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ABSTRACT

Dual averaging-type methods are widely used in industrial machine learning appli-
cations due to their ability to promoting solution structure (e.g., sparsity) efficiently.
In this paper, we propose a novel accelerated dual-averaging primal-dual algorithm
for minimizing a composite convex function. We also derive a stochastic version of
the proposed method which solves empirical risk minimization, and its advantages
on handling sparse data are demonstrated both theoretically and empirically.
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1. Introduction

In this paper, we consider minimizing the following composite convex function:

min
x∈Rd

{P (x) := f(Ax) + g(x)} , (1)

where A ∈ R
n×d, and both f : Rn → R ∪ {+∞} and g : Rd → R ∪ {+∞} are convex

closed functions. Here f can be either smooth or non-smooth, and we assume g has
easy proximal mapping. Problem (1) covers a wide range of applications. For example,
choosing f to be the indicator function of a convex set C = {z ∈ R

n|z ≤ b} corresponds
to minimizing a convex function over a polyhedron. It covers the Lasso problem [21]

min
x∈Rd

{
1

2n
‖Ax− b‖22 + λ‖x‖1

}

, (2)
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by setting f(u) = 1
2n‖u − b‖22 and g(x) = λ‖x‖1. Another application of the form (1)

is the support vector machine (SVM):

min
x∈Rd

1

n

n∑

i=1

max {1− 〈biai, x〉 , 0}+
λ

2
‖x‖22, (3)

where ai ∈ R
d is the feature vector of the i-th data sample, and bi ∈ {±1} is the

corresponding label.
For smooth f , a classical way to solve (1) is the proximal gradient method (PGM)

and its accelerations [2, 22]. PGM for solving (1) iterates as

xt+1 = proxηg

(

xt − ηA⊤∇f(Axt)
)

,

where η > 0 is the step size. Dual averaging (DA, [16]) algorithm is another widely
used algorithm for solving (1), which iterates as

xt+1 = prox∑t

k=0
βtg

(

x0 −
t∑

k=0

βkA
⊤∇f(Axk)

)

,

where {βt} are the step sizes. Different from PGM, in each iteration, DA always starts
at the initial iterate x0, averages all the past gradients, and then conducts proximal
mapping. Dual-averaging type methods are widely used in many industrial machine
learning applications due to the following advantages over PGM [5, 13, 14]. First, it is
observed that DA is better in promoting solution structure (e.g., sparsity) than PGM
[12, 23]. Second, DA can deal with sparse data much more efficiently than PGM. We
will provide more details in Section 4.

In this paper, we develop a new dual-averaging primal-dual (DAPD) method for
solving (1), which has accelerated optimal convergence rate. When f(Ax) has a finite-
sum structure, we develop a stochastic version of DAPD, named SDAPD, which is also
optimal, and has better overall complexity on sparse data comparing with existing
algorithms of the same type.

Notation. The following notation is adopted throughout this paper. For the matrix
A ∈ R

n×d used in (1), we use a⊤i to denote the i-th row of A and aij to denote the
j-th coordinate of ai (1 ≤ i ≤ n, 1 ≤ j ≤ d). We define

R := ‖A‖2 and R̄ := max
i=1,...,n

‖ai‖2. (4)

Note that ‖z‖2 denotes the spectral norm if z is a matrix, and ℓ2 norm if z is a vector.
It is easy to show that R and R̄ have the following relationship: R̄ ≤ R ≤ √

nR̄. We
use ρ to denote the proportion of non-zero entries in A (note 0 < ρ ≤ 1). To ease the
later discussion on computational complexity, without loss of generality, we assume
ρ ≥ 1/n and ρ ≥ 1/d, which happens for large-scale problems. For a convex set C,
dist (x,C) := infx′∈C ‖x − x′‖2 is the distance between point x and set C. For any
function h(u) : Rp → R, its proximal mapping is defined as:

proxh (u) := argmin
v∈Rp

{

h(v) +
1

2
‖v − u‖22

}

, ∀u ∈ R
p.
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Algorithm 1 Dual-Averaging Primal-Dual (DAPD) Method

Input: initial points x0 and y0, primal and dual step sizes {βt}, {ηt} and {τt}
1: Initialize B0 = β0
2: for t = 0, 1, 2, . . . do

3: Compute intermediate variable:

x̄t+1 := proxηtg

(

xt − ηtA
⊤yt
)

(6)

4: Update dual variable:

yt+1 := proxτtf∗

(
yt + τtAx̄t+1

)
(7)

5: Update primal variable via a dual-averaged step:

xt+1 := proxBtg

(

x0 −
t∑

k=0

βkA
⊤yk+1

)

(8)

6: Update Bt+1 := Bt + βt+1

7: end for

The domain of function h(u) is denoted as domh := {u ∈ R
p|h(u) < +∞} and its

conjugate function is defined as h∗(v) = supu∈Rp {〈v, u〉 − h(u)}. ∂h(u) denotes the
subdifferential of h at u. The function h(u) is said to be µ-strongly convex if

h(v) ≥ h(u) + 〈s, v − u〉+ µ

2
‖v − u‖22, ∀s ∈ ∂h(u), u, v ∈ R

p.

h(u) is called L-Lipschitz continuous if it satisfies

|h(u)− h(v)| ≤ L‖u− v‖2, ∀u, v ∈ R
p.

h(u) is called ζ-smooth if it is differentiable and its gradient is ζ-Lipschitz continuous,
i.e.,

‖∇h(u)−∇h(v)‖2 ≤ ζ‖u− v‖2, ∀u, v ∈ R
p.

2. The Dual-Averaging Primal-Dual Algorithm

In this section, we present our dual-averaging primal-dual (DAPD) algorithm, which
solves the following primal-dual formulation of problem (1):

min
x∈Rd

max
y∈Rn

{F (x, y) := g(x) + 〈y,Ax〉 − f∗(y)} . (5)

We use (x∗, y∗) to denote a pair of optimal primal-dual solutions to (5), and X∗ and
Y ∗ the sets containing all optimal primal and dual solutions, respectively.

The details of DAPD algorithm are presented in Algorithm 1. In each iteration,
DAPD first conducts one primal proximal gradient step to compute the intermediate
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variable x̄t+1, and then yt+1 is computed using the gradient evaluated at x̄t+1. Finally,
xt+1 is updated in (8), which adopts a dual-averaging type update rule. Note that all
the past dual intermediate variables {yk+1}tk=0 play a role here, and the gradient used
in (8) is a weighted sum of them, instead of simply yt+1. The update of yt+1 in (7)
can be viewed as an extragradient step [8, 9], since the gradient used here is evaluated
at the intermediate variable x̄t+1 instead of xt. Moreover, (7) and (8) have the flavor
of the primal-dual hybrid gradient [3]. Note that the step size used in the proximal
mapping in (8) is Bt, which is much larger than βt. This helps promote the desired
structures of solution xt. For instance, if g is the ℓ1 norm, then xt+1 generated by (8)
is more likely to be sparse because Bt is large.

When implementing DAPD, the summation in (8) needs to be computed incremen-
tally. By doing so, the main computation cost in each iteration of Algorithm 1 lies in
the matrix-vector multiplications A⊤yt, Ax̄t+1 and A⊤yt+1. Since A is a n-by-d matrix
with sparsity ρ, these multiplications can be done in O(ρnd) operations.

We now analyze the convergence rate of DAPD (Algorithm 1). The following as-
sumption is made throughout this section.

Assumption 2.1. f is (1/γ)-smooth (γ ≥ 0), and g(x) is µ-strongly convex (µ ≥ 0).

Note that γ = 0 means that f is non-smooth, and µ = 0 means that g is non-strongly
convex.

Although some parts of our DAPD algorithm look very similar to the primal-dual
hybrid gradient (PDHG, [3]), technical challenges still exist if we want to directly
adapt the analysis of PDHG to our algorithm.

(i) x̄t+1 in DAPD is obtained by a gradient step instead of extrapolation step. In the
analysis of PDHG, the extrapolation step plays an important role in canceling
the mismatch between primal and dual variables. Here we need a new approach
to tackle this difficulty.

(ii) Since the primal updates consist of two gradient descent steps, two very different
sequences of primal step sizes {ηt} and {βt} and the dual step size {τt} need to
be specified. This requires us to carefully balance these three parameters so that
we can obtain the fastest convergence.

(iii) The update of xt+1 in DAPD is in the dual averaging style, which is very dif-
ferent from PDHG in that it involves all the past gradients rather than simply
the gradient at yt+1. This makes it difficult to relate this step to the objective
function value F (xt+1, yt+1).

In order to tackle these issues, new techniques are needed for the analysis. We define
a potential function φt to characterize the dual-averaging step as follows:

φt(x) :=
1

2

∥
∥x− x0

∥
∥
2

2
+

t−1∑

k=0

βk

(

g(x) + 〈yk+1, Ax〉
)

. (9)

From (8) it is easy to observe that xt+1 := argminx φt+1(x). Besides, since g(x)
is µ-strongly convex, φt(x) is strongly convex with strong convexity parameter
1 +

∑t−1
k=0 βkµ = 1 +Bt−1µ. Moreover, we denote φ∗

t := minx∈Rd φt(x).
The following lemma characterizes the change of φ∗

t after one iteration.
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Lemma 2.2. Assume

ηt(1 +Bt−1µ) ≥ βt. (10)

We have

φ∗
t+1 − φ∗

t ≥ βt
(
g(x̄t+1) + 〈yt+1, Ax̄t+1〉

)
− βtR

2ηt
2

‖yt+1 − yt‖22. (11)

Proof. From the strong convexity of φt+1(x) and (10), we obtain

φ∗
t+1 =φt+1(x

t+1) = φt(x
t+1) + βt

(
g(xt+1) + 〈yt+1, Axt+1〉

)

≥φ∗
t +

1 +Bt−1µ

2
‖xt − xt+1‖22 + βt

(
g(xt+1) + 〈yt+1, Axt+1〉

)

≥φ∗
t +

βt
2ηt

‖xt − xt+1‖22 + βt
(
g(xt+1) + 〈yt+1, Axt+1〉

)
. (12)

Note that (6) can be rewritten as x̄t+1 = xt − ηt
(
A⊤yt + s

)
, ∃s ∈ ∂g(x̄t+1), which

yields

‖xt − xt+1‖22 − ‖xt − x̄t+1‖22 − ‖x̄t+1 − xt+1‖22
=2〈xt − x̄t+1, x̄t+1 − xt+1〉 = 2ηt〈A⊤yt + s, x̄t+1 − xt+1〉
≥2ηt

(
〈yt, A(x̄t+1 − xt+1)〉+ g(x̄t+1)− g(xt+1)

)
, (13)

where the inequality is due to the convexity of g(x). Combining (12) and (13) yields

φ∗
t+1

≥φ∗
t +

βt
2ηt

[
‖xt − x̄t+1‖22 + ‖x̄t+1 − xt+1‖22 + 2ηt

(
〈yt, A(x̄t+1 − xt+1)〉+ g(x̄t+1)− g(xt+1)

)]

+ βt
(
g(xt+1) + 〈yt+1, Axt+1〉

)

=φ∗
t +

βt
2ηt

(
‖xt − x̄t+1‖22 + ‖x̄t+1 − xt+1‖22

)
+ βt

(
g(x̄t+1) + 〈yt+1, Ax̄t+1〉

)

+ βt〈yt − yt+1, A(x̄t+1 − xt+1)〉

≥φ∗
t +

βt
2ηt

(
‖xt − x̄t+1‖22 + ‖x̄t+1 − xt+1‖22

)
+ βt

(
g(x̄t+1) + 〈yt+1, Ax̄t+1〉

)

− βt

(
R2ηt
2

‖yt+1 − yt‖22 +
1

2R2ηt
‖A(x̄t+1 − xt+1)‖22

)

≥φ∗
t +

βt
2ηt

(
‖xt − x̄t+1‖22 + ‖x̄t+1 − xt+1‖22

)
+ βt

(
g(x̄t+1) + 〈yt+1, Ax̄t+1〉

)

− βt

(
R2ηt
2

‖yt+1 − yt‖22 +
1

2ηt
‖x̄t+1 − xt+1‖22

)

≥φ∗
t −

βtR
2ηt
2

‖yt+1 − yt‖22 + βt
(
g(x̄t+1) + 〈yt+1, Ax̄t+1〉

)
,

where the second inequality is due to Young’s inequality and the third inequality is
from (4). This completes the proof.
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The next lemma concerns the update of the dual variable.

Lemma 2.3. For any y ∈ R
n, it holds that

1

2τt

(
‖yt − y‖22 − (1 + γτt)‖yt+1 − y‖22 − ‖yt+1 − yt‖22

)

≥〈Ax̄t+1, y − yt+1〉+ f∗(yt+1)− f∗(y). (14)

Proof. Using (7) and following similar derivation as (13), it is easy to show that there
exists s ∈ ∂f∗(yt+1) such that the following holds:

‖yt − y‖22 − ‖yt+1 − y‖22 − ‖yt − yt+1‖22
=2〈yt − yt+1, yt+1 − y〉 = 2〈τt(−Ax̄t+1 + s), yt+1 − y〉

≥2τt

(

〈Ax̄t+1, y − yt+1〉+ f∗(yt+1)− f∗(y) +
γ

2
‖yt+1 − y‖22

)

, (15)

where the inequality is due to the γ-strong convexity of f∗(y), which is implied by the
(1/γ)-smoothness of f [7]. Dividing (15) by 2τt yields (14).

We are now ready to present the main convergence results of DAPD.

Theorem 2.4. Consider the first T iterations of DAPD. Assume the parameters sa-
tisfy (10) and the following conditions:

ηtτt ≤
1

R2
, (16)

βt+1

τt+1
≤ βt

τt
(1 + γτt). (17)

Define

x̂T =
1

Bt−1

T−1∑

t=0

βtx̄
t+1 and ŷT =

1

Bt−1

T−1∑

t=0

βty
t+1. (18)

The following inequality holds for any x ∈ R
d and y ∈ R

n:

F (x̂T , y)− F (x, ŷT ) ≤ 1

BT−1

(
β0
2τ0

‖y0 − y‖22 +
1

2
‖x0 − x‖22

)

. (19)

Proof. Multiplying (14) by βt, and adding the resulted inequality to (11), we obtain

φ∗
t+1 − φ∗

t +
βt
2τt

(
‖yt − y‖22 − (1 + γτt)‖yt+1 − y‖22

)

≥βt
(
g(x̄t+1) + 〈yt+1, Ax̄t+1〉

)
− βtR

2ηt
2

‖yt+1 − yt‖22

+ βt
(
〈y − yt+1, Ax̄t+1〉+ f∗(yt+1)− f∗(y)

)
+

βt
2τt

‖yt+1 − yt‖22
≥βt

(
〈y,Ax̄t+1〉+ g(x̄t+1) + f∗(yt+1)− f∗(y)

)
, (20)
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where the last inequality is due to (16). Combining (17) and (20) yields

(
βt
2τt

‖yt − y‖22 − φ∗
t

)

−
(

βt+1

2τt+1
‖yt+1 − y‖22 − φ∗

t+1

)

≥βt
(
〈y,Ax̄t+1〉+ g(x̄t+1) + f∗(yt+1)− f∗(y)

)
. (21)

Note that the left hand side of (21) has a telescoping structure. Summing (21) over
t = 0, . . . , T − 1 yields

T−1∑

t=0

βt
(
〈y,Ax̄t+1〉+ g(x̄t+1) + f∗(yt+1)− f∗(y)

)

≤
(

β0
2τ0

‖y0 − y‖22 − φ∗
0

)

−
(

βT
2τT

‖yT − y‖22 − φ∗
T

)

≤ β0
2τ0

‖y0 − y‖22 − φ∗
0 + φ∗

T . (22)

From (9), it is straightforward that φ∗
0 = minx∈Rd

1
2‖x− x0‖22 = 0 and

φ∗
T ≤ φT (x) =

1

2
‖x− x0‖22 +

T−1∑

t=0

βt
(
g(x) + 〈yt+1, Ax〉

)
.

Combining these facts with (22) and using the convexity-concavity of F (x, y), we have

β0
2τ0

‖y0 − y‖22 +
1

2
‖x0 − x‖22

≥
T−1∑

t=0

βt
(
〈y,Ax̄t+1〉 − f∗(y) + g(x̄t+1)− 〈yt+1, Ax〉+ f∗(yt+1)− g(x)

)

=

T−1∑

t=0

βt
(
F (x̄t+1, y)− F (x, yt+1)

)
≥
(

T−1∑

t=0

βt

)

·
(
F (x̂T , y)− F (x, ŷT )

)

=BT−1

(
F (x̂T , y)− F (x, ŷT )

)
,

which completes the proof.

From Theorem 2.4, we can derive some more interpretable complexity bounds by
choosing some specific parameters.

Corollary 2.5. The following facts hold for DAPD (Algorithm 1).

(i) If γ > 0 and µ > 0, by choosing

ηt =
1

R

√
γ

µ
, τt =

1

R

√
µ

γ
and βt =

1

R

√
γ

µ

(

1 +

√
µγ

R

)t

, (23)

DAPD converges linearly:

‖x̂T − x∗‖22 ≤
1

(

1 +
√
µγ

R

)T

− 1

[

‖x0 − x∗‖22 +
γ

µ
‖y0 − y∗‖22

]

. (24)
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(ii) If γ > 0, µ = 0 and f is L-Lipschitz continuous, by choosing

ηt = βt =
γ(t+ 1)

3R2
and τt =

3

γ(t+ 1)
,

DAPD converges sublinearly in terms of primal sub-optimality:

P (x̂T )− P (x∗) ≤ 9R2dist2
(
x0, X∗)+ 4γ2L2

3γT (T + 1)
. (25)

(iii) If µ > 0 and γ = 0, by choosing

ηt =
4

µ(t+ 1)
, τt =

µ(t+ 1)

4R2
and βt =

2(t+ 1)

µ
,

DAPD converges sublinearly:

‖x̂T − x∗‖22 ≤
µ‖x0 − x∗‖22 + 8R2dist2

(
y0, Y ∗)

µT (T + 1)
.

(iv) If γ = 0, µ = 0 and f is L-Lipschitz continuous, by setting

τt ≡ τ and ηt = βt ≡
1

τR2
,

where τ > 0 is an arbitrary constant, we have

P (x̂T )− P (x∗) ≤ τR2 · dist2
(
x0, X∗)+ 4L2

τ

2T
.

Proof. For the sake of succinctness, we only prove the first two cases, while the other
two cases can be proved similarly.

Case (i): γ > 0 and µ > 0. It is easy to verify that the parameter setting in (23)
satisfies (10), (16) and (17). Thus, Theorem 2.4 applies here. Choosing (x, y) = (x∗, y∗)
in (19) gives

F (x̂T , y∗)− F (x∗, ŷT ) ≤ 1

BT−1

(
β0
2τ0

‖y0 − y∗‖22 +
1

2
‖x0 − x∗‖22

)

. (26)

The µ-strong convexity of F (·, y∗) implies

F (x̂T , y∗)− F (x∗, ŷT ) ≥ F (x̂T , y∗)− F (x∗, y∗) ≥ µ

2
‖x̂T − x∗‖22. (27)

Combining (26), (27) and (23) yields (24).
Case (ii): γ > 0, µ = 0 and f is Lipschitz continuous. It is again easy to verify

that the conditions in Theorem 2.4 are satisfied and thus Theorem 2.4 applies here. In
(19), we set x = x∗ and take supremum with respect to y in the domain of f∗, which

8



gives

1

BT−1

(

β0
2τ0

sup
y∈dom f∗

‖y0 − y‖22 +
1

2
‖x0 − x∗‖22

)

≥ sup
y∈dom f∗

F (x̂T , y)− F (x∗, ŷT )

≥P (x̂T )− P (x∗). (28)

Because f is L-Lipschitz continuous, the domain of f∗ is bounded such that ‖y‖2 ≤ L
for all y ∈ dom f∗ [20]. Hence, (28) implies

1

BT−1

(
2β0
τ0

L2 +
1

2
‖x0 − x∗‖22

)

≥ P (x̂T )− P (x∗). (29)

Since (29) holds for any x∗ ∈ X∗, by replacing ‖x0 − x∗‖22 by dist2
(
x0, X∗) in (29) we

obtain the desired result (25).

Remark 1. For problem (1), if f is (1/γ)-smooth and g is µ-strongly convex, the

condition number of problem (1) is κ := R2

µγ
. The case (i) in Corollary 2.5 implies that

DAPD requires O
(√

κ log 1
ǫ

)
iterations to achieve ǫ accuracy, which is an accelerated

rate and matches the complexity lower bound of first-order methods.
On the other hand, when the objective function of (1) is smooth but non-strongly

convex (case (ii)), or is non-smooth but strongly convex (case (iii)), Corollary 2.5
implies that DAPD has O

(
1
T 2

)
accelerated convergence rate, which is also optimal for

first-order methods. For non-smooth and non-strongly convex problems (case (iv)),
the convergence rate of DAPD is O

(
1
T

)
, which is faster than subgradient method

and the original dual averaging method, whose rates are O(1/
√
T ) under the same

assumptions.
The assumption that f is Lipschitz continuous required in cases (ii) and (iv) of

Corollary 2.5 is standard for primal-dual methods.

Remark 2. Though our theoretical analysis is based on the averaged iterates (x̂T , ŷT ),
in the actual implementation of our algorithms, we will always choose the last iterate
(xT , yT ) as the output to make sure the solution structure (e.g., sparsity) will be
preserved. Such strategy is also the common practice of dual-averaging-type methods
[23].

3. The Stochastic DAPD Method

In this section, we focus on (1) where f has a finite-sum structure. More specifically,
we assume that the primal problem is of the following form:

min
x∈Rd

{

P̃ (x) :=
1

n

n∑

i=1

fi(a
⊤
i x) + g(x)

}

, (30)
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Algorithm 2 Stochastic Dual-Averaging Primal-Dual (SDAPD) Method

Input: initial values x0 and y0, primal step sizes {βt} and η, dual step size τ
1: Initialize x̄0 = x0 and B0 = β0
2: for t = 0, 1, . . . do

3: Uniformly randomly sample it ∈ {1, 2, . . . , n}
4: Compute intermediate variable:

x̄t+1 = proxηg

(

xt − η

n
A⊤yt

)

(31)

5: Update dual variable:

yt+1
i =

{
ỹt+1
i := proxτf∗

i

(
yti + τ〈ai, x̄t+1〉

)
, if i = it

yti , if i 6= it
(32)

6: Set

ȳt+1 = yt + n(yt+1 − yt) (33)

7: Update primal variable:

xt+1 = proxBtg

(
x0 − st+1

)
, with st+1 :=

t∑

k=0

βk
n
A⊤ȳk+1 (34)

8: Let Bt+1 := Bt + βt+1

9: end for

with fi : R → R. Problem (30) reduces to (1) by choosing f(u) = 1
n

∑n
i=1 fi(u). The

primal-dual formulation of (30) is:

min
x∈Rd

max
y∈Rn

{

F̃ (x, y) :=
1

n
〈y,Ax〉+ g(x)− 1

n

n∑

i=1

f∗
i (yi)

}

.

Since (30) is a special case of (1), DAPD can be directly applied here. If we assume
each fi is (1/γ)-smooth and g is µ-strongly convex, the complexity of DAPD for solving

(30) is O
(√

κ′ log 1
ǫ

)

, and κ′ := R2

nµγ
denotes the condition number. In this section, we

show that by utilizing the finite-sum structure of f in problem (30), we can design a
stochastic version of DAPD, which has a better complexity.

Our stochastic method SDAPD, which is inspired by the stochastic primal-dual
coordinate (SPDC) method [27], is presented in Algorithm 2. In each iteration of
SDAPD, only one coordinate of the dual variable yit is updated, with it sampled uni-
formly random from {1, 2, . . . , n}. Correspondingly, only one row vector a⊤it is involved

in the update of the dual variable. Besides, another variable ȳt+1 is obtained by extra-
polation. Moreover, note that in Algorithm 2 we only consider fixed primal and dual
step sizes η and τ .

10



When implementing SDAPD, one should keep an auxiliary variable

ut :=
1

n
A⊤yt. (35)

Since each time only one coordinate of y is changed, ut can be updated incrementally
as:

ut+1 = ut +
1

n
(yt+1

it
− ytit)ait . (36)

As a result, the matrix-vector multiplication in (34) can be efficiently computed by:

1

n
A⊤ȳt+1 =

1

n
A⊤yt+1 + (yt+1

it
− ytit)ait = ut+1 + (yt+1

it
− ytit)ait .

Therefore, the summation of gradients st+1 in (34) can also be incrementally updated
with O(d) computation cost. As a result, the per-iteration complexity of SDAPD is
O(d), much cheaper than the per-iteration complexity O(nd) of DAPD.

Remark 3. We need to point out that Murata and Suzuki also developed an acce-
lerated stochastic dual averaging method [15] which is based on stochastic variance-
reduction techniques [6] and requires the assumption that fi is smooth.

We now provide the convergence analysis of SDAPD. Here we make the following
assumption.

Assumption 3.1. All fi’s are (1/γ)-smooth (γ > 0), and g(x) is µ-strongly convex
(µ > 0).

For the ease of presentation, we denote f∗(y) := 1
n

∑n
i=1 f

∗
i (yi) throughout this

section. Besides, we use Ft to stand for the σ-field generated by all random variables
up to iteration t. Clearly, when conditioned on Ft, x

t and yt are known. Similar to the
analysis of DAPD, we define a potential function as follows:

φ̃t(x) :=
1

2

∥
∥x− x0

∥
∥
2

2
+

t−1∑

k=0

βk

(

g(x) +
1

n
〈ȳk+1, Ax〉

)

. (37)

Again, it is easy to see that xt+1 is the minimizer of φ̃t+1(x). Since the updates of x̄
t+1

and xt+1 in SDAPD are almost identical to DAPD, we have the following lemma that
is similar to Lemma 2.2.

Lemma 3.2. Assume η(1 +Bt−1µ) ≥ βt. We have

E

[

φ̃∗
t+1 − φ̃∗

t

∣
∣
∣Ft

]

≥ βtE

[

g(x̄t+1) +
1

n
〈ȳt+1, Ax̄t+1〉

∣
∣
∣
∣
Ft

]

− R̄2βtη

2
E
[
‖yt+1 − yt‖22

∣
∣Ft

]
.

(38)

Proof. The proof is largely the same as Lemma 2.2. Following the same argument as

11



in Lemma 2.2, it is easy to show that (12) becomes

φ̃∗
t+1 ≥ φ̃∗

t +
βt
2ηt

‖xt − xt+1‖22 + βt

(

g(xt+1) +
1

n
〈ȳt+1, Axt+1〉

)

. (39)

and (13) becomes

‖xt − xt+1‖22 − ‖xt − x̄t+1‖22 − ‖x̄t+1 − xt+1‖22

≥2ηt

(
1

n
〈yt, A(x̄t+1 − xt+1)〉+ g(x̄t+1)− g(xt+1)

)

. (40)

Combining (39) and (40) yields

φ̃∗
t+1

≥φ̃∗
t +

βt
2ηt

(
‖xt − x̄t+1‖22 + ‖x̄t+1 − xt+1‖22

)
+ βt

(

g(x̄t+1) +
1

n
〈ȳt+1, Ax̄t+1〉

)

+
βt
n
〈yt − ȳt+1, A(x̄t+1 − xt+1)〉

≥φ̃∗
t +

βt
2ηt

(
‖xt − x̄t+1‖22 + ‖x̄t+1 − xt+1‖22

)
+ βt

(

g(x̄t+1) +
1

n
〈ȳt+1, Ax̄t+1〉

)

− βt
n

(
ηt
2n

‖A⊤(yt − ȳt+1)‖22 +
n

2ηt
‖x̄t+1 − xt+1‖22)

)

. (41)

where the last inequality is due to Young’s inequality. By noting that yt and ȳt+1 only
differ in coordinate it, we have

‖A⊤(yt − ȳt+1)‖22 = ‖(ytit − ȳt+1
it

)ait‖22 ≤ (ytit − ȳt+1
it

)2R̄2 = R̄2‖yt − ȳt+1‖22,

which combining with (41) yields

φ̃∗
t+1

≥φ̃∗
t +

βt
2ηt

(
‖xt − x̄t+1‖22 + ‖x̄t+1 − xt+1‖22

)
+ βt

(

g(x̄t+1) +
1

n
〈ȳt+1, Ax̄t+1〉

)

− βt
n

(
R̄2ηt
2n

‖yt − ȳt+1‖22 +
n

2ηt
‖x̄t+1 − xt+1‖22)

)

≥φ̃∗
t + βt

(

g(x̄t+1) +
1

n
〈ȳt+1, Ax̄t+1〉

)

− R̄2ηtβt
2n2

‖yt − ȳt+1‖22. (42)

Using (33) and taking conditional expectation to (42) yields the desired result (38).

Similarly, we have the following lemma that is analogous to Lemma 2.3. We omit
the proof for succinctness.

Lemma 3.3. For each i ∈ {1, 2, . . . , n}, it holds that

1

2τ

[
(yti − yi)

2 − (1 + γτ) (ỹt+1
i − yi)

2 − (ỹt+1
i − yti)

2
]

≥〈(yi − ỹt+1
i )ai, x̄

t+1〉+ f∗
i (ỹ

t+1
i )− f∗

i (yi), ∀yi ∈ R. (43)
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Moreover, we have the following lemma.

Lemma 3.4. When conditioning on Ft, for any y ∈ R
n, it holds that

1

2τ
E

[(

1 +
(n− 1)γτ

n

)

‖yt − y‖22 − (1 + γτ) ‖yt+1 − y‖22 − ‖yt+1 − yt‖22
∣
∣
∣
∣
Ft

]

≥E

[

− 1

n
〈ȳt+1 − y,Ax̄t+1〉+ nf∗(yt+1)− (n− 1)f∗(yt)− f∗(y)

∣
∣
∣
∣
Ft

]

. (44)

Proof. Note that when conditioning on Ft, x̄
t+1 is deterministic and independent of

it. Hence, for each i, yt+1
i = ỹt+1

i with probability 1/n, and yt+1
i = yti with probability

(n− 1)/n. This implies the following relationships that hold for any y ∈ R
n:

E
[
(yt+1

i − yi)
2
∣
∣Ft

]
=
1

n
(ỹt+1

i − yi)
2 +

n− 1

n
(yti − yi)

2,

E
[
(yt+1

i − yti)
2
∣
∣Ft

]
=
1

n
(ỹt+1

i − yti)
2,

E
[
yt+1
i

∣
∣Ft

]
=
1

n
ỹt+1
i +

n− 1

n
yti ,

E
[
f∗
i (y

t+1
i )

∣
∣Ft

]
=
1

n
f∗
i (ỹ

t+1
i ) +

n− 1

n
f∗
i (y

t
i).

Plugging these relationships into (43), we obtain:

1

2τ
E
[
(n+ (n− 1)γτ)(yti − yi)

2 − n (1 + γτ) (yt+1
i − yi)

2 − n(yt+1
i − yti)

2
∣
∣Ft

]

≥
〈(
yi − nE

[
yt+1
i

∣
∣Ft

]
+ (n− 1)yti

)
ai, x̄

t+1
〉
+ nE

[
f∗
i (y

t+1
i )

∣
∣Ft

]
− (n− 1)f∗

i (y
t
i)− f∗

i (yi).

Summing this inequality for i ∈ {1, 2, . . . , n} and using (33), we get:

1

2τ
E

[(

1 +
(n− 1)γτ

n

)

‖yt − y‖22 − (1 + γτ) ‖yt+1 − y‖22 − ‖yt+1 − yt‖22
∣
∣
∣
∣
Ft

]

≥ 1

n
〈y − nE

[
yt+1

∣
∣Ft

]
+ (n− 1)yt, Ax̄t+1〉+ nE

[
f∗(yt+1)

∣
∣Ft

]
− (n− 1)f∗(yt)− f∗(y)

=
1

n
E
[
−〈ȳt+1 − y,Ax̄t+1〉

∣
∣Ft

]
+ nE

[
f∗(yt+1)

∣
∣Ft

]
− (n− 1)f∗(yt)− f∗(y),

which is the desired inequality (44).

Now, we are ready to provide the convergence complexity for SDAPD (Algorithm
2).

Theorem 3.5. Assume Assumption 3.1 holds. We choose algorithm parameters as

η =
1

R̄

√
γ

nµ
, τ =

1

R̄

√
nµ

γ
, βt =

1

R̄

√
γ

nµ
· ξt, with ξ := 1 +

1

n+ R̄
√

n/(µγ)
.

Consider the first T iterations of SDAPD and define x̂T = 1
BT−1

∑T−1
t=0 βtx̄

t+1, SDAPD

13



converges linearly in expectation:

E
[
‖x̂T − x∗‖22

]
≤ ∆0

ξT − 1
,

where ∆0 is a constant depending on R̄, the initial point (x0, y0) and optimal solu-
tion (x∗, y∗). Note that (x∗, y∗) is unique here due to the strong convexity-concavity
assumption.

Proof. When conditioning on Ft, we multiply (44) by βt and add it to (38). We have

E

[

φ̃∗
t+1 − φ̃∗

t

∣
∣
∣Ft

]

+
βt
2τ

E

[(

1 +
(n− 1)γτ

n

)

‖yt − y‖22 − (1 + γτ) ‖yt+1 − y‖22
∣
∣
∣
∣
Ft

]

≥βtE

[

g(x̄t+1) +
1

n
〈ȳt+1, Ax̄t+1〉

∣
∣
∣
∣
Ft

]

− R̄2βtη

2
E
[
‖yt+1 − yt‖22

∣
∣Ft

]

+ βtE

[

− 1

n
〈ȳt+1 − y,Ax̄t+1〉+ nf∗(yt+1)− (n− 1)f∗(yt)− f∗(y)

∣
∣
∣
∣
Ft

]

+
βt
2τ

E
[
‖yt+1 − yt‖22

∣
∣Ft

]

=βtE

[

g(x̄t+1) +
1

n
〈y,Ax̄t+1〉+ nf∗(yt+1)− (n− 1)f∗(yt)− f∗(y)

∣
∣
∣
∣
Ft

]

, (45)

where the equality uses the fact ητ = 1/R̄2. Note that our parameters satisfy βt(1 +

γτ) ≥ βt+1α, where α := 1+ (n−1)γτ
n

, from which we can upper bound the left-hand-side
of (45) by

E

[

φ̃∗
t+1

∣
∣
∣Ft

]

− φ̃∗
t +

αβt
2τ

‖yt − y‖22 −
αβt+1

2τ
E
[
‖yt+1 − y‖22

∣
∣Ft

]

=

(
αβt
2τ

‖yt − y‖22 − φ̃∗
t

)

− E

[
αβt+1

2τ
‖yt+1 − y‖22 − φ̃∗

t+1

∣
∣
∣
∣
Ft

]

.

Therefore, (45) reduces to:

(
αβt
2τ

‖yt − y‖22 − φ̃∗
t

)

− E

[
αβt+1

2τ
‖yt+1 − y‖22 − φ̃∗

t+1

∣
∣
∣
∣
Ft

]

.

≥βtE

[

g(x̄t+1) +
1

n
〈y,Ax̄t+1〉+ nf∗(yt+1)− (n− 1)f∗(yt)− f∗(y)

∣
∣
∣
∣
Ft

]

. (46)

Summing (46) over t = 0, . . . , T − 1 and apply total expectation, we obtain:

(
αβ0
2τ

‖y0 − y‖22 − φ̃∗
0

)

− E

[
αβT
2τ

‖yT − y‖22 − φ̃∗
T

]

≥
T−1∑

t=0

βtE

[

g(x̄t+1) +
1

n
〈y,Ax̄t+1〉+ nf∗(yt+1)− (n− 1)f∗(yt)− f∗(y)

]

. (47)
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Using (37) and (33), it is easy to see that φ̃∗
0 = 0 and

φ̃∗
T ≤1

2

∥
∥x− x0

∥
∥
2

2
+

T−1∑

t=0

βt

(

g(x) +
1

n
〈nyt+1 − (n− 1)yt, Ax〉

)

, ∀x ∈ R
n.

Plugging these to (47) and dropping the term ‖yT − y‖22, we obtain:

1

2

∥
∥x− x0

∥
∥
2

2
+

αβ0
2τ

‖y0 − y‖22 (48)

≥
T−1∑

t=0

βtE

[

g(x̄t+1)− g(x) +
1

n
〈y,A(x̄t+1 − x)〉

]

+

T−1∑

t=0

βtE

[

− 1

n
〈nyt+1 − (n− 1)yt − y,Ax〉+ nf∗(yt+1)− (n− 1)f∗(yt)− f∗(y)

]

=

T−1∑

t=0

βtE
[

F̃ (x̄t+1, y)− F̃ (x, y)
]

+

T−1∑

t=0

βtE
[

−nF̃ (x, yt+1) + (n− 1)F̃ (x, yt) + F̃ (x, y)
]

.

Now, we choose (x, y) = (x∗, y∗). The first term on the right-hand-side of (48) can be
bounded by:

T−1∑

t=0

βtE
[

F̃ (x̄t+1, y∗)− F̃ (x∗, y∗)
]

≥BT−1E

[

F̃ (x̂T , y∗)− F̃ (x∗, y∗)
]

≥BT−1µ

2
E
[
‖x̂T − x∗‖22

]
, (49)

where the µ-strong convexity of F (·, y∗) and the definition of x̂T are used. By using
the fact F̃ (x∗, y∗) − F̃ (x∗, y) ≥ 0 for any y, we can bound the second term on the
right-hand-side of (48) as:

T−1∑

t=0

βtE
[

−nF̃ (x∗, yt+1) + (n− 1)F̃ (x∗, yt) + F̃ (x∗, y∗)
]

=

T−1∑

t=0

βtE
[

n
(

F̃ (x∗, y∗)− F̃ (x∗, yt+1)
)

− (n− 1)
(

F̃ (x∗, y∗)− F̃ (x∗, yt)
)]

=

T−1∑

t=1

(nβt−1 − (n− 1)βt)E
[

F̃ (x∗, y∗)− F̃ (x∗, yt)
]

+ nβT−1E

[

F̃ (x∗, y∗)− F̃ (x∗, yT )
]

− (n− 1)β0

(

F̃ (x∗, y∗)− F̃ (x∗, y0)
)

≥− (n− 1)β0

(

F̃ (x∗, y∗)− F̃ (x∗, y0)
)

, (50)

where the inequality follows from the fact that nβt−1 ≥ (n − 1)βt. Combining (48),
(49) and (50) gives

1

2

∥
∥x0 − x∗

∥
∥
2

2
+

αβ0
2τ

‖y0 − y∗‖22 + (n− 1)β0

(

F̃ (x∗, y∗)− F̃ (x∗, y0)
)

≥ BT−1µ

2
E
[
‖x̂T − x∗‖22

]
,
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Table 1. Iteration complexities of SDPAD for achieving ǫ-solution accuracy under different settings. Some

constants and logarithmic factors are hidden.

g(x) µ-strongly convex g(x) non-strongly convex

fi(u) (1/γ)-smooth
(

n+ R̄
√

n/(µγ)
)

log(1/ǫ) n+ R̄
√

n/(µǫ)

fi(u) non-smooth n+ R̄
√

n/(γǫ) n+ R̄
√
n/ǫ

which leads to the desired result.

Remark 4. Under Assumption 3.1, the condition number of problem (30) usually

defined in stochastic optimization literature (see, e.g., [27]) is κ̄′ := R̄2

µγ
. Note that

κ′ ≤ κ̄′ ≤ nκ′. Therefore, Theorem 3.5 implies that the number of iterations needed
by SDAPD to achieve ǫ-accuracy is

O
((

n+
√
nκ̄′
)

log
1

ǫ

)

, (51)

which matches the lower bound of the complexity of stochastic first-order methods
[10]. Moreover, even though κ̄′ might be larger than κ′ in DAPD, (51) still suggests
that SDAPD is faster than DAPD, given that each iteration of DAPD is approximately
n times more expensive than SDAPD.

From these results, we can conclude that SDAPD is better than regularized dual
averaging, the stochastic dual averaging method for minimizing the composite ob-
jective function, whose complexity is in the order of O(1/ǫ) under the same assump-
tion [23]. Besides, (51) also implies that SDAPD is better than some variance-reduced
stochastic methods such as ProxSVRG [24], whose complexity is

O
(
(
n+ κ̄′

)
log

1

ǫ

)

,

when the condition number κ̄′ is larger than n. Though some accelerated stochastic
methods like Katyusha [1] and SPDC [27] have the same complexity as SDAPD, we
will show later that SDAPD is more powerful when the data matrix A is sparse.

Remark 5. Generalization to non-smooth or non-strongly-convex problems.

Our results in this section can be extended to non-smooth or non-strongly convex
problems easily, by slightly perturbing the primal-dual formulation. When fi is non-
smooth, we can augment f∗

i as f̃∗
i (yi) := f∗

i (yi) +
δ1
2 (yi)

2. While g is non-strongly

convex, it can be perturbed as g̃(x) := g(x) + δ2
2 ‖x‖22. Here both δ1 and δ2 are small

constants that are proportional to the desired solution accuracy ǫ. Following such
strategy, we can easily derive the complexities of SDAPD in different seniors, which
are presented in Table 1. The derivation is similar to the one in [27], and we omit the
details here for succinctness.

4. Efficient Implementation of SDAPD on Sparse Data

In this section, we focus on the case that each vector ai is a sparse vector so that
the data matrix A is also sparse. We show how to efficiently implement SDAPD (Al-
gorithm 2) on problems with sparse A, which can further reduce the per-iteration
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complexity of SDAPD from O(d) to O(ρd). Throughout this section, we make the
following assumption on function g.

Assumption 4.1. Assume g(x) is separable, i.e., it can be decomposed as g(x) =
∑d

j=1 gj(xj).

Here we briefly explain why dual-averaging type algorithm can promote the sparsity.
For ease of discussion, we denote h(x) := f(Ax). The dual averaging update is:

zt+1 = proxBtg

(

z0 −
t∑

k=0

βk∇h(zk)

)

. (52)

Note that there is no direct dependence between any two consecutive iterates zt and
zt+1. The only place where zt influences zt+1 is in estimating the gradient ∇h(zt). In
many problems with sparse data, the gradient function ∇h(z) also possesses sparse
structure where only a small portion of coordinates of zt is required for evaluating
∇h(zt). Therefore, dual averaging methods allow lazy sparse update, which only up-
dates the coordinates that will be involved in evaluating the next gradient.

Other types existing stochastic algorithms are incapable of admitting sparse update,
except on certain problems with special structures. (See more details in Remark 8).
For example, the gradient might not be sparse for some methods like SAGA [4], even
when the problem data is sparse. Moreover, some accelerated methods require an
extrapolation step which requires to add two dense vectors. In the following, we show
how to efficiently implement SDAPD for sparse data.

When implementing SDAPD, we need to keep two auxiliary variables ut and st,
which are defined in (35) and (34) respectively. With ut and st on hand, any coordinate
of xt, say xtj , can be recovered via

xtj = proxBt−1gj

(
x0j − stj

)

in only O(1) time, due to the separable assumption of g(x). Similarly, the j-th coor-
dinate of x̄t+1 can be computed by

x̄t+1
j = proxηgj

(
xtj − ηutj

)
.

Note that xt is only used in the update of x̄t+1, while the only role of x̄t+1 is for
computing the inner product a⊤it x̄

t+1 in (32). This implies that we do not need to

evaluate xtj and x̄t+1
j when ait,j = 0. Using this property, the whole iteration of SDAPD

can be done in O(‖ait‖0) computational cost.
Now, the remaining problem is how to update ut+1 and st+1 for sparse data. For

ut+1, it is straightforward by using (36), which adds a sparse vector ait to ut in each
iteration. The real challenge is how to update st+1 in (34), because it is a summation
of dense vectors. Here, we present a novel way to sparsify the update of st+1, by
decomposing it into the combination of two sequences. For the ease of discussion, we
define

δt :=
(yt+1

it
− ytit)

n
· ait . (53)
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Hence, δt is a sparse vector if ait is sparse. We need to show the following lemma first.

Lemma 4.2. Consider SDAPD (Algorithm 2) with βt chosen in the form of βt =
β0θ

−t for some θ ∈ (0, 1). Define two sequences:

vt+1 := − β0θ

n(1− θ)
A⊤y0+

t∑

k=0

βk

(

n− 1

1− θ

)

δk, and wt+1 :=
1

n(1− θ)
A⊤y0+

1

1− θ

t∑

k=0

δk.

It holds that

st+1 :=

t∑

k=0

βk
n
A⊤ȳk+1 = vt+1 + βtw

t+1 (54)

Proof. We prove (54) by induction. we first note two useful relationships:

1

n
A⊤yt+1 =

1

n
A⊤yt + δt (55)

1

n
A⊤ȳt+1 =

1

n
A⊤yt + nδt, (56)

which are easy to be obtained from (53), (32) and (33).
When t = 0,

vt+1 = v1 = − β0θ

n(1− θ)
A⊤y0 + β0

(

n− 1

1− θ

)

δ0

and

βtw
t+1 = β0w

1 =
β0

n(1− θ)
A⊤y0 +

β0
1− θ

δ0.

By adding these two equations together, we have:

v1 + β0w
1 =

β0
n
A⊤y0 + nβ0δ0 =

β0
n
A⊤ȳ1,

where the last equality follows from (56). So (54) is proved for t = 0.
Now we assume that (54) holds for t− 1, i.e.,

vt + βt−1w
t =

t−1∑

k=0

βk
n
A⊤ȳk+1.

Thus

vt+1 + βtw
t+1 =

(
vt+1 − vt

)
+
(
βtw

t+1 − βt−1w
t
)
+

t−1∑

k=0

βk
n
A⊤ȳk+1. (57)
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From (55) and the fact βt−1 = βtθ, we have:

βtw
t+1 − βt−1w

t =
βt

1− θ
δt +

βt
n
A⊤yt,

Hence,

(
vt+1 − vt

)
+
(
βtw

t+1 − βt−1w
t
)
= βt

(

n− 1

1− θ

)

δt +
βt

1− θ
δt +

βt
n
A⊤yt =

βt
n
A⊤ȳt+1,

which is due to (56) again. Combining this equation with (57) proves (54).

Remark 6. Note that both vt+1 and wt+1 are actually the summation of sparse
vectors δt, except the first term A⊤y0. As a result, after computing A⊤y0 at the very
beginning of the algorithm, both vt+1 and wt+1 can be updated in a sparse way.
With the help of these two sequences, the whole algorithm is capable of doing sparse
update, and thus has only O(ρd) per-iteration complexity on average instead of O(d).
In many large scale applications, ρ can be very small like ρ ≈ 10−3 or even smaller. For
example, the well-known DBLP dataset has the sparsity ρ ≈ 2.0 × 10−5 [25]. Hence,
sparse update can bring great acceleration on such problems.

We now continue the discussion on theoretical complexity of SDAPD. After com-
bining the sparse update technique discussed above, the overall computation cost of
SDAPD to achieve ǫ-accuracy becomes

O
(

ρd
(

n+
√
nκ̄′
)

log
1

ǫ

)

for strongly convex and smooth problems, if we take both convergence rate and per-
iteration computation cost into consideration. This complexity is better than the com-
plexity of existing accelerated stochastic methods like SPDC, namely,

O
(

d
(

n+
√
nκ̄′
)

log
1

ǫ

)

,

due to the factor ρ (0 < ρ ≤ 1).

Remark 7. Lee and Sidford proposed an efficient implementation of accelerated coor-
dinate descent in [11], which shares similar idea of decomposing the updates into two
sequences that can be updated efficiently. However, the motivation of their method is
different to ours, and our setting is more challenging. Note that the gradient update in
[11] is the same as the typical coordinate descent, which naturally requires only O(1)
computation. What they try to avoid is the computation in the extrapolation step of
the other coordinates. As a contrast, we do not only have extrapolation step, but the
gradients used in update (34) are also the sum of dense vectors. Due to such extra
difficulty, our decomposing scheme is different and more complicated than the one in
[11].

Remark 8. We point out that a sparse implementation of stochastic SPDC was also
proposed in [27], and similar idea for Prox-SVRG can be found in [24]. Such idea can
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also be extended to other stochastic methods like ProxSGD and SAGA. However, all
these methods implicitly require

prox(t)g := proxg ◦ · · · ◦ proxg(x)
︸ ︷︷ ︸

composition of t proximal mappings

can be easily computed in constant time independent of t. This property enables them
to ignore the iterations with zero gradients and is the key for their sparse update trick.
However, such property is only satisfied by some special g(x), and only examples on
simple regularizers g(x) = λ‖x‖1 and g(x) = (λ/2)‖x‖22 are given in their papers. For
these two regularizers, it is quite easy to show that

prox(t)gj (xj) = prox(t−1)
gj (xj) ·

1

1 + λ
= · · · = xj

(1 + λ)t

for g(x) = (λ/2)‖x‖22, and

prox(t)gj (xj) =

{
xj − sign(xj) · λt if |xj | ≥ λt
0 otherwise

if g(x) = λ‖x‖1. However, as far as we can see, it would be difficult to generalize their
method to other regularizers such as KL-divergence, namely,

g(x) =

d∑

j=1

wj log
wj

xj
,

which is commonly used in model-based transfer learning [18]. For this g(x), computing
a proximal mapping needs to solve a quadratic equation which does not admit a

simple form of solution. Hence, it is hard to compute prox
(t)
g (x) without computing

prox1g(x), . . . , prox
(t−1)
g (x) one by one. As a result, their sparse update method would

fail on such regularizer. As a comparison, our method does not rely on such assumption
and works with any g(x) as long as it is separable.

5. Numerical Experiments

In this section, we conduct numerical experiments to DAPD and SDAPD and compare
their performance with the following relevant existing methods:

• PDHG: primal-dual hybrid gradient method [3]
• APGM: Nesterov’s accelerated proximal gradient method [17]
• DA: original dual averaging method [16]
• RDA: regularized dual averaging method [23]
• ProxSGD: proximal stochastic (sub-)gradient method [19]
• ProxSVRG: proximal stochastic variance-reduced gradient method [24]
• SPDC: stochastic primal-dual coordinate method [27]

Note that the first three methods are deterministic methods, while the others are
stochastic methods. Besides, PDGH, APGM and SPDC are accelerated methods.
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Table 3. Per-epoch running time of each method in seconds

Methods
colon-cancer

(×10−3)
w8a

(×10−2)
rcv1

(×10−2)

DAPD 1.0 5.3 4.2
SDAPD 5.2 17.5 19.8
PDHG 1.0 5.7 4.0
DA 1.0 5.5 3.6
RDA 2.7 7.4 6.0

ProxSGD 2.9 30.3 1932
SPDC 2.7 46.3 2125

Here we choose g(x) to be the Huber’s regularization, which is defined as: g(x) =
∑d

j=1 gj(xj) with

gj(xj) =

{
λ
(
|xj | − λ

4µ

)
if |xj | ≥ λ

2µ ,

µx2j otherwise.
(58)

Huber’s regularization can also help the model to avoid over-fitting just like the
squared-ℓ2-norm, but it is statistically more robust than the latter one [26]. As far
as we know, it would be hard for ProxSGD and SPDC to have sparse update with
such g(x). For this experiment, we fix the parameters as λ = 10−4 and µ = 1 in Huber’s
regularization. Besides, it should be noted that our objective function is non-smooth
in this case. Since APGM and ProxSVRG are unable to deal with such kind of ob-
jective, they are not tested for this problem. We use real datasets in this experiment.
The dataset information is summarized in Table 2. w8a and rcv1 are sparse datasets.

The experiment results are presented in Figure 3. The results are similar to the ones
for ridge regression. We observe that SDAPD performs better than all other methods,
except that it falls behind SPDC on colon-cancer. Again, the performances of DAPD
and PDHG are very close, but they are much better than the other deterministic
method DA. Only thing interesting to note here is that the performance of DAPD is
close to SDAPD on colon-cancer. It is because this dataset has a relatively small n,
thus deterministic methods and stochastic methods do not make too much difference
in their convergence rates.

We also report the per-epoch running time of each algorithm in Table 3. We see that
deterministic methods DAPD, PDGH and DA are always the fastest, since they can
do updates in batch with highly-optimized matrix-vector operations. We can also find
that ProxSGD and SPDC are quite time-consuming on w8a and rcv1 datasets because
they are unable to do sparse updates, while our SDAPD overcomes this issue with the
help of the sparse update strategy introduced in Section 4 and therefore has much
less computational cost on sparse data. However, such strategy requires to maintain
some auxiliary variables, resulting more computational time to SDAPD than RDA,
and even costs more time than ProxSGD and SPDC on dense data. Of course, SDAPD
can be further improved by discarding the sparse update strategy on dense data. But
we do not adopt this here. Instead, we implement SDAPD in a uniform way to keep
the experiments simple.

Overall, by taking both convergence rate and per-epoch computation time into
account, SDAPD is the best one among all tested algorithms.
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