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Abstract
We explore the structure of the Hitchin morphism for higher-dimensional vari-
eties. We show that the Hitchin morphism factors through a closed subscheme of
the Hitchin base, which is in general a nonlinear subspace of lower dimension. We
conjecture that the resulting morphism, which we call the spectral data morphism, is
surjective. In the course of the proof, we establish connections between the Hitchin
morphism for higher-dimensional varieties, the invariant theory of the commuting
schemes, and Weyl’s polarization theorem. We use the factorization of the Hitchin
morphism to construct the spectral and cameral covers. In the case of general linear
groups and algebraic surfaces, we show that spectral surfaces admit canonical finite
Cohen–Macaulayfications, which we call the Cohen–Macaulay spectral surfaces, and
we use them to obtain a description of the generic fibers of the Hitchin morphism
similar to the case of curves. Finally, we study the Hitchin morphism for some classes
of algebraic surfaces.

1. Introduction
For a smooth projective curveX over a field k, and a split reductive groupG over k of
rank n, aG-Higgs bundle overX is a pair .E; �/ consisting of a principalG-bundleE
over X and an element � 2H0.X; ad.E/˝OX �

1
X / called a Higgs field, where ad.E/

is the adjoint vector bundle associated with E and �1X is the sheaf of 1-forms of X .
In [11], Hitchin constructed a completely integrable system on the moduli space MX

of G-Higgs bundles over a curve X . This system can be presented as a morphism
hX WMX ! AX , where MX is the moduli space of Higgs bundles and AX is the
affine space

AX D

nM
iD1

H0.X;Sei�1X /; (1.1)
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where Sei�1X is the ei th symmetric power of �1X . The morphism hX is known as
the Hitchin fibration. For curves X of genus gX > 1, hX is surjective and its generic
fiber is isomorphic to a disjoint union of Abelian varieties if we discard automor-
phisms. This work aims at addressing these basic properties of the Hitchin morphism
for higher-dimensional algebraic varieties.

Over a higher-dimensional algebraic variety X , a G-Higgs bundle is a G-bundle
E over X equipped with a Higgs field

� 2H0
�
X; ad.E/˝OX �

1
X

�
; (1.2)

where ad.E/ is the adjoint vector bundle of E satisfying the integrability condition
� ^� D 0. With given local coordinates z1; : : : ; zd in a neighborhood U of x 2X and
given a local trivialization of E , we can write � D

Pd
iD1 �i dzi , where �i W U ! g are

functions on U with values in the Lie algebra g of G. The integrability condition
satisfied by the Higgs field is

Œ�i ; �j �D 0

for all 1 � i , j � d . Hitchin’s construction, generalized to higher-dimensional vari-
eties by Simpson in [23], provides a morphism hX WMX ! AX , where AX is the
affine space (1.1).

For general higher-dimensional algebraic varieties, the Hitchin morphism is
very far from being surjective. We note that hX .E; �/ could be defined for any
� 2 H0.X; ad.E/˝OX �

1
X / independent of whether or not it satisfies the integrabil-

ity condition � ^ � D 0. We aim at understanding the equations on AX implied by
the integrability condition � ^ � D 0.

Our study of the Hitchin morphism for higher-dimensional varieties follows the
method of [18] in the 1-dimensional case, namely, instead of studying the Hitchin
morphism for a given variety X , we study certain universal morphisms independent
of X . Those morphisms have to do with the construction of G-invariant functions on
the scheme CdG of commuting elements x1; : : : ; xd in the Lie algebra gD Lie.G/. The
reductive group G acts diagonally on CdG by the adjoint action on x1; : : : ; xd .

Our study of G-invariant functions on CdG can roughly be divided into two parts.
First, we investigate the generalization of the Chevalley restriction theorem to the
commuting scheme. Second, we investigate the subring of G-invariant functions on
CdG derived from Weyl’s polarization method. Both of these investigations are hin-
dered by notoriously difficult problems in commutative algebra, such as the ques-
tion of whether the categorical quotient CdG � G is reduced. We are able to prove
the reducedness of CdG � G in the case G D GLn generalizing a theorem of Gan
and Ginzburg [9] in the case d D 2. Although we cannot prove the reducedness of
CdG � G for general reductive groups, we can work around it and address the problem
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of description of the image of the Hitchin morphism. Moreover, we will state and
hierarchize certain problems which are related to the reducedness of CdG � G, which
seem to be worthy of further investigation.

Here is a summary of our results. For a higher-dimensional proper smooth alge-
braic variety X , the Hitchin morphism hX WMX ! AX , where MX is the moduli
stack of Higgs bundles on X and AX is the affine space defined by the formula (1.1),
is not surjective in general. We will define a closed subscheme BX of AX , which is
in general a nonlinear subspace of much lower dimension and prove that hX factors
through BX (or rather, a thickening of BX ; see Section 5). We conjecture that the
resulting morphism MX !BX , which we call the spectral data morphism, is sur-
jective. In the course of the proof, we establish the connections between the Hitchin
morphisms for higher-dimensional varieties, the invariant theory of the commuting
schemes, and Weyl’s polarization theorem in classical invariant theory.

We use the factorization of the Hitchin morphism to construct spectral and cam-
eral covers and establish basic properties of them. In particular, we will see that, unlike
the case of curves, the spectral and cameral covers are generally not flat in higher di-
mension. In the case G DGLn and dim.X/D 2, we construct an open subset B~X of
BX such that for every b 2B~X , the corresponding spectral surface admits a canoni-
cal finite Cohen–Macaulayfication, called the Cohen–Macaulay spectral surface, and
we use it to obtain a description of the Hitchin fiber h�1X .b/ similar to the case of
curves. In particular, we show that h�1X .b/ is nonempty for b 2B~X and there is a
natural action of the Picard stack Pb of line bundles on the Cohen–Macaulay spec-
tral surface on h�1X .b/. We also construct an open subset B}X of B~X such that for all
b 2B}X the fiber h�1X .b/ is isomorphic to a disjoint union of Abelian varieties after
we discard automorphisms. For some class of algebraic surfaces (including elliptic
surfaces), we can prove that B}X is an open dense subset of B~X , which is an open
dense subset of BX .

Throughout the present article, we fix an algebraically closed field k of charac-
teristic 0. To remove or weaken the assumption on the characteristic of k, we would
have to refine many deep results in invariant theory. We will come back to deal with
this task in a future work.

2. Characteristics of Higgs bundles over curves
Hitchin’s construction was revisited in [18] from the point of view of the theory of
algebraic stacks. In [18], the Hitchin morphism hX WMX !AX was derived from a
natural morphism of algebraic stacks

h W Œg=G�! g � G; (2.1)

where Œg=G� and g�G are the quotients of the Lie algebra of g by the adjoint action of
G in the framework of algebraic stacks and geometric invariant theory, respectively.
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We recall that for every test scheme S , the groupoid of S -points of Œg=G� consists
of all pairs .E; �/, where E is a principal G-bundle over S and � 2 H0.S; ad.E// is
a global section of the adjoint vector bundle ad.E/ obtained from E by pushing out
by the adjoint representation ad W G! GL.g/ of G. The categorical quotient g � G

is the affine scheme g � G D Spec.kŒg�G/, where kŒg�G is the ring of G-invariant
functions on g. The concept of categorical quotient g � G was devised by Mumford
in [16] by which he means the initial object in the category of pairs .q;Q/, where Q
is a k-scheme and q W g!Q is a G-invariant morphism.

We will also use the Chevalley restriction theorem. Let us denote by t a Cartan al-
gebra, and byW its Weyl group. SinceW -conjugate elements in t are G-conjugate as
elements of g, the restriction of a G-invariant function on g to t is W -invariant and,
therefore, defines a homomorphism of algebras kŒg�G ! kŒt�W . The Chevalley re-
striction theorem asserts that this map is an isomorphism. This is equivalent to stating
that the morphism between the categorical quotients

t � W ! g � G (2.2)

is an isomorphism.
Let us denote cD t � W . Since W acts on t as a reflection group, after another

theorem of Chevalley, c is also isomorphic to an affine space. The scalar action of Gm
on t induces an action of Gm on c. In fact, we can choose coordinates c1; : : : ; cn of
the affine space c that are homogeneous as polynomial functions of t, that is,

t .c1; : : : ; cn/D .t
e1c1; : : : ; t

encn/: (2.3)

The integers e1; : : : ; en are independent of the choice of c1; : : : ; cn.
Before proceeding further with the construction of the Hitchin morphism for

curves, and as preparation for the higher-dimensional case, let us state an elemen-
tary yet useful fact. Let V be a finite-dimensional k-vector space. The space of mor-
phisms f W V !A

1 satisfying f .tv/D tef .v/ can be canonically identified with the
eth symmetric power SeV � of the dual vector space V �. This is equivalent to say-
ing that the scalar action of Gm on V gives rise to the graduation of the algebra of
polynomial functions on V , that is, S.V �/D

L
e2Z�0

SeV �. Although it may seem
completely obvious, this is a useful fact that should not be overlooked. For instance,
for e D 1, this says that any Gm-equivariant polynomial map f W V ! A

1, that is,
a polynomial map satisfying f .tv/ D tf .v/, is automatically linear. For d D 2, all
polynomial maps f W V !A

1 satisfying f .tv/D t2f .v/ are automatically quadratic
and so on.

A Higgs field � 2 H0.X; ad.E/ ˝OX �
1
X / can be seen as an OX -linear map

TX ! ad.E/, where TX is the OX -module of local sections of the tangent bundle
TX of X , satisfying the integrability condition (3.1). As the integrability condition
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is void when X is a smooth algebraic curve, it will be ignored in this section. We
note that an OX -linear map TX ! ad.E/ is the same as a Gm-equivariant morphism
� W TX ! Œg=G� lying over the mapX! BG corresponding to theG-bundleE . Here
BG is the classifying stack of G. By composing with the morphism Œg=G�! g � G

and the inverse of the isomorphism c! g � G, we get a Gm-equivariant morphism
a W TX ! c. For i D 1; : : : ; n, by composing with the functions ci W c!A

1, we obtain
Gm-equivariant morphisms ai W TX ! A

1
ei

, where A
1
ei

is a copy of the affine line
on which Gm acts by the formula t � x D teix. We note that the space of all Gm-
equivariant functions ai W TX ! A

1
ei

is the affine space of global section of the ei th
symmetric power of the cotangent bundle T �X of X . Finally, we obtain the Hitchin
morphism hX WMX !AX , where AX is the affine space (1.1).

The main result of [11, Section 5] asserts that, under the assumption gX � 2,
the generic fiber is isomorphic to a union of Abelian varieties if we ignore isotropy
groups. For instance, in the case G DGLn, Hitchin defines for every a 2AX a spec-
tral curve X�a . As a varies, the spectral curves X�a form a linear system on the cotan-
gent bundles ofX . The assumption on the genus gX � 2 implies that the linear system
is ample and its generic member is a smooth projective curve. If X�a is smooth, then
the Hitchin fiber Ma D h

�1
X .a/ is isomorphic to the Picard stack Pic.X�a/ which is

isomorphic to a disjoint union of Abelian varieties if we ignore automorphisms. For
classical groups, Hitchin also constructs certain spectral curves using their standard
representations. For a general reductive group, Donagi constructs a cameral cover QXa
of X for every a 2AX and proves that the Hitchin fiber Ma is isomorphic to a union
of Abelian varieties if the cameral cover QXa is a smooth curve.

Since we will attempt to generalize the construction of cameral curves for Higgs
bundles over higher-dimensional varieties, let us recall their construction in the case of
curves. The construction, due to Donagi [7, Section 4.2], derives the cameral covering
�a W QXa!X from the Cartesian diagram

QXa
Qa

�a

Œt=Gm�

X
a

Œc=Gm�

(2.4)

where the morphism a W X ! Œc=Gm� at the bottom line comes from the Gm-
equivariant morphism a W TX ! c. Since the morphism � W t! c is finite and flat,
�a also has these properties. Away from the discriminant locus discrG � c, the mor-
phism � W t! c is finite, étale, and Galois with Galois group W . In [18], we denote
by A ~X the open subset of AX consisting of maps a W X ! Œc=Gm� whose image is
not contained in ŒdiscrG=Gm�. By construction, for a 2A ~X , QXa!X is generically
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a finite étale Galois morphism with Galois group W . The fibers Ma are much better
understood under the assumption a 2 A ~X . In particular, there is a natural Picard
stack Pa, constructed in [18], acting on Ma with a dense open orbit.

3. The Higgs stack and the universal spectral data morphism
Let X be a proper smooth variety of dimension d over k. A G-Higgs bundle over
X is a G-bundle E over X equipped with an OX -linear map � W TX ! ad.E/ from
the tangent sheaf TX of X to the adjoint vector bundle ad.E/ of E satisfying the
integrability condition: for all local sections v1, v2 of TX , we have

�
�.v1/; �.v2/

�
D 0: (3.1)

Let CdG � gd be the commuting scheme. It is defined as the scheme-theoretic zero
fiber of the commutator map

gd !
Y
i<j

g; .�1; : : : ; �d /!
Y
i<j

Œ�i ; �j �:

The k-points of CdG consist of .�1; : : : ; �d / 2 gd .k/ such that Œ�i ; �j � D 0 for 1 �
i; j � d . We note that the commuting relations are automatically satisfied in the case
d D 1. Let Vd denote the dual vector space of kd equipped with the standard basis
v1; : : : ; vd . We will identify gd with the space of all linear maps � W Vd ! g by attach-
ing to .�1; : : : ; �d / 2 gd the unique linear map � W Vd ! g satisfying �.vi /D �i . The
commuting scheme CdG can then be identified with the closed subscheme of gd con-
sisting of all k-linear maps � W Vd ! g such that Œ�.v/; �.v0/�D 0 for all v; v0 2 Vd .

Given this description of CdG , we have an action of GLd �G on CdG coming from
the natural action of GLd on Vd and the adjoint action of G on g. We will call the
quotient

�
CdG=.GLd �G/

�
; (3.2)

in the sense of algebraic stacks, the Higgs stack. It attaches to every test scheme S
the groupoid of triples .V ;E ; �/ consisting of a vector bundle V of rank d over S ,
a principal G-bundle E over S , and an OS -linear map � W V ! ad.E / satisfying
Œ�.v/; �.v0/�D 0 for all local sections v, v0 of V . A Higgs field on a d -dimensional
proper smooth variety X can be represented by a map

� WX!
�
CdG=.GLd �G/

�
(3.3)

lying over the map X ! BGLd representing the cotangent bundle T �X . Here, we de-
note by BGLd the classifying stack of GLd .

The construction of the Hitchin morphism derives from G-invariant functions on
CdG . Studying G-invariant functions on CdG amounts to investigating the morphism
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ŒCdG=G�! CdG � G (3.4)

between quotients of the commuting scheme CdG by the diagonal action of G in the
sense of algebraic stacks and geometric invariant theory, respectively. By definition,
the categorical quotient CdG � G is the affine scheme whose ring of functions is the
k-algebra

kŒCdG � G�D kŒCdG �
G

of G-invariant functions on CdG .
The commuting scheme CdG has been studied intensively, especially in the case

d D 2. It has a nonempty open locus C
d;rss
G consisting of commuting linear maps

� W Vd ! g such that the image �.Vd / has nonempty intersection with the regular
semisimple locus grss of g. This open locus is smooth. In the case d D 2, Richardson
[20] proved that the underlying topological space of C2G is irreducible, in particular,
that the locus C

2;rss
G is dense in C2G . Results of Iarrobino [14] on punctual Hilbert

schemes on A
d , with d � 3, imply that irreducibility is no longer true for d � 3.

There is a long-standing conjecture saying that the commuting scheme C2G is
reduced. The generalization of this conjecture to the case in which d � 3 seems to be
rather doubtful, since we have very little understanding of other components of CdG
other than the component containing C

d;rss
G .

The categorical quotient CdG �G behaves better. In [13], Hunziker proved a weak
version of the Chevalley restriction theorem for the commuting scheme. If t is a Car-
tan subalgebra of g, then the embedding td ! gd factors through CdG since t is com-
mutative. Since orbits of the diagonal action of W on td are contained in orbits of the
diagonal action of G on CdG , the restriction of a G-invariant function on CdG to td is
W -invariant. In other words, we have a morphism

td � W ! CdG � G: (3.5)

Based on Richardson’s fundamental result in [20], Hunziker proved that this mor-
phism is a universal homeomorphism, that is, it is a finite morphism inducing a bijec-
tion on k-points (see [13, Theorems 6.2, 6.3]).1 In particular, td �W is the normaliza-
tion of the underlying reduced subscheme .CdG � G/red. Since td � W is irreducible,
the categorical quotient CdG � G is also irreducible.

1In [13, Section 6], Hunziker works with the reduced quotient Rred of the ring R of functions on CdG . As
we are over k D C, the Reynolds operator implies that there exists an isomorphism between .RG/red and
.Rred/G for any k-algebra of finite type with G-action (see, e.g., [16, p. 29]). Thus, Hunziker proves that
td �W ! .CdG �G/red is a universal homeomorphism. This is equivalent to saying that td �W !CdG �G

is a universal homeomorphism.
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CONJECTURE 3.1
The morphism (3.5) is an isomorphism.

We note that Conjecture 3.1 is equivalent to asserting that the categorical quotient
CdG �G is reduced and normal. Indeed, since td �W is obviously reduced and normal,
if (3.5) is an isomorphism, then CdG � G also is reduced and normal. Conversely, if
CdG � G is reduced and normal, then the map (3.5), known to be a normalization, has
to be an isomorphism. Note also that Conjecture 3.1 together with (3.4) implies that
there is a G-invariant morphism

sd W CdG! td � W (3.6)

to be called the universal spectral data morphism, making the following diagram
commute:

td CdG

td � W CdG � G

(3.7)

As the existence of this morphism would be important to the study of the Hitchin mor-
phism, we state the following conjecture, which is a weaker form of Conjecture 3.1.

CONJECTURE 3.2
There exists a G-invariant morphism sd W CdG ! td � W making the diagram (3.7)
commute.

We note that Conjecture 3.2 implies that the categorical quotient CdG � G is re-
duced. Indeed, the right triangle of (3.7) gives rise to a commutative triangle of rings,
which says that the composition of homomorphisms

kŒCdG �
G! kŒtd �W ! kŒCdG �

is the inclusion map. It follows that the homomorphism kŒCdG �
G ! kŒtd �W is injec-

tive. Since kŒtd �W is an integral domain, kŒCdG �
G is also an integral domain and, in

particular, reduced.
In the next section (see Theorem 4.2), we will construct a canonical map

CdG.k/! td �W.k/ making the diagram (3.7) commute on the level of k-points. For
the moment, let us construct this map in the case G D GLn. A k-point � 2 CdG.k/

consists of a commuting family of endomorphisms �1; : : : ; �d on the standard n-
dimensional k-vector space kn. It defines a S.Vd /-module structure on kn where
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vi 2 S.Vd /D kŒv1; : : : ; vd � acts by �i . Let F denote the corresponding finite S.Vd /-
module. We have a decomposition F D

L
˛2Ad F˛ , where F˛ is an S.Vd /-module

annihilated by some power of the maximal ideal m˛ corresponding to the point
˛ 2Ad .k/, where A

d D Spec.S.Vd //. This decomposition gives rise to a 0-cycle

z.�/D
X

˛2Ad .k/

lg.F˛/˛

of length n in A
d . This construction gives rise to a G.k/-invariant map CdG.k/!

Chown.Ad /.k/, where

Chown.A
d /D Spec

��
S.Vd /

˝n
�Sn�

:

As G D GLn, one can identify Chown.Ad / with td � W , and we thus obtain the
desired map from CdG.k/ to td � W.k/. We shall show that the construction above
works in families.

THEOREM 3.3
Conjecture 3.2 holds in the case of GLn. In particular, for G DGLn, the categorical
quotient CdG � G is reduced.

Proof
The construction of the universal spectral data morphism sd W CdG ! td � W D

Chown.Ad / in the caseG DGLn is due to Deligne [6, Section 6.3.1]. For the reader’s
convenience, we will recall his construction. For any k-algebra R, we will construct
a functorial map CdG.R/! Chown.Ad /.R/ following Deligne. A collection of d
matrices ˛1; : : : ; ˛d 2 g.R/D gln.R/ gives rise to a k-linear map ˛ W Vd ! g.R/. If
˛1; : : : ; ˛d commute with each other, then ˛ gives rise to a map

S.˛/ W S.Vd /! g.R/:

By composing with the determinant, we get a map detıS.˛/ W S.Vd /! R which is
a homogeneous algebraic map of degree n on the infinite-dimensional vector space
S.Vd /. It must derive from a polynomial linear map

z.˛/ W
�
S.Vd /

˝n
�Sn
!R (3.8)

characterized by the property that

z.˛/.f ˝n/D detıS.˛/.f /

for f 2 S.Vd /. Since detıS.˛/ is multiplicative, z.˛/ is a homomorphism of k-
algebras. In other words, z.˛/ defines an R-point of Chown.Ad /. This finishes the
construction of the map sd W CdG! td � W .
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We shall prove that the composition CdG
sd
! td � W

(3.5)
! CdG � G is the quotient

map. Equivalently, the induced map

kŒCdG �
G! kŒtd �W! kŒCdG �

on rings of functions is the natural inclusion map.
LetX.i/ 2 g.kŒgd �/ be the n�nmatrix whose .a; b/-entry is given by the coordi-

nate function for the .a; b/-entry of the i th copy of g in gd . The embedding td ! gd

gives rise to a map g.kŒgd �/! g.kŒtd �/, and we define T .i/ 2 g.kŒtd �/ to be the im-
age of X.i/ under this map. We use the same notation X.i/ 2 g.kŒCdG �/ for the image
of X.i/ under the natural map g.kŒgd �/! g.kŒCdG �/. It is known (see, e.g., [19]) that
the ring of G-invariant functions kŒgd �G is generated by

Tr
�
X.i1/ � � �X.ik/

�
;

where k 2 Z�0 and 1 � i1; : : : ; ik � d . As the restriction map kŒgd �G ! kŒCdG �
G is

surjective and ŒX.i/;X.j /�D 0 2 g.kŒCdG �/, it follows that kŒCdG �
G is generated by

the G-invariant functions

Tr
�
X.1/a1 � � �X.d/ad

�
;

where aj 2 Z�0. It is easy to see that the image of Tr.X.1/a1 � � �X.d/ad / under the
map kŒCdG �

G! kŒtd �W is equal to

Tr
�
T .1/a1 � � �T .d/ad

�
:

Thus, to prove the desired claim, it suffices to show that

z.˛/
�
Tr
�
T .1/a1 � � �T .d/ad

��
D Tr

�
X.1/a1 � � �X.d/ad

�
; (3.9)

where z.˛/D sd� W kŒtd �W D .S.Vd /˝n/Sn ! kŒCdG � is the map in (3.8) in the uni-
versal case: R D kŒCdG � and ˛ W Vd ! g.R/ corresponds to the identity map id 2
CdG.R/.

Let v1; : : : ; vd be the coordinate vectors of Vd . We have

S.˛/.vi /DX.i/ 2 g
�
kŒCdG �

�
: (3.10)

For any x 2 k, consider the element f D x � va11 � � �v
ad
d
2 S.Vd /D kŒv1; : : : ; vd �. It

follows from the definition of z.˛/ that

z.˛/.f ˝n/D detıS.˛/.f /D det
�
xid� S.˛/.va11 / � � �S.˛/.v

ad
d
/
�

D xn � Tr
�
S.˛/.v

a1
1 / � � �S.˛/.v

ad
d
/
�
xn�1C � � � : (3.11)
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On the other hand, under the canonical identification .S.Vd /˝n/Sn D kŒtd �W, the
element f ˝n becomes

det
�
xid� T .1/a1 � � �T .d/ad

�
and it follows that

z.˛/.f ˝n/D z.˛/
�
det
�
xid� T .1/a1 � � �T .d/ad

��
D xn � z.˛/

�
Tr
��
T .1/a1 � � �T .d/ad

���
xn�1C � � � : (3.12)

Comparing the coefficients of xn�1 in (3.11) and (3.12), we obtain

z.˛/
�
Tr
�
T .1/

�a1 � � � �T .d/�ad �D Tr
�
S.˛/.v1/

a1 � � �S.˛/.vd /
ad
�
; (3.13)

which implies that

z.˛/
�
Tr
�
T .1/

�a1 � � � �T .d/�ad � (3.13)
D Tr

�
S.˛/.v1/

a1 � � �S.˛/.vd /
ad
�

(3.10)
D Tr

�
X.1/a1 � � �X.d/ad

�
:

Equation (3.9) follows. This completes the proof of Theorem 3.3.

Although we do not know the validity of Conjectures 3.1 and 3.2 in general, we
know they are true on the level of topological spaces. This will allow us to work
around and predict the image of the Hitchin morphism.

Remark 3.1
In [9], Gan and Ginzburg proved the reducedness of CdG � G in the case G D GLn,
d D 2, by a different method.

4. Weyl’s polarization and the universal Hitchin morphism
Weyl’s polarization is a method used to construct G-invariant functions on the space
gd of d arbitrary elements �1; : : : ; �d 2 g. The idea is as follows. Given a G-invariant
function c on g and x1; : : : ; xd 2 k, the map

.�1; : : : ; �d / 7! c.x1�1C � � � C xd�d /

defines a G-invariant function on gd . Although those G-invariant functions on gd

in general may not generate kŒgd �G (see, e.g., [15]), as we shall see, they are close
to forming a set of generators of the ring kŒCdG �

G of G-invariant functions on the
commuting scheme, and they do in the case G DGLn.
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We will formalize the construction above as follows. For every affine variety Y
equipped with an action of Gm, the functor on the category of k-algebras which as-
sociates with each k-algebra R the set of Gm-equivariant maps Vd ˝k R! Y is

representable by an affine scheme, denoted by Y Vd
Gm

. For instance, if Y is the affine

line A
1 D Spec.kŒx�/ equipped with an action of Gm given by t � x D tex, then Y Vd

Gm

is the eth symmetric tensor of Ad D Spec.S.Vd //. For Y D g, the space g
Vd
Gm

can be
identified with gd . Let us also consider the case Y D c, where cD g�G. Since c is iso-
morphic to an n-dimensional affine space with homogeneous coordinates c1; : : : ; cn
of degree e1; : : : ; en, the space AD c

Vd
Gm

is isomorphic to

A'

nY
iD1

SeiAd : (4.1)

The isomorphism depends on the choice of homogeneous coordinates c1; : : : ; cn.
Since the morphism g! c is G-invariant and Gm-equivariant, it induces a G-

invariant morphism

pol W gd !A'

nY
iD1

SeiAd (4.2)

which embodies Weyl’s polarization method for the diagonal action of G on
gd . For example, in the case in which G D GLn, given d arbitrary matrices
� D .�1; : : : ; �d / 2 .gln/

d , the trace of the i th power of x1�1 C � � � C xd�d is an
i th symmetric form in the variables x1; : : : ; xd and thus defines a point poli .�/ in
SiAd , and we have pol.�/D .pol1.�/; : : : ;poln.�//. Instead of using trace of powers
of an endomorphism, we may also use the homogeneous coordinates of c given by the
i th coefficient of the characteristic polynomial of an endomorphism for 1 � i � n.
The latter invariant function is used by Simpson [23] to define the Hitchin morphism
for GLn for higher-dimensional varieties. We have seen that the choice of coordinates
of c is unimportant as it just gives rise to different isomorphisms (4.1).

By restricting (4.2) to the commuting scheme CdG , we obtain a G-invariant mor-
phism

h W CdG!A (4.3)

to be called the universal Hitchin morphism. To study the structure of the Hitchin
morphism, and in particular the image thereof, we need to understand the image of
the map (4.3) and its relation to the Chevalley restriction morphism (3.5). For that
purpose, we will also need to use Weyl’s polarization construction for the diagonal
action ofW on td . The morphism t! cD t �W isW -invariant and Gm-equivariant.
As a result, we have a W -invariant morphism
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polW W t
d � W !A: (4.4)

We recall the following result.

THEOREM 4.1 ([15, Theorem 2.15])
The morphism polW of (4.4) is finite and induces an injective map on k-points. In
other words, there exists a unique reduced closed subscheme B of A such that polW
factors through a morphism

b W td � W !B; (4.5)

which is a universal homeomorphism and normalization. For G D GLn, polW is a
closed embedding and b is an isomorphism.

Remark 4.1
In the caseG DGLn, the preceding theorem is the first fundamental theorem for sym-
metric groups, which is a classical theorem of Weyl [25, Chapter II.A.3]. According
to Hunziker [13], polW is a closed embedding for groups of types B and C. According
to Wallach [24], polW fails to be a closed embedding for groups of type D.

Example 4.2
Let us describe the closed subscheme B of A in the case G D SL2 and d D 2. In this
case, the Cartan algebra can be identified with t' Spec.kŒt �/. The Weyl group W D
S2 acts on t by w.t/D�t , where w is the nontrivial element of W . The categorical
quotient cD Spec.kŒu�/ with uD t2 and the morphism g! c is given by uD det.g/.
Since the exponent eD 2, we have AD S2A2, which is a 3-dimensional vector space.
The map t2 D A

2 ! A D S2.A2/ is given by v 7! v2. In coordinates, this is the
map A

2 ! A
3 given by .x; y/ 7! .x2; 2xy;y2/. Thus, B is the closed subscheme

of AD A
3 defined by the equation b2 � 4ac D 0, which can be identified with the

categorical quotient of A2 by the action of S2 given by .x; y/ 7! .�x;�y/.

We have the following factorization of the universal Hitchin morphism h W CdG!

A.

THEOREM 4.2
There exists a closed subscheme B 0 of A, which is a thickening of the closed sub-
scheme B of A, as in Theorem 4.1, such that the universal Hitchin morphism h W

CdG!A in (4.3) factors through a morphism

sd0 W CdG!B 0: (4.6)
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In particular, there is a canonical G.k/-equivariant morphism CdG.k/! td � W.k/.
For G D GLn, we have B 0 D B and (4.6) is equal to the universal spectral data
morphism sd W CdG 7! td � W'B constructed in Theorem 3.3.

Proof
By [13, Theorem 6.3], the Chevalley restriction map td � W! CdG � G is a home-
omorphism. Therefore, the diagram (3.7) implies that the G-invariant morphism h W

CdG ! A factors through a thickening B 0 of the closed subscheme B of A. The first
claim follows. The second claim follows from Theorem 3.3.

One may ask whether Theorem 4.2 holds for B 0 D B for general G. This would
follow from Conjecture 3.2.

5. The spectral data morphism, postulated image of the Hitchin morphism, and
cameral covers

Let X be a proper smooth algebraic variety over k of dimension d . A Higgs bundle
over X is represented by a map � W X ! ŒCdG=.G � GLd /� lying over the map ��X W
X ! BGLd given by its cotangent bundle T �X . By composing it with the map Œh� W
ŒCdG=.G �GLd /�! ŒA=GLd � derived from (4.3), we obtain the Hitchin morphism

hX WMX !AX ;

where AX is the space of maps X ! ŒA=GLd � lying over ��X . By choosing a system
of homogeneous coordinates c1; : : : ; cn of c of degrees e1; : : : ; en, we can identify AX

with the vector space
Ln
iD1H0.X;Sei�1X /.

Let BX denote the space of maps X ! ŒB=GLd �, where B is the closed sub-
scheme of A defined in Theorem 4.1, lying over ��X . It is clear that BX is a closed
subscheme of AX . We call it the postulated image of the Hitchin morphism hX . By
replacing B by its thickening B 0 as in Theorem 4.2, we have a thickening B0X of BX .
The schemes BX and B0X have the same underlying topological space.

PROPOSITION 5.1
Let X be a proper smooth algebraic variety of dimension d over an algebraically
closed field k of characteristic 0, and let MX be the moduli stack of Higgs bundles
over X . Then the Hitchin morphism hX WMX !AX factors through a map

sd0X WMX !B0X

to be called the spectral data morphism. In particular, the image of every geometric
point � 2MX .k/ under the Hitchin morphism belongs to BX .k/.
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Proof
By Theorem 4.2, for any S -point � W S �X! ŒCdG=.G �GLd /� in MX .S/ where S
is a k-scheme, its image hX .�/ W S � X ! ŒA=GLd � factors through b0 W S � X !
ŒB 0=GLd �. This gives the desired factorization sd0X WMX !B0X of the Hitchin mor-
phism. Assume that � 2M .k/. Since X is reduced, its image b0 W X ! ŒB 0=GLd �
factors through a morphism b WX! ŒB=GLd �; that is, we have hX .�/ 2BX .k/. The
proposition follows.

CONJECTURE 5.2
For every b 2BX .k/, the fiber h�1X .b/ is nonempty.

Example 5.1
Consider the case in which X is a d -dimensional Abelian variety. By choosing an
isomorphism between the Lie algebra of X and the d -dimensional vector space Vd ,
we will have an isomorphism AX DA and BX DB which is a strict subset of A for
d � 2. We can also prove that the spectral data map MX .k/!BX .k/ is surjective
by restricting ourselves to the subset of MX .k/ consisting of Higgs bundles .E; �/,
where E is the trivial G-bundle.

One can think of BX .k/ as the subset of AX .k/ consisting of points b 2AX .k/

for which one can construct a cameral covering. For any scheme Y with an action of
GLd , we can form the twist YT �

X
of Y by the GLd -torsor given by T �X . Then a point

b 2BX .k/ gives rise to a map b WX!BT �
X

and, since the map .td �W /T �
X
!BT �

X

induced from td � W !B is the normalization and X is normal, the map b lifts to a
map X! .td � W /T �

X
. We define QXb to be the fiber product

QXb .td /T �
X

X .td � W /T �
X

The projection QXb!X , which is a finite surjective morphism, is called the cameral
covering associated with b.

Let Bı denote the open dense locus of B , where the morphism td !B is a finite
étale Galois morphism with Galois group W . This is a GLd -equivariant open subset
of B .



1986 CHEN and NGÔ

Definition 5.3
We define B~X .k/ to be the open locus of BX .k/ consisting of maps b W X !
ŒB=GLd � whose image has nonempty intersection with ŒBı=GLd �.

For every b 2B~X .k/, the cameral covering QXb!X is generically a finite étale
Galois morphism with Galois group W . We will prove Conjecture 5.2 in the case
G DGLn and d D 2 for all b 2B~X .k/. In the 1-dimensional case, and for G DGLn,
it is well known that spectral curves are more convenient than cameral curves for the
purpose of constructing Higgs bundles. Cameral and spectral covers are generally not
flat in higher dimension, but in the case of dimension 2, there is a canonical way to
make them flat.

From now on, we will assume that G DGLn.

6. Spectral covers
Let us first review the construction of the universal spectral cover for d D 1. For
the group GLn, tD A

n D Spec.kŒx1; : : : ; xn�/ is the space of diagonal matrices with
entries x1; : : : ; xn. The Weyl group W is the symmetric group Sn acting on A

n by
permutation of coordinates x1; : : : ; xn. By the fundamental theorem of symmetric
polynomials, the categorical quotient cDA

n � Sn is the affine space of coordinates

c1 D x1C � � � C xn;

c2 D x1x2C x1x3C � � � C xn�1xn;

� � �

cn D x1 � � �xn:

The universal spectral cover is a finite flat covering c�! c of degree n. To construct it
we consider the action of the subgroup Sn�1 of Sn on A

n permuting the coordinates
.x1; : : : ; xn�1/ and leaving xn fixed. The categorical quotient c� D A

n � Sn�1 is the
affine space of coordinates .c01; : : : ; c

0
n�1; xn/ with

c01 D x1C � � � C xn�1; : : : ; c0n�1 D x1 : : : xn�1:

The induced morphism p W c�! c is a finite flat morphism of degree n. One can rep-
resent the finite morphism c�! c in terms of equations by considering the morphism
� W c�! c�A1 given by .c01; : : : ; c

0
n�1; xn/ 7! .c1; : : : ; cn; t / with

t D xn; c1 D c
0
1C xn; c2 D c

0
2C c

0
1xn; : : : ; cn D c

0
n�1xn: (6.1)

This is a closed embedding that identifies c� with the closed subscheme of c � A
1

defined by the equation tn � c1tn�1C � � � C .�1/ncn D 0.
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We will now generalize this construction to the case d � 2. For G D GLn, we
have td D .Ad /n. The categorical quotient td � W can be identified with the Chow
scheme Chown.Ad /D .Ad /n � Sn classifying 0-dimensional cycles of length n of
A
d . We will represent a point of Chown.Ad / as an unordered collection of n points

of Ad

Œx1; : : : ; xn� 2 Chown.A
d /: (6.2)

By Theorem 4.1, the morphism

polW W Chown.A
d /!

nY
iD1

SiAd ; Œx1; : : : ; xn�! .c1; : : : ; cn/; (6.3)

where ci 2 SiAd is the i th elementary symmetric polynomial of variables x1; : : : ;
xn 2A

d , is a closed embedding. We will construct the universal spectral covering of
Chown.Ad / as follows. Consider the morphism

�Ad W Chown.A
d /�Ad ! SnAd (6.4)

given by

�
Ad

�
Œx1; : : : ; xn�; x

�
D .x � x1/ � � � .x � xn/D x

n � c1x
n�1C � � � C .�1/ncn: (6.5)

We define the closed subscheme Cayleyn.A
d / to be

Cayleyn.A
d /D ��1

Ad

�
¹0º
�
; (6.6)

the fiber over 0 2 SnAd .

PROPOSITION 6.1
(1) The projection p W Cayleyn.A

d /! Chown.Ad / is a finite morphism which
is étale over the open subset Chowın.A

d / of Chown.X/ consisting of
multiplicity-free 0-cycles.

(2) For every point aD Œxn11 ; : : : ; x
nm
m � 2 Chown.Ad /, where x1; : : : ; xm are dis-

tinct points of Ad , and n1; : : : ; nm are positive integers such that n1 C � � � C
nm D n, the fiber of p W Cayleyn.A

d /! Chown.Ad / over a is the finite sub-
scheme of Ad

Cayleyn.a/D
mG
iD1

Spec.O
Ad ;xi

=mnixi /; (6.7)

where OAd ;xi
is the local ring of Ad at xi , and mxi its maximal ideal. In

particular, as soon as d � 2 and n � 2, then the cover Cayleyn.A
d / !

Chown.Ad / is not flat.
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(3) Let F be a finite O
Ad

-module of length n, and let a 2 Chown.Ad / be its
spectral datum. Then F is supported by the finite subscheme Cayleyn.a/ of
A
d . (This is a generalization of the Cayley–Hamilton theorem.)

Proof
We will first describe a set of the generators of the ideal defining the closed subscheme
Cayleyn.A

d / of Chown.Ad /�Ad . Let Vd be the space of linear forms on A
d . Every

v WAd !A
1 in Vd induces a map on Chow varieties Œv� W Chown.Ad /! Chown.A1/

mapping aD Œx1; : : : ; xn� 2 Chown.Ad / to

v.a/D
�
v.x1/; : : : ; v.xn/

�
2 Chown.A

1/:

As the diagram

Chown.Ad /�Ad
�
Ad

Œv��v

SnAd

Sn.v/

Chown.A1/�A1
�
A1

SnA1 DA
1

(6.8)

is commutative, the function fv D �A1 ı .Œv�� v/ W Chown.Ad /�Ad !A
1 vanishes

on Cayleyn.A
d /. Explicitly, for every aD Œx1; : : : ; xn� 2 Chown.Ad /, we have

fv.a; x/D
�
v.x/� v.x1/

�
� � �
�
v.x/� v.xn/

�
: (6.9)

Moreover, since Sn.v/ generates the ideal defining 0 in SnAd as v varies in Vd ,
the functions fv generate the ideal defining Cayleyn.A

d / inside Chown.Ad / � A
d .

This provides a convenient set of generators of this ideal, albeit infinite and even
innumerable as k may be.

(1) Let v1; : : : ; vd be the standard basis of Vd whose symmetric algebra S.Vd / is
the ring of functions of Ad . The functions fv1 ; : : : ; fvd cut out a closed subscheme
Z of Chown.Ad / � A

d which is finite flat of degree nd over Chown.Ad /. Since
Cayleyn.A

d / is a closed subscheme of Z, it is also finite over Chown.Ad /. This
proves the first assertion of the proposition.

(2) We will prove that for a D Œxn11 ; : : : ; x
nm
m � 2 Chown.Ad /, where x1; : : : ; xm

are distinct points of Ad , and n1; : : : ; nm are positive integers such that n1 C � � � C
nm D n, Cayleyn.a/ is the closed subscheme of Ad defined by the ideal mn1x1 � � �m

nm
xm

of S.Vd /, where mxi is the maximal ideal corresponding to the point xi 2Ad .
Let us denote by Ia the ideal of S.Vd / defining the finite subscheme Cayleyn.a/

in A
d . We first prove that I D Ix1 � � �Ixn , where A=Ixi is supported by some fi-
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nite thickening of the point xi . For this we only need to prove that for every x …
¹x1; : : : ; xmº, there exists a function f 2 Ia such that f … mx . We recall that the
ideal Ia is generated by the functions fv.a/ W Ad ! A

1 as v varies in Vd . Choose a
linear form v 2 Vd on A

d such that v.x/¤ v.xi / for all i 2 ¹1; : : : ;mº. Then we have
fv.a/.x/¤ 0 by (6.9).

As x1; : : : ; xm play equivalent roles, we can focus our attention on x1. It only
remains to prove that the images of the functions fv.a/ in the localization S.Vd /x1 of
S.Vd / at x1, as v varies in Vd , generate the ideal mn1x1 . From (6.9), we already know
that fv.a/ 2 m

n1
x1 for every v 2 Vd . By Nakayama’s lemma, we only need to prove

that the images of fv.a/ in m
n1
x1=m

n1C1
x1 generate this vector space as v varies in Vd .

We observe that for v 2 Vd such that v.x1/ ¤ v.xi / for i 2 ¹2; : : : ;mº, the factors
v.v/�v.x2/; : : : ; v.v/�v.vm/ are all invertible at x1, so it is enough to prove that for
v 2 Vd satisfying the open condition v.x1/¤ v.xi / for i 2 ¹2; : : : ;mº, the functions
.v.v/� v.x1//

n1 generate m
n1
x1=m

n1C1
x1 . Here we again use the fact that the image of

the nth power map mx=m
2
x ! mnx=m

nC1
x spans mnx=m

nC1
x and this conclusion does

not change even after we remove from mx=m
2
x a closed subset of smaller dimension.

(3) By the Chinese remainder theorem, we are easily reduced to proving that if
F is a finite S.Vd /-module of length n, supported by a finite thickening of x 2 Ad ,
then F is annihilated by mnx . Since F is supported by a finite thickening of x 2 Ad

it has the structure of an S.Vd /x-module, where S.Vd /x is the localization of S.Vd /
at x. We consider the decreasing filtration F �mxF �m2xF � � � � . By Nakayama’s
lemma, we know that for m 2 N, mmx E=m

mC1
x E D 0 implies mmx F D 0. It follows

that as long as mmx F ¤ 0, we have dimk.m
i
xF=m

iC1
x F /� 1 for all i 2 ¹0; : : : ;mº and

it follows that mC 1� n. We conclude that mnxF D 0.

This completes the proof of Proposition 6.1

There is another construction possibly giving rise to a slightly different spec-
tral cover of Chown.Ad /. We consider the action of Sn�1 on .Ad /n permuting
.x1; : : : ; xn�1/ and leaving xn fixed. The categorical quotient .Ad /n � Sn�1 is a nor-
mal scheme equipped with a morphism .Ad /n � Sn�1! .Ad /n � Sn which is finite
and generically finite étale of degree n. We also have a morphism

� W .Ad /n � Sn�1 D Chown�1.A
d /�Ad ! Chown.A

d /�Ad

given by .Œx1; : : : ; xn�1�; xn/ 7! .Œx1; : : : ; xn�; xn/.

PROPOSITION 6.2
The morphism � W .Ad /n�Sn�1! Chown.Ad /�Ad is a closed embedding. It factors
through a universal homeomorphism
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.Ad /n � Sn�1! Cayleyn.A
d /; (6.10)

which is an isomorphism over Chowın.A
d /.

Proof
We have the following commutative diagram

.Ad /n � Sn�1 D Chown�1.Ad /�Ad
�

Chown.Ad /�Ad

Qn�1
iD1 SiAd �Ad

Qn
iD1 SiAd �Ad

where the vertical arrows are the closed embeddings induced from (6.3) and the
lower horizontal arrow is the closed embedding sending .c01; : : : ; c

0
n�1; xn/ to

.c1; : : : ; cn; xn/, where c1; : : : ; cn are given by (6.1). It follows that � is a closed
embedding.

Let Chowın.A
d / denote the open subscheme of Chown.Ad / consisting of

multiplicity-free 0-cycles. Let us denote by .Ad /n;ı the preimage of Bı which is the
complement in .Ad /n of all diagonals. The morphism .Ad /n;ı! Chowın.A

d / is fi-
nite, étale, and Galois of Galois group Sn. The morphism .Ad /n;ı! .Ad /n;ı�Sn�1

is a finite étale Galois morphism with Galois group Sn�1. It follows that the mor-
phism .Ad /n;ı � Sn�1! Chowın.A

d / is finite étale of degree jSnj=jSn�1j D n.
Over Chowın.A

d /, the morphism � W .Ad /n;ı � Sn�1 ! Bı � Ad clearly in-
duces an isomorphism of .Ad /n;ı � Sn�1 on Cayleyın.A

d / which is the preimage
of Chowın.A

d / in Cayleyn.A
d /. Since .Ad /n � Sn�1 is an integral scheme, the func-

tion xn� c1xn�1C� � �C .�1/ncn which vanishes over .Ad /n;ı � Sn�1 has to vanish
on all .Ad /n � Sn�1. It follows that the morphism � factors through a morphism
.Ad /n � Sn�1! Cayleyn.A

d /. This morphism is finite since .Ad /n � Sn�1 is finite
over Chown.Ad /. One can check directly that the finite morphism .Ad /n � Sn�1!

Cayleyn.A
d / induces a bijection over the k-points, which implies that it is a universal

homeomorphism.

Remark 6.1
Drinfeld asked the question whether the morphism (6.10) is an isomorphism, as in the
case d D 1. This is equivalent to saying that Cayleyn.A

d / is reduced and normal.

Recall that in the case G D GLn, the closed subscheme B of A constructed in
Theorem 4.1 is B D Chown.Ad /. As the universal spectral cover on B , we will take

B� D Cayleyn.A
d /
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instead of .Ad /n � Sn�1. The reason is that, in Proposition 6.1, we have a nice de-
scription of the fibers of B� over B , and a generalization of the Cayley–Hamilton
theorem.

For every geometric point b 2BX .k/, we have a morphism b W X ! ŒB=GLd �
lying over the morphism ��X WX! BGLd corresponding to the cotangent bundle T �X .
By forming the Cartesian product

X�
b

pb

ŒB�=GLd �

X
b

ŒB=GLd �

(6.11)

we obtain the spectral cover X�
b

of X corresponding to b. Since B�! B is a finite
morphism, the map pb W X�B ! X is a finite covering. If b 2B~X , that is, b.X/ has
nonempty intersection with ŒBı=GLd �, then the covering pb WX�b !X is generically
finite étale of degree n.

If X is a curve, and if the spectral curve X�
b

is integral, then, after Beauville,
Narasimhan, and Ramanan [3], there is an equivalence of categories between the cat-
egory of Higgs bundles with spectral datum b and the category of torsion-free OX�

b
’s

of generic rank 1. This equivalence can be generalized to the case d � 1 with the
concept of Cohen–Macaulay sheaves.

LetM be a coherent sheaf on a finite type scheme Y . Let d D codim.Supp.M//.
Recall that M is called Cohen–Macaulay of codimension d if Hi .D.M// D 0 for
i ¤ d . A Cohen-Macaulay sheaf M is called maximal if it has codimension 0.

We also recall an important fact about Cohen–Macaulay modules. Suppose thatR
is a finite A-algebra of degree n with A being a regular ring of pure dimensionm. Let
M be an R-module of finite type. ThenM is a locally free A-module of rank n if and
only if M is maximal Cohen–Macaulay of generic rank 1. We refer to [4, Section 2]
for a nice discussion on Cohen–Macaulay modules and for further references therein,
or to [5] for a comprehensive treatment.

PROPOSITION 6.3
For every b 2B~X .k/, the fiber h�1X .b/ of the Hitchin morphism is isomorphic to the
stack of maximal Cohen–Macaulay sheaves of generic rank 1 on the spectral cover
X�
b

.

Proof
Let .E; �/ 2 h�1X .b/ be a Higgs bundle of rank n whose spectral datum is b 2B~X .k/.
Then E D p�F , where p W T �X ! X is the projection map and F is a coherent
sheaf on the cotangent T �X . By the Cayley–Hamilton theorem (see Proposition 6.1),
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F is supported by the spectral cover X�
b
� T �X . We have then E D pb�F , where pb W

X�
b
!X is the map in (6.11) and F is a coherent sheaf on X�

b
. Since pb WX�b !X is

a finite morphism, andE is a vector bundle overX , F is a maximal Cohen–Macaulay
sheaf. Moreover, since pb is generically finite étale of degree n, F has generic rank 1.
Conversely, if F is a maximal Cohen–Macaulay sheaf of generic rank 1 overX�

b
, then

E D pb�F is a vector bundle of rank n over X . It is naturally equipped with a Higgs
field � WE ˝OX TX !E as X�

b
is a closed subscheme of T �X .

In spite of the simplicity of the description of h�1X .b/, the proposition above is not
of great use. For instance, it does not imply that h�1X .b/ is nonempty. The difficulty is
that, in general, the spectral cover X�

b
itself might not be Cohen–Macaulay; equiva-

lently, the map X�
b
!X might not be flat. Therefore, it is not clear how to construct

coherent Cohen–Macaulay sheaves onX�
b

. At this point, we see that in order to obtain
a useful description of h�1X .b/, we need to construct a finite Cohen–Macaulayfication
of X�

b
. This can be done in the case of surfaces.

7. Cohen–Macaulay spectral surfaces
In the case of surfaces, for every b 2B~X .k/, the spectral surface X�

b
admits a canon-

ical finite Cohen–Macaulayfication whose construction relies on the theory of Hilbert
schemes of points on surfaces and Serre’s theorem on extending vector bundles on
smooth surfaces across closed subschemes of codimension 2. We will first recall
Serre’s theorem on extending locally free sheaves across a closed subscheme of codi-
mension 2 (see [21, Proposition 7]).

THEOREM 7.1
Let X be a smooth surface over k, let Z be a closed subscheme of codimension 2 of
X , and let j W U !X be the open immersion of the complement U of Z in X . Then
the functor V ! j�V is an equivalence of categories between the category of locally
free sheaves on U and locally free sheaves on X . Its inverse is the functor j �.

As we are now considering the case G D GLn and d D 2, the subscheme B
of A D A

2 � S2A2 � � � � � SnA2 is canonically isomorphic to the Chow scheme
Chown.A2/ of 0-cycles of length n on A2. We recall that a point b 2BX is a section
b W X ! ŒChown.A2/=GL2� lying over ��X W X ! BGL2 representing the cotangent
bundle T �X . In other words, b is a section of the relative Chow scheme

Chown.T
�
X=X/!X

obtained from Chown.A2/ by twisting it by the GL2-torsor attached to the cotangent
bundle T �X of X .
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Recall the open locus Chowın.A
2/ of Chown.A2/ consisting of multiplicity-free

0-cycles, andQ its complement. Let Chowın.T
�
X=X/ be the corresponding open locus

in Chown.T �X=X/, and let Q.T �X=X/ be its complement. Recall the open locus B~X
in BX consisting of maps b WX! ŒChown.A2/=GL2� which maps the generic point
of X to the open locus ŒChowın.T

�
X=X/=GL2�. In other words,

B~X D
®
b 2BX

ˇ̌
dimb�1

�
Q.T �X=X/

�
� 1

¯
: (7.1)

We first recall some well-known facts about the Hilbert schemes of 0-dimensional
subschemes of a surface (see, e.g., [17]). Let Hilbn.A2/ denote the moduli space of 0-
dimensional subschemes of length n of A2. A point of Hilbn.A2/ is a 0-dimensional
subscheme Z of A2 of length n that will be of the form Z D

F
˛2A2 Z˛ , where Z˛ is

a local 0-dimensional subscheme of A2 whose closed point is ˛. It is known that the
Hilbert–Chow morphism

HCn WHilbn.A
2/! Chown.A

2/ (7.2)

given by Z 7!
P
˛2A2 length.Z˛/˛, where length.Z˛/ is the length of Z˛ , is a res-

olution of singularities of Chown.A2/. It is clear that HCn is an isomorphism over
Chowın.A

2/.
As the morphism (7.2) is GL2-equivariant, we can twist it by any GL2-bundle, in

particular, by the GL2-bundle associated to the cotangent bundle T �X over a smooth
surface X . By doing so, we obtain

HCT �
X
=X WHilbn.T

�
X=X/! Chown.T

�
X=X/: (7.3)

This morphism is a proper morphism and its base change to the open subset
Chowın.T

�
X=X/ is an isomorphism.

PROPOSITION 7.2
For every b 2B~X .k/, there exists a unique finite flat covering

pCM
b WX

CM
b !X (7.4)

of degree n, equipped with an X -morphism � W XCM
b
! T �X satisfying the following

property: there exists an open subset U � X , whose complement is a closed subset
of codimension at least 2, such that � is a closed embedding over U and for every
x 2 U , the fiber .pCM

b
/�1.x/ is a point of Hilbn.T �X=X/ lying over the point b.x/ 2

Chown.T �X=X/. Moreover, the morphism � W XCM
b
! T �X factors through the closed

subschemeX�
b

of T �X and the resulting morphism qCM
b
WXCM

b
!X�

b
is a finite Cohen–

Macaulayfication of X�
b

.
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Proof
Let U ı be the preimage of Chowın.T

�
X=X/ by the section b W X ! Chown.T �X=X/.

By the assumption b 2B~X , U ı is a nonempty open subset of X . As the morphism
HCT �

X
=X of (7.3) is an isomorphism over Chown.T �X=X/, we have a unique lifting

bıHilb W U
ı!Hilbn.T

�
X=X/�X U

ı

lying over the restriction bı D bjU ı.
Since the Hilbert–Chow morphism (7.3) is proper, there exists an open subset

U � X , larger than U ı, whose complement X � U is a closed subscheme of codi-
mension at least 2, such that b0 W U ı!Hilb0n.T

�
X=X/�X U

ı extends to

bUHilb W U !Hilbn.T
�
X=X/�X U:

By pulling back from Hilbn.T �X=X/ the tautological family of subschemes of T �X , we
get a finite flat morphism UC

b
! U of degree n, equipped with a closed embedding

�U W U
C
b
! T �U .

According to Serre’s theorem on extending vector bundles over surfaces, there
exists a unique finite flat covering XCM

b
! X of degree n extending the finite flat

covering UC
b

of U . The closed embedding �U W U
C
b
! T �U extends to a morphism

� WXCM
b
! T �X which may not be a closed embedding.

By construction, pCM
b
W XCM

b
! X is a finite flat morphism of degree n, so it

follows from smoothness of X that XCM
b

is a Cohen–Macaulay surface. Apply the
generalized Cayley–Hamilton theorem to the vector bundle pCM

b�
OXCM

b
; as an OT �

X
-

module over T �X , it is supported by X�
b

. It follows that the morphism XCM
b
! T �X

factors through a map qCM
b
W XCM

B ! X�
b
� T �X . Since XCM

b
is finite over X , it is

also finite over X�
b

. As qCM
b
WXCM

b
!X�

b
is an isomorphism over the nonempty open

subset U ı, it is a finite Cohen–Macaulayfication of X�
b

.

Remark 7.1
Instead of using the Hilbert scheme, we can construct XCM

b
over the height 1 points

as follows. Let U ı D b�1.Chowın.T
�
X=X//, and let Z be the complement of U ı.

Let z be the generic point of an irreducible component of Z of dimension 1. The
localization ofX at z isXz D Spec.OX;z/, where OX;z is a discrete valuation ring. By
restricting pb�OX�

b
to OX;z we get a module of finite type which may have torsion. By

considering the quotient Spec.pb�OX�
b
=.pb�O

tors
X�
b

//, we obtain a locally free OX;z-

module and thus a section Xz! Hilbn.T�X=X/�X Xz over bjXz . By uniqueness of
such a section, we have an isomorphism

Spec
�
pb�OX�

b
=.pb�OX�

b
/tors

�
' Spec.pCM

b� OXCM
b
/ (7.5)

over the complement of a codimension 2 subscheme of X .
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Remark 7.2
We do not know whether the construction of the Cohen–Macaulay spectral surface
XCM
b

works well in families. The issue is that the construction makes use of the equiv-
alence of categories from Theorem 7.1 which does not work well in families.

THEOREM 7.3
For every b 2B~X .k/, the fiber h�1X .b/ is isomorphic to the stack of Cohen–Macaulay
sheaves F of generic rank 1 over the Cohen–Macaulay spectral surface XCM

b
. It

contains, in particular, the Picard stack Pb of line bundles on XCM
b

. The action of
Pb on itself by translation extends to an action of Pb on h�1X .b/.

In particular, h�1X .b/ is nonempty.

Proof
Let .E; �/ 2MX be a Higgs bundle over X lying over b 2 B~X .k/. The Higgs
field � W TX ! EndOX .E/ defines a homomorphism S.TX /! EndOX .E/ which
factors through pa�OX�

b
by the generalized Cayley–Hamilton theorem (see Proposi-

tion 6.1(3)).
Let U ı andZ be as in Remark 7.1, and let z be the generic point of an irreducible

component of Z of dimension 1. Over Xz we have a homomorphism

pb�OX�
b
˝OX OXz ! EndOX .E/˝OX OXz :

Since the target is clearly torsion-free, this homomorphism factors through (7.5).
Thus, over an open subset U �X whose complement is of codimension 2, the above
morphism factors through a homomorphism of algebras

pCM
b� OXCM

b
˝OX OU ! EndOX .E/˝OX OU :

By applying Serre’s theorem again, we have a canonical homomorphismpCM
b�

OXCM
b
!

EndOX .E/. It follows that E D Qpa�F , where F is a Cohen–Macaulay OXCM
b

-module
of generic rank 1.

Since pCM
b
WXCM

b
!X is finite flat, for every line bundle L on XCM

b
, pCM

b�
L is a

vector bundle of rank n carrying a Higgs field. Thus, h�1X .b/ contains Pb . We have
an action of Pb on h�1X .b/ given by .L;F / 7!L˝O

XCM
b

F , where L is a line bundle

on XCM
b

and F is a Cohen–Macaulay sheaf of generic rank 1.

Remark 7.3
Let b 2B~X .k/ be such that the Cohen–Macaulay surface XCM

b
is integral. Consider

the functor associating to a k-scheme Y the set of isomorphism classes of a family of
Cohen–Macaulay sheaves of generic rank 1 on XCM

b
parameterized by Y . According

to [1, Corollary 6.7, Theorem 7.9], the fppf sheafification of this functor is represented
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by a k-scheme Pic.XCM
b
/� locally of finite type. In addition, Pic.XCM

b
/� admits a

compactification Pic.XCM
b
/D whose k-points are given by isomorphism classes of

torsion-free rank 1 sheaves on XCM
b

.

Definition 7.4
We define B♦

X .k/ to be the subset of B~X .k/ consisting of those points b such that
the corresponding Cohen–Macaulay spectral surface XCM

b
is normal.

LEMMA 7.5
For b 2B♦

X .k/, the neutral component P0
b

of Pb is a quotient of an Abelian variety
by Gm acting trivially.

Proof
This is a consequence of a theorem of Geisser [10, Theorem 1]. Geisser’s theorem
states that the multiplicative part of the neutral component P 0 of the Picard variety
P of an algebraic variety Y is trivial if and only if H1et.Y;Z/ is trivial, whereas the
unipotent part is trivial if and only if Y is seminormal. If Y is normal, then �1.Y /
is a profinite group, being a quotient of the Galois group of the generic point, and
therefore cannot afford a nontrivial continuous homomorphism to Z. It follows that
H1et.Y;Z/ is trivial. On the other hand, a normal variety is certainly also seminormal.
Assume that XCM

b
is normal. Then the neutral component P 0

b
of the Picard variety Pb

of XCM
b

is an Abelian variety. We have P0
b
D ŒP 0

b
=Gm�.

PROPOSITION 7.6
For b 2B♦

X .k/, the action of Pb on the Hitchin fiber h�1X .b/ is free and h�1X .b/ is a
disjoint union of Pb-orbits.

Proof
If a line bundle L 2Pb has a stabilizer F 2 h�1X .b/, then, as any such F , regarded
as a sheaf on XCM

b
, is locally free of rank 1 on the smooth locus Ub of XCM

b
, the

line bundle L is trivial on Ub . Since XCM
b

is normal, and the compliment XCM
b
n Ub

is 0-dimensional, it implies that L is trivial, and hence, the action of Pb is free.
We claim that the Pb-orbits on h�1X .b/ are open and closed. The closedness follows
from the lemma above. To show that the Pb-orbits are open, we observe that h�1X .b/
is isomorphic to the stack of reflexive sheaves of rank 1 on XCM

b
and, for any F 2

h�1X .b/, the assignment sending F 0 2 h�1X .b/ to the reflexive hull of F 0˝XCM
b
F (i.e.,

the double dual of F 0 ˝XCM
b
F ) defines an automorphism of h�1X .b/ mapping Pb

isomorphically to the Pb-orbit through F . Since Pb is open in h�1X .b/ (see [1]), it
implies that the Pb-orbits are open in h�1X .b/. The proposition follows.
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We expect that B♦
X .k/ is a nonempty open subset of BX .k/ for most algebraic

surfaces. The nonemptiness of B♦
X .k/ is closely related to questions on the zero locus

of symmetric differentials, of which very little seems to be known in higher dimen-
sion.

8. Surfaces fibered over a curve
In this section, we investigate the spectral surfacesX�

b
and the Cohen–Macaulay spec-

tral surface XCM
b

in the case when X is a fibration over a curve C and apply our
findings to ruled and elliptic surfaces.

Let X be a proper smooth surface, and let C be a proper smooth curve. Assume
that there is a proper flat surjective map � W X ! C such that the generic fiber is a
proper smooth curve. We denote by Xı � X the largest open subset such that � is
smooth. Consider the cotangent morphism d� W T �C �C X! T �X . It induces a map

Œd�� W Chown.T
�
C=C /�C X! Chown.T

�
X=X/

on the relative Chow varieties. For every section bC W C ! Chown.T �C=C /, the com-
position

bX WX ' C �C X
aC�idX
! Chown.T

�
C=C /�C X

Œd��
! Chown.T

�
X=X/

is a section of Chown.T �X=X/!X and the assignment bC ! bX defines a map

�� WBC !BX : (8.1)

We claim that the map above is a closed embedding. To see this, we observe that there
is a commutative diagram

BC

��

BX

AC

j�

AX

(8.2)

where the vertical arrows are the natural embeddings, and the bottom arrow is the
embedding

j� WAC D

nM
iD1

H0.C;Si�1C /�!AX D

nM
iD1

H0.X;Si�1X /

induced by the injection of vector spaces H0.C;Si�1C / D H0.X;��Si�1C / !
H0.X;Si�1X /. The claim follows. Note that since dimC D 1, the left vertical arrow
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in (8.2) is in fact an isomorphism. From now on, we will view BC as a subspace of
BX . Since the cotangent map d� W T �C �C X ! T �X is a closed embedding over the
open locus Xı, we have

B~C DBC \B~X :

For any b 2BC , we denote by C �
b
! C the corresponding spectral curve and

we define XC
b
D C � �C X . The natural projection map pC

b
WXC

b
!X is finite flat of

degree n. Since X is smooth, it follows that XC
b

is a Cohen–Macaulay surface.

LEMMA 8.1
There exists a finite X -morphism qC

b
W XC

b
! X�

b
which is a generic isomorphism if

b 2B~C . If the fibration � W X ! C has only reduced fibers, then for any b 2B~C ,
the map qC

b
W XC

b
! X�

b
is isomorphic to the finite Cohen–Macaulayfication qCM

b
W

XCM
b
!X�

b
in Proposition 7.2 (which is well defined since b 2B~X ).

Proof
Let iC

b
WXC

b
! T �X be the restriction of the cotangent morphism d� W T �C �C X! T �X

to the closed subscheme XC
b
� T �C �C X . By the Cayley–Hamilton theorem, the map

iC
b

factors through the spectral surface X�
b

. Let qC
b
WXC

b
!X�

b
be the resulting map.

As XC
b

is finite over X , the map qC
b

is finite. In addition, if b 2B~C , then both XC
b

and X�
b

are generically étale over X of degree n and it implies that qC
b

is a generic
isomorphism.

Assume that the fibers of � are reduced. Then the smooth locus Xı of the map �
is open and its complementX�Xı is a closed subset of codimension 2. Since the map
iC
b
W XC

b
! T �X is a closed embedding over Xı, Proposition 7.2 implies that the fi-

nite flat covering qC
b
WXC

b
!X�

b
is isomorphic to the finite Cohen–Macaulayfication

qCM
b
WXCM

b
!X�

b
.

Definition 8.2
We define B♦

C to be the open subset of B~C consisting of those points b such that the
corresponding spectral curve Cb is smooth and irreducible.

COROLLARY 8.3
Assume that the fibration � W X ! C has only reduced fibers. Then we have B♦

C �

B♦
X , that is, the surface XCM

b
is normal for b 2B♦

C .

Proof
Since XCM

b
is Cohen–Macaulay, by Serre’s criterion for normality, it suffices to show

that the XCM
b
'XC

b
is smooth in codimension at most 1. The assumption implies that
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the complement X �Xı has codimension at least 2. Since Cb is smooth for b 2B♦
C ,

the open subset XCı
b
WD eCa �C Xı �XCb is smooth (since the map XCı

b
! Cb and

Cb are smooth) and the complement XC
b
� XCı

b
has codimension at least 2. The

corollary follows.

Example 8.1
Consider the case whenX D C �P1 and nD 2. We have BX DBC DH0.C;�1C /˚
H0.C;S2�1C /. Let b D .b1; b2/ 2B~C , and let pb W X�b ! X be the corresponding
spectral surface. Then étale locally over X , the surfaceX�

b
is isomorphic to the closed

subscheme of Spec.kŒx1; x2; t1; t2�/ defined by the equations8̂̂
<
ˆ̂:
t21 C b1t1C b2 D 0;

t2.2t1C b1/D 0;

t22 D 0;

(8.3)

where x1, x2 are local coordinates of C and P
1 and bi 2 kŒx1�. Let discrC D .b21 �

4b2 D 0/ � C be the discriminant divisor for b. From (8.3) we see that X�
b

is an
étale cover of degree 2 away from the divisor discrC �P1 �X . Note that the spectral
surface pb W X�b ! X is not flat over X as the pushforward pb�OX�

b
has length 3

over discrC �P1. The finite Cohen–Macaulayfication XCM
b
!X�

b
is given by the flat

quotient Spec.pb�OX�
b
=.pb�OX�

b
/tors/ which is isomorphic to XCM

b
' Cb � P

1. The

Hitchin fiber h�1X .b/ is isomorphic to

h�1X .b/' h
�1
C .b/�Pic.P1/:

PROPOSITION 8.1
Let X be a smooth projective surface, and let � W X ! C be either a ruled surface,
or a nonisotrivial elliptic surface with reduced fibers. Then for every n, the pullback
map

H0.C;Sn�1C /!H0.X;Sn�1X /

is an isomorphism.

It follows from the proposition above that in the case of ruled surfaces and non-
isotrivial elliptic surfaces with reduced fibers, we have AC DAX . Since BC DAC ,
we have BX D BC and B♦

X and B~X are open dense in BX . For every b 2 BC ,
we have a spectral curve C �

b
which is finite flat of degree n over C . We also have

the spectral surface X�
b

which is a finite scheme over X embedded in its cotangent
bundle T �X . The Cohen–Macaulayfication of X�

b
is XC

b
D Cb �C X . In the case of el-

liptic surfaces, the morphism XCM
b
!X�

b
may not be an isomorphism, and XCM

b
may
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not be embedded in the cotangent bundle T �X . The existence of the Cohen–Macaulay
spectral cover guarantees that h�1X .b/ is nonempty.

Proposition 8.1 is obvious for ruled surfaces. Let us investigate it in the case
of elliptic surfaces. We assume that there is a proper flat map � W X ! C from X

to a smooth projective curve C with general fiber a smooth curve of genus 1. We
will focus on the case when � W X ! C is not isotrivial, relatively minimal, and
has reduced fibers (e.g., semistable nonisotrivial elliptic surfaces). Let Xı denote the
largest open subset of X such that the restriction of � to Xı is a smooth morphism
�ı WXı! C . Since the geometric fibers of � are all reduced, the complement of Xı

in X is a 0-dimensional subscheme. Over Xı, we have an exact sequence of tangent
bundles

0!TXı=C !TXı! .�ı/�TC ! 0: (8.4)

For every n 2N, we have the exact sequence of symmetric powers

0! Sn�1TXı ˝TXı=C ! SnTXı! .�ı/�SnTC ! 0: (8.5)

Let 	 2 C be the generic point of C with residue field K , and let X� DX �C 	,
which is an elliptic curve over K . The restriction of (8.4) to X� is a short exact se-
quence making the rank 2 vector bundle TX jX� a self-extension of the trivial line
bundle of X� . As we assume that the elliptic fibration � is nonisotrivial, that is, the
Kodaira–Spencer map is not zero, TX jX� is a nontrivial self-extension of the triv-
ial line bundle on X� . After Atiyah [2], such a nontrivial extension is unique up to
isomorphism:

0!OX�! E !OX�! 0: (8.6)

In other words, the restriction of (8.4) to the generic fiber X� is isomorphic to (8.6).

LEMMA 8.4
The exact sequence of symmetric powers derived from (8.6)

0! Sn�1E ! SnE !OX�! 0 (8.7)

is not split.

Proof
Indeed, if

0!L 0! E !L ! 0 (8.8)

is an extension of a line bundle L by a line bundle L 0, then there is a canonical
filtration
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0DF0 �F1 � � � � �Fn�1 �Fn D SnE

of SnE such that for every i 2 ¹1; : : : ; nº we have Fi ' SiE ˝ L 0˝n�i and
Fi=Fi�1 'L˝i ˝L 0˝n�i . Moreover, the exact sequence

0!Fn�1=Fn�2!Fn=Fn�2!Fn=Fn�1! 0 (8.9)

is isomorphic to the sequence (8.8) tensored by L˝.n�1/. In particular, if (8.8) is not
split, then (8.9) is not split either, and as a consequence, the exact sequence

0!Fn�1!Fn!L˝n! 0

is not split. Applying above discussion to (8.6), we see that (8.7) is not split.

LEMMA 8.5
For every n 2N, we have that
(1) dimK Ext1.OX� ;S

nE /D 1,
(2) dimK Hom.SnE ;OX�/D 1,
(3) the restriction map Hom.SnE ;OX�/!Hom.Sn�1E ;OX�/ is zero.

Proof
It follows from induction on n using the Ext long exact sequences derived from (8.7).

It follows from the above lemmas that, for every n 2N, SnE is the unique exten-
sion of OX� by Sn�1E , up to isomorphism.

Now we prove that pulling back 1-forms defines an isomorphism

H0.C;Sn�1C /'H0.X;Sn�1X /:

This map is obviously injective. Let us prove that it is also surjective. A symmetric
form ˛ 2H0.X;Sn�1X / gives rise to a linear form ˛ W SnTX !OX . By restriction to
the generic fiber X� of the elliptic fibration, we obtain a map ˛� W SnE ! OX� . By
the previous lemma, the restriction of ˛� to Sn�1E is zero. It follows that in the exact
sequence (8.5), the restriction of ˛ to Sn�1TXı ˝ TXı=C is zero, that is, it factors
through .�ı/�SnTC . Since the complement of Xı in X is 0-dimensional, ˛ factors
through .�/�SnTC , that is, it comes from a symmetric form on C . This finishes the
proof of Proposition 8.1.

These calculations show that the Hitchin morphism for ruled and elliptic surfaces
is closely related to the Hitchin morphism for the base curve. This is compatible
with the fact that under the Simpson correspondence in [22], stable Higgs bundles
for a smooth projective surface X correspond to irreducible representations of the
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fundamental group �1.X/, and in the case of ruled surfaces and nonisotrivial elliptic
surfaces with reduced fibers, we have �1.X/ ' �1.C /, where C is the base curve
(see, e.g., [8, Section 7]).
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