
© 2019 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer Graphics.
The published version of this article is available at: 10.1109/TVCG.2019.2934396

A Deep Generative Model for Graph Layout

Oh-Hyun Kwon and Kwan-Liu Ma
Training Samples Generated Samples

Latent Space

Fig. 1. Generative modeling of layouts for the Les Misérables character co-occurrence network [55]. We train our generative model to
construct a 2D latent space by learning from a collection of example layouts (training samples). From the grid of generated samples,
we can see the smooth transitions between the different layouts. This shows that our model is capable of learning and generalizing
abstract concepts of graph layouts, not just memorizing the training samples. Users can use this sample grid of the latent space as a
WYSIWYG interface to generate a layout they want, without either blindly tweaking parameters of layout methods or requiring expert
knowledge of layout methods. The color mapping of the latent space represents the shape-based metric [23] of the generated samples.
Throughout the paper, unless otherwise specified, the node color represents the hierarchical community structure of the graph [68,79],
so readers can easily compare node locations in different layouts. An interactive demo is available in the supplementary material [1].

Abstract—Different layouts can characterize different aspects of the same graph. Finding a “good” layout of a graph is thus an
important task for graph visualization. In practice, users often visualize a graph in multiple layouts by using different methods and
varying parameter settings until they find a layout that best suits the purpose of the visualization. However, this trial-and-error process
is often haphazard and time-consuming. To provide users with an intuitive way to navigate the layout design space, we present
a technique to systematically visualize a graph in diverse layouts using deep generative models. We design an encoder-decoder
architecture to learn a model from a collection of example layouts, where the encoder represents training examples in a latent space
and the decoder produces layouts from the latent space. In particular, we train the model to construct a two-dimensional latent space
for users to easily explore and generate various layouts. We demonstrate our approach through quantitative and qualitative evaluations
of the generated layouts. The results of our evaluations show that our model is capable of learning and generalizing abstract concepts
of graph layouts, not just memorizing the training examples. In summary, this paper presents a fundamentally new approach to graph
visualization where a machine learning model learns to visualize a graph from examples without manually-defined heuristics.

Index Terms—Graph, network, visualization, layout, machine learning, deep learning, neural network, generative model, autoencoder

1 INTRODUCTION

Graphs are commonly used for representing complex systems, such as
interactions between proteins, data communications between comput-
ers, and relationships between people. Visualizing a graph can help
better understand the relational and structural information in the data
that would not be as apparent if presented in a numeric form. The most
popular and intuitive way to visualize a graph is a node-link diagram,
where the nodes are drawn as points, and the links are rendered as lines.

Drawing a node-link diagram by hand is laborious; since the 1960s,
researchers have devised a multitude of methods to automatically lay
out a graph. The layouts of the same graph can vary greatly depending
on which method is used and the method’s configuration. However,
there is no “best” layout of a graph as different layouts often highlight

• The authors are with the University of California, Davis.
E-mail: kw@ucdavis.edu, ma@cs.ucdavis.edu.

different structural characteristics of the same graph [6, 21]. For ex-
ample, while one layout can emphasize connections between different
communities of a graph, it might not be able to depict connections
within each community. Thus, it is important to find a “good” layout
for showing the features of a graph that users want to highlight.

Finding a good layout of a graph is, however, a challenging task.
The heuristics to find a good layout are nearly impossible to define.
It requires to consider many different graphs, characteristics to be
highlighted, and user preferences. There is thus no existing method
to automatically find a good layout. In practice, users rely on a trial-
and-error process to find a good layout. Until they find a layout that
satisfies their requirements (e.g., highlighting the community structure
of a graph), users typically visualize a graph in multiple layouts us-
ing different methods and varying parameter settings. This process
often requires a significant amount of the user’s time as it results in a
haphazard and tedious exploration of a large number of layouts [5].

1

ar
X

iv
:1

90
4.

12
22

5v
7

 [c
s.S

I]
 1

5
O

ct
 2

01
9

https://doi.org/10.1109/TVCG.2019.2934396

Furthermore, expert knowledge of layout methods is often required
to find a good layout. Most layout methods have a number of param-
eters that can be tweaked to improve the layout of a graph. However,
many layout methods—especially force-directed ones—are very sen-
sitive to the parameter values [65], where the resulting layouts can be
incomprehensible or even misleading [21]. A proper selection of the
parameter settings for a given graph requires detailed knowledge of the
chosen method. Such knowledge can only be acquired through exten-
sive experience in graph visualization. Thus, novice users are often
blindly tweaking parameters, which leads to many trials and errors as
they cannot foresee what the resulting layout will look like. Moreover,
novices might explore only a fraction of possible layouts, choose an
inadequate layout, and thus overlook critical insights in the graph.

To help users to produce a layout that best suits their requirements,
we present a deep generative model that systematically visualizes a
graph in diverse layouts. We design an encoder-decoder architecture to
learn a generative model from a collection of example layouts, where
the encoder represents training examples in a latent space and the
decoder generates layouts from the latent space. In particular, we train
the model to construct a two-dimensional latent space. By mapping
a grid of generated samples, a two-dimensional latent space can be
used as a what-you-see-is-what-you-get (WYSIWYG) interface. This
allows users to intuitively navigate and generate various layouts without
blindly tweaking parameters of layout methods. Thus, users can create
a layout that satisfies their requirements without a haphazard trial-and-
error process or any expert knowledge of layout methods.

The results of our evaluations show that our model is capable of
learning and generalizing abstract concepts of graph layouts, not just
memorizing the training examples. Also, graph neural networks [53,84]
and Gromov–Wasserstein distance [64] help the model better learn the
complex relationship between the structure and the layouts of a graph.
After training, our model generates new layouts considerably faster
than existing layout methods. In addition, the generated layouts are
spatially stable, which helps users to compare various layouts.

In summary, we introduce a fundamentally new approach to graph
visualization, where a machine learning model learns to visualize a
graph as a node-link diagram from existing examples without manually-
defined heuristics. Our work is an example of artificial intelligence
augmentation [10]: a machine learning model builds a new type of user
interface (i.e., layout latent space) to augment a human intelligence
task (i.e., graph visualization design).

2 RELATED WORK

Our work is related to graph visualization, deep generative modeling,
and deep learning on graphs. We discuss related work in this section.

2.1 Graph Visualization
A plethora of layout methods has been introduced over the last five
decades. In this paper, we focus on two-dimensional layout methods
that produce straight-edge drawings, such as force-directed methods
[16, 22, 24, 26, 49], dimensionality reduction-based methods [9, 41, 58],
spectral methods [13,57], and multi-level methods [25,28,37,40,43,81].
These layout methods can be used for visualizing any type of graphs.
Many analysts do not have expert knowledge in these layout methods
for finding a good layout. Our goal is to learn the layouts produced
by the different methods in a single model. In addition, we provide
an intuitive way for users to explore and generate diverse layouts of a
graph without the need of expert knowledge of layout methods.

How to effectively find a “good” layout of a graph is still an open
problem. However, decades of research in this area have led to several
heuristics, often called aesthetic criteria, for improving and evaluating
the quality of a layout. For instance, reducing edge crossings has been
shown as one of the most effective criteria to improve the quality of a
layout [45, 51, 72, 73]. Based on the aesthetic criteria, several metrics
have been defined to evaluate layouts quantitatively.

However, even with aesthetic criteria and metrics, human interven-
tion is still needed in the process of selecting a layout for several rea-
sons. First, while each heuristic attempts to enhance certain aspects of
a layout, it does not guarantee an overall quality improvement [21, 29].

For instance, depending on the given circumstances (e.g., given graph,
task, and environment), certain criteria can lead to incomprehensible
layouts [6]. Second, there is no consensus on which criteria are the
most helpful in a given circumstance [21, 29, 51]. Third, it is often
not feasible to satisfy several aesthetic criteria in one layout because
satisfying one may result in violating others [19, 20]. Lastly, selecting
a good layout is highly subjective, as each person might have varying
opinions on what is a “good” layout. For these reasons, users often rely
on a trial-and-error process to find a good layout.

To help users find a good layout, several methods have been devel-
oped to accelerate the trial-and-error selection process by learning user
preferences [2, 5, 62, 78]. For example, Biedl et al. [5] have introduced
the concept of multidrawing, which systematically produces many dif-
ferent layouts of the same graph. Some methods use an evolutionary
algorithm [2,62,78] to optimize a layout based on a human-in-the-loop
assessment. However, these methods require constant human interven-
tion throughout the optimization process. In addition, the goal of their
optimization is to narrow down the search space. This allows the model
to create only a limited number of layouts. Hence, multiple learning
sessions might be needed to allow users to investigate other possible
layouts of the same graph. In contrast to these models, our approach
is to train a machine learning model in a fully unsupervised manner to
produce diverse layouts, not to narrow the search space.

Recently, several machine learning approaches have been introduced
to different tasks in graph visualization, such as previewing large graphs
[60], exploring large graphs [11], and evaluating visualizations [38, 54].
Unlike these approaches, our goal is to train a model to generate layouts.

2.2 Deep Generative Models

The term “generative model” can be used in different ways. In this
paper, we refer to a model that can be trained on unlabeled data and
is capable of generating new samples that are similar to, but not the
same as, the training data. For example, we can train a model to
create synthetic images of handwritten digits by learning from a large
collection of real ones [34, 52]. Since generating new, realistic samples
requires a good understanding of the given data, generative modeling
is often considered as a key component of unsupervised learning.

In recent years, generative models built with deep neural networks
and stochastic optimization methods have demonstrated state-of-the-
art performance in various applications, such as text generation [44],
music generation [76], and drug design [32]. While several approaches
have been proposed for deep generative modeling, the two most promi-
nent ones are variational autoencoders (VAEs) [52] and generative
adversarial networks (GANs) [34].

VAEs and GANs have their own advantages and disadvantages.
GANs generally produce visually sharper results when applied to an
image dataset as they can implicitly model a complex distribution.
However, training GANs is difficult due to non-convergence and mode
collapse [33]. VAEs are easier to train and provide both a generative
model and an inference model. However, they tend to produce blurry
results when applied to images.

For designing our generative model, we use sliced-Wasserstein au-
toencoders (SWAEs) [56]. As a variant of VAE, it is easier to train
than GANs. In addition, it is capable of learning complex distribu-
tions. SWAEs allow us to shape the distribution of the latent space into
any samplable probability distribution without training an adversarial
network or defining a likelihood function.

2.3 Deep Learning on Graphs

Machine learning approaches to graph-structured data, such as social
networks and biological networks, require an effective representation
of the graph structure. Recently, many graph neural networks (GNNs)
have been proposed for representation learning on graphs, such as graph
convolutional networks [53], GraphSAGE [39], and graph isomorphism
networks [84]. They have achieved state-of-the-art performance for
many tasks, such as graph classification, node classification, and link
prediction. We also use GNNs for learning the complex relationship
between the structure and the layouts of a graph.

2

© 2019 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer Graphics.
The published version of this article is available at: 10.1109/TVCG.2019.2934396

Several generative models have been introduced for graph-structured
data using GNNs [18, 35, 61, 77, 87]. These models learn to generate
whole graphs for tasks that require new samples of graphs, such as de
novo drug design. However, generating a graph layout is a different
type of task, where the structure of a graph remains the same, but the
node attributes (i.e., positions) are different. Thus, we need a model
that learns to generate different node attributes of the same graph.

3 APPROACH

Our goal is to learn a generative model that can systematically visualize
a graph in diverse layouts from a collection of example layouts. We
describe the entire process for building a deep generative model for
graph layout, from collecting training data to designing our architecture.

3.1 Training Data Collection
Learning a generative model using deep neural networks requires a
large amount of training data. As a data-driven approach, the quality of
the training dataset is crucial to build an effective model. For our goal,
we need a large and diverse collection of layouts of the input graph.

Grid search is often used for parameter optimization [4], where a
set of values is selected for each parameter, and the model is evaluated
for each combination of the selected sets of values. It is often used for
producing multiple layouts of a graph. For example, Haleem et al. [38]
have used grid search for producing their training dataset. However,
the number of combinations of parameters increases exponentially with
each additional parameter. In addition, different sets of parameter
values are often required for different graphs. Therefore, it requires
expert knowledge of each layout method to carefully define the search
space for collecting the training data in a reasonable amount of time.

We collect training example layouts using multiple layout methods
following random search, where each layout is computed using ran-
domly assigned parameter values of a method. We uniformly sample a
value from a finite interval for a numerical parameter or a set of possible
values for a categorical parameter. Random search often outperforms
grid search for parameter optimization [4], especially when only few
parameters affect the final result. Because the effect of the same pa-
rameter value can vary greatly depending on the structure of the graph,
we believe random search would produce a more diverse set of layouts
than grid search. Moreover, for this approach, we only need to define
the interval of values for a numeric parameter, which is a simpler task
for non-experts than selecting specific values for grid search.

Computing a large number of layouts would take a considerable
amount of time. However, we can start training a model without having
the full training dataset, thanks to stochastic optimization methods. For
example, we can train a model with stochastic gradient descent [75],
where a small batch of training examples (typically a few dozens) are
fed to the model at each step. Thus, we can incrementally train the
model while generating the training examples simultaneously. This
allows the users to use our model as early as possible.

3.2 Layout Features
Selecting informative, discriminating, and independent features of the
input data is also an essential step for building an effective machine
learning model. With deep neural networks, we can use low-level
features of the input data without handcrafted feature engineering. For
example, the red, blue, and green channel values of pixels often are
directly used as the input feature of an image in deep learning models.

However, what would be a good feature of a graph layout? Although
the node positions can be a low-level feature of a layout, using the raw
positions as a feature has several issues.

Many graph layout methods do not use spatial position to directly en-
code attribute values of either nodes or edges. The methods are designed
to optimize a layout following certain heuristics, such as minimizing
the difference between the Euclidean and graph-theoretic distances,
reducing edge crossings, and minimizing node overlaps. Therefore, the
position of a node is often a side effect of the layout method; it does not
directly encode any attributes or structural properties of a node [65].

In addition, many layout methods are nondeterministic since they
employ randomness in the layout process to avoid local minima, such

as randomly initializing the positions of nodes [65]. Therefore, the
position of a node can significantly vary between different runs of the
same layout method with the same parameter setting. For these reasons,
the node positions are not a reliable feature of a layout.

Besides, due to the Gestalt principle of proximity [83], the nodes
placed close to each other would be perceived as a group whether or
not this relationship exists [63]. For example, some nodes might be
placed near each other because they are pushed away from elsewhere,
not because they are closely connected in the graph [65]. However,
the viewers can perceive them as a cluster because spatial proximity
strongly influences how the viewer perceives the relationships in the
graph [29]. Thus, spatial proximity is an essential feature of a layout.

We use the pairwise Euclidean distance of nodes in a layout as the
feature of the layout. As the spatial proximity of nodes is an intrinsic
feature of a layout, we can directly use the pairwise distance matrices to
compare different layouts, without considering the rotation or reflection
of the points. Furthermore, we can normalize a pairwise distance matrix
of nodes by its mean value for comparing layouts in different scales.

Therefore, for the positions of the nodes (P) of a given layout, we
compute the feature of the given layout by XL = D/D̄, where D is the
pairwise distance matrix of P and D̄ is the mean of D. Each row of XL
is the node-level feature of a layout for each node. Other variations of
the pairwise distance can be used as a feature, such as the Gaussian
kernel from the pairwise distance: exp

(
−D2/2σ

)
.

3.3 Structural Equivalence

Two nodes of a graph are said to be structurally equivalent if they have
the same set of neighbors. Structurally equivalent nodes (SENs) of a
graph are often placed at different locations, as many layout methods
have a procedure to prevent overlapping. For example, force-directed
layout methods apply repulsive forces between all the nodes of a graph.
As the layout results are often nondeterministic, the positions of SENs
are mainly determined by the randomness in the layout method.
For instance, the figure on the right shows two differ-
ent layout results of the same graph using the same
layout method (sfdp [43]) with the same default pa-
rameter setting. The blue nodes are the same set of
SENs. However, the arrangements of the blue nodes
between the two layouts are quite different. In the
top layout, the nodes {6,2,4} are closer to {7,8}
than {3,5,1}. In contrast, in the bottom layout, the
nodes {5,3,4} are closer to {7,8} than {2,6,1}. This
presents a challenge because a permutation invariant measure of simi-
larity is needed for the same set of SENs. In other words, we need a
method to permute the same set of SENs, from one possible arrange-
ment to the other, for a visually correct similarity measure.

To address this issue, we compare two different layouts of the same
set of SENs using the Gromov–Wasserstein (GW) distance [64, 70]:

GW(C,C′) = min
T ∑

i, j,k,l
L
(

Ci,k,C
′
j,l

)
Ti, j Tk,l , (1)

where C and C′ are cost matrices representing either similarities or
distances between the objects of each metric space, L is a loss function
that measures the discrepancy between the two cost matrices (e.g., L2
loss), and T is a permutation matrix, which couples the two metric
spaces, that minimizes L. The GW distance measures the difference be-
tween two metric spaces. For example, it can measure the dissimilarity
between two point clouds, invariant to the permutations of the points.

For a more efficient computation, we do not backpropagate through
the GW distance in the optimization process of our model. Instead, we
use the permutation matrix T to permute the same set of SENs. We
describe this in more detail in Sect. 3.5

3.4 Architecture

We design an encoder-decoder architecture that learns a generative
model for graph layout. Our architecture and optimization process
generally follow the framework of VAEs [52]. The overview of our
architecture is shown in Fig. 2.

3

https://doi.org/10.1109/TVCG.2019.2934396

�
�
�

�
�
�

�
�
�

�
��

�
�����

A

XL X'L
zL

XV

Encoder Decoder

������

�������

�������

�
�
�

�
�
�

�
�
�

�
��

�
�����

���
���

P'

P
a

b

c d e

f g

Fig. 2. Our encoder-decoder architecture that learns a generative model from a collection of example layouts. We describe it in Sect. 3

Preliminaries An autoencoder (AE) learns to encode a high-
dimensional input object to a lower-dimensional latent space and then
decodes the latent representation to reconstruct the input object. A
classical AE is typically trained to minimize reconstruction loss, which
measures the dissimilarity between the input object and the recon-
structed input object. By training an AE to learn significantly lower-
dimensional representations than the original dimensionality of the
input objects, the model is encouraged to produce highly compressed
representations that capture the essence of the input objects.

A classical AE does not have any regularization of the latent rep-
resentation. This leads to an arbitrary distribution of the latent space,
which makes it difficult to understand the shape of the latent space.
Therefore, if we decode some area of the latent space, we would get
reconstructed objects that do not look like any of the input objects, as
that area has not been trained for reconstructing any input objects.

VAEs [52] extend the classical AEs by minimizing variational loss,
which measures the difference of the distribution of the input objects’
latent representations and a prior distribution. Minimizing the varia-
tional loss encourages VAEs to learn the latent space that follows a
predefined structure (i.e., prior distribution). This allows us to know
which part of the latent space is trained with some input objects. Thus,
it is easy to generate a new object similar to some of the input objects.

Encoder For our problem, the input objects are graph layouts,
i.e., the positions of nodes (P, each row is the position of a node).
We first compute the feature of a layout (XL) as discussed in Sect. 3.2
(Fig. 2a), where each row corresponds to the input feature of a node.

The encoder takes the feature of a layout (XL) and the structure of a
graph (A, the adjacency matrix), as shown in Fig. 2b. Then, it outputs
the latent representation of a layout (zL). We use graph neural networks
(GNNs) to take the graph structure into account in the learning process.

In general, GNNs learn the representation of a node following a re-
cursive neighborhood aggregation (or message passing) scheme, where
the representation of a node is derived by recursively aggregating and
transforming the representations of its neighbors. For instance, graph
isomorphism networks (GINs) [84] update node representations as:

h(k)v = MLP(k)
(
(1+ ε

(k))·h(k−1)
v + f (k)

({
h(k−1)

u :u ∈N (v)
}))

, (2)

where h(k)v is the feature vector of node v at the k-th aggregation step
(h(0)v is the input node feature), N (v) is a set of neighbors of node v,
f is a function that aggregates the representations of N (v), such as
element-wise mean, ε is a learnable parameter or a fixed scalar that
weights the representation of node v and the aggregated representation
of N (v), and MLP is a multi-layer perceptron to learn a function that
transforms node representations. After k steps of aggregation, our
encoder produces the latent representation of a node, which captures
the information within the node’s k-hop neighborhood.

The aggregation scheme of GNNs corresponds to the subtree struc-
ture rooted at each node, where it learns a more global representation of
a graph as the number of aggregations steps increases [84]. Therefore,
depending on the graph structure, an earlier step may learn a better
representation of a node. To consider all representations at different ag-
gregation steps, we use the outputs of all GNN layers. This is achieved
by concatenating the outputs of all GNN layers (Fig. 2c) similar to [85].

The graph-level representation of a layout is obtained with a readout
function (Fig. 2d). A readout function should be permutation invariant
to learn the same graph-level representation of a graph, regardless of the
ordering of the nodes. It can be a simple element-wise mean pooling or
a more advanced graph-level pooling, such as DiffPool [86]. We use
MLP to produce the final output representation of a layout zL (Fig. 2e).

Although we could use a higher-dimensional space, we construct a
2D latent space since users can intuitively navigate the latent space. By
mapping a grid of generated samples, a 2D latent space can be used
as a WYSIWYG interface (more in Sect. 5). For this, we set the prior
distribution as the uniform distribution in [−1,1]2. Thus, the encoder
produces a 2D vector representation of a layout (zL) in [−1,1]2.

Fusion Layer The encoder produces a graph-level representation
of each layout (zL). If we only use this graph-level representation, all
nodes will have the same feature value for the decoder. To distinguish
the individual nodes, we use one-hot encoding of the nodes (i.e., identity
matrix) as the feature of the nodes (XV), similar to the featureless case
of GCN [53]. Then, we combine the graph-level representation of
a layout (zL) and node-level features (XV) using a fusion layer [46]
(Fig. 2f). It fuses zL and XV by concatenating each row of XV with zL.

Decoder The decoder takes the fused features and learns to re-
construct the input layouts, i.e., it reconstructs the position of the nodes
(P′). The decoder has a similar architecture to the encoder, except that
it does not have a readout function, as the output of the decoder is
a node-level representation, i.e., the positions of the nodes (P′). The
feature of the reconstructed layout (X ′L) is computed for measuring the
reconstruction loss (Fig. 2g). After training, users can generate diverse
layouts by feeding different zL values to the decoder.

3.5 Training
Following the framework of VAEs [52], we learn the parameters of the
neural network used in our model by minimizing the reconstruction
loss (LX) and the variational loss (LZ).

The reconstruction loss (LX) measures the difference between the
input layout (P) and its reconstructed layout (P′). As we have discussed
in Sect. 3.2, we compare the features of the two layouts (X and X ′) to
measure the dissimilarity between them. For example, we can use the
L1 loss function between the two layouts LX = ‖XL−X ′L‖1.

As we have discussed in Sect. 3.3, for the same set of structurally
equivalent nodes (SENs) in a graph, we use the Gromov–Wasserstein
(GW) distance between the two layouts (P and P′) for the comparison.
However, for a more efficient computation, we do not backpropagate
through the GW distance in the optimization process. Computing GW
yields a permutation matrix (T in Eq. 1), as it is based on ideas from
mass transportation [80]. We use this permutation matrix to permute
the input layout P̂ = T P and compute the feature of the permuted
input layout X̂L. Then, we compute the reconstruction loss between
the permuted input layout (P̂) and the reconstructed layout (P′). For
example, if we use the L1 loss, we can compute the reconstruction loss
as LX = ‖X̂L−X ′L‖1. With this method, we can save computation cost
for the backpropagation through the complex GW computation, and we
still can compare the different layouts of the SENs properly, without
affecting the model performance.

In this work, we use the variational loss function defined in sliced-
Wasserstein autoencoders (SWAE) [56]:

SWc(p,q) =
1

L·M

L

∑
l=1

M

∑
m=1

c
(

θl · pi[m], θl ·q j[m]

)
, (3)

where p and q are the samples from two distributions, M is the number
of the samples, θl are random slices sampled from a uniform distri-
bution on a d-dimensional unit sphere (d is the dimension of p and
q), L is the number of random slices, i [m] and j [m] are the indices of
sorted θl · pi[m] and θl ·q j[m] with respect to m, correspondingly, c is a
transportation cost function (e.g., L2 loss).

4

© 2019 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer Graphics.
The published version of this article is available at: 10.1109/TVCG.2019.2934396

Table 1. The nine graphs used in the evaluation. |V |: the number of nodes,
|E|: the number of edges, |S|: the number of nodes having structural
equivalence, l: average path length.
Name Type |V | |E| |E|

/
|V | |S| |S|

/
|V | l Source

lesmis Co-occurrence 77 254 3.30 35 .455 2.61 [55, 59]
can96 Mesh structure 96 336 3.5 0 0 4.36 [17]
football Interaction network 115 613 5.33 0 0 2.49 [30, 59]
rajat11 Circuit simulation 135 276 2.04 6 .044 5.57 [17]
jazz Collaboration 198 2,742 13.85 14 .071 2.22 [31, 59]
netsci Coauthorship 379 914 2.41 183 .483 6.03 [59, 66]
dwt419 Mesh structure 419 1,572 3.75 32 .076 8.97 [17]
asoiaf Co-occurrence 796 2,823 3.55 170 .214 3.41 [59]
bus1138 Power system 1,138 1,458 1.28 16 .014 12.71 [17]

Using sliced-Wasserstein distance for variational loss allows us to
shape the distribution of the latent space into any samplable probability
distribution without defining a likelihood function or training an adver-
sarial network. The variational loss of our model is LZ = SWc(ZL,ZP),
where ZP is a set of samples of the prior distribution.

The optimization objective can be written as:

argmin
Eθ ,Dφ

LX +βLZ , (4)

where Eθ is the encoder parameterized by θ , Dφ is the decoder param-
eterized by φ , and β is the relative importance of the two losses.

4 EVALUATION

The main goal of our evaluations is to see whether our model is capable
of learning and generalizing abstract concepts of graph layouts, not
just memorizing the training examples. We perform quantitative and
qualitative evaluations of the reconstruction of unseen layouts (i.e., the
test set), and a qualitative evaluation of the learned latent space.

4.1 Datasets
We use nine real-world graphs and 20,000 layouts per graph in our eval-
uations. For the quantitative reconstruction evaluation, as we perform
5-fold cross-validations, 16,000 layouts are used as the training set, and
4,000 layouts are used as the test set.

Graphs Table 1 lists the graphs used for our evaluations. These
include varying sizes and types of networks. We collected the graphs
from publicly available repositories [17, 59]. As disconnected com-
ponents can be laid out independently, we use the largest component
if a graph has multiple disconnected components (netsci). can96 and
football do not have any structurally equivalent nodes. Therefore, we
did not use the Gromov–Wasserstein distance [64].

Layouts We collected 20,000 layouts for each graph using the
four different layout methods and 5,000 different parameter settings per
method, where each parameter value is randomly assigned following
random search (Sect. 3.1). The layout methods and their parameter
ranges used in the evaluations are listed in Table 2.

While there is a plethora of layout methods, we selected these four
layout methods because they are capable of producing diverse layouts
by using the wide range of parameter values. Also, their publicly
available, robust implementations did not produce any degenerate case
in our evaluations. Lastly, these methods are efficient for computing a
large number of layouts in a reasonable amount of time.

The resulting 20,000 layouts vary in many ways ranging from aes-
thetically pleasing looks to incomprehensible ones (e.g., hairballs). We
did not remove any layout as we wanted to observe how the models
encapsulate the essence of graph layouts from the diverse layouts.

4.2 Models and Configurations
We compare eight different model designs to investigate the effects of
graph neural networks (GNNs) and Gromov–Wasserstein (GW) [64]
distance in our model. All the models we use have the same architecture
as described in Sect. 3.4, except for the GNN layers.

MLP: This model uses 1-layer perceptrons instead of GNNs; it does
not consider the structure of the input graph. The model serves as a
baseline for the investigation of the representational power of GNNs.

Table 2. The layout methods and parameter ranges used for produc-
ing training data in our experiments. The parameter names follow the
documentation of the implementations.
Method Parameter Ranges Implementation
D3 [8] link distance = [1.0, 100.0],

charge strength = [−100.0, −1.0],
velocity decay = [0.1, 0.7]

[7]

FA2 [48] gravity = [1.0, 10.0], scaling ratio = [1.0, 10.0],
adjust sizes = {true, false}, linlog = {true, false},
outbound attraction distribution = {true, false},
strong gravity = {true, false}

[3]

FM3 [37] force model = {new, fr},
galaxy choice = {lower mass, higher mass, uniform},
spring strength = [0.1, 1000.0],
repulsive spring strength = [0.1, 1000.0],
post spring strength = [0.01, 10.0],
post repulsive spring strength = [0.01, 10.0]

[12]

sfdp [43] repulsive force strength (C) = (0.0,5.0],
repulsive force exponent (p) = [0.0,5.0],
attractive force strength (mu) = (0.0,5.0],
attractive force exponent (mu_p) = [0.0,5.0]

[69]

GCN: This model uses graph convolutional networks (GCN) [53]
as the GNN layers. GCN is one of the early works of GNN.

GIN-1: This model uses graph isomorphism networks (GIN) [84]
as the GNN layers. 1-layer perceptrons are used as the MLP in Eq. 2.

GIN-MLP: This model uses GIN [84] as the GNN layers and 2-
layer perceptrons as the MLP in Eq. 2. We use the element-wise mean
for aggregating the representation of neighbors of a node in both the
GIN-1 and GIN-MLP models (f in Eq. 2).

Also, for the models that use the GW distance in the optimization pro-
cess, we add ‘+GW’ to its model name. For example, GIN-MLP+GW
denotes a model uses GIN-MLP as the GNN layers and the GW dis-
tance for comparing the structurally equivalent nodes (SENs) in the
optimization process. The models with GW [64] are only used for the
graphs having SENs (all the graphs except can96 and football).

We use the L1 loss function for the reconstruction loss. For the
variational loss, we draw the same number of samples as the batch
size from the prior distribution and set c(x,y) = ‖x− y‖2

2 to compute
the sliced-Wasserstein distances (Eq. 3). Also, we set β = 10 in the
optimization objective (Eq. 4).

We use varying numbers of hidden units in GNN layers depending on
the number of nodes: 32 units for lesmis, can96, football and rajat11,
64 units for jazz, netsci, and dwt419, and 128 units for asoiaf and
bus1138. The batch size also varies: 40 layouts per batch for asoiaf
and bus1138, and 100 for the other graphs.

All the models use three GNN layers (or perceptrons in the MLP
models), the exponential linear unit (ELU) [14] as the non-linearity,
batch normalization [47] on every hidden layers, and an element-wise
mean pooling as the readout function in the encoder. We use the Adam
optimizer [74] with a learning rate of 0.001 for all the models. We train
each model for 50 epochs.

4.3 Implementation
We implemented our models in PyTorch [67]. The machine we used
to generate the training data and to conduct the evaluations has an
Intel i7-5960X (8 cores at 3.0 GHz) CPU and an NVIDIA Titan X
(Maxwell) GPU. The implementation of each layout method used in
the evaluations is also shown in Table 2.

4.4 Test Set Reconstruction Loss
We compare the test layout reconstruction to evaluate the models’
generalization capability. Here, a layout reconstruction means the
model takes the input layout, encodes it to the latent space, and then
reconstructs it from the latent representation. The test reconstruction
loss quantifies the generalization ability of a model because it measures
the accuracy of reconstructing the layouts that the model did not see in
the training. We perform 5-fold cross-validations to compare the eight
model designs in terms of their test set reconstruction loss. To reduce
the effects of the fold assignments, we repeat the experiment 10 times
and report the mean losses.

5

https://doi.org/10.1109/TVCG.2019.2934396

.323 .324 .325 .326 .327

.300 .302 .304

.268 .270 .272 .275 .278

.186 .189 .192 .195

.279 .282 .285 .288 .291

.302 .305 .308 .310

.230 .235 .240 .245

.226 .227 .228 .229 .230 .231

.212 .214 .216
can96

football

lesmis

netsci

dwt419

jazz

asoiaf

rajat11

bus1138

test reconstruction loss

GIN−MLP+GW
GIN−MLP

GIN−1+GW
GIN−1

GCN+GW
GCN

MLP+GW
MLP

a

b

c

d

Fig. 3. Average test reconstruction losses. Since the value ranges vary
for each graph, we use individual ranges for each graph. The models with
Gromov–Wasserstein distance [64] are not used for can96 and football
as they do not have any structurally equivalent nodes.

Results We compare the eight models in terms of the average
reconstruction loss (lower is better) of the test sets, which are the 4,000
layouts that are not used to train the models. The results shown in Fig. 3
are the mean test reconstruction losses of the 10 trials of the 5-fold
cross-validations. The standard deviations are not shown as the values
are negligible: all standard deviations are less than 3×10−4.

Overall, the models with GIN-MLP and GW show the lowest loss of
all the graphs. GIN-MLP models show the lowest loss for the graphs
that do not have any structurally equivalent nodes, as shown in Fig. 3a,
where the models with GW are not used. Thus, GIN-MLP+GW models
show the lowest loss for all the other graphs (Fig. 3b–d).

Although the absolute differences vary, the ranking between the
models based on the neural network modules is consistent in all the
graphs. The ranking of the models with GW is as follows: GIN-
MLP+GW, GIN-1+GW, GCN+GW, and MLP+GW. The ranking of the
models without GW is as follows: GIN-MLP, GIN-1, GCN, and MLP.
In addition, the three different rankings of the models are found for the
graphs with structural equivalences (Fig. 3b–d).

Discussion In lesmis, netsci, and dwt419 (Fig. 3b), all the mod-
els with GW show a lower loss than the models without GW. We have
found that many nodes in the three graphs have structural equivalences
(|S|
/
|V | in Table 1). This shows that the GW helps the learning process,

especially for the graphs that have many structural equivalences.
For jazz and asoiaf (Fig. 3c), the models with GIN show better

results than the models without GIN. Although they also have a con-
siderable ratio of structural equivalences, GIN-MLP and GIN-1 show
lower reconstruction losses than GCN+GW and MLP+GW. Consid-
ering the number of nodes as shown in Table 1, we have found that
the two graphs (jazz and asoiaf) are dense and have a relatively small
average path length compared to the other graphs. This suggests the
GIN is important for dense and “small-world”-like networks [82].

For rajat11 and bus1138 (Fig. 3d), the ranking of the models is as
follows: GIN-MLP+GW, GIN-MLP, GIN-1+GW, GIN-1, GCN+GW,
GCN, MLP+GW, and MLP. We have found that these two graphs are
sparse and they have a small ratio of nodes with structural equiva-
lence. This suggests that the representational power of the GNNs has a
stronger effect than the usage of GW in such graphs.

4.5 Layout Metrics and Test Reconstruction Loss
To investigate our models’ behavior on reconstructing the test sets, we
analyze the correlations between the test reconstruction loss and each
of the two layout quality metrics of the test input layouts: crosslessness
[71] and shape-based metric [23]. Crosslessness [71] is a normalized
form of the number of edge crossings where a higher value means
fewer edge crossings. Shape-based metric [23] measures the quality
of a layout based on the similarity between the graph and its shape
graph (a relative neighborhood graph of the node positions). We use the
Gabriel graph [27] as the shape graph of a layout. We use the models
with the lowest test reconstruction loss for each graph from Sect. 4.4.

Results The Pearson correlation coefficients show that the test
loss has strong negative correlations with both the crosslessness (c) and
the shape-based metric (s) (i.e., when the reconstruction loss of a test
input layout is low then its layout metrics are high). All the results are
statistically significant as all the p-values are less than 2.2×10−16:

lesmis can96 football rajat11 jazz netsci dwt419 asoiaf bus1138
c −.69355 −.704 −.703 −.521 −.877 −.488 −.586 −.782 −.517
s −.69364 −.812 −.350 −.707 −.749 −.630 −.715 −.311 −.706

Discussion The results show that our models learn better on how
to reconstruct the layouts with fewer edge crossings and are similar to
its shape graph. In other words, our models tend to generate “good”
layouts in terms of the two metrics, even if the models are not trained
to do so. We show detailed examples in Sect. 4.6.

4.6 Qualitative Results
We show the qualitative results of the layout reconstruction and the
learned latent space to discuss the behaviors of the models in detail.

GIN-MLP and GW The models with GIN-MLP and GW show
the lowest test reconstruction loss in Sect. 4.4. To further investigate,
we compare the reconstructed layouts of the lesmis graph, which has
the widest range of losses among the different models. Due to space
constraints, we discuss the difference between the four different models
(MLP, MLP+GW, GIN-MLP, and GIN-MLP+GW) on the lesmis graph.

Fig. 4 shows the qualitative results of reconstructing unseen test
input layouts, where a good generative model can produce diverse
layouts similar to the unseen input layouts. The lesmis graph has a
number of sets of SENs. In Fig. 4, the nodes with the same color, except
gray, are structurally equivalent to each other; they have the same set of
neighbors in the graph. The nodes in gray are structurally unique; each
of them has a unique relationship to the other nodes in the graph. For
example, the blue nodes (1–6) have the same relationship where they
are all connected to each other and to the two other nodes (7 and 8).

As described in Sect. 3.3, the locations of SENs are often not con-
sistent in different layouts. For example, the arrangements of the blue
nodes in the D3 layout and the FM3 layout are different (Fig. 4a). In the
D3 layout, the blue nodes are placed in the following clockwise order:
2, 1, 5, 3, 4, and 6, where the nodes {2,1,5} are closer to {7,8} than
{3,4,6}. However, in the FM3 layout, the clockwise order is 4, 2, 5, 1,
6, and 3, where the nodes {4,2,5} are closer to {7,8} than {1,6,3}.

The arrangements of the SENs in the reconstructed layouts vary
depending on the model. For example, the models with GW are able
to lay out the blue nodes (Fig. 4c and e) similar to the input layouts
(Fig. 4a). However, the models without GW fail to learn this and
produce collapsed placements (Fig. 4b and d). We suspect this is due
to the many possible permutations between a set of SENs. The models
without GW tend to place a set of SENs at the average position of the
SENs to reduce the average loss. However, the models with GW learn
about the generalized concept of the blue nodes’ arrangements and
produce similar arrangements as the test input layouts in a different
permutation of the SENs. The other sets of SENs show similar results
(e.g., the orange and green nodes in Fig. 4), where the models without
GW produce collapsed arrangements, but the models with GW produce
similar arrangements as the test input layouts.

In addition, the placements of the blue nodes are spatially consistent
across the different layouts using GIN-MLP+GW (Fig. 4e, h, and j)
than using MLP+GW (Fig. 4c, g, and i). This shows that the models
with GIN-MLP gain a more stable generalization of the arrangement of
SENs than the models with only MLP. Therefore, using GIN-MLP+GW
models, users can generate diverse layouts while preserving their mental
map across different layouts. This is not possible in many existing
layout methods due to their nondeterministic results [65].

There are other examples of the generalization capability of our
models. For example, Fig. 4f shows a different arrangement of the
blue nodes from Fig. 4a, where the layout in Fig. 4f has a star-like
arrangement with node 2 in the center. However, the reconstructed
layouts (Fig. 4h) of the layout in Fig. 4f are more similar to the layouts
in Fig. 4a. We have found that arrangements similar to the layouts in
Fig. 4a are more dominant in the training set.

6

© 2019 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer Graphics.
The published version of this article is available at: 10.1109/TVCG.2019.2934396

Fig. 4. Qualitative results of the lesmis graph using the four different models. The leftmost column shows the test input layouts that the models did
not see in their training session. The test input layouts are computed with randomly assigned parameter values as described in Sect. 4.1. The
other columns show the reconstructed layouts of the test inputs using the four models. The nodes with the same color, except gray, are structurally
equivalent to each other. The nodes in gray are structurally unique. The results are discussed in detail in Sect. 4.6.

Another example is the last row of the Fig. 4, where the input layouts
are hairballs. In contrast, the reconstructed layouts using our models
are more organized. This also shows that the models have a generalized
concept of graph layouts. This might explain the negative correlations
in Sect. 4.5 as the models do not reconstruct the same hairball layouts.

Multiple Graphs To demonstrate our models with more graphs,
Fig. 6 shows the qualitative results of five different graphs using the
GIN-MLP model for the football graph and the GIN-MLP+GW models
for the other graphs. The first three rows show that our models are ca-
pable of learning different styles of layouts. The bottom two rows show
the models’ behavior on hairball-like input layouts. We can see that
the reconstructed layouts are more organized. For example, the fourth
layout of dwt419 is twisted. However, the reconstructed layout is not
twisted but pinched near the center, like other layouts. These examples
might explain the negative correlations in Sect. 4.5 as the models do
not reconstruct hairball layouts well in favor of generalization.

Latent Space A common way to qualitatively evaluate a gener-
ative model is to show the interpolations between the different latent
variables [34, 36, 52, 56, 76]. If the transitions between the generated
samples based on the interpolation in the latent space are smooth, we
can conclude that the generative model has a generalization capability
of producing new samples that were not seen in training.

As our models are trained to construct a two-dimensional latent
space, we can show a grid of generated samples interpolating through-
out the latent space. We show the results of can96 and rajat11 in Fig. 7
and the result of the lesmis in Fig. 1. As we can see, the transitions
between the generated samples are smooth. Also, the latent space of
can96 is particularly interesting. It seems that the model learned to
generate different rotations of the 3D mesh. However, all of the layouts
used in this paper are 2D. In addition, the input feature of a layout is
the normalized pairwise distances between the nodes, as described in
Sect. 3.2, which do not explicitly convey any notion of 3D rotation.

Based on these findings, we conclude that our models are capable of
learning the abstract concepts of graph layouts and generating diverse
layouts. An interactive demo is available in the supplementary material
[1] for readers to explore the latent spaces of all the graphs using all
the models we have described in this paper.

4.7 Computation Time

We report and discuss the layout computation time, model training time,
and layout generation time of each graph using the models with the
lowest test reconstruction loss in Sect. 4.4. The layout computation
time and model training time are shown in Fig. 5.

As we collect a large number of layouts (16K samples per graph
for training), computing layouts is the most time-consuming step in
building the models. However, we can incrementally generate training
examples and train the model simultaneously.

We have found that the number of nodes having structural equiv-
alence (|S| in Table 1) is a strong factor to the training time. It is
directly related to the complexity of the GW distance [64] computation
(Sect. 3.3). If we can build a generative model using GANs [34], in-
stead VAEs [52] (SWAE [56] in this paper), we can remove the GW
distance computation in the process (more in Sect. 6). This can sig-
nificantly reduce the training time. Also, the number of edges might
be a stronger factor to the training time than the number of nodes as
we have implemented GNNs using sparse matrices. For a small graph
(e.g., |V |< 200), it might be faster to use dense matrices for GNNs.

In addition, the models converge quickly as shown in Fig. 5. Al-

Name D3 FA2 FM3 sfdp Epoch
lesmis .195 .620 .015 .229 76.7
can96 .239 .695 .021 .329 34.7
football .302 .845 .033 .486 43.9
rajat11 .358 .856 .044 .586 45.1
jazz .599 1.61 .116 1.18 212
netsci 1.14 2.50 .236 2.59 281
dwt419 1.24 3.08 .257 3.08 211
asoiaf 3.03 9.42 .620 9.16 690
bus1138 4.41 7.88 1.07 10.3 509

0.2

0.3

0.4

0 10 20 30 40 50
epochs

lo
ss

lesmis
can96
football

rajat11
jazz
netsci

dwt419
asoiaf
bus1138

Fig. 5. Computation time. The left table shows the layout computation
times (D3, FA2, FM3, and sfdp) for collecting the training data and training
the model (Epoch). The layout computation times are the mean seconds
for computing one layout per method per graph. The training computation
times are the mean seconds for training one epoch (16K samples) per
graph. The right chart shows that the average training loss is updated
every batch to demonstrate that our models converge quickly.

7

https://doi.org/10.1109/TVCG.2019.2934396

Fig. 6. Qualitative results of the five different graphs. The GIN-MLP model is used for the football graph, and the GIN-MLP+GW models are used for
the other graphs. For each pair of layouts, the left is the test input, and the right is the reconstructed layout. The first three rows show the different
styles of layouts for each graph, and the bottom two rows show the reconstruction results of hairball layouts. The results are discussed in Sect. 4.6.

though the models are trained for 50 epochs for our evaluations, the
models are capable of generating diverse layouts less than 10 epochs.

After training, the mean layout generation times for all the graphs are
less than .003 s. Thus, users can explore and generate diverse layouts
in real time, which is demonstrated in the supplementary material [1].

Based on these findings, we expect training a new model for a graph
from scratch without any layout examples can be done within a few
minutes for a small graph (|V |< 200, |E|< 500) and a few hours for
larger graphs. Although it is a considerable computation time, our
model can be trained in a fully unsupervised manner; it does not require
users to be present during the training. Thus, our approach can save
the user’s time—which is much more valuable than the computer’s
time—by preventing them from blindly searching for a good layout.

5 USAGE SCENARIO

The previous section shows that our model is capable of generating
diverse layouts by learning from existing layouts. This section describes
how users can use the trained model to produce a layout that they want.

After training, users can generate diverse layouts of the input graph
by feeding different values of the latent variable (zL in Sect. 3.4) to
the decoder. Thus, the interpretability of the latent space is important
for users to easily produce a layout that they want. We achieve this by
using a 2D latent space rather than a higher-dimensional space. A 2D
latent space is straightforward to map additional information onto it.

By mapping generated samples on the 2D latent space (e.g., the
sample grid in Fig. 1 and Fig. 7), we can build a what-you-see-is-what-
you-get (WYSIWYG) interface for users to intuitively produce a layout
that they want. Finding a desired layout from an unorganized list of
multiple layouts (e.g., the training samples in Fig. 1) often results in
a haphazard and tedious exploration [5]. However, the sample grid
provides an organized overview with a number of representative layouts
of the input graph. With the sample grid as a guide, users can intuitively
set the latent variable (zL) to produce a suitable layout by pointing a
location in the 2D latent space. They also can directly select the desired
one from the samples. The WYSIWYG interfaces of each graph are
demonstrated in the supplementary material [1].

Moreover, our approach produces spatially stable layouts. As we
have discussed in Sect. 3.2, many layout methods are nondeterministic.
For example, in the training samples of Fig. 1, the locations of the

orange nodes vary greatly across different layouts. Thus, identifying
the same node(s) among these layouts is difficult because region-based
identifications cannot be utilized [65]. Comparing nondeterministic
layouts often requires a considerable amount of the user’s time since
they need to match the nodes between different layouts. However, as
shown in Fig. 1 and Fig. 7, our models produce spatially stable layouts,
where the same node is placed in similar locations across different
layouts. Hence, identifying the same node(s) in different layouts is
straightforward, and thus comparing layouts becomes an easy task.

Using our approach, users can directly see what the layout results
will look like with the sample grid. Also, spatially-stable layout gener-
ation enables users to effortlessly compare various layouts of the input
graph. Thus, users can intuitively produce a layout that best suits their
requirements (e.g., highlighting the interconnections between different
communities) without blindly tweaking parameters of layout methods.

By mapping layout metrics on the latent space, users can directly
see the complex patterns of the metrics on diverse layouts of a graph.
Fig. 7 (the rightmost column) shows heatmaps of four layout metrics
of 540 × 540 layouts of rajat11. While the sample grid shows smooth
transitions between different layouts, the heatmaps show interesting pat-
terns. For example, there are several steep “valleys” in the heatmap of
crosslessness [71], where the darker colors mean more edge crossings.
This shows crosslessness is sensitive to certain changes in the layouts.
Using the heatmap as an interface, users can exactly see these changes
through producing several layouts by pointing the locations across the
valleys in the heatmap. Thus, experts in graph visualization can use
the heatmaps for designing layout metrics as they can understand how
layout metrics behave on various layouts with concrete examples.

Our approach is an example of artificial intelligence augmentation
[10], where our generative model builds a new type of user interface
with the latent space to augment human intelligence tasks, such as
creating a good layout and analyzing the patterns of layout metrics.

6 DISCUSSION

Sect. 4 and Sect. 5 have discussed the evaluation results and usage
scenarios. This section discusses the limitations and future research
directions of our approach. This paper has introduced the first approach
to generative modeling for graph layout. As the first approach in a new
area, there are several limitations we hope to solve in the future.

8

© 2019 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer Graphics.
The published version of this article is available at: 10.1109/TVCG.2019.2934396

rajat11can96

crosslessness

shape

min. angle

unif. edge len.

Fig. 7. Visualization of the latent spaces of can96 and rajat11. The GIN-MLP model is used for can96 and the GIN-MLP+GW model is used for
rajat11. The grids of layouts are the generated samples by the decoding of a 8 × 8 grid in [−1,1]2. Also, Fig. 1 shows the sample grid of lesmis.
The smooth transitions between the generated layouts show that the capability of generalization of our models. Novices can directly use this as a
WYSIWYG interface to generate a layout they want. The rightmost column shows the heatmaps of the four layout metrics of 540 × 540 generated
sample layouts in [−1,1]2 of rajat11. Experts can use the heatmaps to see complex patterns of layout metrics on diverse layouts. The results are
discussed in detail in Sect. 4.6 and Sect. 5. The results of other graphs and models are available in the supplementary material [1].

The maximum size of a graph in our approach is currently limited
by the capacity of GPU memory. This is the reason we could not
use a larger batch size for asoiaf and bus1138 (40 layouts per batch,
while 100 layouts per batch for the other graphs). As a sampling-based
GNN [15] scalable to millions of nodes has been recently introduced,
we expect our approach can be applied to larger graphs in the future.

Although our model is capable of generalizing for different layouts
of the same graph, it does not generalize for both different graphs and
different layouts. Therefore, we need to train a new model for each
graph. Our model can be trained in a fully unsupervised manner and
can be trained incrementally while generating the training samples si-
multaneously. A better model would learn to generalize across different
graphs so that it can be used for any unseen graphs. However, this is
a very challenging goal. Most machine learning tasks that require the
generalization across different graphs (e.g., graph classifications) aims
to learn graph-level representations. But the generalization across both
graphs and their layouts in a single model requires to learn the latent
representations of nodes across many different graphs. Unfortunately,
this is still an open problem.

Our model learns the data distribution of the training set. However,
a valid layout can be ignored in favor of generalization. For example,
the arrangement of the blue vertices in Fig. 4f is a valid layout, but it
is a rare type of arrangement in the training dataset. Thus, the model
produces a more general arrangement following the distribution of the
training set (Fig. 4h). As a valid layout can be an outlier in the training
dataset, we need an additional measure to not over-generalize valid
layouts in the training dataset and properly reconstruct valid layouts.

We have used a sliced-Wasserstein autoencoder [56], a variant of
VAE [52], for designing our architecture. As a VAE, we explicitly
define a reconstruction loss for the training. However, this was chal-
lenging for comparing two different layouts of a set of structurally
equivalent nodes. In this paper, we have used the GW distance [64] to
address this issue. Another possible solution is to use GANs, which do
not require an explicit reconstruction loss function in the optimization
process. Thus, using a GAN can reduce the computational cost because
computing GW distance is no longer required. While we did not use
GANs due to mode collapse and non-convergence [33], we believe it is
possible to use GANs for graph layout in the future.

In this work, we map a number of generated samples on a 2D latent

space to directly see the latent space. However, the learned latent
representation of our model is entangled, which means each dimension
of the latent space is not interpretable. As we can see from the grids of
samples in Fig. 1 and Fig. 7, although we can see what the generated
layouts look like with different latent variables, we cannot interpret
the meaning of each dimension. Thus, it is difficult to use a higher-
dimensional latent space for our purpose, as we cannot either interpret
each dimension or see the overview of the latent space. Learning
a model that produces disentangled representations is an important
research direction in generative modeling [42]. With a generative model
that can learn a disentangled latent space, we can produce a layout in a
more interpretable way, where each dimension only changes a specific
aspect of a layout independently. For example, if one dimension of
the latent representation encodes the area of clusters of nodes, we can
directly manipulate a layout to change the cluster size of a layout.

7 CONCLUSION

Graph-structured data is one of the primary classes of information.
Creating a good layout of a graph for visualization is non-trivial. The
large number of available layout methods and each method’s associated
parameter space confuse even the experts. The trial-and-error efforts
require a significant amount of the user’s time. We have introduced a
fundamentally new approach to graph visualization, where we train a
generative model that learns how to visualize a graph from a collection
of examples. Users can use the trained model as a WYSIWYG interface
to effortlessly generate a desired layout of the input graph.

Generative modeling for image datasets has shown dramatic perfor-
mance improvement; it took only four years from the first model of
generative adversarial networks [34] to an advanced model that can
generate high-resolution images [50]. There can be many exciting ways
to use generative models for graph visualization, or even other types
of data visualization. We hope this paper will encourage others to join
this exciting area of study to accelerate designing generative models
for revolutionizing visualization technology.

ACKNOWLEDGMENTS

This research has been sponsored in part by the U.S. National Science
Foundation through grant IIS-1741536.

9

https://doi.org/10.1109/TVCG.2019.2934396

REFERENCES

[1] The Supplementary Material. http://kwonoh.net/dgl
[2] H. J. C. Barbosa and A. M. S. Barreto. An Interactive Genetic Algo-

rithm with Co-evolution of Weights for Multiobjective Problems. In Proc.
Annual Conference on Genetic and Evolutionary Computation, pages
203–210, 2001.

[3] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An Open Source
Software for Exploring and Manipulating Networks. In Proc. International
AAAI Conference on Weblogs and Social Media, 2009.

[4] J. Bergstra and Y. Bengio. Random Search for Hyper-parameter Optimiza-
tion. Journal of Machine Learning Research, 13(1):281–305, 2012.

[5] T. C. Biedl, J. Marks, K. Ryall, and S. Whitesides. Graph Multidrawing:
Finding Nice Drawings Without Defining Nice. In Proc. Graph Drawing,
pages 347–355, 1998.

[6] J. Blythe, C. McGrath, and D. Krackhardt. The Effect of Graph Layout
on Inference from Social Network Data. In Proc. Graph Drawing, pages
40–51, 1996.

[7] M. Bostock. Force-directed Graph Layout Using Velocity Verlet Integra-
tion. https://github.com/d3/d3-force, 2011.

[8] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011.

[9] U. Brandes and C. Pich. Eigensolver Methods for Progressive Multidi-
mensional Scaling of Large Data. In Proc. Graph Drawing, pages 42–53,
2006.

[10] S. Carter and M. Nielsen. Using Artificial Intelligence to Augment Human
Intelligence. Distill, 2017. https://distill.pub/2017/aia.

[11] W. Chen, F. Guo, D. Han, J. Pan, X. Nie, J. Xia, and X. Zhang. Structure-
Based Suggestive Exploration: A New Approach for Effective Exploration
of Large Networks. IEEE Transactions on Visualization and Computer
Graphics, 25(1):555–565, 2019.

[12] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and
P. Mutzel. The Open Graph Drawing Framework (OGDF). In R. Tamassia,
editor, Handbook of Graph Drawing and Visualization, chapter 17. CRC
Press, 2013.

[13] A. Civril, M. Magdon-Ismail, and E. Bocek-Rivele. SDE: Graph Drawing
Using Spectral Distance Embedding. In Proc. Graph Drawing, pages
512–513, 2005.

[14] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and Accurate Deep
Network Learning by Exponential Linear Units (ELUs). In Proc. Interna-
tional Conference on Learning Representations, 2016.

[15] H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song. Learning Steady-
States of Iterative Algorithms over Graphs. In Proc. International Confer-
ence on Machine Learning, volume 80, pages 1106–1114, 2018.

[16] R. Davidson and D. Harel. Drawing Graphs Nicely Using Simulated
Annealing. ACM Transactions on Graphics, 15(4):301–331, 1996.

[17] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection.
ACM Transactions on Mathematical Software, 38(1):1:1–1:25, 2011.

[18] N. De Cao and T. Kipf. MolGAN: An Implicit Generative Model for
Small Molecular Graphs. Proc. ICML 2018 Workshop on Theoretical
Foundations and Applications of Deep Generative Models, 2018.

[19] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for
Drawing Graphs: An Annotated Bibliography. Computational Geometry:
Theory and Applications, 4(5):235–282, 1994.

[20] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1998.

[21] C. Dunne and B. Shneiderman. Improving Graph Drawing Readability by
Incorporating Readability Metrics: A Software Tool for Network Analysts.
Technical Report HCIL-2009-13, University of Maryland, 2009.

[22] P. Eades. A Heuristic for Graph Drawing. Congressus Numerantium,
42:149–160, 1984.

[23] P. Eades, S.-H. Hong, A. Nguyen, and K. Klein. Shape-Based Quality
Metrics for Large Graph Visualization. Journal of Graph Algorithms and
Applications, 21(1):29–53, 2017.

[24] A. Frick, A. Ludwig, and H. Mehldau. A Fast Adaptive Layout Algorithm
for Undirected Graphs. In Proc. Graph Drawing, pages 388–403, 1994.

[25] Y. Frishman and A. Tal. Multi-Level Graph Layout on the GPU. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1310–1319,
2007.

[26] T. M. J. Fruchterman and E. M. Reingold. Graph Drawing by Force-
directed Placement. Software: Practice and Experience, 21(11):1129–
1164, 1984.

[27] K. R. Gabriel and R. R. Sokal. A New Statistical Approach to Geographic
Variation Analysis. Systematic Biology, 18(3):259–278, 1969.

[28] P. Gajer and S. G. Kobourov. GRIP: Graph Drawing with Intelligent
Placement. Journal of Graph Algorithms and Applications, 6(3):203–224,
2002.

[29] H. Gibson, J. Faith, and P. Vickers. A Survey of Two-dimensional Graph
Layout Techniques for Information Visualization. Information Visualiza-
tion, 12(3–4):324–357, 2013.

[30] M. Girvan and M. E. J. Newman. Community Structure in Social and
Biological Networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[31] P. M. Gleiser and D. Leon. Community Structure in Jazz. Advances in
Complex Systems, 6(4):565–573, 2003.

[32] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato,
B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,
R. P. Adams, and A. Aspuru-Guzik. Automatic Chemical Design Using
a Data-Driven Continuous Representation of Molecules. ACS Central
Science, 4(2):268–276, 2018.

[33] I. Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks.
arXiv preprint, arXiv:1701.00160, 2017.

[34] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative Adversarial Nets. In
Proc. Advances in Neural Information Processing Systems, pages 2672–
2680, 2014.

[35] A. Grover, A. Zweig, and S. Ermon. Graphite: Iterative Generative
Modeling of Graphs. In Proc. International Conference on Machine
Learning, pages 2434–2444, 2019.

[36] D. Ha and D. Eck. A Neural Representation of Sketch Drawings. In Proc.
International Conference on Learning Representations, 2018.

[37] S. Hachul and M. Jünger. Drawing Large Graphs with a Potential-Field-
Based Multilevel Algorithm. In Proc. Graph Drawing, pages 285–295,
2004.

[38] H. Haleem, Y. Wang, A. Puri, S. Wadhwa, and H. Qu. Evaluating the
Readability of Force Directed Graph Layouts: A Deep Learning Approach.
IEEE Computer Graphics and Applications, 39(4):40–53, 2019.

[39] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive Representation
Learning on Large Graphs. In Proc. Advances in Neural Information
Processing Systems, pages 1024–1034, 2017.

[40] D. Harel and Y. Koren. A Fast Multi-Scale Method for Drawing Large
Graphs. Journal of Graph Algorithms and Applications, 6(3):179–202,
2002.

[41] D. Harel and Y. Koren. Graph Drawing by High-Dimensional Embedding.
Journal of Graph Algorithms and Applications, 8(2):195–214, 2004.

[42] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mo-
hamed, and A. Lerchner. β -VAE: Learning Basic Visual Concepts with a
Constrained Variational Framework. In Proc. International Conference on
Learning Representations, 2017.

[43] Y. Hu. Efficient and High Quality Force-Directed Graph Drawing. Mathe-
matica Journal, 10(1):37–71, 2005.

[44] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing. Toward
Controlled Generation of Text. In Proc. International Conference on
Machine Learning, pages 1587–1596, 2017.

[45] W. Huang, S.-H. Hong, and P. Eades. Effects of Sociogram Drawing
Conventions and Edge Crossings in Social Network Visualization. Journal
of Graph Algorithms and Applications, 11(2):397–429, 2007.

[46] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let There Be Color!: Joint
End-to-end Learning of Global and Local Image Priors for Automatic
Image Colorization with Simultaneous Classification. ACM Transactions
on Graphics, 35(4):110:1–110:11, 2016.

[47] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. In Proc. In International
Conference on Machine Learning, pages 448–456, 2015.

[48] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian. ForceAtlas2, a
Continuous Graph Layout Algorithm for Handy Network Visualization
Designed for the Gephi Software. PLOS ONE, 9(6):e98679, 2014.

[49] T. Kamada and S. Kawai. An Algorithm for Drawing General Undirected
Graphs. Information Processing Letters, 31(1):7–15, 1989.

[50] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive Growing of GANs
for Improved Quality, Stability, and Variation. In Proc. International
Conference on Learning Representations, 2018.

[51] S. Kieffer, T. Dwyer, K. Marriott, and M. Wybrow. HOLA: Human-like
Orthogonal Network Layout. IEEE Transactions on Visualization and
Computer Graphics, 12(1):349–358, 2016.

10

http://kwonoh.net/dgl
https://github.com/d3/d3-force

© 2019 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and Computer Graphics.
The published version of this article is available at: 10.1109/TVCG.2019.2934396

[52] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In Proc.
International Conference on Learning Representations, 2014.

[53] T. N. Kipf and M. Welling. Semi-Supervised Classification with Graph
Convolutional Networks. In Proc. International Conference on Learning
Representations, 2016.

[54] M. Klammler, T. Mchedlidze, and A. Pak. Aesthetic Discrimination of
Graph Layouts. In Proc. Graph Drawing and Network Visualization, pages
169–184, 2018.

[55] D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial
Computing. Addison-Wesley, 1993.

[56] S. Kolouri, P. E. Pope, C. E. Martin, and G. K. Rohde. Sliced-Wasserstein
Auto-Encoders. In Proc. International Conference on Learning Represen-
tations, 2019.

[57] Y. Koren. Drawing Graphs by Eigenvectors: Theory and Practice. Com-
puters and Mathematics with Applications, 49(11–12):1867–1888, 2005.

[58] J. F. Kruiger, P. E. Rauber, R. M. Martins, A. Kerren, S. Kobourov, and
A. C. Telea. Graph Layouts by t-SNE. Computer Graphics Forum,
36(3):283–294, June 2017.

[59] J. Kunegis. KONECT – The Koblenz Network Collection. In Proc.
International Conference on World Wide Web Companion, pages 1343–
1350, 2013.

[60] O.-H. Kwon, T. Crnovrsanin, and K.-L. Ma. What Would a Graph Look
Like in This Layout? A Machine Learning Approach to Large Graph Vi-
sualization. IEEE Transactions on Visualization and Computer Graphics,
24(1):478–488, 2018.

[61] T. Ma, J. Chen, and C. Xiao. Constrained Generation of Semantically Valid
Graphs via Regularizing Variational Autoencoders. In Proc. Advances in
Neural Information Processing Systems 31, pages 7113–7124. 2018.

[62] T. Masui. Evolutionary Learning of Graph Layout Constraints from
Examples. In Proc. ACM Symposium on User Interface Software and
Technology, pages 103–108, 1994.

[63] C. McGrath, J. Blythe, and D. Krackhardt. Seeing Groups in Graph Layout.
Connections, 19(2):22–29, 1996.

[64] F. Mèmoli. Gromov–Wasserstein Distances and the Metric Approach to
Object Matching. Foundations of Computational Mathematics, 11:417–
487, 2011.

[65] T. Munzner. Visualization Analysis and Design. CRC Press, 2014.
[66] M. E. J. Newman. Finding Community Structure in Networks Using the

Eigenvectors of Matrices. Physical Review E, 74:036104, 2006.
[67] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in
PyTorch. In Proc. NIPS 2017 Autodiff Workshop, 2017.

[68] T. P. Peixoto. Hierarchical Block Structures and High-Resolution Model
Selection in Large Networks. Physical Review X, 4:011047, 2014.

[69] T. P. Peixoto. The graph-tool Python Library. https://graph-tool.
skewed.de, 2014.

[70] G. Peyré, M. Cuturi, and J. Solomon. Gromov-Wasserstein Averaging
of Kernel and Distance Matrices. In Proc. International Conference on
Machine Learning, pages 2664–2672, 2016.

[71] H. C. Purchase. Metrics for Graph Drawing Aesthetics. Journal of Visual
Languages and Computing, 13(5):501–516, 2002.

[72] H. C. Purchase, J.-A. Allder, and D. Carrington. Graph Layout Aesthetics
in UML Diagrams: User Preferences. Journal of Graph Algorithms and
Applications, 6(3):255–279, 2002.

[73] H. C. Purchase, C. Pilcher, and B. Plimmer. Graph Drawing Aesthetics–
Created by Users, Not Algorithms. IEEE Transactions on Visualization
and Computer Graphics, 18(1):81–92, 2012.

[74] S. J. Reddi, S. Kale, and S. Kumar. On the Convergence of Adam and
Beyond. In Proc. International Conference on Learning Representations,
2018.

[75] H. Robbins and S. Monro. A Stochastic Approximation Method. The
Annals of Mathematical Statistics, 22(3):400–407, 1951.

[76] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck. A Hierarchical
Latent Vector Model for Learning Long-Term Structure in Music. In Proc.
International Conference on Machine Learning, 2018.

[77] M. Simonovsky and N. Komodakis. GraphVAE: Towards Genera-
tion of Small Graphs Using Variational Autoencoders. In V. Kůrková,
Y. Manolopoulos, B. Hammer, L. Iliadis, and I. Maglogiannis, editors,
Proc. International Conference on Artificial Neural Networks, pages 412–
422, 2018.

[78] M. Spönemann, B. Duderstadt, and R. von Hanxleden. Evolutionary Meta
Layout of Graphs. In Proc. Diagrams, pages 16–30, 2014.

[79] M. Tennekes and E. de Jonge. Tree Colors: Color Schemes for Tree-
Structured Data. IEEE Transactions on Visualization and Computer
Graphics, 20(12):2072–2081, 2014.

[80] C. Villani. Topics in Optimal Transportation, volume 58 of Graduate
Studies in Mathematics. American Mathematical Society, 2003.

[81] C. Walshaw. A Multilevel Algorithm for Force-Directed Graph-Drawing.
Journal of Graph Algorithms and Applications, 7(3):253–285, 2003.

[82] D. J. Watts and S. H. Strogatz. Collective Dynamics of ‘Small-World’
Networks. Nature, 393:440–442, 1998.

[83] M. Wertheimer. Untersuchungen zur Lehre von der Gestalt. II. Psycholo-
gische Forschung, 4(1):301–350, 1923.

[84] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How Powerful are Graph
Neural Networks? In Proc. International Conference on Learning Repre-
sentations, 2019.

[85] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka.
Representation Learning on Graphs with Jumping Knowledge Networks.
In Proc. International Conference on Machine Learning, pages 5453–5462,
2018.

[86] R. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec. Hierar-
chical Graph Representation Learning with Differentiable Pooling. In Proc.
Advances in Neural Information Processing Systems, pages 4800–4810,
2018.

[87] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec. GraphRNN:
Generating Realistic Graphs with Deep Auto-regressive Models. In Proc.
International Conference on Machine Learning, pages 5708–5717, 2018.

11

https://doi.org/10.1109/TVCG.2019.2934396
https://graph-tool.skewed.de
https://graph-tool.skewed.de

	Introduction
	Related Work
	Graph Visualization
	Deep Generative Models
	Deep Learning on Graphs

	Approach
	Training Data Collection
	Layout Features
	Structural Equivalence
	Architecture
	Training

	Evaluation
	Datasets
	Models and Configurations
	Implementation
	Test Set Reconstruction Loss
	Layout Metrics and Test Reconstruction Loss
	Qualitative Results
	Computation Time

	Usage Scenario
	Discussion
	Conclusion

