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Abstract This is a survey on recent works of Langlands’s work on functoriality conjectures
and related works including the works of Braverman and Kazhdan on the functional equation
of automorphic L-functions. Efforts have been made to carry out in complete generality the
construction of the L-monoid, and certain a kernel which is, we believe, related to the elusive
Hankel kernel.

Keywords and phrases: Langlands functoriality, Hankel transform, functional equation

Mathematics Subject Classification (2010): 11M99, 22E35

1. Introduction

The functoriality conjecture of Langlands, as stated in [29], offers a general
organizational scheme for all automorphic representations. This conjecture can
be roughly stated as follows: if H and G are reductive groups defined over a
global field k, ¢ : LH — LG a homomorphism between their Langlands
dual groups, then it is possible to attach to each automorphic representation
= (208 Jr,fl of H a packet of automorphic representations 7 = @), 7, of
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G. In the formula 7 = ), 7y, local components 7, are irreducible admissible
representations of G(ky), k, being the completion of k at a place v € |k]|.
The automorphic functoriality is expected to be of local nature in the sense that
it should be compatible with the local functoriality principle that consists in a
map from the set of packets of irreducible admissible representations of H (k)
to the set of packets of irreducible admissible representations of G(ky). Since
unramified representations of H(k,) at an unramified non-archimedean place
v are parametrized by certain semi-simple conjugacy classes in £ H, the local
functoriality is required to be compatible with the transfer of conjugacy classes
from L' H to LG,

A crucial part of the functoriality program, known as endoscopy, is now
almost completely understood thanks to cumulative efforts of many mathemati-
cians over the last 40 years, see [5]. Its main ingredients include in particular
the construction of the general trace formula, mainly due to Arthur [4] and the
proof of the transfer conjecture and the fundamental lemma, see [52] and [37].
The endoscopic case is concerned with the case where - H is essentially the
centralizer of a semi-simple element in ©G. In spite of this severe restriction,
the endoscopic case is crucial in the general picture for it gives a sense to the
concept of packet, both in local and automorphic settings, along with global
multiplicity formulae [31].

The endoscopic program also produced the stable trace formula expected
to be an essential tool for future works on the conjecture of functoriality. In
[32], Langlands proposed a conjectural limiting form of the stable trace for-
mula aiming at isolating the part of the automorphic spectrum of G that comes
from a smaller group H by functoriality. These limiting forms of trace formu-
lae are designed to have a spectral expansion involving logarithmic derivatives
of automorphic L-functions, as in [32], or a sum of automorphic L-functions
themselves, as in [21].

Another possible route to functoriality, proposed by Braverman and Kazh-
dan in [11], aims first at the functional equations of automorphic L-functions.
Historically, the functoriality conjecture springs out of the study of general au-
tomorphic L-functions. For every automorphic representation 7 = ), 7, of
G, and finite dimensional representation p : G — GL(V,) of LG, Langlands
defined the L-function of complex parameter s as an Euler product

Ls.m.p) = [ [ Lo(s. 0. 0) (L.1)

with local factors

Ly(s, 7, p) = det(1 — p(ov)g,*) ™! (12)

for unramified local component ,, where oy is the corresponding semi-simple
conjugacy class in ZG. Local factors at archimedean places as well as finitely



Hankel transform, Langlands functoriality, . .. 123

many ramified places are expected to be defined independently by local means.
It is known that the Euler product (1.1) converges absolutely for s in some right
half plane and thus converges to a holomorphic function on that domain. It is
conjectured that this function can be extended meromorphically to the whole
complex plane, and with appropriate local factors at archimedean and ramified
places being specified, it should satisfy a functional equation similar to the one
of the Riemann {-function.

If an automorphic representation 77 of H transfers to an automorphic rep-
resentation v of G via a homomorphism £ : “H — LG of L-groups, then for
every finite dimensional representation p : LG — GL(V)), we must have

L(s,nH,poé) = L(s,m,p). (1.3)

For G = GL, and p the standard representation of the dual group GL, (C), the
meromorphic continuation and functional equation of L(s, 7, p) is a theorem of
Godement and Jacquet [23]. The functoriality conjecture will allow us to derive
the meromorphic continuation and functional equation of general automorphic
L-functions from the special case of standard L-functions.

In [11], Braverman and Kazhdan proposed a generalization of Godement—
Jacquet’s framework to all automorphic L-functions. This framework consists
in the construction of some non-standard Schwartz spaces, non-standard Fourier
transform and Poisson summation formula. Braverman—Kazhdan’s approach to
functional equation would bypass the functoriality conjecture, and in fact, may
give another route to functoriality if it is combined with suitable forms of the
converse theorem.

In this paper, we attempt to give an up-to-date survey on Langlands’s functo-
riality conjecture and the functional equation of automorphic L-functions. This
1s not an easy task as the topic is as broad as deep. On one hand, there is a
depressing feeling that we are nowhere near the end of the journey, but on the
other hand, there is a flurry of recent activities with new ideas flying into multi-
ple directions and grounded on as different tools as analytic number theory, rep-
resentation theory and algebraic geometry. For reviewing many different ideas
would entail the risk to make the paper unreadable, thus useless, we will spend
most of the time developing the ideas of Langlands and Braverman—Kazhdan
and thereafter attempting to connect these to other developments.

Throughout this paper, we espouse the spirit of [29] in treating reductive
groups in a complete generality. This is not merely for the sake of generality
for itself, or its abstract elegance, the main new construction of the kernel of
the Hankel transform relies very much on the fact that all constructions can be
carried out canonically in complete generality.

Let us now review the organization of this paper. Materials exposed in Sect.
2 are more or less standard and mainly drawn from Langlands’s pioneer paper
[29]. We review carefully the root data with Galois action attached to a reductive
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group defined over an arbitrary base field and Langlands’s construction of the
L-group. We will also explain how to fix standard invariant measure on tori and
reductive groups defined over local fields. These backgrounds are all ingredients
in the construction of the Hankel kernel. After this, we review as much of the
theory of automorphic forms as is needed to define automorphic L-functions
and state the functoriality conjecture. At the end of Sect. 2, we will also briefly
review the endoscopic theory. As this section clearly aims at a non-specialist
audience, experts are invited to skip it entirely with the exception of Subsect.
2.3 which is not completely standard. Readers may also have to come back
occasionally to Subsect. 2.1 to get an acquaintance with the notations we use
for root data and Galois action thereon.

In Sect. 3, we review Langlands’s proposal “Beyond endoscopy” [32] and
further developments in [21] and [33]. Langlands’s idea is to construct certain
limiting form of the trace formula whose spectral development are weighted
by numbers related to the poles of automorphic L-functions. Because the pole
of L-functions of an automorphic form is expected to retain information on the
functorial source, the smallest group from which the automorphic representation
may transfer, we expect this limiting form of the trace formula to be helpful to
corner the functoriality principle itself.

In Sect. 4, we review Braverman—Kazhdan’s idea from [11] on a possible
generalization of the Godement—Jacquet method. In the case of GL, and the
standard representation, the Godement—Jacquet method relies on the Fourier
transform operating on the space of Schwartz functions on the space of matrices
and the Poisson summation formula. Braverman and Kazhdan suggest for each
G and p the existence of non-standard Schwartz spaces, Fourier transform and
Poisson summation formula and also certain ideas on how to construct them.

In Sect. 5, we discuss the geometry underlying the non-standard Schwartz
functions, to be called p-functions to emphasize the dependence on p. The p-
functions are expected to be functions with compact support on a certain p-
monoid that can be constructed canonically out of G and p. This construction
has been hinted in [11], and emphasized in [38] and [10] in the case G split
and p irreducible. Here we will construct the p-monoid in complete generality
in particular without assuming neither G to be a split reductive group nor the
representation p irreducible. In the toric case, the p-monoid is a toric variety.
In this case, we emphasize the existence of certain toric stack of which our
p-toric variety is the coarse space. The Schwartz p-functions in the toric case
are functions of compact support on the p-toric variety that come from smooth
functions on the toric stack by integration. We suspect in general the existence of
something like a monoid stack without being able to make a precise conjecture.
At the end of the section, we review the relation between the singularities of
the arc space of the p-monoid with a distinguished Schwartz function that we
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call the basic function, following [10]. The space of p-functions has also been
investigated by Laffogue [28].

In Sect. 6, we study the kernel of the non-standard Fourier transform mainly
in the toric cases. In the toric case, the non-standard Fourier transform are
closely related to the classical Hankel transform. The terminology of Hankel
transform and Bessel function is inspired by classical harmonic analysis on Eu-
clidean space, and a paper of Sally and Taibleson [44] on special functions of
p-adic arguments. We will also recall the construction of Braverman and Kazh-
dan’s construction of the kernel in the case of reductive group over finite fields
[12]. We construct a general stably invariant function which gives rise to the
correct kernel in the case of tori as well as in the Godement—Jacquet case.

In Sect. 7, we attempt to merge Langlands and Braverman—Kazhdan ap-
proach. The common ground here is the space of p-functions and its basic func-
tion. The trace formula, to be called the p-trace formula, envisioned by Lang-
lands, will be an invariant distribution on the space of adelic p-functions and
its spectral expansion is weighted by values of L-functions. The Poisson sum-
mation formula, envisioned by Braverman—Kazhdan can be integrated on the
automorphic space and gives rise to a comparison of trace formulas between the
p-trace formula and its dual. On the spectral side, this comparison is basically
the functional equation of L-functions. As usual, it is tempting to approach the
comparison from the geometric side. On the geometric side, the Hankel trans-
form on p-function descends to a certain orbital Hankel transform on the space
of orbital integrals of p-functions. A similar transform on the space of orbital
integrals was introduced in [21] by Frenkel, Langlands and myself. The orbital
Hankel transform and the FLN transform turn out to be completely different
in nature: the orbital Hankel transform has a clear group theoretic interpreta-
tion; it s difficult to compute, and its Poisson summation formula seems to be
very difficult to obtain, the FLN is not known to have a clear group theoretic
interpretation, but satisfies in principle a Poisson summation formula, see [1].
The orbital Hankel transform has many similarity with Langlands’s local sta-
ble transfer factor studied in [33] and Johnstone’s thesis. It is noteworthy that
the thread of ideas on the local stable transfer factor and the Poisson summa-
tion formula has been extensively developed by Sakellaridis in the more general
context of spherical varieties and relative functoriality, see [41] and [43].

2. Automorphic L-functions and functoriality

In the epoch making paper [29], Langlands proposed certain general construc-
tions and conjectures on automorphic representations that have shaped the de-
velopment in this field. Most notably, he defined the L-group LG attached to
any reductive group G defined over a local or global field, constructed automor-
phic L-function L(s, 7, p) of complex variable s attached to an automorphic
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representation 7 of G and an algebraic representation p of LG, formulated the
functoriality principle stipulating the transfer of automorphic representations
from H to G every time there is a homomorphism ©“H — LG, and explained
how all these concepts may tie together to offer compelling picture of auto-
morphic spectra. The purpose of this section is to briefly review Langlands’s
constructions and conjectures, mostly in their formal aspects.

2.1. Root data, Langlands dual group and L-group

We recall in this section the construction of the Langlands dual group and his
L-groups. In following the surveys [49], [7] as well as the original source [29]
in essence, we attempt to frame the discussion in a categorical language. This
approach is efficient and necessary for later we want to perform certain con-
structions for general reductive groups using Galois descent.

First, we discuss the classification of tori by combinatorial data. A split torus
over a field k is an algebraic group which is isomorphic to a product finitely
many copies of the multiplicative group G,,. For every split torus 7" over a field
k, we will denote by

A(T) = Hom(G,,, T)

the group of cocharacters of 7. The functor T + A(T) is an equivalence of
categories from the category of split tori over k to the category of free abelian
groups of finite rank. In particular, it induces an isomorphism on the groups of
automorphisms

Aut(T) —> Aut(A(T))

the latter being isomorphic to GL,(Z), where n is the rank of A(7). We also
have the inverse functor A — A ®; Gy, where the torus A ®j G4, is defined
to be the spectrum of the group algebra k[AY] with AY = Hom(A, Z).

By torus over a field kK we mean an affine algebraic group over k whose base
change to the separable closure k is isomorphic to a split torus. For a torus T
over k, we denote by Autz(T') the group of k-automorphisms of 7" and Auty (T')
the group of k-automorphisms of T i.e., k-algebra automorphisms of the alge-
bra k[T'] preserving also its comultiplication. Such an automorphism preserves
necessarily k and so induces an element of the Galois group I'y, of k. We have
thus a group homomorphism Auty (7)) — I'y whose kernel is Autz(T) i.e., we
have the exact sequence:

0 — Autz(T) — Aue(T) — Ty

in which Autz(7T') = Aut(A), where A = A(T).
We call k-form of a T defined over k a torus Ty defined over k such that
T, ®i k = T. For every k-form Ty, we have a section ', — Aut (7). Since
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k-forms exist, the homomorphism Auty (7)) — Iy is surjective i.e., we have an
exact sequence

0 — Aut(A) — Autg(T) — I'y — 0.

The choice of a k-form of T gives rise to a splitting o : ['y — Auti(7'), and
conversely every splitting o : 'y, — Auti(T') gives rise to a k-form, namely
T, = Spec(k[T]°Tx)). We also note that the split k-form T = A ®j G,
implies an isomorphism

Auty (T) >~ Aut(A) x T'.

Thanks to the split k-form of T, a splitting o : I'y — Autg(7T) is equivalent to
a continuous homomorphism

oA : T — Aut(A).

To summarize, we have an equivalence of categories between the groupoid of
tori over k and the groupoid of pairs (A, o), where A is a free abelian group of
finite rank and o : 'y — Aut(A) is a continuous group homomorphism. This
equivalence of categories may be regarded as a classification of tori over k by
combinatorial data.

In order to classify reductive groups, we will need more elaborate combina-
torial structures. To be clear, being hindered of the presence of Galois cohomol-
ogy, a classification of reductive groups up to isomorphism over an arbitrary
base field is not possible but it is possible up to inner equivalence which is
rougher.

A root datum ¥ = (A, ®) consists of a free abelian group of finite rank A
(group of cocharacters), a finite subset (set of roots)

® Cc AY = Hom(A,Z)

and an injective map ® — A denoted by o +> ¥ whose image is denoted by
®Y C A (set of coroots), satisfying the following properties:

e The equality (o, ") = 2 holds for every o € ®;

e For every « € @, the reflection sy (x) = x — (x, ") in A" preserves the
set of roots @, and the reflection sq(y) = y — (y,a)a” in A preserves the
set of coroots ®V.

The reflections s, generate a finite group W, the Weyl group, acting on A and
AV in preserving the set of roots ® C A" and the set of coroots ®¥ C A.

In this paper, by reductive group over a field k, we mean a connected smooth
affine group over k which becomes a split reductive group over a finite separa-
ble of k. A (T, G)-pair over a base field k is a pair consisting of a torus T
defined over k and a reductive group G over a field k of which 7" is a maximal
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torus. Over a separably closed field k, maximal tori in a reductive group are all
conjugate.

A root datum W(T, G) can be attached to a (T, G)-pair defined over a separa-
bly closed field k. We will only provide an incomplete account of this construc-
tion and refer to [49] for a more detailed treatment. We set A = Hom(G,,, T')
and AY = Hom(T, G;,) to be the groups of cocharacters and characters of T .
The set of roots @ is given by the non-zero eigenvalues of 7" acting on the Lie al-
gebra of G. The Weyl group W can be identified with the quotient Norg (T)/ T
of the normalizer Norg(T') of T in G by T'. The functor (T, G) — ¥(T,G)
from the groupoid TGy of (T, G)-pairs over k to the groupoid RD of root data

TG; —> RD 2.1)

induces a bijection on the sets of isomorphism classes. As to automorphisms of
objects, we have a surjective homomorphism

Aut;(T, G) — Aut(¥(T, G)) (2.2)

of kernel T (k)/Z(k), where Z is the center of G. Indeed, automorphisms of
(T, G) inducing identity on A are inner automorphism of G given by the conju-
gation by an element of 7 (k). )

Let rG denote the groupoid of reductive groups over k. We have a functor
TG; — rGg given by (T, G) — G. Since maximal tori in a reductive groups

over k are all conjugate, the functor TG; — rGy induces a bijection of the sets
of isomorphism classes of those categories. As a result, we have a canonical
bijection between the set of isomorphism classes of reductive groups over k and
the set of isomorphism classes of root data. However, there is no functor rG,; —
RD from the groupoid of reductive groups to the groupoid of root data for the
homomorphism (2.2) does not factor through Aut; (G). We do nevertheless have
a functor rG; — RDou where RDgy is the groupoid in which objects are
objects of RD and groups of automorphisms of (A, ®) are defined to be

Out(A, ®) := Aut(A, )/ W. (2.3)
We have a commutative diagram of functors
TGy —— RD
l l (2.4)

tG; — RDoy

that induces on the automorphism groups the commutative diagram

Auty (T, G) —— Aut(¥(T, G))

l l (2.5)

Autz(G) —— Out(¥(T, G)).
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The upper arrow in this diagram is surjective and its kernel is the group T'(k)/Z (k),
where Z is the center of G. The lower arrow in this diagram is surjective and its
kernel is the group G(k)/Z (k) of inner automorphisms of G.

The exact sequence

0— W — Aut(¥) — Out(¥) — 0 (2.6)

affords sections given by based root data. To discuss these sections, let us recall
the concept of based root data introduced in [49]. Let ¥ = (A, @) be a root
datum and W the associated Weyl group. For every root o« € ®, consider the
hyperplane H, in the real vector space Ar = A ® R consisting of x € Ap
satisfying the equation (&, x) = 0. The group W acts simply transitively on the
set of connected components of Ar\ |J,cp Ha- The closure of each of these
connected components will be called a Weyl chamber. A based root datum is a
root datum plus a choice of a Weyl chamber Aﬁ{ . For the intersection AT =
AN Aﬂif generate AI"RE as a cone, A7 is determined by and determines the Weyl

chamber Aﬁg . We will call AT the set of dominant weights. We will denote by
Ut = (A, ® AT) 2.7)

the resulting based root datum.

The group Aut(W ™ (T, G)) of automorphisms of the based root system W is
a subgroup of Aut(W (7, G)) which has trivial intersection with W and projects
isomorphically on Out(G):

Aut(¥* (7, G)) ~ Out(G). (2.8)

In other words, the choice of a Weyl chamber Aﬁg provides us with a section in
the exact sequence (2.6).

On the level of (7, G)-pairs, the choice of a Weyl chamber corresponds to
the choice of a Borel subgroup B of G containing 7. We have an exact sequence

0 — T(k)/Z(k) — Autg(T, B,G) —> Out(G) —> 0. (2.9)

The theory of pinnings provide us with sections for this exact sequence. A pin-
ning of G, also known as épinglage, consists of a triple (7, B, G) as above plus
the choice of a non-zero vector xq in the one-dimensional vector eigenspace
gq for each simple root & of B. We know that T'(k)/Z (k) act simply transi-
tively on the set of vectors x, and the group of automorphisms of an pinning
(T,B,G,xy | @ € A), A being the set of simple roots of B, is a subgroup of
Autz (T, B, G) projecting isomorphically on Out(G):

Auti (T, B, G, xq | @ € A) = Out(G). (2.10)

It follows that B ~
Autg (T, B,G) = T'(k)/Z(k) x Out(G). (2.11)
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We derive an isomorphism
Autz(G) = G(k)/Z(k) x Out(G). (2.12)

We now have a commutative diagram of functors:

Pin; —— RD™

| !

TG; —— RD (2.13)

| !

rG; — RDou,

where Ping is the groupoid of pinnings and RD™ is the groupoid of based root
data. All these functors induce bijections on the sets of isomorphism classes.
Moreover, the functors Pin; — RD™T and RDT — RDgy are equivalences of
categories. As a result, we obtain a functor

RDoy —> 1G;; (2.14)

which is a section of the functor rG,g — RDgy in the lower line of diagram

(2.13). This functor may be seen as the construction of reductive groups over k
from root data.

We are now ready to describe combinatorial data that can be attached to
reductive groups over an arbitrary base field. Let k be an arbitrary base field,
k its separable closure. Let G be a reductive group over k, Autz(G) the group

of automorphisms of G over k and Auty, (G) the group of automorphisms of G
over k. As in the case of tori, we have an exact sequence

0 — Autz(G) — Aug(G) — T — 0 (2.15)

which is actually split because a split model exists. In other words, we have a
splitting of Auty (G) as a semi-direct product

Autg (G) = Autz(G) x T. (2.16)

A k-form of G i.e., a reductive group Gy over k such that G, ® k =G
corresponds to a continuous section

Iy — Aut (G), y > (06(¥).¥y) (2.17)

of the semi-direct product (2.16), where oG : I'r — Auti(G) is a cocycle i.e.,
it satisfies the equality

oc(yy') = oc(y)y(oG(y))
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for all y,y’ € Ty in which the expression y(og(y’)) refers to the action of
[’y on Autz(G). It follows that the groupoid rGy of reductive groups over k is
equivalent to the groupoid of pairs (G, o) consisting of an object G of rG; and
a continuous cocycle oG : I'r — Autz(G) in the above sense.

By the lower arrow in the diagram (2.13), we have a functor rGy — RDgy k,
where RDgy x is the groupoid of pairs (W, ooyu), Where W is an object of RDoy,
and

oout : T —> Out(V) (2.18)

is a continuous cocycle. We note that as I'y acts trivially on the quotient Out(W¥)
of Aut (G), the cocycle ooy is in fact a continuous homomorphism. Two re-
ductive groups over k are said to be inner equivalent if they map to isomorphic
objects in RDqy x. From what precedes we conclude that the functor rGy —
RDgy x induces a bijection from the set of inner equivalence classes of reduc-
tive groups over k to the set of isomorphism classes of RDg, x consisting of
pairs (W, ooyt) as above. By definition, this map is injective. We will prove that
it is surjective by constructing a section.
The functor rGy — RDg « affords a section

RDgy.x —> Dy (2.19)

from RDg, ¢ to the category of reductive groups defined over k. To construct
this section we recall that in the diagram (2.13) the arrows Ping — RD™ and
RD™ — RDg, are equivalences. By applying the inverses of these functors to
(2.18), we obtain an object pin € Ping, which consists of a reductive group G

defined over k endowed with a pinning, and a homomorphism
Opin : [k — Aut(pin).

Using the isomorphism (2.12), which is I'y-equivariant, we obtain a cocycle
0G : I't = Auti(G) and therefore a reductive group Gy defined over k such

that G ®x k = G. An object in rGy, belonging to the essential image of (2.19)
is called quasi-split. In each inner class, there exists a unique quasi-split group
up to isomorphism.

We are now ready to define the Langlands dual group of a reductive group
G defined over k. We have an involutive functor on the category of root data
defined by mapping a root datum W = (A, ®) to the dual root datum ¥V =
(AY, ®Y). This involution can be defined compatibly on both categories BDJF
and RDgy. If G is a reductive group defined over a separably closed field k, by
using the functor rtD — RDgy in the lower line of diagram (2.13), we obtain
an object in RDoy. Then we apply the involution ¥ — WV in RDoy. Applying
(2.14) for to WY, with k = C, we obtain a reductive group G" defined over C,
the Langlands dual group of G.
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We will now define the L-group of a reductive group Gy defined over an
arbitrary base field k. The group G can be identified with an object of the
category rGy consisting of a reductive group G over k and a continuous ho-
momorphism og : 'y — Autz(G). Using the lower arrow in the diagram
(2.13), we derive an object in RDg, x consisting of a root datum W and a con-
tinuous homomorphism oy : 'y — Out(¥). We apply the functor ¥ — WV
to get the dual root datum which will also be endowed with a homomorphism
ogv : [ — Out(¥Y). By applying (2.14) over k = C, we get the dual re-
ductive group GV with a homomorphism ooy : I'y — Out(G"). Langlands’s
L-group of G is defined to be the semi-direct product

LG, =GY x Ty, (2.20)

where T’y acts on GV through its group of outer automorphisms acting on G
in fixing a pinning. In many circumstances, it is harmless to replace 'y in the
semi-direct product by the quotient of I'; by a normal closed subgroup acting
trivially on G V.

2.2. Global fields, local fields and adeles

We will fix a global field k£ which may be a number field or the field of rational
functions on a curve defined over a finite field. For every absolute value v : k —
R4+ we define k, to be the completion of k with respect to v. A place of k is
an equivalence class of absolute values for the equivalence relation defined by
v ~ v’ if and only if k,, and k- are isomorphic as topological fields containing k
as a subfield. We will denote by |k| the set of places of k. If k is a number field,
the set of places |k| contains only finitely many archimedean places v, those
places such that k,, is isomorphic to either R or C. For non-archimedean places
v € |k|, the elements x € k, with |x|, < 1 form a complete DVR to be called
the ring of integers O, of k,,. We will denote by [F,, the residue field of O,; Iy, is
a finite field of cardinality ¢,. For every v € |k|, ky is a locally compact group,
and if v is non-archimedean, O, is a compact open subgroup of k. If k is a
function field, every place v € |k| is non-archimedean and the completion k, is
isomorphic to the field of Laurent formal series with coefficients in the residue
field IF,,.

We also recall that the ring of adeles Ay is an inductive limit of infinite
products

Ay = lim ]_[ ky x ]_[ Oy (2.21)
S wves veES

over all finite subsets S C |k| that contain all the archimedean places. An ele-
ment of Ay can be represented as a sequence (Xy)ye|k| With xy € ky for all v
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and x, € O, for almost all non-archimedean places. The ring of adeles with the
inductive limit topology is a locally compact ring. .

For every place v € |k|, we denote by I', = Gal(k,/k,) the Galois group
of the local field k. If v is non-archimedean, we have an exact sequence

0—s I, — Ty —> Ty 0, (2.22)

v

where [, is the inertia group and I'y, is the Galois group of the residue field
F, in which the Frobenius element 0, (x) = x?v is a progenerator. There is a
homomorphism between Galois groups of local and global fields

I, — It (2.23)

which is well defined up to conjugation. For every finite Galois extension k' / k,
the induced homomorphism I', — Gal(k’/ k) is trivial on the inertia subgroup
I if and only if v is unramified with respect to the extension k’/ k. This is the
case for all but finitely many non-archimedean places. For an unramified place
v, the homomorphism (2.23) defines a conjugacy class [0y, ] of the image of o,
in Gal(k'/ k).

The L-group of a reductive group G defined over a global field k is defined
in (2.20) to be the semi-direct product

LG =GY Ty

in which 'y acts on GV factors through some finite quotient Gal(k’/k). For
every non-archimedean place v of G, the L-group of G over k, is the semi-
direct product LGU = GV x I'y constructed out of the action of 'y, on GV
deriving from the action of I'; through (2.23). For almost all non-archimedean
places v, the restriction of the homomorphism I'y — Gal(k’/k) to the inertia
group 1, is trivial. In this case, we may write G = GV x (oy).

2.3. Canonical invariant measures

We first recall Weil’s construction measures out of top differential forms. Let F
be a local field equipped with an invariant measure dx with respect to addition.
If X is a smooth algebraic variety of dimension n over F' then every non-zero
algebraic top differential form w over X defines a distribution on X(F) i.e a
continuous linear form

| : CZ(X(F)) — C

defined as follows. For every point x € X(F'), there exists a compact open
neighborhood U of X(F) and a p-adic analytic open embedding u : U —
F. For any system of coverings of X(F) by compact open subsets U; with an
analytic open embedding u; : U; — F", by the unit partition theorem, every
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smooth function with compact support f € C°(X(F)) can be decomposed as
asum f = f;+---+ f,, where f; is a smooth function with support contained
in U;. It is thus enough to prove that for every compact open subset U open
embeddable in F" as above, there exists a canonical linear form

lw|y : C*°(X(F),U) — C,

where CZ°(X(F), U) is the space of smooth functions on X(F) with support
contained in U such that for every compact open subset V' C U we have a
commutative diagram

Im i A} (2.24)

where ¢ is the extension by zero.

Let U be a compact open subset of X(F') equipped with an analytic open
embedding u : U — F™. If xq,...,Xx;, denote the coordinates of F" we can
write Uxw = ¢ dxy A --- A dx,, where ¢ : F" — F is an analytic function
supported in the compact open subset u(U) of F". We define after [53]

olu(f) = / oy O @b -,

for every smooth function f € C*°(X(F), U) with compact support contained
in U, and dx - - - dx, is the product measure on F”. The chain rule in integration
guarantees that the above definition of the linear form ||y () does not depend
on the embedding u and therefore must be compatible with the extension by
zero as in diagram (2.24). We may also observe that as the definition of the
linear form |w| applies also to continuous functions with compact support, ||
defines not only a distribution but in fact a measure. One may notice that for
every analytic function &£ : X(F) — F, the equality

&7 | = |o (2.25)

holds. This can be checked upon the very definition of |w]|.

Let F be a local field equipped with a Haar measure dx. We will define
canonical invariant measures on Tr (F) for every torus Tr defined over F.
Let TF be a torus defined over F and T = Tr ®p F its base change to a
separable closure F of F. The group of cocharacters A = A(T) is a free Z-
module of rank n. As in Subsect. 2.1, the F-form T of T is equivalent to a
continuous homomorphism pp : I'r — Aut(A) from the Galois group I'r of
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F to the discrete group Aut(A) of automorphisms of the lattice A. In particular,
we recover Tr from pp by the formula

F[Tr] = (F ® FIAV])T ),

where I'(pyp ) is the graph of pp which is a subgroup of I'r x Autp acting on
F ® F[AV] component wise. We will denote by pa (') the image of po which
is a finite subgroup of Aut(A).

If t denotes the Lie algebra of 7', then we have t = A ® F. We have
(A7 A)® F = A\"t. Since A7 A is a free Z-module of rank one, its generator
€, which is well defined up to a sign, is then a generator of the one-dimensional
F -vector space /\’;: t. The dual generator €” of A7 A gives rise to a genera-
tor of /\';;, t and therefore a non-zero invariant top differential form on 7. The

automorphism group Aut(A) of the lattice A acts on /\7 A through the deter-
minant character dety : Aut(A) — {£1} as well as on the space of invariant
top differential form /\'115 t¥ on T. The space of top differential form on the
F-model TF is given by

A L(oa)
(/\t ®F F[AV]) Y= (Fe¥ @p FINY]Tew), (2.26)
We will construct a non-zero element § € F[AY] satisfying

y(§) = detp () (2.27)

for every element y of the finite subgroup pa (I'r) of Aut(A). Since the fixed
points of each non-trivial element of pa (I'7) form a strict linear subspace of A,
there exists an element & € AY which is not fixed by any non-trivial element y
of pA(I'F). We set

=Y deta(y)y(e) € FIAV].

v€oa(T'F)

Since the terms y (o) appearing in the above formula are distinct elements of A
and thus linearly independent in F[A "], the above linear combination is non-
zero. It also obviously satisfies the equation (2.27). If £ and &; are two non-zero
elements of F[AY] both satisfying (2.27), we have &, = ¢&, where ¢; is a
rational function on 7" invariant under the action of Aut(¥). The top differential
form &€¥ on T is now invariant under the action of I'z and therefore defines a
top differential form on the F-model TF as in (2.26).

The function £ is not invariant under pa (I"z) but its square is. We define the
canonical measure on 7r (F) to be

dp = |E2712 86V, (2.28)
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One can check that this is an invariant measure on 7 (F') which is independent
of all choices, including € and &. Indeed, € is well defined up to a sign which
is canceled by the absolute value. The independence on £ is guaranteed by the
formula (2.25).

We can extend the construction of canonical invariant measures on tori to
every reductive group. Let G be a reductive group over F'. We denote by C
the neutral component of its center and G its derived group. We know that
C is a torus and G%" is a semisimple group. We derive an invariant measure
on G(F) from the measure on C(F') constructed as above, and the measure on
G 9" constructed out of the Killing form.

2.4. Unramified local L-factors

If G is a reductive group defined over a non-archimedean local field F, G(F) is
a totally disconnected locally compact group i.e., it has a base of neighborhoods
of the identity element consisting of compact open subgroups. A representation
7 of G(F) on a complex vector space V is said to be smooth if the stabilizer of
every vector v € V is an open subgroup of G(F). It is said to be admissible if
for every compact open subgroup K of G(F), the space VX of K-fixed vectors
is finite dimensional. It is known, and it is a deep fact of the theory of smooth
representations of reductive groups over non-archimedean local fields, that all
irreducible representations of G(F') are admissible, see [6].

By choosing a Haar measure du on G(F'), we can identify CZ°(G(F')) with
the space of locally constant measures with compact support in G(F). The
choice of Haar measure allows us to define the convolution product and as
a result, to equip C2°(G(F)) with a structure of non-unital associative alge-
bra. For every smooth representation (i, V'), V is equipped with a structure of
C°(G(F))-module by the formula:

(f)o = /G o J@rvan (2.29)

If 7 is admissible, then for every f € C2°(G(F)) the operator 7 ( f) has finite
dimensional image. It follows that we have an ad(G (F'))-invariant linear form

try : C°(G(F)) — C. (2.30)

If G is a split reductive group over F', G can be extended as a reductive group
scheme over Z and in particular over the ring of integers Of of F. We will also
denote by G the smooth reductive group scheme over O g whose generic fiber is
the group G over F with which we start. The group K = G(OF) of O -points
of G is then a maximal compact open subgroup of G(F'). The subalgebra H of
C°(G(F)) consisting of (K x K)-invariant functions with compact support in



Hankel transform, Langlands functoriality, . .. 137

G(F), is acommutative subalgebra with a unit. An irreducible smooth represen-
tation (77, V') of G(F) is said to be unramified if it has a non-zero fixed vector
under K. In that case, the space of K-fixed vectors in V' is a non-zero simple
module over H. Since ‘H is commutative, simple modules are one dimensional
and the set of isomorphism classes of simple modules is in bijection with the set
of maximal ideals of H. After Satake [46], there is a canonical isomorphism of
algebras:

Sat: H —> C[G V]G (2.31)

from H to the algebra of algebraic regular functions on GV invariant under the
adjoint action. It follows that simple modules over ‘H, and hence unramified rep-
resentations of G(F'), are classified up to isomorphism by semi-simple conju-
gacy classes in the complex reductive group G . An unramified representation
m of G(F) is said to have the Satake parameter o, in the set of semi-simple
conjugacy classes of GV if for every ¢ € H we have

trr (¢) = (Sat(¢))(ax ). (2.32)

This equation defines a canonical bijection between the set of unramified rep-
resentations of G(F') up to isomorphism and the set of semi-simple conjugacy
classes of GV.

After Langlands [29], Satake’s theory can be generalized to unramified re-
ductive groups G over F'. A reductive group G over F is said to be unramified
if it admits a reductive model over O . For quasi-split groups, the condition of
being unramified can be read off the action of the Galois group I'r of F on the
root datum. Recall that we have an exact sequence

00— I —Tfr—TIfy—0, (2.33)

where [ F is the inertia group and I'r is the Galois group of the residue field [F of
which the Frobenius element of is a topological generator. Quasi-split groups
over F' are determined up to isomorphism by a homomorphism ooy : I'r —
Out(G @ F) as defined in (2.18). The group G admits a reductive model over
OF if and only if the restriction of ogy to the inertia group /g is trivial. In
particular, the action of I'z on GV factors through I'r. We may take

LG = GY x (oF). (2.34)

We suppose that G has a reductive model over O which we will also denote
by G. An irreducible smooth representation G (F) is said to be unramified if it
has a non-zero vector under G(OF). In this setting, Langlands showed that un-
ramified representations of G(F') are in canonical bijection with the conjugacy
classes of GV in the connected component o G of LG

a€opGY CGY x(oF).



138 B.C. Ngb

There is a twisted form of the Satake isomorphism
Sat: H —> Clop G V]G (2.35)

from the unramified Hecke algebra of G to the ring of regular functions on the
connected component 0z G of &G which are invariant under the adjoint action
of GV, see [7, 6.7]. The bijection w + «a; between the set of isomorphism
classes of unramified representations of G(F) and the set conjugacy classes
of GV contained in the connected component o GV is characterized by the
identity

trz(¢) = (Sat(¢))(ar). (2.36)

More information on this construction may be found in [29], [7] and [13].
For every algebraic representation p : LG — GL(V,), we define the local
L-factor of an unramified representation 7 to be

L(s, 7, p) = det(1 — p(az)g )", (2.37)

where ¢ is the cardinality of the residue field of F', and s is a complex variable.
Using the Newton identity

det(1 — A1)~ =1 + tr(A)t + tr(sym?(A4))t% + - -- (2.38)

valid for every matrix A, the formal variable ¢ being ¢ —°, we obtain the devel-
opment of L(s, r, p) as formal series:

(0. ¢]

L(s.m.p) = ) r((sym? p)(etm))g . (2:39)
d=0

An unramified representation 7 of G(F') is said to be tempered if its parameter
ay is a compact element of G. In that case, all eigenvalues of the matrix
(sym? p)(ay;) have absolute value 1, and therefore

ltr((sym? p) (etz))| < dim(sym?p) < (d + 1)", (2.40)

where r = dim(p). We infer that the formal series (2.39) converges absolutely
and uniformly on the domain 9i(s) > O of the complex plane. In general,
the formal series (2.39) converges absolutely and uniformly on some domain
N(s) > o, where o can be explicitly specified in function of absolute values of
eigenvalues of the matrix p(«; ). More information can be found in [29] and [7,
39] and [13, 16].

The local L-factor is conjectured to exist for all irreducible admissible repre-
sentations of G(F'). There is a conjectural formula based on the local Langlands
correspondence. The local L-factor should also exist at the archimedean places
as well. This is known in some cases: for instance if G = GL,, and p is the
standard representation of the dual group G¥ = GL, (C) thanks to Godement
and Jacquet [23], and Tamagawa [50].
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2.5. Automorphic L-functions

Let G be a reductive group defined over a number field k, G = GV x I'y
its L-group defined by a continuous homomorphism ooy : 'y — Out(G). By
continuity, ooy factors through a finite quotient i.e., Gal(k’/ k) for some finite
Galois extension of k. For every non-archimedean place, we have an induced
homomorphism oy oy : I'y — Out(G) well defined up to conjugacy. We know
that G ®y k is unramified if and only if the restriction of oy oy to the inertia
subgroup I, of I’y is trivial. This is true for all non-archimedean place v € |k|
with finitely many exceptions.

Automorphic representations of G are irreducible representations 7 of G(Ay),
occurring in the space of automorphic functions on [G] = G(k)\G(Ay) as de-
fined in the paper by Borel and Jacquet [8], followed by a supplement by Lang-
lands [30]. An automorphic representation w can be decomposed into tensor
product

T = ® Ty, (2.41)

where m, are irreducible admissible representations of G(F). There exists a
finite set S, C |k| containing all archimedean places such that for all v €
k| — Sz, G ®p ky is an unramified group over k, and m, is an unramified
representation of G (ky).

Following Langlands [29], for every representation p : G — GL(V)), we
define the incomplete L-function as the Euler product

Lsmp) = [] Lolsmu.p) (2.42)
vElk|=Sr

where Ly (s, 7Ty, p) is defined by (2.37). An automorphic representation is said
to be of the Ramanujan type if for all v € |k| — Sy, a(my) is a compact el-
ement of LG. In this case, with the development of local L-factor as formal
series (2.39) and the estimate (2.40), one can prove that LS~ (s, r, p) converges
absolutely and uniformly to a holomorphic function on the domain (s) > 1.
It is known that in general the Euler product (2.42) converges absolutely and
uniformly on a domain of type R(s) > o for some real number o, see [29] and
[7, 52], which only depends on G.

In [29], Langlands asked no less than seven questions of which the first is
whether is it possible to define local L and € factors at the ramified places so
that the complete L-function

Ls.mp) = [] LoGs.m.p0) (2.43)
velk|
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has a meromorphic continuation in the entire complex plane with finitely many
poles which satisfies the functional equation

L(s,m,p) = e(s.m, p)L(1 —s,7,p"), (2.44)

where pV is the dual representation of p, and

€(s,m,p) = 1—[ €v(s, T, p). (2.45)

We call this the standard properties of automorphic L-functions.

Again, this conjecture is known in some cases. For instance for G = GL,,
o the standard representation of G¥ = GL,(C), this is a theorem of Godement
and Jacquet [23], [26, 83—84] and Tamagawa [50]. In other words, standard L-
functions satisfy standard properties. There are at least two other methods of
proving particular instances of standard properties of automorphic L-functions
namely the Langlands—Shahidi and Rankin—Selberg methods which are out of
the scope of this survey.

2.6. Functoriality principle

Question 5 of [29, 19] is nowadays known as the functoriality principle. This
conjecture stipulates that for reductive groups H and G defined over a global
field k, given with a homomorphism of complex groups £ H — LG, for every
automorphic representation wgy of H there exists an automorphic representa-
tion 7 of G such that for every representation p : G — GL(V)), there are
equalities of local L and € factors

Ly(s, mHw, plLg) = Ly(s, 7wy, p) and €y(s, T, plLg) = €u(s, Ty, p).

(2.46)
In other words, there should be a transfer of automorphic representations from
H to G depending “functorially” on a homomorphism of complex groups ©H
— LG. It is quite clear from this formulation that there should be a similar
transfer from smooth representations of H(k,) to smooth representations of
G (ky) satisfying a local-global compatibility. This is the content of question 4
of [29, 19].

An immediate consequence of the functoriality principle is that every auto-
morphic L-function is equal to some standard L-function of Godement—Jacquet.
In particular, all automorphic L-functions have meromorphic continuations sat-
isfying the functional equation (2.44) as standard L-functions do. Thus the stan-
dard properties of automorphic L-functions follow from the principle of func-
toriality.

In the opposite direction, at least when G = GL,,, the functoriality principle
follows from the standard properties of automorphic L-functions. This is the
content of different formulations of the converse theorem [17].
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2.7. L-packets and endoscopy

In the case of G = GL,, L-functions determine representations both in local
and global settings. The transfer of representations of H to representations of
G = GL, in both local and global setting, according to the functoriality princi-
ple, should be a mapping. It is not necessarily so for a general reductive group
G . Locally, there are usually a finite number of representations of G (F') having
the same local L-factors. These representations are considered as elements of an
L-packet. Globally, there are inequivalent irreducible representations of G(Ay)
whose local components belong to the same L-packet, occurring in the space of
automorphic forms with possibly different multiplicities. The functorial trans-
fer from representations of H to representations of G, both in local and global
settings, are then at best correspondences, or has to be reformulated on the level
of L-packets.

This phenomenon, which seems to be an impediment at first view, turns out
to be a chance. In [31], Langlands formulates a program aiming at explicating
the L-packet phenomenon as a particular case of the functoriality principle in
which HV is the neutral component of the centralizer of a semi-simple element
of L'G. The groups H arising in this way are called the endoscopic groups of
G . The functoriality principle, in the endoscopic setting, is to be established by
the way of comparison of trace formulae. It took more than thirty years to see
the endoscopy to come essentially to completion.

As opposed to other partial approaches to functoriality, L-functions and its
standard properties do not play a major role in endoscopy theory. The main
method in the theory of endoscopy is the comparison of trace formulae. In some
sense, the comparison of trace formulae may be seen as a comparison of two
distributions, and the transfer of automorphic representations may be seen as
the resulting comparison between the spectral supports of those distributions.
Both distributions are certain linear combinations of the trace formulae. The
comparison is to be proved by comparing their geometric sides, which derives
from an equality between certain linear combination of orbital integrals on H
and on G. The problem of comparisons of the orbital integrals are to be divided
into similar looking but different problems in local harmonic analysis, known as
the transfer and the fundamental lemma. A summary of this topic may be found
in [36].

Endoscopy theory and its twisted variants culminate in the results exposed in
the recent book of Arthur [5]. Twisted endoscopy theory has found a great num-
ber of applications in number theory, for instance via the theory of base change
and the calculation of cohomology of Shimura varieties. As it is advocated in
[21], in addition to the precise description of local L-packets and global mul-
tiplicity formula, endoscopy theory produced the stable trace formula which is
expected be one of the most powerful tools for constructing functoriality.
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3. Langlands’s first strategy for beyond endoscopy

In [32], Langlands proposed to construct certain limits of trace formula as means
to prove the functoriality principle. Admitting the reciprocity principle, auto-
morphic representations 7w of G should be classified by homomorphisms

O,T:I’II;—>LG

from the hypothetical Langlands—Galois group I" 1% to L' G. Without having prop-
erly defined FII;, the Zariski closure of o (FII;) in LG should be well defined
and will be denoted by H (7). As an ersatz to functoriality, one may attempt to
sort out automorphic representations 7 of G according to subgroups H () of
LG classified up to conjugation.

For every representation p : LG — GL(V),) we will denote by

Mz (p) = My () (p) = dim(VHD)

the dimension of the subspace of V), consisting of fixed vectors under the action
of H (7). The numerical data p — m (p) will tell a great deal about H (7r) up to
conjugation. For instance, for G = GL,, the numerical data m, (p), as p varies,
determine H () up to inner automorphism of GL,(C) according to a result
of Larsen and Pink [34]. It is not necessarily so for other reductive groups but
we may restrict ourselves to G = GL, for the time being. One may therefore
attempt to solve the problem of sorting out automorphic representations = of G
according to subgroups H(7) of G by finding formulae that have access to the
numbers m (p). Langlands envisions a new breed of trace formula consisting
of a stably invariant linear form

P C(G) — C
whose spectral expansion is of the form

(f) = ma(p)tra (f) + -+ . (3.1)

Conjecturally at least, we have access to numbers m (p) by means of the
L-function L(s, 7, p). Indeed, one expects that m (p) is equal to the order of
the pole of L(s, w, p) at s = 1. In other words,

my(p) = —resg=1dlog L(s, 7, p),

where dlog (f) = f’/f. For representations 7 of Ramanujan type, the Euler
product L57 (s, 7, p) converges absolutely and uniformly on the domain R (s) >
1 and we may expect an asymptotic formula as X — oo

> log(go)tr(p(em, ) tr((sym? " p) (@) = ma(p)X +0(X)  (3.2)
q{f <X
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the sum ranging over all places v € |k| — S; and d € N such that qf)l < X,
A, € LG/ ~ being the Langlands parameter of unramified components 7.
Although the terms corresponding to exponents d > 2 may look unpleasant,
they should not contribute to the asymptotic, and therefore we may expect

Y. log(qu)tr(plex,)) = mx(p)X + o(X) (3.3)
velk|—Sr,qu<X

for all automorphic representations of the Ramanujan type. Langlands proposes
to study the asymptotic of

Z log(qv)triG1 (95 ® fs) (3.4)

velk|—S,qu<X

as X — oo, for every fixed finite set of places S C |k| containing all the
archimedean places, ¢5 being the Hecke operator corresponding to p and fg €

Ryes C°(Gkv)).

This compelling perspective faces serious difficulties:

1. There are discrete automorphic representations not of Ramanujan type. The
corresponding L-functions may have poles, say at some real number m > 1,
in which case the leading term of (3.3) should be X™ instead of X . Therefore
one should first remove the contribution of representations not of Ramanujan
type.

2. Available analytic techniques to deal with a sum over primes as (3.4) are ex-
tremely limited. Even if explicit information on orbital integrals of ¢/ are
available, which is the case only if G = GL, and p is the standard represen-

tation, fundamentally new ideas will be needed to find an asymptotic formula
(3.4).

As suggested by Sarnak in [45], there may be some advantages to work with
the Kuznetsov trace formula which discards representations not of Ramanujan
type. He also suggests that it may be better to construct a trace formula whose
spectral expansion involves a sum of automorphic L-functions instead of their
logarithmic derivatives, and whose geometric expansion involves a sum over in-
tegers instead of a sum over primes. Sarnak’s suggestion has been implemented
in Venkatesh’s PhD thesis [51] treating the case G = GL, and p the symmetric
square representation.

A general form of the trace formula with sum of L-functions appearing in
the spectral expansion has been initiated in [21]. Instead of (3.4), [21] aims a
spectral expansion of the form

LP(f) =) ress=1L(s.7. p)tex (f) + -+ (3.5)
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For the geometric expansion of L? will be a sum over integers instead of a sum
over primes as (3.4), there is more hope of finding estimate of the geometric
expansion and derive some information on the spectral expansion. In [21], we
propose to use a Poisson summation formula for this endeavor. This strategy has
been implemented with success by Altug [1].

The formal structure of (3.5) can be greatly clarified by the introduction
of certain Schwartz spaces whose existence is conjectured by Braverman and
Kazhdan [11], we will review their conjectures before coming back to the trace
formula of [21] in Sect. 7.

4. Braverman—Kazhdan conjectures

Braverman and Kazhdan propose in [11] a conjectural generalization of Godement
—Jacquet’s construction of standard automorphic L-functions. Before stating the
Braverman—Kazhdan conjectures, we will briefly recall Godement—Jacquet’s
construction. We will call the case G = GL, and p the standard representa-
tion of GV the standard case, and qualify all other cases as non-standard.

4.1. Standard case

Let G be the group GL, and M* be vector space of (n x n)-matrices con-
taining G as a Zariski open subset. Let F' be a non-archimedean local field. The
Schwartz space S*Y(G(F)) in this case consists of all locally constant functions
with compact support on MS(F). The restriction of ¢ € S(G(F)) to G(F)
is a locally constant function on G (F) but no longer of compact support. For
¢ is completely determined by its restriction to G(F), S(G(F)) may be re-
garded as the space of locally constant functions on G(F') that can be extended
to a locally constant function with compact support in MS4(F).

The Schwartz space determines the standard L-factor L(s, r, std) in terms
of Godement—Jacquet’s zeta integrals. These integrals, depending on a function
¢ € S(G(F)), a matrix coefficient f of 7 and a complex variable s

Z@er3L¢@U@Mmﬂ@V@- @)

is convergent for M (s) > sg for some positive real number sg depending only
on G. For a given test function ¢ and a matrix coefficient f, Z(¢, f,s) can be
extended to a rational function Q(g™*) of ¢™°, g being the cardinality of the
residue field of F. The standard local L-factor is then

L(s,m std) = P(¢~*~"2)7", 4.2)
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where P(t) is a polynomial such that P(z)~! generates the fractional ideal of
rational functions Q () as above, with P(¢) being normalized such that P(0) =
1.

Disregarding the convergence issue that can be circumvented by an appropri-
ate application of the principle of analytic continuation, the above zeta integral
can be expressed as a convolution product

Z($, f,5) = (¢ * fldet|™)(Sg) = ( x f|det[)(Sg),  (4.3)

where f(g) = f(g7h, ¢Z(g) = ¢ (g~ 1) and 85 is the neutral element of G.

In this construction the characteristic function LL*" of the compact set M 9(0)
of integral matrices plays a prominent role for it singles out unramified repre-
sentations and produces unramified L-factors:

L( _ HT, T, std) if 7r 1s unramified, (4.4)

trr (L) = {
0 otherwise.
As M*Y(F) is an F-vector space, the Schwartz space S*4(G(F)) is equipped
with a Fourier transform, once we chose a non-trivial additive character of ¢ :
F — C*:

$x) = / S ()Y (ir(xy)) d* y. 4.5)
Ms4(F)

where dT y is the additive invariant measure on M (F) which can be normal-
1zed by the formula:
dtg = |det(g)|" dg. (4.6)

The Fourier transform can be written as the multiplicative convolution
¢ —> ¢ = F(p) = T det|" dg * ¢, (4.7)
where the convolution kernel J* is the conjugation invariant function

T (g) = y(u(g)). (4.8)

We observe that J* dg is an invariant measure on G (F) which is essentially
of compact support in M9 (F). Indeed, for every compact open subgroup K of
G(F), ek the invariant measure on K on volume one, it is not hard to check that
ek * J% is of compact support in M*'4(F). In a suitable sense, J*¢ dg defines
an element of a generalized Bernstein center. For every irreducible representa-
tion 7w of G(F), for every matrix coefficient f of , the convolution product
JY % f|det|® converges for N(s) large enough and there exists a constant
y4(s, ) such that

JYdg x fldet|s = p*(s, ) f| det |*. (4.9)



146 B.C. Ngb

After analytic continuation, by setting s = 0, we have y*4(x) = y*9(0, ) and

Jdg x f = y"(n) f, (4.10)

where 7 + y*9(r) is a rational function on the Bernstein variety of G. Pro-
visionally, for generalized Bernstein center we mean the total ring of rational
functions on the Bernstein variety. In this sense, J*9dg defines an element of
the generalized Bernstein center.

One can derive from (4.10) the functional equation for zeta integrals (4.1):

Z($. f.5) =y, m)Z($, fin —3). (4.11)

In manipulating formally convolution integrals, we have

Z(@, fon—s) = ( * f|det| ") (8¢)
= (J* det|" x § * f|det| " T*)(Sc)
= (¢ * J* % f|det|*)(Sc)
= y¥(s, 1) Z (9, [, 9).

Using the Poisson summation formula on the vector space M, Godement
and Jacquet derive the functional equation of global L-functions by establishing
“morally” the product formula for y-factors

[y =1. (4.12)

We must however remind ourselves that it does not seem possible to make sense
of this formula as the infinite product in its left hand side never converges.

4.2. Nonstandard case

Taking Godement—Jacquet’s construction of standard L-functions as a paradigm,
Braverman and Kazhdan made a series of conjectures aiming at establishing the
meromorphic continuation and functional equation of general automorphic L-
functions. Before recalling their conjectures, we will put ourselves in a slightly
more favorable situation. We will assume that G is given with a homomorphism
tov : G — G, similar to the determinant in the case of GL,;:

0 G’ G Gm 0. (4.13)

Dually we have a homomorphism vV : C* — LG. We will only consider
irreducible representation p : LG — GL(V)) such that p o v is the scalar
multiplication of C* on V). In fact, we can always put ourselves in this setting
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by adding an extra G, factor to G. The advantage of this setting is that we can
get rid of the complex parameter s in the L-function by putting

—1
L(x, p) :L(—""2 ,Jr,p) with 1, = (2. Ap) + 1, (4.14)
where 27 is the sum of positive roots of G and A, is the highest weight of p.
We recover the whole L-function from these L-values by the formula

np—1
L(s, 7, p) = L(r ® |det|*t %z ,0).

We will reformulate Braverman—Kazhdan’s conjectures as follows. More
precisions will be added in Sects. 5 and 6.

1. There exists a Schwartz space S?(G(F)) of p-functions on G(F), locally
constant on G(F) and characterized by asymptotic conditions on a certain
boundary such that the zeta integral (4.1) defines L-factors of irreducible
representations of G(F).

2. The Schwartz space of p-functions contains a distinguished vector, the p-
basic function:

L € SP(G(F))

satisfying

L(m,p) if & is unramified,

try (LP) = { (4.15)

0 otherwise.

3. With the help of the basic function, we can construct the global Schwartz
space of adelic p-functions associated with a reductive group G defined over
a global field k

§P(G(A) = lim K)S"(G(kv)) (4.16)
SClk|veS

over all finite sets of places of F containing all the archimedean places, the
transition map in the inductive system being the tensor product with the basic

functions:
XRov— Q LEe Q) 4.17)
S

vesS veS’— veS
for all finite subsets S C S’ of |k]|.

4. There exists an involutive Hankel transform F? of SP(G(F)) to itself of
the form ¢ — JP|v|"* x é, where JP, the p-Bessel function, is a locally
integrable invariant function on G***(F’), the set of (strongly regular semi-
simple) elements of G(F') whose centralizer is a torus. We expect that the
equality JP(ILP) = LL? holds for all non-archimedean places v, where v is
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unramified and the conductor of ¢ is O,. We expect the y-factor y° () to
be defined by the formula

JOx f=yP(m)f (4.18)

for all matrix coefficients f of .

5. Local Hankel transforms on S?(G(ky)) induce the adelic Hankel transform
on the global Schwartz space SP(G(Ay)). We expect that the Poisson sum-

mation formula
Y= ). FHW) (4.19)

yeG(k) yeG (k)

holds for all ¢ € SP(G(Ay)) subject to certain local conditions. (Note that in
the standard case the Poisson sum is a sum over all rational matrices and in
order to eliminate non-invertible matrices on both sides, we need to impose
some local conditions on test functions.)

5. Geometry underlying the p-functions

In order to add more precision to the conjectures of Braverman and Kazhdan,
we will need a space M”, containing G as an open subset, that plays the role
of the space of matrices in the standard case. For instance, the asymptotic con-
ditions defining the p-Schwartz functions should refer to the boundary of G in
the monoid M”. A good candidate for M” turns out to be a reductive monoid,
that can be constructed canonically from G and p. This construction is an appli-
cation of the general theory of reductive monoids due to Putcha and Renner of
which the survey [40] is a good reference.

We will also relax the condition on the central character of p and no longer
request p to be irreducible. Under some mild conditions on the central characters
of p, we will define a monoid M ? of which G is the group of units, generaliz-
ing the space of matrices in the standard case. Following [11], we expect that
the space SP(G(F)) of p-functions is defined by local conditions on MP(F’)
with respect to its totally disconnected topology. In other words, there should
exist a sheaf SP on the totally disconnected topological space M P (F') of which
SP(G(F)) is the space of sections with compact support:

SP(G(F)) = T.(MP(F),S"). (5.1)

For every x € MP(F), the stalk S? of SP at x would define the asymptotic
condition for a smooth function on G(F) to be a p-function. The existence of
SP is only known in the case G = GL, and p is the standard representation and
in the toric case. In the toric case, it is necessary to relax the condition p being
irreducible to produce interesting examples.
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5.1. Renner’s construction of monoids

A reductive monoid is a normal affine algebraic variety equipped with a monoid
structure such that the unit group, which is the open subset consisting of invert-
ible elements, is a reductive group. We will recall some basic elements of the
construction of reductive monoids out of certain combinatorial data, following
[40].

Let G be a reductive group defined over a separably closed field k.Let M
be a reductive monoid of unit group G. Let T be a maximal torus of G. If we
denote by M7 the normalization of the closure of 7" in M, then M7 is a normal
affine toric variety of torus 7" which is W-equivariant. This toric variety is thus
completely determined by a W -equivariant strongly convex rational polyhedral
cone oy C Ar = A®R, where A = Hom(Gy,, T). For our purpose, the main
outcome of the theory of reductive monoids is that the reductive monoid M
determines and is uniquely determined by the W -equivariant strongly convex
rational polyhedral cone opy C Ar = A ® R, see [40, Theorems 5.2, 5.4].

We first observe that there is no reductive monoid with semisimple unit
group. If G is semisimple, there is no W-equivariant strictly convex polyhe-
dral cone 0 C Ap other than zero. Indeed, if A € AR is a non-zero vector, the
average of the W -orbit of A, being a W -invariant vector, must be 0 as Ag =0
for G is semisimple. It follows that 0 belongs to the interior of convex span of
W A with respect to the topology of the linear span of W A. It also follows that
every W -equivariant cone containing the ray passing through A contains a line,
in other words, is not strictly convex.

The simplest example of W -equivariant strictly convex cone is related to the
setting fixed for the Subsect. 4.2. We recall that G is equipped with a homomor-
phism v : G — Gy, such that dual homomorphism v¥ : C* — G induces the
scalar action of C* on the vector space V. If 2(p) denotes the convex span of
weights of p, then for every @ € Q(p) we have (v, w) = 1. It follows that the
cone £(p) generated by €2(p) is contained in the open half-space consisting of
vectors x € Ap satisfying (v, x) > 0 and therefore is strictly convex.

This construction can be generalized as follows. Let G be a split reductive
group and p a representation p : GV — GL(V,) which is not necessarily irre-
ducible. We will denote by €2(p) the convex set in Ar generated by the weights
of p. We will denote by & (p) the cone in Ar generated by rays through elements
of 2(p). Whether &(p) is a strictly convex cone or not depends only on how the
center of G acts on the vector space V).

Proposition 5.1. Let Gy be a reductive group over a field k, which becomes
split over a finite separable extension of k; G = Gy Qi k. Let p : Lg —
GL(V,) be a finite dimensional representation whose central characters are
non-zero and generate a strictly convex cone. More precisely, if C denotes the
connected center of GV and if we decompose the restriction of p to C as a sum



150 B.C. Ngb

of characters
plc =11& - xr,

X1s---» Xr € Ac = Hom(C,C*) possibly appearing with multiplicity, then
we assume that x1, ..., Xr are non-zero and generate a strictly convex cone in
Ac @ R. Then there exists a unique reductive monoid M ,f containing Gy, as the
open subset of invertible elements such that for every maximal torus T of G, the
normalization of its closure M 7‘3 is the toric variety of torus T' corresponding to
the strictly convex cone generated by the set of weights Q2(p) of representation

p.

Proof. 1f the central weights yi,..., y, are non-zero and generate a strictly
convex cone in Ac g, then there exists a central cocharacter v : C* — C such
that (v, y;) > Oforalli = 1,...,r.Itfollows that for every A € Q2(p), we have
(v, A) > 0 and therefore the cone generated by €2(p) is strictly convex.

By [40, Theorems 5.2, 5.4], there exists a unique reductive monoid M con-
taining G as the open subset of invertible elements such that for every maximal
torus 7" of G, the normalization of its closure M 7’3 is the toric variety of torus T
corresponding to the strictly convex cone £(p) generated by the set of weights
Q(p) of representation p.

In order to justify the descent to the base field k, we need to recall the con-
struction of the monoid. Let 7 be a maximal torus of G and M;i the normal
affine toric variety of torus 7' corresponding to the strictly convex cone £(p)
generated by the set of weights €2(p) of the representation p. By construction,
the ring of regular functions on M7 is k[§(p)"], where £(p)¥ C AV is the
sub-monoid consisting of @ € AY such that the restriction of «a to Q(p) takes
non-negative values. The assumption that the cone £(p) generated by 2(p) is
strictly convex guarantees that &(p)Y generates A as an abelian group and
therefore 7' acts on the variety M ; that contains 7" as an open subset. The fact
that Q2(p) is stable under the action of W implies that the action of W on T
extends to an action of W on M 7’3.

Let a1,...,a, € AV such that their orbits under W generate £(p)Y. By
replacing «; by a W-conjugate if necessary, we may assume that the «; lie in
the positive Weyl chamber AV>F. Let wg, : G — GL(Vy,) the Weyl module of
G of highest weight o; and @ : G — GL(V') the representation in the direct
sum V = €; Vi, . The monoid M ?, which is defined as the normalization of the
closure of p(G) in the space of matrices End(}/), is independent of the choice
of the generators oy, ...,q, € AV,

The reductive group G defined over k gives rise to a continuous homo-
morphism ooy : 'y — Out(G,;). We denote by Out, the image of ogy in
Out(Gj). Since I'y is compact and Out(Gy) is discrete, Outy is a finite sub-

group of Out(Gj). Since the representation p : GV — GL(V,) extends to L@,
the set €2(p) is stable under the action of Out,, and so are the cones £(p) C AR
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and £(p)¥ C Ay. We can choose a set a1, ...,ar € AV>T stable under Outy
such that the W -conjugates of a1, . .., «, generate £(p)". The homomorphism
w : G — GL(V) is then Outs-equivariant. It follows that the closure of the
image of w and its normalization is acted on by G(k)/Z (k) x Out, extending
the action of this group on G (k).

A k-form Gy, of G corresponds to a section of the exact sequence

0 — Autz (G) — Aug(G) — Iy — 0.

The induced cocycle og : Iy — Autp(Gp) = G(k)/Z(k) Out(Gg) has
image contained in G(k)/Z (k) x Out,. It follows that the og-action of ' on
G, extends to M?, and therefore we obtain a k-form M ]f of M? given by

Mf = spec(lé[Mlg]ffGWk)).

We have thus defined a monoid M ]f of Gy, which is a k-form of the monoid M*
of G. O

After taking some pain to construct the monoid in full generality for future
reference, let us come back to the familiar case where G is split and p is an
irreducible representation of G V. In this case, the connected center C of GY
acts on V), via a character y : C — G,,. The assumption of Proposition 5.1 is
then simply that the character y is non-trivial, and in particular, C itself is a non-
trivial torus. This encompasses the automorphic L-functions setting we fixed
in the Subsect. 4.2: G is a split reductive group given with a homomorphism
v : G — Gy, the dual central homomorphism v : C* — G induces the scalar
multiplication of C* on V. The monoids constructed in the particular setting
of Subsect. 4.2 are to be called L-monoids.

The construction of the L-monoid M ” is motivated by the combinatorics of
the basic function IL°. According to the expansion of the unramified L-function
L(s, m, p) as a formal series (2.39), the basic function IL° has an expansion as
an infinite sum

o0
LP = Z LA, (5.2)
d=0

where ]LZ € H(G(F)) is the element of the Hecke algebra whose Satake trans-

form is the invariant regular function on GV given by g > tr(g, sym? (p)).
Under the assumption of Subsect. 4.2, the infinite sum (5.2) is locally finite and
therefore it makes sense as a function on G(F'), invariant under G(O) x G(O)
whose support is not compact in general. In fact, the spherical function ]LZ has
support contained in

Supp(LY) C | | Kuk, (5.3)
UEATNL(sym9 ()
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where Q(sym? (p)) is the set of weights of sym? (p) and therefore

Suppl’) € | | KuK =G(F)nMP(O). (5.4)
neA+NE(p)

The relation (5.4) was the main motivation behind the introduction of the monoid
M P for the study of L-functions in [38]. The same monoid also appears earlier
in works of Braverman—Kazhdan [11] and Lafforgue [27]. More recently, Wen-
wel Li and Shahidi have studied this monoid in the setting of Piatetski—Shapiro
and Rallis’s doubling method, see [35], [47] and [48].

We expect that the supports of p-functions on G(F) have compact closure
in MP(F). Moreover those functions, beside being locally constant on G(F')
must be characterized by asymptotic properties on the boundary (M — G)(F).

5.2. Toric varieties and toric stacks

Let T be a split torus over a field k, and p : TV — GL(V)) a finite dimensional
representation of 7V satisfying the assumption of Proposition 5.1. Suppose that
p decomposes as a direct sum of characters

Vo=Cu, @---®Cp,,

where (11, ..., 4y € A are characters of TV which are not necessarily distinct.
Assuming that the cone §(p) € Ar generated by (1, ..., W, is strictly convex,
we have the normal affine toric variety M; of torus T characterized by the
property that a homomorphism A : G,, — T extends to a morphism A! — M. ;i
if and only if A € A N &(p). The ring of coordinates k[Mje] of M;i is the k-
algebra k[ M ;i] = k[£(p)"] associated to the subsemigroup &(p)" of the group
AY consisting of @« € AV such that (A, ) > 0forall A € £(p). The assumption
£ (p) being strictly convex guarantees that £ (p)Y generates AV as abelian group,
or in other words, 7" is an open subset of M 7’3.
The cocharacters (i1, . . ., iy induce a homomorphism of tori pr : Gj, — T
given by
PT (X1, Xr) = p1(x1) - pr (Xr). (5.5)

Let U denote the kernel of p7. For each u; extends to a homomorphism of
monoids u; : Al — Mj‘f, the formula (5.5) gives rise to a homomorphism of

monoids ppr, 1 A" — Mje such that we have a Cartesian diagram

G, — AT

,,Tl lpMT (5.6)

T —— M7,
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We consider the quotient stack of A" by the action of U
ME =AT/U (5.7)

of which MT'? is the coarse space. As opposed to M2, the quotient stack /\/l';)w
depends on the cocharacters u1,...,ur € A i.e., on the representation p :
TV — GL(V,) and not merely on the cone £(p) generated by [1,..., ir.
As we will see, the space of p-functions depends on the finer geometry of M’}.
Before coming to that point, let us show that this construction can be generalized
to an arbitrary torus.

Let T be a torus over an arbitrary base field k. If A denotes the group of
cocharacters G, — T defined over a separable closure of k, then the Galois
group I'; of k acts on A through a finite quotient. The Langlands dual group
is then LT = TV x I'y, where TV = Hom(A,C*). Let p : LT — GL(V,)
be an r-dimensional algebraic representation of T satisfying the assumption of
Proposition 5.1. The restriction of p to T is a direct sum of characters, possibly
with multiplicity

Arv = AT @ - @ AT, (5.8)
where A1, ..., A, € A are distinct characters of 7V and multiplicities rq, ..., 7y
adding up to r. The weights Aq,..., A, given with multiplicities ry, ...,y

determine a finite subset

Ro={(A1,D),....A1,71), ... A, 1), oo, (A, F) } (5.9)

of A x N of cardinality 7y + -+ 4 r, = r. For the representation A|7v extends
to TV x Ty, this subset is invariant under the action of I'; on A x N.

Over k, we have a homomorphism pr : G,},S" — T} given by the formula
(5.5). As this homomorphism is equivariant with respect to the action of I'g, it
can be descended to a homomorphism between tori over k

pr : D? — T, (5.10)

where D? is the unique torus defined over k satisfying D? Q@ k = G,ﬁ” and
such that the action of I'; on the scalar restriction G,I,Sp coincides with the one
derived from the action of I'y on R,. We will denote by U the kernel of pr.
Let AP denote the affine space over k satisfying A” @ k = ARe and such that
the action of I'y on the scalar restriction AR» coincides with the action of I'
on the set of indices R,. By construction A” (k) is a product of finite separable
extensions of k. The homomorphism of tori can be extended to a morphism of
monoids ppyr, 1 AP - M 7’? such that we have a Cartesian diagram

DP AP

pTl lpMT (5.11)

T —— MJ.
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We will denote by M’; = AP/U the stack quotient of AP by the action of
U of which M7’3 is the coarse space i.e., the quotient in the sense of invariant
theory. Now we will explain how the geometry of M’; gives rise to the space
of p-functions when the base field k is a non-archimedean local field.

The simplest example one may have in mind is the case where T = Gy,
and p = std @ std is the 2-dimensional representation of C* acting on C? as
scalar multiplication. In this case, the toric variety Mje is the affine line A! and
the homomorphism pr : G2, — G, is the multiplication map pr(x,y) = xy
which can be extended to A> — A!. The stack M‘} is A%2/U, where U is iso-
morphic to G,, and acts on A2 by the hyperbolic action 7(x, y) = (tx,t1y).
Now let the base field k£ be a non-archimedean local field F with ring of integers
OF. The basic function L defined by (4.15) can be identified with the push-
forward of the characteristic function of A2(Of) — {0} to A1(Of) — {0} with
multiplicative Haar measure normalized as in Subsect. 2.3. By a straightforward
calculation, we see that this function is the function supported in Of and given
by the formula z +— val(z) + 1. In this case, every p-function is a linear com-
bination of the basic function IL° and smooth compactly supported functions on
F.

Let us now consider a more general case. Let the base field k be a non-
archimedean local field F. We assume that p7 : D? — T is a surjective ho-
momorphism of tori whose kernel is a split torus over F'. Under this assump-
tion, we have H!(F,U) = 0 and the p7 induces a surjective homomorphism
DP(F) — T(F) on F-points. In this case, p-functions on 7' (F) are obtained
by integration along the fibers from smooth functions with compact support in
AP (F) or in other words

ST (F)) = S(AP(F))yo(r). (5.12)

where S(AP(F))y»(F) is the space of U(F)-coinvariants in the space of com-
pactly supported smooth functions on the F-vector space AP(F). This is the
space of p-functions defined by L. Lafforgue in [28, II.1].

Without the assumption H! (U, F) = 0, for the map DP(F) — T(F) may
not be surjective, the above definition of p-functions has to be corrected. We
expect the space of p-functions in the toric case to be Sakellaridis’s space of
Schwartz functions on F-points of the smooth stack AP/ U defined in [42].

The case of tori suggests that in addition to the monoid M ?, one may want
to construct an algebraic stack MP” of which M” is the coarse space. As op-
posed to M P which only depends on the cone &£(p) generated by the set 2(p)
of weights of p, one expects an algebraic stack MP? retains enough information
to reconstruct p. Over a finite field, the category of {-adic sheaves over M?”
should be equipped with an involutive Fourier transform, similar to the Fourier
transform on the space of matrices in the standard case. This question has been
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addressed by Laumon and Lettelier whose work on progress sheds some lights
on the nature of M?.

5.3. Perverse sheaves on arc spaces

When the representation p : G — GL(V)) is irreducible, singularities of
the associated monoid M must bear relation with the asymptotic behavior of
p-functions. In particular, as it is shown in [10], the basic function LL° is the
Frobenius trace function on the intersection complex of the arc space of IL°. To
state this result with some precision, we need some background on arc spaces.

We will assume that F is a local field of positive characteristic i.e., FF' =
k((t)) and O = k[[t]], k being a finite field of characteristic p. Let M be an
affine algebraic variety over k. For every d € N, we define the jet space L; M of
order d to be the affine variety representing the functor R — M(R][[t]]/t¢ )
from the category of k-algebras to the category of sets. The arc space LM is
defined to be the projective limit of L; M

LM = lim L4 M. (5.13)
H
deN

We have LM (R) = M(R[[t]]) and in particular LM (k) = M(O).

For the arc space LM is infinite dimensional when dim(M) > 0, it is
not clear how to make sense of the intersection complex of LM . In [24] and
[19], Grinberg, Kazhdan and Drinfeld proved that the formal completion of
LM at a non-degenerate arc is equivalent to the formal completion of a finite-
dimensional variety up to formally smooth equivalence. More precisely, a k-
point x € LM (k) is said to be non-degenerate if as a morphism x : Spec(O) —
M, it sends the generic point Spec(F') of Spec(Q) in the smooth locus of M.
The theorem of Grinberg—Kazhdan—Drinfeld says that for every non-degenerate
point x € LM (k) of the arc space, there exists a finite dimensional k-variety ¥
and a k-point y € Y (k) such that there exists an isomorphism

LMy ~ Y, XD, (5.14)

where LMy is the formal completion of the arc space LM at x, Yy, the formal
completion of Y at y and D the infinite power of the formal disc.

This result is not enough to construct the intersection complex on LM for it
only gives a finite dimensional description of the formal completion instead of
henselization. Nevertheless, if k is a finite field, we can define the trace of the
Frobenius on the stalk of the sought for intersection complex on the arc space
by means of its finite dimensional formal model. In [10, Proposition 1.2] we
proved that this definition is well grounded in the sense that the function we
construct is independent of the finite dimensional formal model we choose. As



156 B.C. Ngb

a result, we have a canonical function IC on the subset of LM (k) consisting of
non-degenerate arcs. In [10], we prove:

Theorem 5.2. If G a split reductive group and p is an irreducible representation

of GV as in Subsect. 4.2, then up to a normalization constant, the function IC
on LMP(k) is the basic function IL°.

We believe that not only the basic function but many relevant p-functions
may be related to other perverse sheaves on arc spaces. In [9], complemented
by [39], Bouthier and Kazhdan outlined a theory of perverse sheaves on arc
spaces. A definitive theory is yet to be established.

6. Kernel of the Hankel transform

In this section, we will construct a general stable class function which coincide
with the correct kernel of the Hankel transform in the toric case as well as the
standard case. This construction is similar to a construction of Braverman and
Kazhdan for reductive groups over finite fields, which we will also recall.

6.1. p-Bessel functions on tori

Let F be a non-archimedean local field and ¥ : F — C* a non-trivial additive
character. Let 7" be a torus defined over a non-archimedean local field ' and
p: LT — GL(V)) a finite-dimensional representation of its L-group satisfying
the assumption of Proposition 5.1. We will define a canonical smooth function

JR i T(F)—C (6.1)

to be called the p-Bessel function of 7.

As in Subsect. 5.2, the representation p of the L-group gives rise to a canon-
ical induced torus D” defined over F endowed with a homomorphism p7 :
DP — T. This homomorphism of tori extends to a monoid homomorphism
AP — Mje. We recall that after base change to the separable closure F of F,

we have DP ® p F = G,ﬁp and A° @ F = (A")Re, where R, is the finite set
defined in (5.9) which is equipped with a canonical action of the Galois group
I'r of F.

The morphism % : (AV)Re — G, defined by

(xa)aeRp > Z Xa
a€R,

is clearly invariant under the action of I'r and therefore descends to a morphism

h: AP — Al (6.2)
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defined over F. We denote by Ay : AP(F) — C* the function defined by
x = Y (h(x)).

We define the function J. Tp : T(F) — C by integrating the restriction of the
function A, to DP(F) along the fibers of pr : DP(F) — T (F). In other words,
for every t € T(F), we aim at defining the value of J # at ¢ by the formula

Jr@) = / hy (x) dx. (6.3)
p7 (1)

To give a sense to this integral we need to show how to normalize the measure
dx on the fiber p}l () and how to regularize the integral as the function /iy is
not of compact support.

First, if x does not belong to the image of DP(F) — T (F) we declare that
Jj’f(x) = 0. If x belongs to the image of DP(F) — T (F'), then by choosing
a F-point of ,o}l(t), we get an isomorphism ,o}l(l)(F) ~ U(F), where U is
the kernel of p7 : D? — T. The canonical invariant measure on tori defined in
Subsect. 2.3 gives rise to a measure on p;l (t)(F) which is independent of the
choice of the base F-point on the principal homogenous space ,0}1 (z). We have

thus a canonical measure dx on ,0;1 (t)(F) as long as ¢ belongs to the image of
DP(F) — T(F).

Proposition 6.1. Let T be a torus defined over a non-archimedean local field
Fandp: 'T — GL(V)) a finite-dimensional representation of its L-group
satisfying the assumption of Proposition 5.1. Let pt : D? — T be the associ-
ated homomorphism of tori and U its kernel. For every compact open subgroup
Ky of U(F), we denote by ek, the distribution with compact support on U(F)
defined by the invariant measure on the compact subgroup Ky with total mass
one. Then the function

hy x ek, : DP(F) — C

is a smooth function of proper support relatively to pr : DP(F) — T (F). The
integral

Jr @) = / (hy * ek, )(x) dx (6.4)
o7 (1)
defines a smooth function on T (F) which is independent of the choice of Ky .

We regularize of the integral (6.3) by setting (6.4) as the definition of the
p-Bessel function Jje :T(F)— C.

In the case G = G, and p = std & std, the induced torus D? is G,zn which
is endowed with the homomorphism p7r : D? — T given by (x,y) — xy.
In this case, the integral (6.10) defines the p-adic Kloosterman integral. In this
case, the function J. ; was introduced and calculated by Sally and Taibleson in
[44, Section 4].
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6.2. p-Bessel functions on reductive groups

Let G be a reductive group over a non-archimedean local field F and p : LG —
GL(V)) arepresentation of its L-group satisfying the assumption of Proposition
5.1. We will define a canonical p-Bessel function J Gp : GS5(F) — C, where
G®™ is the strongly regular semi-simple open subset of G consisting of elements
X € G such that the centralizer G, is a maximal torus. It will be the unique
stably invariant function satisfying

Jo(x) = JL(x), (6.5)

where J7’3 is the p-Bessel function of the torus 7" = G, centralizer of x.

There is a priori a difficulty to make sense of the right hand side of (6.5) for
the representation p : G — GL( Vy) of L G does not induce a representation of
LT in general. To circumvent this difficulty we observe that the construction of
the p-Bessel function presented in Subsect. 6.1 does not require a representation
LT but merely a finite set R, of cardinality r = dim(V,) endowed with an
action of I'f.

To clarify the matters, let us recall the construction of the L-groups of T
and G and compare them. As in Subsect. 2.1, we can associate to a pair (7, G)
consisting of a reductive group G and a maximal torus 7" both defined over F, a
root datum WV (7, G) = (A, @) object of RT endowed with a continuous action
of '

oy : I'r — Aut(A, ®) = W x Out(A, D).

Going one step down to the category RDgy; in the fundamental diagram (2.13)
we obtain a homomorphism

0w, : I'F — Out(A, @)

which depends only on G and not on the maximal torus 7. By using an inverse
of the equivalence RDT — RDgy in the diagram (2.13), we obtain an object
(A, ®, AT) of RDoy equipped with a homomorphism

og+ : T —> Aut(A, ®, A ™).
By exchanging roots and coroots, we get a homomorphism
og+ : Tp — Aut(AY, Y, AY:T).

An inverse of the equivalence Pinc — RD™ in the diagram (2.13) gives rise to a
reductive group GV over C endowed with a pinning. The pinning encompasses
many data including a maximal torus 7 with Hom(7TV,CY) = A.

We form G = GV x T'r with 'z acting on GV in preserving the pinning
by means of oy+. On the other hand, we form L =TV «rT F by means of
oy. As the two actions of I'r on T through oy and o+ are different, there



Hankel transform, Langlands functoriality, . .. 159

is a priori no given homomorphism 7 — L G. Nevertheless, the restriction of
p: LG — GL(V,) to TV defines a finite subset R, C A x N

Ry={(A.d)e AxN|1<d <r,(\)} (6.6)

where r,(A) is the multiplicity of the weight A € A in p. This set is stable under
the action of the Weyl group. If we denote by Out, the finite image of oy, in
Out(A, @), then R, is also stable under the action of Out, . It follows that R, is
stable under the action of W x Out, . Since its image is contained in W x Out,,
the homomorphism oy induces an action of I' on the finite subset R, of A xN
compatible with its action on A.

We are now in position to apply the construction in Subsect. 6.1 and make
sense of the right hand side of formula (6.5). This formula gives rise to a func-
tion x — J Gp (x) defined for all elements x € G(F) whose centralizer is a
maximal torus.

Proposition 6.2. Let G be a reductive group over a non-archimedean local field
F and p : Lg - GL(V,) a representation of its L-group satisfying the as-
sumption of Proposition 5.1. Then the function J g : G (F) — C defined by
(6.5) is stably invariant.

Proof. 1t is equivalent to prove that the function J, Gp is well-defined on the ad-
joint quotient. To discuss question of rationality, it is convenient to switch to
notations of Subsect. 2.1. We denote by G the reductive group defined over
F and use the letter G to denote G = Gg ® r F. We denote by 7" a maximal
torus of G and W = Norg(T) the associated Weyl group. We have the adjoint
quotient morphism

c.:G— C, (6.7)

where C = T//W is the coarse quotient defined by F[C] = F[T]". We note
that the morphism c is invariant under the inner automorphisms of G. There is an
open subset C*™* of C consisting of all @ € C such that for all x € G mapping
to a, the centralizer G, is a maximal torus. The fiber of ¢ over a € C*% is a
homogenous space for the inner action of G. The Weyl group W acts freely on
the preimage 7°™° of C** in T'.

We recall the exact sequence

0 — G(F)/Z(F) — Autz(G) —> Out(G) —> 0, (6.8)

where Aut z (G) is the group of F -automorphisms of G, G(F)/Z(F) is the sub-
group on inner automorphisms and Out(G) is the group of outer automorphisms
which is determined by the associated root datum. We note that the morphism ¢
is equivariant with respect to the action of Autz(G) on G and Out(G) on C.
As discussed in Subsect. 2.1, a k-form G g of G corresponds to a homomor-
phism o : I'r — Autz(G). We will write Gg = G?. The homomorphism
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o : I'r — Autz(G) induces a homomorphism ooy : I'r — Out(G). Since
Autz(G) and Out(G) act on G and C compatibly, we obtain a o-twist of mor-
phism ¢
c®:G° —C°

which is invariant under inner automorphisms of G°. For every x € G*%9(F),
the stable conjugacy class of x is the set ¢~ !(¢?(x))(F) of F-points on the
fiber of ¢? passing through x. We will define a function C*%%9 (F) — C whose
pullback to G¥%9(F) is J g defined by the formula (6.5). This implies in par-
ticular that J g is stably invariant.

The representation p : LG — GL(V)) gives rise to a finite subset R, C

A x N defined in (6.6) with a canonical homomorphism p7 : Gﬁp — T'. As the
Weyl group W acts canonically on R,, we have an induced morphism on the
coarse quotients

oW GcRyyw — )W =C.

Twisting by o, we get a morphism
pp G [/ W) —> C°.

The formula (6.3) can be used to define a function on C**%? (F') whose pullback
to G% (F) is the function J g defined by (6.5). The function J Gp is therefore
stably invariant. O

Proposition 6.3. Extending the function J g from G33(F) to G(F) by zero, we
obtain a locally integrable function on G(F). For every compact open subgroup
K of G(F), the measure J Gp( F)Y*€K has compact support in the monoid M P (F).

Proof. 1t is enough to prove that J g is locally bounded. Let x € G(F) and
and a € C(F) its image. There are only finitely many tori 7, up to conjugacy
whose image in C(F') contains a. Since J;a are smooth function on 7, (F), in

particular locally bounded, the function J g is locally bounded. Similarly, the
compactness of the support in the monoid can also be reduced to the torus case.
a

The Bessel function J g defined as above coincide with the kernel of the Han-
kel transform in the toric case, as well as in the standard case. Lafforgue pointed
out that even for the case of symmetric power of GL3, one needs to modify fur-
ther J g to obtain the correct Hankel transform. In recent works of Shahidi [48]
as well as Dihua Jiang progress of Jiang and his students, the correct Hankel
transform has been explicitly computed. It is important to understand the pre-
cise relationship between the naive kernel J Gp constructed as above in general as
the correct kernel that has been computed in many cases, but still lacks a general
description.
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6.3. p-Bessel sheaves for reductive groups over finite fields

Our construction of the kernel of the Hankel transform is inspired by the con-
struction of Braverman and Kazhdan in the case of reductive group over finite
fields in [12]. For simplicity, we first assume that G is split over a finite field k
and that the restriction of p : GY — GL(V,) to the maximal torus 7" of GV is
multiplicity free. In other words

plrv =A1 @+ @ Ar, (6.9)

where A1,..., A, are distinct characters of 7. The multiplicity-free assump-
tion implies that there exists a canonical homomorphism py : W — ©&,, where
W is the Weyl group of G such that the decomposition (6.9) is W -equivariant.
The dual homomorphism of tori pr : G}, — T is thus W-equivariant. We
define the £-adic p-Bessel sheaf

Jr = praJ™, (6.10)

where 754 = (x1 + -+ + x,)*Ly, where x1, ..., x, are the standard coordi-
nates of GJ,, and Ly, is the Artin—Schreier sheaf on G, attached to a non-trivial
additive character ¢ : k — @?. In [16], we proved that the assumption (4.13)
guarantees that j{f is, up to a degree shift, a local system [16]. This is a gener-
alization of Deligne’s theorem on hyper-Kloosterman sums in [18].

Let 7™ be the open subset of 7" where W acts freely. With help from the
canonical action of W on J”, we can descend j7’3|Trss to a local system .77’3
on T™/W.If j : G™ < G denotes the subset of G of regular semisimple
elements, we have a natural G-invariant map p : G™ — T /W . Following
Braverman and Kazhdan, we set

J? = jip*Jr. (6.11)

This construction is very similar to the construction of character sheaves. The
main difference is that we start on the torus with the local system jf of Kloost-
erman type with large monodromy instead of Kummer local systems as in the
construction of character sheaves.

Without the multiplicity free assumption, we can still define a canonical ac-
tion of W on Jye , on the ground of the Hasse—Davenport relation for Klooster-
man sums, as follows. The decomposition in weight spaces of V,, defines a Levi
subgroup M of GL(V)). If Wjs denotes the Weyl group of M, there exists a
canonical extension W’ of W by Wj,:

0 — Wy w’ w 0. (6.12)

By construction, the finite group W’ is equipped with canonical homomor-
phisms W/ — &, and W' — W such that the homomorphism of tori G}, — T
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is W'-equivariant. It follows that 72 = 7, 7% is W’-equivariant i.e., for every
w’ € W/, we have a canonical morphism a(w’) : w'*Jf — JF, satisfying the
usual cocycle equation. The Hasse—Davenport relation implies that the induced
action of Wps on j{f is given by the sign character

sgn, : Wy — &, — {£1}. (6.13)
We construct a new action of W’ on Jye by setting
o' (w') = a(w’)sgn, (w'). (6.14)

The restriction of o’ to W)y is then trivial, and therefore it induces an action of
W on j{f. In order to be compatible with the standard case, we need to correct
this action by the sign character of W and set

o’ (w) = o' (w)sgny (w), (6.15)

where sgny, : W — {%1} is the sign character of W. This construction pro-
vides us with an action of W on Jje . This action of W being granted, we can
continue the construction of the y-Bessel sheaf [7” as in the multiplicity-free
case (6.11).

As the construction of JP is purely geometric, it is not a priori obvious that
it acts on matrix coefficients with expected y-factors compatible with Deligne—
Lusztig’s induction. This is implied by the Conjecture 9.19 of Braverman and
Kazhdan [11]. This conjecture may be seen as the geometric reason for why the
kernel [7° behaves correctly with respect to Deligne—Lusztig induction. In [12],
Braverman and Kazhdan proved this conjecture for groups of semi-simple rank 1.
In [16], S. Cheng and I proved this conjecture for GL, and arbitrary p. T.H.
Chen proved this conjecture for arbitrary G in the setting of D-modules in [14].

7. p-trace formula and Poisson sums

This section aims to describe global problems related to the trace formula and
the Poisson summation formulas. As the current state of my knowledge is lim-
ited and piecemeal, the discussion will have to be imprecise. We aim only to
draw an impressionistic picture connecting relevant works.

7.1. p-trace formula for beyond endoscopy

The spaces of p-functions S?(G(Fy)) along with the basic function LY € SP(G(Fy))
provide the natural theoretical framework for the beyond endoscopic trace for-
mula (3.5). Assume that we have defined local Schwartz space SP(G(F)) for all
places v, both archimedean and non-archimedean. For non-archimedean place,
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we have also defined the basic function L) € SP(G(F)). We then define the
global p-Schwartz space as the inductive limit

SP(G(A)) = lim (X) S”(G(F)) (7.1
S veS

over all finite sets of places of F' containing all the archimedean places. The
inductive system is formed with the basic functions.

Leaving aside very serious analytic difficulties, the stable p-trace formula
must consists in a stably invariant linear form S° : S°(G(A)) — C endowed
with a geometric expansion

SP(¢p) = Z SO, (¢) + hyperbolic terms (7.2)
v

and a spectral expansion

SP(p) = Zanp’S(n) l_[ Xf;v (¢y) + continuous terms. (7.3)

veES

In the spectral expansion, the traces [ [, cg X;;v (¢py) are weighted by values of

partial L-functions LP>S (77) at complex parameter s specified as in (4.14). Other
values of s can be obtained by twisting. In fact, one need to move s in some
half-plane R (s) > 0 to assure absolute convergence. It is necessary to shift s
at least further right than the pole of the L-function of the trivial representation
7. Before attaining essentially interesting arithmetic information concealed in
the poles at s = 1 of L functions of tempered representations, one should have
an analytic control on the removal of non-tempered representations whose L-
functions have poles to the right of s = 1.

For this purpose, one of the proposals of [21] is to treat the geometric side
(7.2) as a Poisson sum. Regular semisimple stable conjugacy classes in G over a
field F may be identified with F-points of the invariant quotient 7/// W, which
is an affine space under the assumption G semisimple and simply connected.
In [21], we call that affine space the Steinberg—Hitchin base. It is thus theoret-
ically possible to analyze the analytic behavior of (7.2) by using the Poisson
summation over the Steinberg—Hitchin base. This completely new approach to
the trace formula gives rise to a formidable technical difficulties of which we
have not yet grasped the essence. This approach has been pursued in Altug’s in
his PhD thesis [1], [2], [3], in the case G = GL; and p being either the stan-
dard representation or the symmetric square representation. Among significant
works 1in this direction, on should mention those of Getz, Herman and Sakelar-
ridis [25], [22] and [41], [43].

One difficulty that would immediately arise when we look at the general
case is that we do not have a good understanding the Fourier transform on the
Steinberg—Hitchin base from the representation theoretic standpoint.
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7.2. Trace formula and the functional equation

The trace formula (7.3) may also provide a new road to the functional equation
of L-functions. By taking average over 7, the functional equation of L-function
would boil down to a comparison between S (¢) and SP(FP(¢)), where FP(¢p)
is the Hankel transform of an adelic p-function ¢ € SP(G(A)). We want to es-
tablish this comparison by the way of the geometric sides. One should observe
that the comparison between S (¢) and SP(F”(¢)) can be derived from the
conjectural Poisson summation formula (4.19) by integration over the automor-
phic quotient G(F)\G(Ay).

Comparison between the geometric sides (7.2) boils down to compare
>y SOy(#) + -+ and ), SO, (FP(¢)) + ---. Stable orbital integrals of ¢ in-
duces a function 0y : (T'// W)(Ag) — C such that SO, (¢) = 64(a), where a €
(T'// W)(Ay) is the characteristic polynomial of y. On the space @ ((T// W)(Ay))
of all stable orbital integral of p-function, we have the induced Hankel transform
Hg. The comparison between ), SOy (¢) + --- and >, SOy (FP($)) + ---
boils down to a Poisson type summation formula for the orbital Hankel trans-
form H g. In the case of G = GL, and p = std, H (S coincide with the Harish-
Chandra transform. The above mentioned Poisson summation type formula has
been carried out by S. Cheng in his thesis [15].

In all other cases, there are important obstacles to this approach. For in-
stance, we have very little understanding of the stable orbital Hankel transform
H g). In the case G = GL; and p = std, the paper [20] provides explicit formula
for the kernel of H, g). Staring at the hyperbolic part in the Everling formula i.e.,
the part of the kernel concerning hyperbolic orbital integrals, one observe that
the kernel is essentially the same as the kernel of the Hankel transform for the
split torus. In fact, the diagonal part in the Everling formula has the same shape
as the Hankel transform for different tori of GL,. We also recall that the Poisson
summation formula for the Hankel transform has been established by Lafforgue
in [28]. One may hope to use the Poisson summation formula for tori as an
approximation of the Poisson summation formula for the stable orbital Hankel
transformon 7'// W.

Finally, we note that Sakellaridis has found explicit formulas for the transfer
operator, very similar to the above stable orbital Hankel transform, in many
examples in the framework of relative functoriality. In the cases where explicit
formula for the transfer operator can be explicitly computed, he derived the non-
linear Poisson summation formula from the usual Poisson summation formula.
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