and
scaling it up, the overload can be alleviated.

Push-aside scaling up has two advantages. First, compared
to the traditional method, it does not create new inter-VM
hops, thus there is no additional packet transfer cost. Second,
it does not create a new replica but allocates more resources
to overloaded element. Thus push-aside scaling up does not
suffer the state share and synchronization problems [11].

The algorithm includes the following four steps.
Step 1: Check the practicability. If the estimated throughput
Θ𝑒𝑥𝑝

𝑖0
for element 𝑖0 is so large that the overload on 𝑖0 cannot

be alleviated with one CPU core, i.e. Θ𝑒𝑥𝑝
𝑖0

> 𝜙−1
𝑖0

(1), push-
aside scaling up will not work. This happens only when
an extremely large burst comes. In this situation, algorithm
terminates and CoCo goes to greedy scaling out.
Step 2: Find border elements. For element 𝑖0 in chain 𝑗0,
CoCo first finds out its upstream and downstream border

elements 𝑢𝑝 𝑏𝑜𝑟𝑑𝑒𝑟𝑗0𝑖0 and 𝑑𝑜𝑤𝑛 𝑏𝑜𝑟𝑑𝑒𝑟𝑗0𝑖0 . Upstream border
element refers to the element that 𝑢𝑝 𝑏𝑜𝑟𝑑𝑒𝑟𝑗𝑖 and 𝑖 are
placed in the same VM but 𝑢𝑝 𝑏𝑜𝑟𝑑𝑒𝑟𝑗𝑖 and 𝜋𝑗

𝑢𝑝 𝑏𝑜𝑟𝑑𝑒𝑟𝑗𝑖
are

placed separately. With doubly linked list, CoCo goes through
elements hop by hop to find out border elements and composes
them into a set ℬ𝑖0 . If 𝑖0 is contained by several chains, CoCo
checks each chain and composes the results into ℬ𝑖0 .
Step 3: Check whether it can be migrated. After finding
out the border elements , CoCo checks whether they can be
migrated to the adjacent VM. Suppose both 𝑏0 ∈ ℬ𝑖0 and 𝑖0
are on chain 𝑗0. We denote the adjacent VM of 𝑏0 as 𝑘𝑎𝑑𝑗𝑏0

. If

𝜙𝑏0(Θ𝑗0) +
∑
𝑖∈𝒱

𝑥𝑖,𝑘𝑎𝑑𝑗
𝑏0

⋅ 𝜙𝑖

⎛
⎝∑

𝑗∈𝒞
𝛼𝑗
𝑖Θ𝑗

⎞
⎠ < 1 (5)

which means there is available resource for 𝑏0 on 𝑘𝑎𝑑𝑗𝑏0
, we

can migrate 𝑏0 to 𝑘𝑎𝑑𝑗𝑏0
and release its resource. Similarly, we

can check all 𝑏 ∈ ℬ𝑖0 and its respective 𝑘𝑎𝑑𝑗𝑏 . If none can be
migrated, CoCo goes to the greedy scaling out strategy. This
happens only when all of the adjacent VMs of 𝑖0 do not have
enough resource, which in practice rarely happens. If some of
them can be migrated, CoCo composes them into ℬ′

𝑖0
⊂ ℬ𝑖0 .

Step 4: Check whether overload can be alleviated. At
last, CoCo checks if migrating all elements in ℬ′

𝑖0
will make

enough room for 𝑖0 to scale up to alleviate the overload.
Otherwise the migration will be useless. CoCo calculates the
needed resource 𝑟∗𝑖0 = 𝜙𝑖0(Θ

𝑒𝑥𝑝
𝑖0

) − 𝜙𝑖0(Θ
𝑐𝑢𝑟
𝑖0

), where Θ𝑐𝑢𝑟
𝑖0

is the current processing speed of 𝑖0. The CPU utilization
of element 𝑏′ ∈ ℬ′

𝑖0
satisfies 𝑟𝑏′ = 𝜙𝑏′

(∑
𝑗∈𝒞 𝛼

𝑗
𝑏′Θ𝑗

)
. If∑

𝑏′∈ℬ′
𝑖0

𝑟𝑏′ < 𝑟∗𝑖0 , which means migration cannot release

enough resource, the algorithm terminates and CoCo goes to
greedy scaling out. Else, push-aside scaling up can be applied.
Also, aware that migrating elements from one VM to another
has performance cost and controller overhead [11], CoCo tries
to minimizes the number of elements to migrate. CoCo finds
a subset ℬ′′

𝑖0
⊂ ℬ′

𝑖0
with minimal number of elements that

satisfies
∑

𝑏′′∈ℬ′′
𝑖0

𝑟𝑏′′ ⩾ 𝑟∗.
Moreover, to avoid potential frequently scaling up among

elements, network administrators can set a timeout between
each time of scaling up. In this way, we can alleviate the
overload with minimum elements to migrate.

B. Greedy Scaling Out

If the overloaded element can push none of border elements
aside to other VMs, Individual Scaler have to scale it out
to somewhere else. In this situation, performance degradation
caused by scaling out is unavoidable. Even so, we can still save
resource by placing the new replica to an already working VM.

CoCo decides the VM to place the replica based on a greedy
algorithm. First, it calculates the remained resource of each
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VM and sorts them in increasing order. Next, CoCo greedily
compares it with the needed resource 𝑟∗𝑖0 . When the remained
resource of any VM, i.e. CPU core, is larger than 𝑟∗𝑖0 , CoCo
places the replica there. If none of the VMs have available
CPU resource, CoCo will call up new VMs and specify new
CPU cores, just as the traditional method does.

IV. AUTOMATIC CONSOLIDATION SCHEDULING

When consolidating several elements onto one CPU core,
CoCo uses one Docker [19] for each element. At this time, we
need a scheduling algorithm to enable fair resource allocation.
However, as we discussed above, traditional rate-proportional
scheduling methods [25] and priority-aware scheduling meth-
ods [15] are not scalable due to massive manual configurations.
Thus, we design a novel scheduling algorithm to match pro-
cessing speed of elements with its throughput to automatically
achieve both fairness and efficiency. Here, we take CPU
resource as the allocation variable since CPU is more likely
to become a bottleneck resource than memory [15], especially
when elements are densely consolidated in MSFC.

CoCo takes an incrementally adaptive adjustment schedul-
ing algorithm. The algorithm tries to match the processing
speed of each element with its packet arrival rate. It incre-
mentally adjusts the CPU utilization of the next scheduling
period based on the statistics of current scheduling period.
The detailed algorithm is introduced below.

In consolidation, CPU resources are scheduled among ele-
ments by periodically allocating time slices with CGroup [2].
Suppose scheduling period is 𝑇 . For element 𝑖 on a VM,
we can get its CPU utilization proportion 𝑟𝑖 by counting
the number of time slices. Note that 𝑟𝑖 is a proportion thus∑

𝑖 𝑟𝑖 = 1. Also, we can get current buffer size 𝐵𝑖 and last
time buffer size 𝐵′

𝑖. From Eq. 2, we can know the processing
speed 𝑣𝑖 satisfies 𝑣𝑖 = 𝜙−1

𝑖 (𝑟𝑖). We denote 𝐵∗
𝑖 , 𝑣

∗
𝑖 and 𝑟∗𝑖 as

the predicted buffer size, processing speed and CPU utilization
at the next scheduling period.

Our scheduling algorithm is based on the matching prin-
ciple: For all elements, their buffer variations should be
proportional to respective processing speeds, i.e.

𝐵∗
𝑖 −𝐵𝑖

𝑣∗𝑖 𝑇
= 𝐶, ∀𝑖 ∈ {1, ⋅ ⋅ ⋅ , 𝑛} (6)

By modeling in this way, we try to ensure fairness among
elements and effectively allocate resources. The key idea is to
match the processing speed with its respective packet arrival
rates. In this way, the element with a lower processing speed
and smaller flows can also attain an appropriate proportion
of CPU. However, when several elements are consolidated
together, downstream element may directly read the packet
that are already loaded into memory by its upstream element.
Thus we cannot get the actual packet arrival rate by simply
measuring at the last switch. Naively adding statistics measur-
ing module on the top of Docker will introduce unnecessary
overhead. Instead, we can infer the arrival rate 𝑣𝑎𝑖 from the
variation of buffer size, i.e.

𝑣𝑎𝑖 =
𝐵𝑖 −𝐵′

𝑖

𝑇
+ 𝑣𝑖 (7)
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Fig. 5. Throughput-CPU Utilization Mapping

As traffic usually does not vary sharply [8], we can assume
that in a scheduling period (usually at millisecond level),
the packet arrival rate keeps invariant, i.e. 𝑣𝑎𝑖 = 𝑣∗𝑎𝑖. By
substituting 𝐵∗

𝑖 in Eq. 6 with Eq. 7, we can get the CPU
proportion for element 𝑖 in the next scheduling period:

𝑟∗𝑖 = 𝜙𝑖(𝑣
∗
𝑖 ) = 𝜙𝑖

(
𝐵𝑖−𝐵′

𝑖

𝑇 + 𝑣𝑖

𝐶 + 1

)
(8)

The sum of CPU utilization needs to be normalized, thus
𝐶 subjects to ∑

𝑖

𝜙𝑖

(
𝐵𝑖−𝐵′

𝑖

𝑇 + 𝑣𝑖

𝐶 + 1

)
= 1 (9)

Although we cannot get an explicit expression of 𝐶, we can
first randomly specify an initial value for 𝐶 and then normalize
𝑟∗𝑖 . Comparing to the millisecond level scheduling period, the
solving time in this way is negligible.

Another important function of consolidation scheduler is to
tell the individual scaler when to scale out. A direct indicator
is the buffer size of an element. If buffer is overflowed, packet
loss incurs and the element is definitely overloaded. At this
time, scheduler can do nothing but execute the scaling up or
scaling out methods, as introduced in Section III.

V. PRELIMINARY EVALUATION

In this section, we first introduce our methods on measuring
throughput-CPU utilization mapping function. Then we build
CoCo with Docker [19] to consolidate elements on VMs,
and enable inter-VM packet forwarding with Open vSwitch
(OVS) [3]. We take the low-level dynamical element migra-
tion mechanism from OpenNFand evaluate the effectiveness
of high-level push-aside scaling up strategy compared to
OpenNF [11]. Finally, we evaluate the CoCo performance-
aware MSFC placement algorithm based on our simulations.

We evaluate CoCo based on a testbed with one server
equipped with two IntelⓇ XeonⓇ E5-2690 v2 CPUs
(3.00GHz, 8 physical cores), 256G RAM, and two 10G NICs.
The server runs Linux kernel 4.4.0-31.

A. Throughput-CPU Utilization Mapping

To measure the throughput-CPU utilization mapping, we
constrain the available CPU utilization for the element by fix-
ing the cpu-period and changing the cpu-quota param-
eter in Docker. We use a packet sender to test the maximum
throughput under the current limited CPU proportion. With
this method, administrators can get the mapping function 𝜙(𝑣).

We measure two types of element with different complexity.
Packet Sender represents elements with simple processing
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logic. IP Address-based Header Classifier contains 100 rules
and represents relatively complicated elements. The mapping
functions are shown in Fig. 5. Surprisingly, a strong linearity
correlation can be observed. We present the linear regressions
of the two mapping functions:
∙ Sender: 𝑟 = −0.022 + 0.0013× 𝑣, 𝑅2 = 0.9997
∙ Classifier: 𝑟 = 0.00048 + 0.0042× 𝑣, 𝑅2 = 0.9999997

𝑟 ∈ [0, 1] is the CPU utilization and 𝑣 is the processing
speed in MB/s. 𝑅2 is a measure of goodness of fit with a
value of 1 denoting a perfect fit. Thus in practice, we can
further simplify the solving procedure by substituting 𝜙(𝑣)
and 𝜙−1(𝑟) with their linear approximations.

B. Push-aside Scaling Up

To evaluate the performance of push-aside scaling up, we
use the MSFC in Fig. 4(a). At first, the throughput of MSFC
is 100 kpps, with each packet 512 B. At the 10k-th packet,
we increase the traffic to 150 kpps, which causes the Stateful
Payload Analyzer overloaded. The traditional method taken by
OpenNF [11] naively scales out by copying Stateful Payload
Analyzer to a newly started VM, as shown in Fig. 4(b). In
contrast, CoCo migrates Logger to VM1 and allocate the
released resource to Stateful Payload Analyzer.

For performance, the comparison of two methods on real-
time latency of each packet is shown in Fig. 6. The latency
at 10k-th packet increases sharply due to the element migra-
tion. Traditional method converges a little faster because it
consumes more resources and has a higher processing speed.
However, CoCo has a lower converged latency of 6 ms
compared to 11 ms of the traditional method. The improvement
is achieved by reducing the additional packet transfer and
state synchronization latency. For resource efficiency, with
traditional method, the scaled MSFC is allocated with more
resources (3 VMs in total). In contrast, 2 VMs are enough
with CoCo in this situation (Fig. 4(c)) by push-aside scaling
up. CoCo achieves a higher resource efficiency by 1.5×.

C. Performance-aware MSFC Placement

As for evaluating the performance of placement algorithm,
we evaluate the total DB in the processing graph. We use an
Optimization Toolbox [4] to solve the 0-1 Quadratic Program-
ming. For large-scale and complicated topologies, quadratic
programming can be efficiently solved with some dedicated
commercial solvers such as IBMⓇ CPLEX [5]. We use two
topologies shown in Fig. 2 and implement all elements as
classifiers described in Fig. 5. We randomly select flows
from the LBNL/ICSI enterprise trace [1] to different chains

D
B

Fig. 7. Sum of Delayed Bytes

TABLE I
PLACEMENT FAILURE RATE (OF 1000 TESTS)

CoCo Greedy Random
Topo1 114 (11.4% fails) 155 (15.5% fails) 214 (21.4% fails)
Topo2 58 (5.8% fails) 65 (6.5% fails) 78 (7.8% fails)

and repeat the experiment for 1000 times to eliminate the
randomness. We try to place Topology 1 (Fig. 2(a)) on 2 VMs
and Topology 2 (Fig. 2(b)) on 4 VMs.

Since that there is no ready-made solution on which el-
ements to consolidate, we compare CoCo with two straw-
man solutions, including a greedy mechanism, which greedily
places elements onto VMs chain by chain, and a random
mechanism, which randomly selects available VMs to place
elements.

An important feature of CoCo placement is performance-
aware, which is evaluated as the sum of DB. The total DB
in processing graph of successful placements with different
strategies is shown in Fig. 7. For Topo1, CoCo reduces the
total DB by 2.46× compared to random strategy and by 1.64×
compared to greedy strategy. For Topo2, even the lengths
of chains increase and more inter-VM packet transfers are
unavoidable, CoCo still outperforms the random strategy by
1.52× and greedy strategy by 1.21×.

Another feature of CoCo is resource efficient by compact
placement, which can be interpreted as: Given limited CPU
cores, i.e. VMs, for different traffic, CoCo has a higher proba-
bility to place all of them on successfully. As shown in Table I,
when placing Topo1, CoCo improves the failure rate by 1.88×
compared to random strategy and 1.36× compared to greedy
strategy of 1000 tests. Note that the placement of Topo1
( 6 elements

2 VMs = 3) is tighter than Topo2 ( 9 elements
4 VMs = 2.25),

thus placing Topo1 has a higher failure rate than Topo2. Even
so, CoCo improves the failure rate from 7.8% (random) and
6.5% (greedy) to 5.8% for Topo2.

VI. RELATED WORK

In this section, we summarize some related work and
compare them with CoCo.
Modularization. Click [20] proposed the idea of modular-
ization and applies it to routers. Recently, Slick [7] and
OpenBox [9] were proposed to detailedly discuss modularized
NFs and decouple control plane and data plane of modular-
ized NFs for easy management. Besides, OpenBox focused
on merging elements to shorten the processing path length.
However, above works mainly focus on orchestration-level
module management and are orthogonal to our optimizations
on performance-aware placement and dynamically scaling.
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Consolidation. CoMb [24] designed a detailed mechanism to
consolidate middleboxes together to reduce provisioning cost.
Furthermore, Flurries [28] and NFVnice [15] were proposed
to share CPU cores among different NFs with the technique of
Docker Container [19]. By modifying Linux scheduling meth-
ods, they achieved almost no loss in NF sharing. However,
they operated on monolithic NF level and did not consider the
problem of which elements (NFs) to consolidate. However,
their development details and infrastructure designs could
complement our work as the low-level implementation.
Placement. There are a lot of research on NF placement
in NFV, such as [17], [18], [23], which focus on the trade-
off between traffic load, QoS, forwarding latencies, and link
capacities. However, they focused on the placement at NF-
level instead of element-level, and thus did not benefit from
the lightweight feature of NF modules. Slick [7] considered
placement at element-level. However, all of the work above
addressed how to place middleboxes (vNFs) onto different
servers considering complicated and limited physical links.
In contrast, CoCo pays attention to the placement problem of
how to consolidate elements onto different VMs, i.e. cores.

VII. DISCUSSIONS

In this section, we discuss how to extend CoCo and
highlight several open issues as future directions.
Multi-core Placement Analysis. For simplicity, CoCo as-
sumes that each VM is allocated with one CPU core when
optimizing placement to satisfy the general applications. In
some cases, when tenants allocate multiple CPU cores to a
VM, CoCo can be easily extended by considering the resource
constraint of multiple CPU cores instead of a single core.
Intra-core Analysis. CoCo analyzes the inter-core cost
caused by vSwitch-based packet transfer. As our future work,
by designing cache replacement policies, we may reduce the
miss rate of Layer 1 and 2 Cache and further reduce repeatedly
packet loading from memory to cache. Moreover, more designs
are needed to ensure isolation between consolidated elements.
However, those analyses are infrastructure-dependent and dif-
fers on various types of CPU, which is beyond our scope.
CoCo can be easily extended to analyze intra-core situations
on a certain type of CPU.

VIII. CONCLUSION

This paper presents CoCo, a high performance and efficient
resource management framework, for providing compact and
optimized element consolidation in MSFC. CoCo addresses
the problem of which elements to consolidate in the first
place and provides a performance-aware placement algorithm
based on 0-1 Quadratic Programming. CoCo also innovatively
proposes a push-aside scaling up strategy to avoid performance
degradation in scaling. CoCo further designs an automatic
CPU scheduler aware of the difference of processing speed
between elements. Our preliminary evaluation results show
that CoCo could reduce packet transfer cost by up to 2.46×
and improve performance at scaling by 45.5% with more
efficient resource utilization.
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