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Abstract— Decisions made by domain experts, such as in healthcare and market research, are influenced by the conditional co-
occurrence of different events. Learning about conditional co-occurrence is also beneficial for non-experts–the general public. By
understanding the co-occurrences of diseases, it is easier to understand which diseases individuals are susceptible to. However, co-
occurrence data is often complex. In order for a public understanding of conditional co-occurrence, there needs to be a simpler form
to convey such complex information. We introduce an organic visual metaphor. Our model can provide a summary of the conditional
co-occurrences within a large set of items and is accessible to the public with its organic shape. We develop a prototype application
offering not only an overview for users to gain insights on how co-occurrence patterns evolve based on user-defined criteria (e.g.,
how do sex and age affect likelihood), but also functionality to explore the hierarchical data in-depth. We conducted two case studies
with this prototype to demonstrate the effectiveness of our design.

Index Terms—Visual metaphor, conditional probability, conditional co-occurrence, egocentric visualization

1 INTRODUCTION

In many domains, conditional co-occurrence—the likelihood of other
events given that one event has occurred—is used for understanding
associated events and making decisions. For example, market re-
searchers are interested in customer purchase patterns (e.g., the likeli-
hood of a customer purchasing product A, given that he/she has pur-
chased product B). The retail industry uses co-occurrences of pur-
chases between different product categories to manage inventory and
pricing decisions [2, 3, 32]. Also, microbiologists have an interest in
observing co-occurrence of various plankton and bacteria populations
to understand the coexistence within biological communities [36]. In
health care, conditional co-occurrence of diseases/disorders (or co-
morbidities [11]) shows the presence of one or more additional dis-
eases/disorders co-occurring with the primary disease/disorder. There-
fore, co-occurrence relates to the progression of diseases and mortal-
ity risks [9]. The understanding of co-occurrence drives many critical
clinical decisions, such as choice of drug therapies, surgical proce-
dures, etc [20, 38].

However, learning about co-occurrence is not limited to domain ex-
perts. For example, in healthcare, the public, including patients, could
understand the potential consequences of some diseases on their qual-
ity of life by understanding the co-occurrence of diseases. It is reason-
able to assume a person who is diabetic will be interested in knowing
they have a high likelihood of becoming visually impaired. By un-
derstanding co-occurrence of diseases, we can make better choices to
improve our personal health [19]. As a result, this improves our heath
literacy and leads directly to improved health outcomes [18]. How-
ever, the collected co-occurrence data by researchers is often com-
plex [6, 8, 34]. Thus, for non-domain experts, or the general public,
it is difficult to interpret this data and build their own useful insights.
Therefore, we need to provide a proper method to share co-occurrence
data with the public.

In an effort to improve public understanding of co-occurrence, we
introduce an organic visual metaphor, which is designed for not only
providing a summary of complicated co-occurrence data but also ac-
cessibility to the public [14, 35]. This metaphor is an extended ver-
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sion from our previous work for PacificVis Visual Storytelling Con-
test [7]. In this paper, we describe our metaphor design and the al-
gorithm for generating the visualization. We showcase our metaphor
model with an interactive application, through which the user can re-
view co-occurrence of diseases and influences of demographic factors
(e.g., ages and sex) on the co-occurrence. We also present two exam-
ples that illustrate the utility of our model.

2 RELATED WORK

Conditional co-occurrences are analyzed and interpreted primarily
through the use of tables or simple charts (e.g., histograms, simple
networks, line charts, pie, and Venn-diagrams). Domain experts in
health care typically interpret comorbidities in such a way [6,8,34]. It
is easier and quicker for domain experts (e.g., doctors) to create and
use these formats to understand co-occurrence due to its familiarity.
However, when co-occurrence data is large, the results produced with
these formats can easily overwhelm both non-domain and even domain
experts.

Several systems have been built to help domain experts analyze
large conditional-co-occurrence networks [17, 25, 37, 39]. Moni et
al. [25] developed CytoCom for visualizing the entire human disease
comorbidity network. Huang et al. [17] adapted a Sankey diagram to
depict polymorbidity associated with chronic kidney disease. Yang et
al.’s [37] system investigates sleep apnea comorbidities using multiple
representations: a parallel coordinates, a bubble chart, and a detailed
view of comorbidities. Zhou and Mueller [39] developed a framework
to explore comorbidities between diseases by overlaying a heatmap
over a comorbidity network. Compared with these systems, our work
focuses on providing a method for the public to understand complex
co-occurrence data by employing a visual metaphor.

3 DESIGN CRITERIA

An important consideration when designing a visualization tool for
non-experts to understand and explore complex data is aesthetics. If
certain aesthetics are well-embedded in a visualization, it is easier for
the viewer to process the information presented. For example, in graph
drawing, Purchase [28] found that minimizing edge crossing has a
strong effect on human understanding. Cawthon and Moore [1] per-
formed a study to determine the effect of aesthetic on usability in data
visualization. They found that people are less likely to abandon a task
when they perceive the visualization to have high quality. This implies
that people are likely to be more patient when visuals are aesthetically
appealing.



Fig. 1: A bacterium metaphor generated with our model. The central
node and branches mirror the bacterium’s capsule and flagella.

Fig. 2: Recursive steps for generating a flagellum with L-system. Gray
backgrounds show the generated flagellum. Blue and red lines are seg-
ments before and after applied L-system respectively.

Visual metaphors provide a desirable aesthetic to the viewers by
employing a more familiar representation. For example, Wang et
al. [35] studied how users react to different personal visualization de-
signs. They found that illustrative designs are the most well-balanced
for relaying information and motivating data explorations. Sallaberry
et al. [33] employed a biological metaphor to effectively illustrate mul-
tiple relationships in a hierarchical dataset. Fung et al. [15] developed
an egocentric visualization based a tree metaphor. In a later design
study [14], they compared their organic visual metaphor against a set
of visualizations and found that their visually attractive approach was
the best for at-a-glance characterization of the data. While evaluating
the value of the visual metaphors, Risch [29] argued that the users un-
derstand visualizations through image schemas–structural patterns es-
tablished in their childhood. By employing familiar visual metaphors,
we enable the user to interpret the data in terms of existing internal
schemas. That is, visual metaphors help viewers translate abstract or
complex concepts into a form that is more understandable.

In order to make the public understand conditional co-occurrence
data more easily, we consider two major design criteria in our visual-
ization: 1) effectively summarizing large, complex data and 2) utiliz-
ing a visual metaphor. First, summarizing data effectively is important
to avoid overwhelming viewers. To accomplish this, we utilize the hi-
erarchical nature of many commonly occurring data sets. Hierarchical
data permits us to bundle elements that belong to the same group [16]
For example, in market research, conditional co-occurrences of pur-
chase of carrots or onions with purchase of cheese or yogurts can be
summarized as a co-occurrence of dairy product purchase with pur-
chase of vegetables. Also, in order to clarify the direction of the con-
ditional relationship of co-occurrence, we use an egocentric visual-
ization. Second, as described above, visualizing data with familiar
representations for the viewers, including non-experts, can help better
understand and motivate the exploration of complex information.

4 VISUALIZATION DESIGN

Based on the design criteria, we derive our organic metaphor model
and algorithm to generate the visualization.

4.1 Organic Metaphor Model
Before visualizing conditional co-occurrence, we need to obtain a met-
ric. Here, as one concrete example, we use an association measure q
which was used in previous studies in the biomedical science field
[10,24]. However, we can use a different metric based on the needs of
the application. q is calculated as follows:

q =
P(X |Y )
P(X)

=
P(X ∩Y )
P(X)P(Y )

=
NX∩Y /N

(NX/N) · (NY /N)
(0≤ q≤ ∞) (1)

where X and Y are two different items (e.g., diseases), P(·) denotes
the probability, N is the population size of a given subject group (e.g.,
patients), NX and NY are numbers of individuals who have at least one
occurrence of item X and Y over a given period (e.g., in five years)
respectively, and NX∩Y is a number of individuals who have had oc-
currences of both X and Y in the same period. The value q measures
how strongly the occurrence of X is impacted by the occurrence of Y .
When q < 1, q = 1, or q > 1, it means there either is a negative, neu-
tral, or positive association between X and Y , respectively. To specify,
when q > 1, X and Y are more strongly associated as q increases. For
example, when q is a large value, the occurrence of X is significantly
increased given that Y has occurred. We consider only the positive as-
sociations (i.e., q > 1) and use log(q) as a value v of the co-occurrence
metric for the purpose of this paper.

For the visualization, we developed an organic metaphor model.
Fig. 1 shows an example of visualizing the co-occurrence of diseases
using our model. The visualization not only summarizes the necessary
information in an egocentric way, but also motivates users to explore
the data [14, 35]. In order to reflect the negative connotation about
diseases associations, our design employs a bacterium metaphor. The
central node and branches correspond to the bacterium’s capsule and
flagella. Our organic metaphor visualizes places the focal category
(e.g., diseases of circulatory system) in the capsule, while other related
categories are placed in the branches or flagella. The colors used for
the central node and branches represent the respective category of each
item. To further refine our model, various statistical measures related
to v in the co-occurrence metric are also visually encoded: 1) the size
of the central node denotes the total number of items where v > 0 (i.e.,
q > 1, positively associated); 2) the length of the branch represents
the value of v for that respective item; 3) the thickness of a branch
represents the number of items with the same v at a given point; 4) the
fluctuation of a branch conveys variation in v across different items in
the same category corresponding to that branch.

The bacterium model helps users understand the visualized results
by tapping in to prior knowledge about organic matter. For example,
using the bacterium metaphor, the viewer compares multiple bacteria
generated across different groups (e.g., younger and older females), as
shown in Fig. 5. A bacterium that has longer branches would denote
that the disease category placed in the central node has stronger effects
on occurrences of the other diseases (e.g., an older female has higher
chance to have some neoplasms after a mental disorder).

4.2 Generation Algorithm
In order to generate an organic appearance for each branch, our model
employs L-systems [22,30], which recursively create botanical shapes,
lightnings, etc. Fig. 2 shows the first two steps of the recursion of our
algorithm. Our algorithm starts from two points S and E. S is the point
at v = 0 and E is the point where the maximum value of v for that
branch is attained. The algorithm recursively decides the placement
and values of the middle point M. Let pi, vi, wi be a 2D coordinate, a
value of v, and a width of a branch at point i (S, M, or E) respectively.
pM , vM , wM are calculated with

pM = (pS + pE)/2+~u (2)

vM = (vS + vE)/2 (3)

wM = αN≤vM (4)

where ~u = cβσ~n, and c is either 1 or −1 depending on whether the
number of recursions at that point is an even or odd number. σ is the



Fig. 3: The position of a branch where current β avoids overlapping with
other branches.

(a) A lightning metaphor (b) A flower metaphor

Fig. 4: Examples of visual metaphors generated with our model.

standard deviation of v of items (e.g., diseases) where vS ≤ v ≤ vE , ~n
is the unit normal vector of (pS− pE), N≤vM is the number of items
whose v≤ vM . α and β are parameters used for controlling the width
and fluctuation of a branch respectively. After the first step above, the
algorithm applies the same rules to pairs of points S and M and M and
E. By calling these steps recursively with an indicated repeat count,
we can obtain a polyline.

The parameter β amplifies the fluctuation and emphasizes the dif-
ferences in the standard deviations among items. However, a large β

can cause overlap of branches. Thus, we choose β where it empha-
sizes the differences, yet avoids overlaps. We describe how to choose
β as follows. We assume that the y-coordinates of points S and E
are 0, as shown in Fig. 3. Let r and L be the radius of the capsule
and the length of the segment from S to E. As seen in Fig. 3, when
a branch is between the straight lines represented with y = (wS/2r)x
and y =−(wS/2r)x, the branch does not overlap with other branches.
To fulfill this condition, the y-coordinate of the orange point in Fig. 3
must be less than or equal to the y-coordinate of the green point in
Fig. 3. Therefore,

βσ +
wM

2
≤ wS

2r
· 2r+L

2
(r > 0) (5)

∴

{
β ≤ 1

2σ

(
wS +

wSL
2r −wM

)
(σ > 0)

β ≤ ∞ (σ = 0)
(6)

Eq. 6 considers only one branch. Therefore, we need to generate the
condition indicated in Eq. 6 for each branch. Then, we can choose β

to fulfill all the conditions.
Next, in order to generate a smoother shape, we apply the cubic

spline and the monotonic cubic spline [13] interpolations to the posi-
tions and the branch width, respectively. We generate branches for all
the categories of items with these steps and arrange them around the
central node. Also, we use an organic texture in the central node.

We use the bacterium metaphor in Fig. 1 as an example of our or-
ganic metaphor. However, we can produce other kinds of metaphors
by changing the parameters in the algorithm, texture, etc. For exam-
ple, in Fig. 4a, we create a lightning metaphor with longer branches,

large β , higher recursion counts, and no texture on the central node.
In Fig. 4b, we create a flower metaphor with shorter branches, small
β , and a texture representing disk flowers. While we use the bacteria
metaphor to leverage the negative feelings towards co-occurrence of
diseases. The lightning or flower metaphor would be useful to imply a
neutral or positive impression.

5 APPLICATION EXAMPLE AND EVALUATION

We test our model on a dataset from the Taiwan National Health In-
surance Database [27] from the period of 2000 to 2002, that contains
information from 782 million out patients. The dataset includes dis-
ease codes based on ICD-9-CM [4], disease names, their disease cat-
egories (e.g., diseases of the digestive system), the values N, NX , NY ,
NX∩Y in Eq. 1, and demographics of patient groups (age groups and
sexes). The disease categories provided by ICD-9-CM have a hier-
archical structure. For example, diseases of the respiratory system
have subcategories of acute respiratory infections, pneumonia and in-
fluenza, etc. We calculate value q with Eq. 1 for each pair of diseases
for each patient group (e.g., 20–29 year old females). We showcase
the usage of our model with an interactive application for understand-
ing conditional co-occurrence of diseases. We also employ two cases
to demonstrate how our model can be used to learn about associations.

5.1 Application Example
Fig. 5 shows our application for exploring the co-occurrence of dis-
eases. The application consists of two views (Fig. 5A and C) and a
control panel (Fig. 5B). Fig. 5A Employs our bacterium metaphors
placed in a grid structure. With the control panel (Fig. 5B), the viewer
can adjust what metrics the x and y dimensions of the grid can be.
For example, in Fig. 5, while males and females are selected for y
dimension, age-groups of 20–29 and 30–39 years are selected for x
dimension. The control panel also allows the viewer to set a disease
category shown as the central node (e.g., mental disorders is selected
in Fig. 5). A metaphor in each grid shows co-occurrence visualiza-
tion related to the selected combination. For instance, the metaphor
placed on the top left shows conditional co-occurrence from mental
disorders to other disease categories of 20–29 years old females. In ad-
dition, we also visualize a small tree-map in Fig. 5A to help compare
the total number of diseases in each branch. Also, when the mouse
hovers over the tree-map, the system shows the corresponding total
number in a pop-up box. The application also allows the viewer to
select the central node or branch by mouse clicking (e.g., a selected
branch is colored with high-saturated red in Fig. 5). Then, the appli-
cation shows the number of diseases in each disease subcategory in
the selected branch as a bar chart, as shown in Fig. 5C. The bar chart
arranges the subcategories for the x direction and plots the numbers of
diseases as y-coordinates. By hovering a mouse, the viewer can see a
name of the selected subcategory and its number of diseases, as shown
at the bottom of Fig. 5C.

Our application is web-based and developed with JavaScript, D3.js1

for drawing graphs, Three.js2 for drawing bacterium metaphors. To
avoid running our algorithm while using the application, we prepro-
cessed the dataset to prepare polygons of the metaphors in advance.
The source code for this polygon generation is available online3. The
preprocessing takes around 80 ms for one metaphor with 3 recursion
counts on a 3.1 GHz Intel Core i7 processor with 16 GB memory.

5.2 Case Study 1: Aging Impact on the Co-occurrences
For our first case, we observe the co-occurrences from blood diseases
to others. First, we select the blood diseases as the central node and
visualize two age ranges of female adults (20–29 and 30–39 ages), as
shown in the left side of Fig. 6. At a glance, we can see that the gen-
itourinary diseases (gray branches) stand out the most. When looking
at the corresponding tree maps, we confirm that genitourinary diseases

1D3.js, https://d3js.org/, accessed: 2018-7-29
2Three.js, https://threejs.org/, accessed: 2018-7-29
3The source code for the polygon generation, https://github.com/

takanori-fujiwara/organic-visual-metaphor

https://d3js.org/
https://threejs.org/
https://github.com/takanori-fujiwara/organic-visual-metaphor
https://github.com/takanori-fujiwara/organic-visual-metaphor


Fig. 5: The user interface of our application example.

Fig. 6: The co-occurrences with the blood diseases in female groups.

are reported the most for females of these two age groups. We then
explore how aging impacts the co-occurrences of diseases with blood
diseases in females. We add the female age groups of 60–69 and 70–
79, as shown in Fig. 6. We find that the genitourinary branches are
much thinner and shorter when compared with the age groups of 20–
29 and 30–39, indicating the co-occurrence of genitourinary diseases
decreases in the older age groups. This finding is also supported by
medical studies about this relationship between age and genitourinary
diseases in females. At first, younger females are at a higher risk for
anemia and autoimmune disorders [5,31]. In addition, females in their
20–30’s have a higher risk to suffer from sexually transmitted infec-
tions, including UTI and STD [21, 23].

5.3 Case Study 2: Co-occurrences of Mental Disorders

In this second example, we explore the co-occurrence of mental dis-
orders in males and females. We select mental disorders to be the
central node of our bacteria. We then include males and females in the
age ranges of 10–19 and 20–29. The visualized results are shown in
Fig. 5. We can see that four bacterium metaphors have varying sizes
and length in the central nodes and branches.

First, we examine a single bacterium for males of the age group
20–29. The flagellum for both nervous system (the branch colored
with light blue) and digestive disorders (brown) stand out. Compar-
ing the male 20–29 group to the female 20–29 group, we notice that
the central node size for the female is larger. This indicates that this
female group has more reported cases of other diseases co-occurring
with mental disorders than with this male group. We also notice that
unlike the male group, genitourinary diseases (gray) co-occurred more
often as indicated with its wider width. Also, with all four bacteria, we
can see that the central node size increases as age increases in both fe-
males and males.

As stated earlier, the length of a branch depends on the value of
co-occurrence with the central node. Branch thickness is indicative of
the number of diseases that have the same association. Therefore, in
all four bacteria, we see that mental disorders (represented with the
central nodes) and digestive diseases (brown branches) have a strong
association. This finding is reasonable from our everyday experience

(a) (b)

Fig. 7: Exploring the diseases’ subcategories from the co-occurrence
of the female 20–29 group visualized in Fig. 5. In (a), the branch for
digestive diseases is selected. Its subcategories are visualized in (b).

of stomach pains caused by our anxiety.
We can also show more detailed information of the co-occurrence

of diseases by selecting each branch. For example, in Fig. 5A, we
select the branch for nervous system diseases for the female age group
of 20–29, as highlighted with high-saturated red. Then, in Fig. 5C, the
system visualize the number of diseases included in the subcategories
of the nervous system diseases. As shown in Fig. 5C, when hovering
the mouse over the longest bar, we can see that the dominant group is
“disorders of the eye and adnexa”. Similarly, as shown in Fig. 7a, we
select the branch for digestive diseases and find that the subcategory
for “diseases of esophagus, stomach, and duodenum” in Fig. 7b is
also highly associated with mental disorders. Pulling all these details
together, we can ask why patients with mental disorders also report
either diseases that fall under “diseases of esophagus, stomach, and
duodenum”, or “disorders of the eye and adnexa”. Our application
enables us to ask such questions, which could be the starting point
of additional inquiry or research. Interestingly, some researchers have
found relationships between irritable bowel syndrome and anxiety [12]
as well as evidence showing those who go blind also tend to experience
anxiety or forms of depression [26].

6 CONCLUSIONS AND FUTURE WORK

The use of a visual metaphor is effective when presenting complex
information to the public. It provides a stepping stone for them to en-
gage and learn more of an unfamiliar and complex topic. We have in-
troduced an organic metaphor model to assist the public in interpreting
conditional co-occurrences. Through a set of case studies, we demon-
strated how we can uncover interesting findings with our application
example, using our model.

The intent of our visual metaphor is to provide the general public a
method on how view conditional co-occurrence data. We consider that
traditional methods either focus on one disease and its co-occurrences
or present all disease associations. As demonstrated in the case stud-
ies, our model provides an overview of these associations, and can be
used to explore a variety of relationships when placed within a sys-
tem. However, our model would not scale well if there are many item
categories. Also, in both of case studies, we visualize only a lim-
ited number of groups as branches. We utilized the hierarchical cate-
gories of the dataset in order to summarize co-occurrence information
into a small number of categories. Adding animation to our organic
metaphor is one interesting future direction. In order to better attract
the public, we could employ effective organic animation.

For future iterations, we plan to conduct user studies to evaluate our
metaphor in more depth. We want to evaluate the impact of attractive-
ness on both user’s engagement for data exploration and abandonment
rate for complex tasks. Also, we would like to verify this effect on dif-
ferent types of audience: domain experts, higher learners, and general
public.
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