Accelerated Dual-Averaging Primal-Dual Method for Composite
Convex Minimization

Conghui Tan?, Yuqiu Qian®, Shigian Ma® and Tong Zhang?

2The Chinese University of Hong Kong; PUniversity of Hong Kong;
¢University of California, Davis; 9The Hong Kong University of Science and Technology

ARTICLE HISTORY
Compiled October 18, 2019

ABSTRACT

Dual averaging-type methods are widely used in industrial machine learning appli-
cations due to their ability to promoting solution structure (e.g., sparsity) efficiently.
In this paper, we propose a novel accelerated dual-averaging primal-dual algorithm
for minimizing a composite convex function. We also derive a stochastic version of
the proposed method which solves empirical risk minimization, and its advantages
on handling sparse data are demonstrated both theoretically and empirically.

KEYWORDS
Dual Averaging Algorithm; Primal-dual; Empirical Risk Minimization;
Acceleration; Sparse Data

1. Introduction

In this paper, we consider minimizing the following composite convex function:

min {P(x) = f(Az) + g(2)}, (1)

where A € R™4 and both f: R® — RU {+occ} and g : R — R U {+0c0} are convex
closed functions. Here f can be either smooth or non-smooth, and we assume ¢ has
easy proximal mapping. Problem (1) covers a wide range of applications. For example,
choosing f to be the indicator function of a convex set C' = {z € R"|z < b} corresponds
to minimizing a convex function over a polyhedron. It covers the Lasso problem [21]

: 1 2
i { oL — 03 + Al }. @)

Dedicated to Professor Ya-xiang Yuan on the occasion of his 60th birthday.
Corresponding Author. Email: sgqma@Qucdavis.edu

by setting f(u) = o |lu — b||3 and g(z) = Al|z||;. Another application of the form (1)

is the support vector machine (SVM):

L1l A

;glﬂ{gnz;max{l (biai, z) , 0} + 53, (3)
1=

where a; € R? is the feature vector of the i-th data sample, and b; € {£1} is the

corresponding label.

For smooth f, a classical way to solve (1) is the proximal gradient method (PGM)
and its accelerations [2, 22]. PGM for solving (1) iterates as

gt = prox,,, <:ct — T]ATVf(Axt)) ,

where 77 > 0 is the step size. Dual averaging (DA, [16]) algorithm is another widely
used algorithm for solving (1), which iterates as

t
2t = ProXs g <x0 — ZﬁkATVf(Amk)> ,

k=0

where {f3;} are the step sizes. Different from PGM, in each iteration, DA always starts
at the initial iterate 20, averages all the past gradients, and then conducts proximal
mapping. Dual-averaging type methods are widely used in many industrial machine
learning applications due to the following advantages over PGM [5, 13, 14]. First, it is
observed that DA is better in promoting solution structure (e.g., sparsity) than PGM
[12, 23]. Second, DA can deal with sparse data much more efficiently than PGM. We
will provide more details in Section 4.

In this paper, we develop a new dual-averaging primal-dual (DAPD) method for
solving (1), which has accelerated optimal convergence rate. When f(Ax) has a finite-
sum structure, we develop a stochastic version of DAPD, named SDAPD, which is also
optimal, and has better overall complexity on sparse data comparing with existing
algorithms of the same type.

Notation. The following notation is adopted throughout this paper. For the matrix
A € R4 used in (1), we use a, to denote the i-th row of A and a;; to denote the
j-th coordinate of a; (1 <i<n,1<j<d). We define

R:=||Allz and R:= max llail|2- (4)

Note that ||z]|2 denotes the spectral norm if z is a matrix, and ¢» norm if z is a vector.
It is easy to show that R and R have the following relationship: R < R < \/nR. We
use p to denote the proportion of non-zero entries in A (note 0 < p < 1). To ease the
later discussion on computational complexity, without loss of generality, we assume
p > 1/n and p > 1/d, which happens for large-scale problems. For a convex set C,
dist (z,C) = infyco ||z — 2||2 is the distance between point x and set C. For any
function h(u) : R — R, its proximal mapping is defined as:

1
prox;, (u) == argmin { h(v) + =|lv —ul3}, Vu € RP.
vERP 2

Algorithm 1 Dual-Averaging Primal-Dual (DAPD) Method

Input: initial points 2° and y", primal and dual step sizes {3}, {n:} and {7}
1: Initialize By = By
2: fort=0,1,2,... do
3: Compute intermediate variable:

't = prox,,, (xt - mATyt) (6)

4: Update dual variable:

yitt= prox,, ;- (y* + r Az (7)

5: Update primal variable via a dual-averaged step:
¢
gt = proxpg, , <x0 - ZﬂkATka> (8)
k=0

6: Update Bt+1 = Bt + /Bt-i-l
7. end for

The domain of function h(u) is denoted as domh = {u € RP|h(u) < +oo} and its
conjugate function is defined as h*(v) = sup,cpr {(v,u) — h(u)}. Oh(u) denotes the
subdifferential of h at w. The function h(u) is said to be u-strongly convex if

h(v) > h(w) + (s,v —u) + guv —u|, Vs € dh(w), u,v e RP.
h(u) is called L-Lipschitz continuous if it satisfies
|h(u) — h(v)| < Llju —vl|]2, VYu,v € RP.

h(u) is called ¢-smooth if it is differentiable and its gradient is (-Lipschitz continuous,
ie.,

IVh(u) — Vh(v)|l2 < (|lu — |2, Yu,veRP.

2. The Dual-Averaging Primal-Dual Algorithm

In this section, we present our dual-averaging primal-dual (DAPD) algorithm, which
solves the following primal-dual formulation of problem (1):

min max {F(z,y) := g(z) + {y, Az) — f*(y)}- (5)

We use (*,y*) to denote a pair of optimal primal-dual solutions to (5), and X* and
Y™ the sets containing all optimal primal and dual solutions, respectively.

The details of DAPD algorithm are presented in Algorithm 1. In each iteration,
DAPD first conducts one primal proximal gradient step to compute the intermediate

variable Z!*1, and then y'*! is computed using the gradient evaluated at Z/*1. Finally,
2+ is updated in (8), which adopts a dual-averaging type update rule. Note that all
the past dual intermediate variables {yk+1}}t€:0 play a role here, and the gradient used
in (8) is a weighted sum of them, instead of simply y**!. The update of y**! in (7)
can be viewed as an extragradient step [8, 9], since the gradient used here is evaluated
at the intermediate variable z/*1 instead of !. Moreover, (7) and (8) have the flavor
of the primal-dual hybrid gradient [3]. Note that the step size used in the proximal
mapping in (8) is B¢, which is much larger than (3;. This helps promote the desired
structures of solution x!. For instance, if g is the £; norm, then z'*! generated by (8)
is more likely to be sparse because B; is large.

When implementing DAPD, the summation in (8) needs to be computed incremen-
tally. By doing so, the main computation cost in each iteration of Algorithm 1 lies in
the matrix-vector multiplications A"y, AZ*t! and ATy'*!. Since A is a n-by-d matrix
with sparsity p, these multiplications can be done in O(pnd) operations.

We now analyze the convergence rate of DAPD (Algorithm 1). The following as-
sumption is made throughout this section.

Assumption 2.1. f is (1/v)-smooth (v > 0), and g(x) is p-strongly convexr (> 0).

Note that v = 0 means that f is non-smooth, and @ = 0 means that g is non-strongly
convex.

Although some parts of our DAPD algorithm look very similar to the primal-dual
hybrid gradient (PDHG, [3]), technical challenges still exist if we want to directly
adapt the analysis of PDHG to our algorithm.

(i) z'*!in DAPD is obtained by a gradient step instead of extrapolation step. In the
analysis of PDHG, the extrapolation step plays an important role in canceling
the mismatch between primal and dual variables. Here we need a new approach
to tackle this difficulty.

(ii) Since the primal updates consist of two gradient descent steps, two very different
sequences of primal step sizes {7;} and {3;} and the dual step size {7;} need to
be specified. This requires us to carefully balance these three parameters so that
we can obtain the fastest convergence.

(iii) The update of #'T! in DAPD is in the dual averaging style, which is very dif-
ferent from PDHG in that it involves all the past gradients rather than simply
the gradient at y'T!. This makes it difficult to relate this step to the objective
function value F(z!*1 y*1).

In order to tackle these issues, new techniques are needed for the analysis. We define
a potential function ¢, to characterize the dual-averaging step as follows:

t—1
bu(z) = % o= a®ll3+ 3" e (9(2) + 4+, Ax)))
k=0

From (8) it is easy to observe that z‘*! := argmin, ¢;y1(z). Besides, since g(x)

is p-strongly convex, ¢.(x) is strongly convex with strong convexity parameter
1+ 22;10 Bri =14 By_1p. Moreover, we denote ¢y := mingcga ¢¢(x).
The following lemma characterizes the change of ¢} after one iteration.

Lemma 2.2. Assume

(1 4+ Be_1p) > Br. (10)

We have
.) _ _ BiR?n)
¢t+1 —¢; > Bt (g(xtﬂ) + <Z/t+1,A$t+1>) = 9 : ||?JH_1 - ytH% (11)

Proof. From the strong convexity of ¢;11(x) and (10), we obtain

i1 =0 (1) = g + B (9(@) + (y T, Aa'T))
. 1+B.
>¢; + %WHILJ — "3+ By (9(a™) + (¥, AztTY)
B
267 + gt = o B B (o) + (1 Aat). (12)

Note that (6) can be rewritten as /™1 = z* —n, (ATy' +5), 3s € dg(z'*!), which
yields

2" — 23 — ||2* — 23 — ||z — 2|3
(gt — F FH gty = 2 (ATyt 4 s, B - gt
>2m; ({y', A(t+1) + g(@) — g(a't)), (13)

where the inequality is due to the convexity of g(x). Combining (12) and (13) yields

d);fk-i-l

267 + g [l = a TG + o = PR + 2 (51, A =) 4 g(a') — (o))
+B ((t+1)—|—<yt+1,A$t+1>)

_d)t + ﬁ (th _t+1H2 + H—t+1 t-l—l”%) 4 515 (g(£t+1) + <yt+1,Ajt+1>)
+B <y _ yt—i—l’A(jH_l _ l’t+1)>

B . _ . _
—d)t + Ht (th t+1H2 + H t+1 t+1H%) +Bt (g(l‘t+1) + <yt+1’A$t+1>)
_ Bt R TItH t+1 ytH2 + HA< —t+1 t+]_>H2
2 2R2 2
B . _ i, _
>¢f _|_ = (th _ ﬂftHH% + H$t+1 _ $t+1H%) + B (g(xtﬂ) + <yt+1’Axt+1>)

R77t 1yt 1 FhHL _ L2
@(Sy - o+ ol 3

S ¥ BeR*my 12 ~t+1 tH1 gzt
267 = =5y =3+ B (9@ + (v ATT)

where the second inequality is due to Young’s inequality and the third inequality is
from (4). This completes the proof. O

The next lemma concerns the update of the dual variable.

Lemma 2.3. For any y € R", it holds that
1
5 (ly" = yl3 — @ +ym)lly™ —yll3 — v = ¥|13)
>(Az"™ Ty =y + T =) (14)

Proof. Using (7) and following similar derivation as (13), it is easy to show that there
exists s € Of*(y'*1) such that the following holds:

Iy = yll3 = v —yl3 = ly" — v 5
=2(y" — "yt —) = 2(n (AT 4 5), 4 T —y)
_ . v
>97 (<Awt“7y —y"h + YT = fy) + §Hyt“ - yl@) : (15)

where the inequality is due to the y-strong convexity of f*(y), which is implied by the
(1/7)-smoothness of f [7]. Dividing (15) by 27 yields (14). O

We are now ready to present the main convergence results of DAPD.

Theorem 2.4. Consider the first T iterations of DAPD. Assume the parameters sa-
tisfy (10) and the following conditions:

1

M7 < ﬁ’ (16)
Pt < By g, a7

Tt+1 Tt

Define
T-1 T-1
ST

Bt L2 Oﬂtm’ and 4 Bt— 2 Oﬁty (18)

The following inequality holds for any x € R? and y € R":

Bo

1
FGT) — Flz.97) < ——
(27,y) — F(z,9") < B (27

I8 = 13+ Sla® —x||2) (19)

Proof. Multiplying (14) by f;, and adding the resulted inequality to (11), we obtain

Bt
b1 — Pt + P (Hy —yl3 — (L+ym) Iy — yII%)

i iy BiR?
>, (g(a+) + <yt+1,Axt+1>) - =y -yl

1 (g = gL AT) -) + Sl B
>By ((, A7) + 9@ + 1) = W) (20)

where the last inequality is due to (16). Combining (17) and (20) yields

B\ 4 2 i« B+l 141 2 ik
(gt ol = 07) = (St = w18 - ot

t+1
>B ({y, A2 + @) + () = () - (21)
Note that the left hand side of (21) has a telescoping structure. Summing (21) over
t=0,...,7 —1 yields

T-1
> B ((y, A2 + g(@) + £ - £ ()
t=0
(B gz —or) (P n) < 2oy g5 e (@2
270 27 0

From (9), it is straightforward that ¢ = min,cga 3||z — 2°||3 = 0 and

T-1
8 < br(@) = glle — 203+ 3 B (o(a) + (s, Ax))
t=0

Combining these facts with (22) and using the convexity-concavity of F(z,y), we have

Bo

1
- 1y° — ylI3 + 5!!930 — 2|3

>3 B (g, A2 = [(y) + 9@ — (¥ Az) + (¥ — 9(2)

T-1
= Bt (F(jt+17y) - F(x7yt+1)) > (Z Bt) ’ (F(:%Tvy) - F(xagT)>
t=0

t=0
=Bp_1 (F(i'Tvy) - F(l":l:/T)) ’
which completes the proof. O

From Theorem 2.4, we can derive some more interpretable complexity bounds by
choosing some specific parameters.

Corollary 2.5. The following facts hold for DAPD (Algorithm 1).
(i) If v > 0 and p > 0, by choosing

1 [y 1 [1 [y VT
i R\/;’ n R\f’v and R\/;< TR) ’ (23)

DAPD converges linearly:

. Y
17— 2|3 < |rx0—x*r§+ﬂ||y0—y*u§]. (24)

<1+‘/}’?)T—1[

(ii) If v > 0, u =0 and f is L-Lipschitz continuous, by choosing

y(t+1) 3
=0t = —7— drn=——
n = B¢ agz ond T NTEEIE

DAPD converges sublinearly in terms of primal sub-optimality:

9RAdist? (20, X*) + 492 L?

P@ETy - P(x*) < 2
(iii) If p > 0 and v = 0, by choosing
4 pu(t+1) 2t +1)
= ———— = ———— d =

DAPD converges sublinearly:

pl|z® — 2*13 + 8R%dist* (y°, V™)

AT * (12
T —x <

(i) If v =0, p=0 and f is L-Lipschitz continuous, by setting

1
=7 and nt:ﬁtz@,

where T > 0 is an arbitrary constant, we have

R? - dist? (20, X*) + 4L
P(i‘T) —P(:L'*) < T 18 (;:T)+ T

Proof. For the sake of succinctness, we only prove the first two cases, while the other
two cases can be proved similarly.

Case (i): v > 0 and p > 0. It is easy to verify that the parameter setting in (23)
satisfies (10), (16) and (17). Thus, Theorem 2.4 applies here. Choosing (x,y) = (z*, y*)
in (19) gives

A * * A 1 BO * 1 *
P) - Pt < g (el =y I+ 5l - '1B) . (20)

The p-strong convexity of F(-,y*) implies

F(iTay*) - F(x*ayT) > F(i'Tay*) - F(x*ay*) >

=

127 — 2*[13. (27)

Combining (26), (27) and (23) yields (24).

Case (ii): v > 0, u = 0 and f is Lipschitz continuous. It is again easy to verify
that the conditions in Theorem 2.4 are satisfied and thus Theorem 2.4 applies here. In
(19), we set x = z* and take supremum with respect to y in the domain of f*, which

gives

1 /80 1 * A *
o swp [y’ —yl3+5lla’ =23 | > sup F(@T,y) - F(a*,5")
Br_1 \ 27 y€dom f* 2 yEdom f*

>P(&") - P(z"). (28)

Because f is L-Lipschitz continuous, the domain of f* is bounded such that ||y[je < L
for all y € dom f* [20]. Hence, (28) implies

1 2 1
(Zor2+ 30 - 2'1B) 2 PE") - P& (29

ABT—l T0 2
Since (29) holds for any z* € X*, by replacing ||z° — z*||3 by dist® (2, X*) in (29) we
obtain the desired result (25). O
Remark 1. For problem (1), if f is (1/7v)-smooth and g is u-strongly convex, the
condition number of problem (1) is & :== £ . The case (i) in Corollary 2.5 implies that

et
DAPD requires O (\/Elog %) iterations to achieve € accuracy, which is an accelerated

rate and matches the complexity lower bound of first-order methods.

On the other hand, when the objective function of (1) is smooth but non-strongly
convex (case (ii)), or is non-smooth but strongly convex (case (iii)), Corollary 2.5
implies that DAPD has O (%) accelerated convergence rate, which is also optimal for
first-order methods. For non-smooth and non-strongly convex problems (case (iv)),
the convergence rate of DAPD is O (%), which is faster than subgradient method

and the original dual averaging method, whose rates are O(1/v/T) under the same
assumptions.

The assumption that f is Lipschitz continuous required in cases (ii) and (iv) of
Corollary 2.5 is standard for primal-dual methods.

Remark 2. Though our theoretical analysis is based on the averaged iterates (27, 97),
in the actual implementation of our algorithms, we will always choose the last iterate
(T, yT) as the output to make sure the solution structure (e.g., sparsity) will be
preserved. Such strategy is also the common practice of dual-averaging-type methods
[23].

3. The Stochastic DAPD Method
In this section, we focus on (1) where f has a finite-sum structure. More specifically,

we assume that the primal problem is of the following form:

zERY

min {Pm = filal)+ g<x>} , (30)

Algorithm 2 Stochastic Dual-Averaging Primal-Dual (SDAPD) Method

Input: initial values 2° and y°, primal step sizes {3;} and 7, dual step size 7
1: Initialize z° = 2% and By = fp
2: fort=0,1,... do
3: Uniformly randomly sample i; € {1,2,...,n}
4: Compute intermediate variable:

Tt = prox,, (wt - EATyt) (31)
n

5: Update dual variable:

Y = yf""l = ProX, . (y + 7(a;, xt+1>) if i =14, (32)
’ ym if i 7é it
6: Set
g =yttt =) (33)
7: Update primal variable:
~
it = proxp, (a:o — St+1) , with st! = Z —kATQkJrl (34)
n
k=0

8: Let Bt+1 = Bt + ﬁtJrl
9: end for

with f; : R — R. Problem (30) reduces to (1) by choosing f(u) = 1> | f;(u). The
primal-dual formulation of (30) is:

minmaX{F(w,y): 1<y,Ax) +g(z —*Zfz yz}-

T€RI yeR"

Since (30) is a special case of (1), DAPD can be directly applied here. If we assume
each f; is (1/)-smooth and g is p- strongly convex, the complexity of DAPD for solving

(30) is O <\/§ log %), and k' == I nu denotes the condition number. In this section, we

show that by utilizing the finite-sum structure of f in problem (30), we can design a
stochastic version of DAPD, which has a better complexity.

Our stochastic method SDAPD, which is inspired by the stochastic primal-dual
coordinate (SPDC) method [27], is presented in Algorithm 2. In each iteration of
SDAPD, only one coordinate of the dual variable y;, is updated, with 4; sampled uni-
formly random from {1,2,...,n}. Correspondingly, only one row vector aT is involved
in the update of the dual Varlable Besides, another variable ! is obtamed by extra-
polation. Moreover, note that in Algorithm 2 we only consider fixed primal and dual
step sizes 1 and 7.

10

When implementing SDAPD, one should keep an auxiliary variable
t LTy
u' =AYy (35)
n

Since each time only one coordinate of y is changed, u; can be updated incrementally
as:

1
W=t (= o, (36)
As a result, the matrix-vector multiplication in (34) can be efficiently computed by:

1 T 1
gATyt+l — EATyH»l + (yff—i—l . yi)ait — ut+1 + (yi—i—l _ yft)ait-
Therefore, the summation of gradients s*! in (34) can also be incrementally updated

with O(d) computation cost. As a result, the per-iteration complexity of SDAPD is
O(d), much cheaper than the per-iteration complexity O(nd) of DAPD.

Remark 3. We need to point out that Murata and Suzuki also developed an acce-
lerated stochastic dual averaging method [15] which is based on stochastic variance-
reduction techniques [6] and requires the assumption that f; is smooth.

We now provide the convergence analysis of SDAPD. Here we make the following
assumption.

Assumption 3.1. All f;’s are (1/7)-smooth (v > 0), and g(x) is p-strongly convex
(n>0)
1

For the ease of presentation, we denote f*(y) == ~> ", f*(y;) throughout this
section. Besides, we use JF; to stand for the o-field generated by all random variables
up to iteration ¢. Clearly, when conditioned on F, 2' and y’ are known. Similar to the

analysis of DAPD, we define a potential function as follows:

t—1
o) = g lle =l + X o (960 + 25 A)). (37)
k=0

Again, it is easy to see that z'*! is the minimizer of $t+1(x). Since the updates of z/*!

and 2! in SDAPD are almost identical to DAPD, we have the following lemma that
is similar to Lemma 2.2.

Lemma 3.2. Assume n(1 + Bi_1p) > Br. We have

R*Byn
A = 2R [y - 1 7]
(39)

Tk T _ 1, _
E [¢t+1 — & ’]:t] > B {g(l‘tﬂ) + E(yt“, Azt

Proof. The proof is largely the same as Lemma 2.2. Following the same argument as

11

in Lemma 2.2, it is easy to show that (12) becomes

o> G+ g lat = a4 i (o) 4 LA) (a9)
and (13) becomes
ot — 213 — Jlat — B — 5+ — o3
2 (L0 A =)+ g - g(a). (10)
Combining (39) and (40) yields
$ri1
23+ g (ot = B + a1) 4 6 (o) 4 1 (5, 4
I %@t _ gAY - 2t
2314 g (ot = B + a0 o) + 6 (o) 4 L, A)
8

ATt 1y 2 o TV a1 t+1)2
Ty ATt gt - . 41
n(%\ 0 = DI+ gl -t) (a1)

where the last inequality is due to Young’s inequality. By noting that y* and ¢! only
differ in coordinate i;, we have

. _
AT (" = 5" DI5 = i, — 55 Daall3 < (i, — 55,7 R? = R*ly" = 4|3,

which combining with (41) yields

¢3I+1
1
>¢t + ﬁ (th o jt—i-lH% + Hjt—‘rl _ xt—i-l”%) +Bt <g($t+1) + n(yt+1,Axt+1>>
Bt R Moyt 412 . " a1 12
o 1Y =5l + 2meE 7 12)

>d* —t+1 l gt Azttl _R277t5t t 12 49
=gy + B (9@) + (g, AT) = =y =g (42)

Using (33) and taking conditional expectation to (42) yields the desired result (38). O

Similarly, we have the following lemma that is analogous to Lemma 2.3. We omit
the proof for succinctness.

Lemma 3.3. For eachi € {1,2,...,n}, it holds that

oo [= i) = (L) G = i) = G =)]

>((yi — 5 a2 + £ = £), Yy €R (43)

12

Moreover, we have the following lemma.

Lemma 3.4. When conditioning on Fi, for any y € R", it holds that

1 n—1)yr
3o | (1 T It = ol - () = g - - 18| 7
T n
1 * * *
SB[l A)) - - DF) -)| R)
Proof. Note that when conditioning on F;, #!*! is deterministic and independent of

i¢. Hence, for each i, gf+1 yt+1 with probablhty 1/n, and gf+1 = y! with probability
(n —1)/n. This 1mphes the following relationships that hold for any y € R™:

9 n—1

E [yt —u)?| 7] —%(gt —y)? + (v —ui)?,
E[(yit —u)?| 7] %(yf“ vi)?,
E [yf“w i
E [F] = 1@ + 2 .

Plugging these relationships into (43), we obtain:

%E [(n+ (n—Dy7) (Y —vi)* = n (L +7) (YT = 9:)? — n(yi™ — yh)?| 7]
Z<(yz’—nE [yfﬂ}}_t] +(”—1)yf) ai,ft+1>+nE[fl fﬂ ‘]:t] (n—1)ff (yz) I (i)
2T

— 1)yt
3o | (14 ST I ol = (1) =l - 1 - 18] 7
1

>~ (y = nE [y F] + (0 = Dyt A7) 4 nE [£ ()| F] = (0= DI) - £)

Summing this inequality for i € {1,2,...,n} and using (33), we get:

1

I%E [~ =y, AT | F] + nE [(0" F] — (0= 1)1) — (),

which is the desired inequality (44). O

Now, we are ready to provide the convergence complexity for SDAPD (Algorithm
2).

Theorem 3.5. Assume Assumption 3.1 holds. We choose algorithm parameters as

1 /[~ 1 /nu

1 v , 1
= FA/ T =54/ /BZT —_ ,wzth =1+ = :
"R nu R\ ~ ‘"R V np ¢ ‘ n+ Ry/n/(1y)

Consider the first T iterations of SDAPD and define &7 = BT - Z ! 3,z SDAPD

13

converges linearly in expectation:

. . A
E[H.’ET—.’I] H%} < é‘T_Ol’

where Ag is a constant depending on R, the initial point (z°,vy°) and optimal solu-
tion (x*,y*). Note that (x*,y*) is unique here due to the strong convexity-concavity
assumption.

Proof. When conditioning on F;, we multiply (44) by 5; and add it to (38). We have

g

| +5E K W) Iy = oll3 — (1) 19+ — i3

RZ
7| = 0 1 o] 7

E [<Z~>§:k+1 o

>BE [g(rzt“) + %@t“, Azt

| BE {—;@t“ g AR 4 nf () — (= D) — f*(y)' ft]

B
+ iE [y ™ =13 7]

B e + L AT £ 6 - (- D6 - 0| | @)

where the equality uses the fact n7 = 1/R?. Note that our parameters satisfy 8;(1 +

~YT) > Biy1a, where o == 1+W, from which we can upper bound the left-hand-side
of (45) by

af i1
tHyt —yl3 — S E [yt - yl3| A

{@H‘}-t] oF + yllz or

Oé,B O‘B T x
~ (52wl -) ~E[Sy - G| 7.
Therefore, (45) reduces to:
O‘B T aﬁ T
(st - i3 - 3) - B | Byt = g1 - G| 7]
1
26 () + LA 0) = 0= 0560 - 0| B o)

Summing (46) over t = 0,...,T — 1 and apply total expectation, we obtain:

(“%uy—ynz)—E{O‘BTny gz -]

T—

Z [= ,,1l<y,Axf“>+nf*<yt“>—<n—1>f*<yt>‘f*(y>]' o

14

Using (37) and (33), it is easy to see that ¢} = 0 and
o <1Hx—:v0H2+T2:_16 g(a:)+l(nyt+1—(n—l)yt Ax) Vr € R”
T =9 2 par t n)) .

Plugging these to (47) and dropping the term |y? — y||2, we obtain:

e =l + S — i3 (48)
T-1 1

> Y 68 [g(at) g@ﬂwﬁ%ﬂfﬂ—xw

T

+ Z&IE[~(ny" = (n =Dy’ =y, Ax) + 0 f (W) = (n = DY) —f*(y)]
T—i T—1

=" BE [P y) - Floy)| + D KE |-nF @,y + (0= DE(e,y") + Flo,y)]
t=0 t=0

Now, we choose (z,y) = (z*,y*). The first term on the right-hand-side of (48) can be
bounded by:

Z BE [F(ftﬂa y*) — F(a*, y*)} >Br 1 E [F(@Tay*) - F(m*,y*)}

Br- . .
>~ (|17 - 2" |13]

> (49)
where the p- strong convexity of F(-,y*) and the definition of #T are used. By using

the fact F(z*,y*) — F(z*,y) > 0 for any y, we can bound the second term on the
right-hand- s1de of (48) as:

S [—nB(,y) + (n =)Py + Fat,)|
t=0
—me(ﬂ)= Py = = 1) (Fa’,y") - Fla,y)) |
t=0
=T1m@1—m—n@>[ﬂ)~ Py
t=1
+nfraE [Pt y) = Fa',y")| - (n =D (F*y) - Fa*y")
>~ (n =1 (Fla",y") = Fla*,y")) (50)

where the inequality follows from the fact that ng,_; > (n — 1)5;. Combining (48),
(49) and (50) gives

1

15

*||2 0450 * [% % nTOR] BT—U’L A *
5 127 =2+ 5l =y 5 + (n = 1) (F(x) — Fx ,yo)) > = —E[l&" - 23],

Table 1. Iteration complexities of SDPAD for achieving e-solution accuracy under different settings. Some
constants and logarithmic factors are hidden.

g(x) p-strongly convex g(x) non-strongly convex
fi(w) (1/7)-smooth | (n+ Ry/n/(u)) log(1/e) n+ Ry/n/(uc)
fi(u) non-smooth n + Ry/n/(ye) n+ Ry/n/e

which leads to the desired result. O

Remark 4. Under Assumption 3.1, the condition number of problem (30) usually
defined in stochastic optimization literature (see, e.g., [27]) is &' = %. Note that

k' < ' < nk'. Therefore, Theorem 3.5 implies that the number of iterations needed
by SDAPD to achieve e-accuracy is

@ <(n+ W) log 1) (51)

which matches the lower bound of the complexity of stochastic first-order methods
[10]. Moreover, even though %' might be larger than ' in DAPD, (51) still suggests
that SDAPD is faster than DAPD, given that each iteration of DAPD is approximately
n times more expensive than SDAPD.

From these results, we can conclude that SDAPD is better than regularized dual
averaging, the stochastic dual averaging method for minimizing the composite ob-
jective function, whose complexity is in the order of O(1/¢) under the same assump-
tion [23]. Besides, (51) also implies that SDAPD is better than some variance-reduced
stochastic methods such as ProxSVRG [24], whose complexity is

@ <(n+ i) log 1) :

when the condition number &’ is larger than n. Though some accelerated stochastic
methods like Katyusha [1] and SPDC [27] have the same complexity as SDAPD, we
will show later that SDAPD is more powerful when the data matrix A is sparse.

Remark 5. Generalization to non-smooth or non-strongly-convex problems.
Our results in this section can be extended to non-smooth or non-strongly convex
problems easily, by slightly perturbing the primal-dual formulation. When f; is non-
smooth, we can augment fF as fF(vi) = fi(yi) + %(yi)Q. While g is non-strongly
convex, it can be perturbed as §(z) == g(x) + %’2 |z||3. Here both §; and d2 are small
constants that are proportional to the desired solution accuracy e. Following such
strategy, we can easily derive the complexities of SDAPD in different seniors, which
are presented in Table 1. The derivation is similar to the one in [27], and we omit the
details here for succinctness.

4. Efficient Implementation of SDAPD on Sparse Data
In this section, we focus on the case that each vector a; is a sparse vector so that

the data matrix A is also sparse. We show how to efficiently implement SDAPD (Al-
gorithm 2) on problems with sparse A, which can further reduce the per-iteration

16

complexity of SDAPD from O(d) to O(pd). Throughout this section, we make the
following assumption on function g.

Assumption 4.1. Assume g(z) is separable, i.e., it can be decomposed as g(x) =
d
2 j=195(j)-

Here we briefly explain why dual-averaging type algorithm can promote the sparsity.
For ease of discussion, we denote h(x) := f(Ax). The dual averaging update is:

¢
2 = proxp,, (zo — ZBth(zk)> . (52)

k=0

Note that there is no direct dependence between any two consecutive iterates 2! and
21, The only place where 2! influences 2! is in estimating the gradient Vh(z'). In
many problems with sparse data, the gradient function Vh(z) also possesses sparse
structure where only a small portion of coordinates of 2! is required for evaluating
Vh(z!). Therefore, dual averaging methods allow lazy sparse update, which only up-
dates the coordinates that will be involved in evaluating the next gradient.

Other types existing stochastic algorithms are incapable of admitting sparse update,
except on certain problems with special structures. (See more details in Remark 8).
For example, the gradient might not be sparse for some methods like SAGA [4], even
when the problem data is sparse. Moreover, some accelerated methods require an
extrapolation step which requires to add two dense vectors. In the following, we show
how to efficiently implement SDAPD for sparse data.

When implementing SDAPD, we need to keep two auxiliary variables u! and s,
which are defined in (35) and (34) respectively. With u! and s’ on hand, any coordinate
of xt, say xz-, can be recovered via

t_ 0 .t
T; = proxpg, . (a:j sj)

in only O(1) time, due to the separable assumption of g(z). Similarly, the j-th coor-
dinate of Z/*! can be computed by

f?l = prox,,, (zj —1uj).
Note that ! is only used in the update of Z!*!, while the only role of z‘*! is for
computing the inner product aiTta’:tH in (32). This implies that we do not need to
evaluate xz and :E;H when a;, ; = 0. Using this property, the whole iteration of SDAPD
can be done in O(||a;, |lo) computational cost.

Now, the remaining problem is how to update u!*! and s'*! for sparse data. For
ul*l it is straightforward by using (36), which adds a sparse vector a;, to u! in each
iteration. The real challenge is how to update s®*1 in (34), because it is a summation
of dense vectors. Here, we present a novel way to sparsify the update of s'™!, by

decomposing it into the combination of two sequences. For the ease of discussion, we
define

+

t+1 t
5t — (yit - yit) Ca;

. (53)

te

17

Hence, &' is a sparse vector if a;, is sparse. We need to show the following lemma first.

Lemma 4.2. Consider SDAPD (Algorithm 2) with (B, chosen in the form of p; =
Lol for some 0 € (0,1). Define two sequences:

t t
t+1._ __ Dob AT 0 N T S TS IS SRR o 5"
YT Tha—e Y 2 (" Ty A) A 2
k=0 k=0
It holds that
~ 3
st = Z —kATﬂkH =o' 4 Bttt (54)
k=0 "
Proof. We prove (54) by induction. we first note two useful relationships:
Lor o Lm0 o
—A Yy =—Ay'+9 (55)
n n
1 1
7ATgt+1 :*ATyt —l—nét, (56)
n n
which are easy to be obtained from (53), (32) and (33).
When t =0,
t+1 _ 1 _ Bob AT,0 1 50
v n(1—9) y+5“<” 1-6
and
t+1 _ 1_ BO AT 0 /BD 50
By adding these two equations together, we have:
vl + Bow! = @ATyO + nPody = @Angl,
n n
where the last equality follows from (56). So (54) is proved for t = 0.
Now we assume that (54) holds for ¢t — 1, i.e.,
t—1 3
t t_ Pk AT —k+1
v—}—Bt,lw—ZnAy .
k=0
Thus
t—1 3
ot 4 ﬁtwtﬂ _ (Ut+1 _ Ut) + (Btwt—H _ 5t71wt) + Z ;kATng' (57)
k=0

18

From (55) and the fact ;1 = (0, we have:

ﬁt 5t+ 515

t+1 _ t_ Pt
Brw Br—1w 1-0 n

ATy,

Hence,

(Ut+1 . Ut) + (ﬁtthrl —,Bt—lwt) —_ /Bt n— L 675 + rBt 51& 4 @ATyt — &ATgt+1’
1-46 1-0 n n

which is due to (56) again. Combining this equation with (57) proves (54). O

Remark 6. Note that both v'*! and w!*! are actually the summation of sparse
vectors 6, except the first term ATy?. As a result, after computing A y° at the very
beginning of the algorithm, both v**! and w!*! can be updated in a sparse way.
With the help of these two sequences, the whole algorithm is capable of doing sparse
update, and thus has only O(pd) per-iteration complexity on average instead of O(d).
In many large scale applications, p can be very small like p ~ 10~3 or even smaller. For
example, the well-known DBLP dataset has the sparsity p ~ 2.0 x 1072 [25]. Hence,
sparse update can bring great acceleration on such problems.

We now continue the discussion on theoretical complexity of SDAPD. After com-
bining the sparse update technique discussed above, the overall computation cost of
SDAPD to achieve e-accuracy becomes

O (pd <n + \/W) log i)

for strongly convex and smooth problems, if we take both convergence rate and per-
iteration computation cost into consideration. This complexity is better than the com-
plexity of existing accelerated stochastic methods like SPDC, namely,

o<d(n+M)1ogi),

due to the factor p (0 < p <1).

Remark 7. Lee and Sidford proposed an efficient implementation of accelerated coor-
dinate descent in [11], which shares similar idea of decomposing the updates into two
sequences that can be updated efficiently. However, the motivation of their method is
different to ours, and our setting is more challenging. Note that the gradient update in
[11] is the same as the typical coordinate descent, which naturally requires only O(1)
computation. What they try to avoid is the computation in the extrapolation step of
the other coordinates. As a contrast, we do not only have extrapolation step, but the
gradients used in update (34) are also the sum of dense vectors. Due to such extra
difficulty, our decomposing scheme is different and more complicated than the one in
[11].

Remark 8. We point out that a sparse implementation of stochastic SPDC was also
proposed in [27], and similar idea for Prox-SVRG can be found in [24]. Such idea can

19

also be extended to other stochastic methods like ProxSGD and SAGA. However, all
these methods implicitly require

proxgt) = prox,o---oprox,(r)

~
composition of ¢ proximal mappings

can be easily computed in constant time independent of ¢. This property enables them
to ignore the iterations with zero gradients and is the key for their sparse update trick.
However, such property is only satisfied by some special g(x), and only examples on
simple regularizers g(z) = A||z|; and g(x) = (\/2)||z||3 are given in their papers. For
these two regularizers, it is quite easy to show that

prox!)(z;) = prox(!"V(z;) - ——~ =+ =

for g(x) = (A/2)][z]}3, and

(. J xj—sign(z;) - At if |z > At

proxy, () { 0 otherwise

if g(x) = Al|z||1. However, as far as we can see, it would be difficult to generalize their
method to other regularizers such as KL-divergence, namely,

d
_ oo I
g($) - Zw] log .’L'])
J=1

which is commonly used in model-based transfer learning [18]. For this g(x), computing
a proximal mapping needs to solve a quadratic equation which does not admit a
simple form of solution. Hence, it is hard to compute proxét)(z) without computing
proxé (x),... ,prox(t_l)(x) one by one. As a result, their sparse update method would
fail on such regularizer. As a comparison, our method does not rely on such assumption

and works with any g(z) as long as it is separable.

5. Numerical Experiments

In this section, we conduct numerical experiments to DAPD and SDAPD and compare
their performance with the following relevant existing methods:

PDHG: primal-dual hybrid gradient method [3]

APGM: Nesterov’s accelerated proximal gradient method [17]

DA: original dual averaging method [16]

RDA: regularized dual averaging method [23]

ProxSGD: proximal stochastic (sub-)gradient method [19]

ProxSVRG: proximal stochastic variance-reduced gradient method [24]
SPDC: stochastic primal-dual coordinate method [27]

Note that the first three methods are deterministic methods, while the others are
stochastic methods. Besides, PDGH, APGM and SPDC are accelerated methods.

20

100 A=10"2

A=1073 A=10"*
So~
Nl) v—
10-2 \\\.\ ____________ -
%, ==
R,

10-4 hXN ~——
— DAPD % —— DAPD | —oa0 -l el
~~ SDAPD TS ~~ SDAPD 1077 —— soapp “._
— DA NN 103 N — DA — DA S

10-6 LN n \ S~
— PDHG NS \ \ —— PDHG 10-3] — PoHG N
—— APGM W\ 104 i > —— APGM —— APGM Nl
——. RDA “\\ n bN ——. RDA ——. RDA S~

1078 ProxSGD AN \ N ProxSGD 104 ProxSGD S

LY 10735) \, SN,
== ProxSVRG N ‘\ N == ProxSVRG == ProxSVRG ~oa
SPDC AN y AN SPDC SPDC ~
10710 . 10°® . - 105
20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch

Figure 1. Comparison on synthetic data with different choices of A. The y-axis is the primal sub-optimality,
namely P(z!) — P(x*). The solid lines are deterministic methods, and the dashed lines stand for stochastic
methods. Here an epoch refers to one iteration for deterministic methods, and n times accesses to the vectors
a; for stochastic methods.

A=10"2 A=10"3 A=10"*
10°
100 i, 100 o
-2 VY, ~.
10 101 \\ N \‘\
VN, 107 AN S
(AN SN N
10~ 102 N AN .
\ N 10-2 Y S
10-3 \\ . e .
- ~
10-6 \ S - S~ oo
\ S, 10 N ~o
N \ 104 \ AN "N ~.
\ S —— DAPD \ \, —— DAPD —— DAPD
1078 ‘\\ ~ = SDAPD 10-5 ‘\ \\ ~ = SDAPD 104 ~ = SDAPD
\. —— DAPD-e \ \ —— DAPD-e —— DAPD-e
%, —-—: SDAPD-e \ M\, -- SDAPD-e ——. SDAPD-e /|
10-10 Ay S 10-6 \ AY 10-5
20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch

Figure 2. Comparison between ergodic and non-ergodic solutions on synthetic data. The y-axis is the primal
sub-optimality, namely P(x!) — P(z*). Lines with suffix “-e” stand for ergodic solutions, while others are
non-ergodic.

ProxSGD refers to proximal stochastic gradient descent, when we conduct experiments
on smooth problems, and refers to stochastic subgradient method if it is applied to
non-smooth problems. Though our analysis is based on the ergodic solutions (27, §7),
we mainly report the behavior of the non-ergodic solutions. This is a common practice,
because non-ergodic solutions preserve the solution sparsity. For completeness, we also
report some comparison of the behavior of the ergodic and non-ergodic solutions in

Figure 2.

5.1. Ridge Regression on Synthetic Data

First, we test these algorithms on a ridge regression problem:

. } :) b2+ Zlzll?
alcqeuﬂgini 12(<a“$> 2 2” I

with A > 0. Note that this problem is smooth and A-strongly convex. We use synthetic

data for this problem. Specifically, we first randomly generate a z* € R%, then each a;
and b; are independently draw from the following model:

bi = (x*, a;) + &; with a; ~ N(0,%) and &; ~ N(0,0?)

21

colon-cancer w8a

revl
10° 10°4 10°
h
i\ 1
\ N N
NES -1 {8 = i e s S
R Nttt 10 vttt ioireintnintaiutaitaiete| 10 v TTe=—ell
_______________________ \ ittt T
N —_—— \\\ \\ -
N \
10-? AN 10729 Ty 1024

—— DAPD = \) —— DAPD \ —— DAPD
~— SDAPD AN $ ~— SDAPD \\ —— SDAPD
— DA \ ~3 Db S _=
—— PDHG N 103 \\ —— PDHG 10-3 Sl — PDHG
—— RDA Sal ‘~\~\ ——. RDA . ——. RDA
——. ProxSGD S\ “.__ == ProxSGD “~a_. —— ProxsGD

SPDC SPDC ~ SPDC

102 - 10 = 107
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch Epoch

Figure 3. Results on real datasets. The y-axis is the primal sub-optimality.

for some pre-chosen covariance matrix ¥ € R?*¢ and constant o > 0. In this experi-
ment, we choose n = d = 1000. We test the algorithms for different A, which controls
the condition number of the problem. Note that smaller A leads to larger condition
number.

The experiment results are presented in Figure 1. In all three sub-figures, the per-
formances of SDAPD and SPDC are quite close, and are always better than all other
methods. Besides, when A = 1072, ProxSVRG also performs well, but it soon beco-
mes inferior than SDAPD and SPDC when A gets smaller, since ProxSVRG is not an
accelerated method. We also found that DAPD method performs similarly as PDGH,
and is always much better than the other two deterministic methods: APGM and DA,
though it is slower than some stochastic methods. Besides, when the condition num-
ber becomes larger, the performance difference between deterministic methods and
stochastic methods becomes more prominent.

Although the ergodic solutions of dual-averaging-type methods are rarely used in
practice, we still report its behavior in Figure 2 for completeness. Figure 2 shows that
the ergodic solutions converge slower than the non-ergodic solutions.

5.2. Classification via SVM on Real Datasets

In this part, we test the algorithms on the binary classification task via support vector
machine (SVM):

1

n
— 1— (biaj, z), 0)
;Ieli%%n;max{ (bia;,x), 0} + g(x)

Table 2. Summary of datasets

| Dataset | n | d | P |
colon-cancer 62 2,000 | 100%
w8a 49,749 300 3.88%
rcvl 20,242 | 47,236 | 0.16%

22

Table 3. Per-epoch running time of each method in seconds

colon-cancer w8a rcvl

Methods (x1073) (x1072) | (x1072)
DAPD 1.0 5.3 4.2
SDAPD 5.2 17.5 19.8
PDHG 1.0 5.7 4.0
DA 1.0 9.5 3.6
RDA 2.7 7.4 6.0
ProxSGD 2.9 30.3 1932
SPDC 2.7 46.3 2125

Here we choose g(x) to be the Huber’s regularization, which is defined as: g(z) =
d .
>_j=19;(x;) with

A : A
Magl =) i loy] > 3, -
,ua:? otherwise.

9j(xj) = {
Huber’s regularization can also help the model to avoid over-fitting just like the
squared-fo-norm, but it is statistically more robust than the latter one [26]. As far
as we know, it would be hard for ProxSGD and SPDC to have sparse update with
such g(z). For this experiment, we fix the parameters as A = 10~* and p = 1 in Huber’s
regularization. Besides, it should be noted that our objective function is non-smooth
in this case. Since APGM and ProxSVRG are unable to deal with such kind of ob-
jective, they are not tested for this problem. We use real datasets in this experiment.
The dataset information is summarized in Table 2. w8a and rcvl are sparse datasets.

The experiment results are presented in Figure 3. The results are similar to the ones
for ridge regression. We observe that SDAPD performs better than all other methods,
except that it falls behind SPDC on colon-cancer. Again, the performances of DAPD
and PDHG are very close, but they are much better than the other deterministic
method DA. Only thing interesting to note here is that the performance of DAPD is
close to SDAPD on colon-cancer. It is because this dataset has a relatively small n,
thus deterministic methods and stochastic methods do not make too much difference
in their convergence rates.

We also report the per-epoch running time of each algorithm in Table 3. We see that
deterministic methods DAPD, PDGH and DA are always the fastest, since they can
do updates in batch with highly-optimized matrix-vector operations. We can also find
that ProxSGD and SPDC are quite time-consuming on w8a and rcv1 datasets because
they are unable to do sparse updates, while our SDAPD overcomes this issue with the
help of the sparse update strategy introduced in Section 4 and therefore has much
less computational cost on sparse data. However, such strategy requires to maintain
some auxiliary variables, resulting more computational time to SDAPD than RDA,
and even costs more time than ProxSGD and SPDC on dense data. Of course, SDAPD
can be further improved by discarding the sparse update strategy on dense data. But
we do not adopt this here. Instead, we implement SDAPD in a uniform way to keep
the experiments simple.

Overall, by taking both convergence rate and per-epoch computation time into
account, SDAPD is the best one among all tested algorithms.

23

o colon-cancer o w8a revl
10°7 10° T A A S M o

107 T eV A,y

10724

10-3 4 — parD
| —— spAPD
| — oA

| — PDHG
-4

1074 -~ roa

| — DA -~
| — pOHG TTeeell

j-—RrOA T | |
i == ProxSGD | == ProxSGD | == ProxSGD

i SPDC | SPDC | SPDC
10—2 L 10 1 Vs 10—5 L

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch

Figure 4. Proportion of non-zeros in the generated non-ergodic solutions.

5.3. Comparison on Solution Sparsity

In this part, we focus on the same setting as the previous part. However, we change
the regularizer to g(x) = A||x||;1 to induce sparse solution, so that we can observe the
influence of different optimization methods to solution sparsity. Again, we fix A = 10™*
on all the datasets.

The results are presented in Figure 4, which show that our DAPD and SDAPD can
produce sparser solutions than most baselines. The only exception is RDA, which is
comparable with DAPD and SDAPD on the w8a dataset. This is expected because
RDA is known to promote solution sparsity. Moreover, we found that stochastic algo-
rithm SDAPD always outperforms RDA on the tested problems. We conjecture it is
because of the increasing primal step sizes {3;} in our algorithms that make regulari-
zation effects even stronger.

6. Conclusion

In this paper, we proposed a dual-averaging primal-dual method (DAPD), which com-
bines the idea of dual averaging and primal-dual method, and can solve a wide range
of optimization problems with composite convex objective. Our analysis shows that
DAPD has optimal convergence rates in several different settings. We also proposed a
stochastic version of DAPD (SDAPD) for solving convex problems with a finite-sum
objective. A novel way is proposed to efficiently implement SDAPD for sparse data.
We demonstrated the superiority of our methods by comparing them with several
existing methods on standard machine learning tasks.

Acknowledgements
The authors are grateful to two anonymous referees for providing insightful and con-
structive comments that greatly improved the presentation of this paper. The research

of S. Ma was supported in part by a startup package in the Department of Mathematics
at University of California, Davis.

24

References

1]

[15]

[16]
[17]
18]

[19]

Z. Allen-Zhu, Katyusha: The first direct acceleration of stochastic gradient met-
hods, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing. ACM, 2017, pp. 1200-1205.

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for
linear inverse problems, STAM journal on imaging sciences 2 (2009), pp. 183-202.
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex pro-
blems with applications to imaging, Journal of mathematical imaging and vision
40 (2011), pp. 120-145.

A. Defazio, F. Bach, and S. Lacoste-Julien, SAGA: A fast incremental gradient
method with support for non-strongly convexr composite objectives, in Advances in
neural information processing systems. 2014, pp. 1646-1654.

L. Gao, J. Song, X. Liu, J. Shao, J. Liu, and J. Shao, Learning in high-dimensional
multimedia data: the state of the art, Multimedia Systems 23 (2017), pp. 303-313.
R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive
variance reduction, in Advances in neural information processing systems. 2013,
pp. 315-323.

S. Kakade, S. Shalev-Shwartz, and A. Tewari, On the duality of strong convezity
and strong smoothness: Learning applications and matriz reqularization, Unpu-
blished Manuscript (2009).

G. Korpelevich, Extrapolation gradient methods and relation to modified lagran-
geans. ekonomika i matematicheskie metody, 19: 694—703, 1983, Russian; English
translation in Matekon .

G. Korpelevich, The extragradient method for finding saddle points and other
problems, Matecon 12 (1976), pp. 747-756.

G. Lan and Y. Zhou, An optimal randomized incremental gradient method, Mat-
hematical programming (2017), pp. 1-49.

Y.T. Lee and A. Sidford, Efficient accelerated coordinate descent methods and fas-
ter algorithms for solving linear systems, in 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science. IEEE, 2013, pp. 147-156.

H.B. McMahan, Follow-the-Regularized-Leader and Mirror Descent: Equivalence
Theorems and L1 Regularization, in Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. 2011, pp. 525-533.

H.B. McMahan, A survey of algorithms and analysis for adaptive online learning,
The Journal of Machine Learning Research 18 (2017), pp. 3117-3166.

H.B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T.
Phillips, E. Davydov, D. Golovin, et al., Ad click prediction: a view from the
trenches, in Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2013, pp. 1222-1230.

T. Murata and T. Suzuki, Doubly accelerated stochastic variance reduced dual
averaging method for reqularized empirical risk minimization, in Advances in Neu-
ral Information Processing Systems. 2017, pp. 608—617.

Y. Nesterov, Primal-dual subgradient methods for convex problems, Mathematical
programming 120 (2009), pp. 221-2509.

Y. Nesterov, Introductory lectures on convex optimization: A basic course, Vol. 87,
Springer Science & Business Media, 2013.

S.J. Pan and Q. Yang, A survey on transfer learning, IEEE Transactions on
knowledge and data engineering 22 (2009), pp. 1345-13509.

O. Shamir and T. Zhang, Stochastic gradient descent for non-smooth optimization:

25

Convergence results and optimal averaging schemes, in International Conference
on Machine Learning. 2013, pp. 71-79.

C. Tan, T. Zhang, S. Ma, and J. Liu, Stochastic Primal-Dual Method for Empirical
Risk Minimization with O(1) Per-Iteration Complezity, in Advances in Neural
Information Processing Systems. 2018, pp. 8376-8385.

R. Tibshirani, Regression shrinkage and selection via the lasso, J. Royal. Statist.
Soc B. 58 (1996), pp. 267-288.

P. Tseng, On accelerated proximal gradient methods for convex-concave optimiza-
tion, submitted to STAM Journal on Optimization (2008).

L. Xiao, Dual averaging methods for regularized stochastic learning and online
optimization, Journal of Machine Learning Research 11 (2010), pp. 2543-2596.
L. Xiao and T. Zhang, A prozimal stochastic gradient method with progressive
variance reduction, STAM Journal on Optimization 24 (2014), pp. 2057-2075.

J. Yang and J. Leskovec, Defining and evaluating network communities based on
ground-truth, Knowledge and Information Systems 42 (2015), pp. 181-213.

O. Zadorozhnyi, G. Benecke, S. Mandt, T. Scheffer, and M. Kloft, Huber-norm
reqularization for linear prediction models, in Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases. Springer, 2016, pp. 714—
730.

Y. Zhang and L. Xiao, Stochastic primal-dual coordinate method for regularized
empirical risk minimization, The Journal of Machine Learning Research 18 (2017),
pp- 2939-2980.

26

