ON THE HITCHIN MORPHISM FOR
HIGHER-DIMENSIONAL VARIETIES
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Abstract

We explore the structure of the Hitchin morphism for higher-dimensional vari-
eties. We show that the Hitchin morphism factors through a closed subscheme of
the Hitchin base, which is in general a nonlinear subspace of lower dimension. We
conjecture that the resulting morphism, which we call the spectral data morphism, is
surjective. In the course of the proof, we establish connections between the Hitchin
morphism for higher-dimensional varieties, the invariant theory of the commuting
schemes, and Weyl’s polarization theorem. We use the factorization of the Hitchin
morphism to construct the spectral and cameral covers. In the case of general linear
groups and algebraic surfaces, we show that spectral surfaces admit canonical finite
Cohen—Macaulayfications, which we call the Cohen—Macaulay spectral surfaces, and
we use them to obtain a description of the generic fibers of the Hitchin morphism
similar to the case of curves. Finally, we study the Hitchin morphism for some classes
of algebraic surfaces.

1. Introduction

For a smooth projective curve X over a field k, and a split reductive group G over k of
rank n, a G-Higgs bundle over X is a pair (£, 0) consisting of a principal G-bundle £
over X and an element 6 € H°(X,ad(E) ® o, Q2 called a Higgs field, where ad(E)
is the adjoint vector bundle associated with E and 52;( is the sheaf of 1-forms of X.
In [11], Hitchin constructed a completely integrable system on the moduli space .Zx
of G-Higgs bundles over a curve X. This system can be presented as a morphism
hy : Mx — ox, where .#x is the moduli space of Higgs bundles and &y is the
affine space

n
dx = PH(X,$QY). (1.1)

i=1
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where S¢ Qﬁ( is the e;th symmetric power of Q}( The morphism Ay is known as
the Hitchin fibration. For curves X of genus gx > 1, hy is surjective and its generic
fiber is isomorphic to a disjoint union of Abelian varieties if we discard automor-
phisms. This work aims at addressing these basic properties of the Hitchin morphism
for higher-dimensional algebraic varieties.

Over a higher-dimensional algebraic variety X, a G-Higgs bundle is a G-bundle
E over X equipped with a Higgs field

6 e H(X,ad(E) ®¢y Q). (1.2)

where ad(E) is the adjoint vector bundle of E satisfying the integrability condition
0 A 6 = 0. With given local coordinates z1, ..., zg in a neighborhood U of x € X and
given a local trivialization of £, we can write 6 = Z?:l 0; dz;, where 60; : U — g are
functions on U with values in the Lie algebra g of G. The integrability condition
satisfied by the Higgs field is

[6:.6,]1=0

for all 1 <i, j <d. Hitchin’s construction, generalized to higher-dimensional vari-
eties by Simpson in [23], provides a morphism hy : .#x — </x, where @7y is the
affine space (1.1).

For general higher-dimensional algebraic varieties, the Hitchin morphism is
very far from being surjective. We note that sy (E, ) could be defined for any
0 € H(X,ad(E) Qg Q}() independent of whether or not it satisfies the integrabil-
ity condition 8 A 6 = 0. We aim at understanding the equations on &y implied by
the integrability condition 8 A 6 = 0.

Our study of the Hitchin morphism for higher-dimensional varieties follows the
method of [18] in the 1-dimensional case, namely, instead of studying the Hitchin
morphism for a given variety X, we study certain universal morphisms independent
of X. Those morphisms have to do with the construction of G-invariant functions on
the scheme Qﬁ”é of commuting elements x1,. .., x4 in the Lie algebra g = Lie(G). The
reductive group G acts diagonally on Qf”(l; by the adjoint action on x1,...,Xg.

Our study of G-invariant functions on Qﬁ”é can roughly be divided into two parts.
First, we investigate the generalization of the Chevalley restriction theorem to the
commuting scheme. Second, we investigate the subring of G-invariant functions on
Qf‘é derived from Weyl’s polarization method. Both of these investigations are hin-
dered by notoriously difficult problems in commutative algebra, such as the ques-
tion of whether the categorical quotient (‘ldG /| G is reduced. We are able to prove
the reducedness of C‘é // G in the case G = GL, generalizing a theorem of Gan
and Ginzburg [9] in the case d = 2. Although we cannot prove the reducedness of
G‘é /| G for general reductive groups, we can work around it and address the problem
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of description of the image of the Hitchin morphism. Moreover, we will state and
hierarchize certain problems which are related to the reducedness of C‘é // G, which
seem to be worthy of further investigation.

Here is a summary of our results. For a higher-dimensional proper smooth alge-
braic variety X, the Hitchin morphism hy : .#x — </x, where .#x is the moduli
stack of Higgs bundles on X and 7y is the affine space defined by the formula (1.1),
is not surjective in general. We will define a closed subscheme %y of «x, which is
in general a nonlinear subspace of much lower dimension and prove that hx factors
through Zx (or rather, a thickening of Zy; see Section 5). We conjecture that the
resulting morphism .#Zy — %y, which we call the spectral data morphism, is sur-
jective. In the course of the proof, we establish the connections between the Hitchin
morphisms for higher-dimensional varieties, the invariant theory of the commuting
schemes, and Weyl’s polarization theorem in classical invariant theory.

We use the factorization of the Hitchin morphism to construct spectral and cam-
eral covers and establish basic properties of them. In particular, we will see that, unlike
the case of curves, the spectral and cameral covers are generally not flat in higher di-
mension. In the case G = GL,, and dim(X) = 2, we construct an open subset %g of
PBx such that for every b € B, the corresponding spectral surface admits a canoni-
cal finite Cohen—Macaulayfication, called the Cohen—Macaulay spectral surface, and
we use it to obtain a description of the Hitchin fiber h}l (b) similar to the case of
curves. In particular, we show that %' (b) is nonempty for b € %; and there is a
natural action of the Picard stack &7, of line bundles on the Cohen—Macaulay spec-
tral surface on h}l (b). We also construct an open subset %’;? of ,@2 such that for all
be @;? the fiber h}l (b) is isomorphic to a disjoint union of Abelian varieties after
we discard automorphisms. For some class of algebraic surfaces (including elliptic
surfaces), we can prove that 95’;? is an open dense subset of @g, which is an open
dense subset of Ay .

Throughout the present article, we fix an algebraically closed field k of charac-
teristic 0. To remove or weaken the assumption on the characteristic of k, we would
have to refine many deep results in invariant theory. We will come back to deal with
this task in a future work.

2. Characteristics of Higgs bundles over curves

Hitchin’s construction was revisited in [18] from the point of view of the theory of
algebraic stacks. In [18], the Hitchin morphism hy : .#x — <f/x was derived from a
natural morphism of algebraic stacks

h:lg/Gl—g/ G, 2.1

where [g/ G| and g // G are the quotients of the Lie algebra of g by the adjoint action of
G in the framework of algebraic stacks and geometric invariant theory, respectively.
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We recall that for every test scheme S, the groupoid of S-points of [g/G] consists
of all pairs (E, 0), where E is a principal G-bundle over S and § € H*(S,ad(E)) is
a global section of the adjoint vector bundle ad(E) obtained from E by pushing out
by the adjoint representation ad : G — GL(g) of G. The categorical quotient g / G
is the affine scheme g / G = Spec(k[g]®), where k[g]® is the ring of G-invariant
functions on g. The concept of categorical quotient g / G was devised by Mumford
in [16] by which he means the initial object in the category of pairs (¢, Q), where Q
is a k-scheme and ¢ : g — Q is a G-invariant morphism.

We will also use the Chevalley restriction theorem. Let us denote by t a Cartan al-
gebra, and by W its Weyl group. Since W -conjugate elements in t are G-conjugate as
elements of g, the restriction of a G-invariant function on g to t is W-invariant and,
therefore, defines a homomorphism of algebras k[g]¢ — k[t]". The Chevalley re-
striction theorem asserts that this map is an isomorphism. This is equivalent to stating
that the morphism between the categorical quotients

t)W—>g/G (2.2)

is an isomorphism.

Let us denote ¢ =t / W. Since W acts on t as a reflection group, after another
theorem of Chevalley, ¢ is also isomorphic to an affine space. The scalar action of G,
on t induces an action of G, on c. In fact, we can choose coordinates c1,...,c, of
the affine space ¢ that are homogeneous as polynomial functions of t, that is,

t(cr, ... cn) = (%, ..., t%%cy). (2.3)

The integers ey, . .., e, are independent of the choice of ¢y, ..., cy,.

Before proceeding further with the construction of the Hitchin morphism for
curves, and as preparation for the higher-dimensional case, let us state an elemen-
tary yet useful fact. Let V' be a finite-dimensional k-vector space. The space of mor-
phisms f : V — Al satisfying f(tv) = ¢ f(v) can be canonically identified with the
eth symmetric power S¢V* of the dual vector space V*. This is equivalent to say-
ing that the scalar action of G, on V gives rise to the graduation of the algebra of
polynomial functions on V, that is, S(V*) = P,ez_, SV *. Although it may seem
completely obvious, this is a useful fact that should not be overlooked. For instance,
for e = 1, this says that any G,,-equivariant polynomial map f : V — Al, that is,
a polynomial map satisfying f(tv) = ¢f(v), is automatically linear. For d = 2, all
polynomial maps f : V — Al satisfying f(tv) = t2 f(v) are automatically quadratic
and so on.

A Higgs field 6 € HY(X,ad(E) ® ¢y Q%) can be seen as an Ox-linear map
Tx — ad(E), where Jx is the Ox-module of local sections of the tangent bundle
Tx of X, satisfying the integrability condition (3.1). As the integrability condition
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is void when X is a smooth algebraic curve, it will be ignored in this section. We
note that an O -linear map Jx — ad(FE) is the same as a G, -equivariant morphism
0 : Tx — [g/G] lying over the map X — BG corresponding to the G-bundle E. Here
BG is the classifying stack of G. By composing with the morphism [g/G] — g/ G
and the inverse of the isomorphism ¢ — g / G, we get a G,,-equivariant morphism
a:Tx —c.Fori =1,...,n, by composing with the functions ¢; : ¢ — A!, we obtain
G -equivariant morphisms a; : Ty — A;i, where A;i is a copy of the affine line
on which G, acts by the formula ¢ - x = % x. We note that the space of all G-
equivariant functions a; : Ty — Aéi is the affine space of global section of the e;th
symmetric power of the cotangent bundle 7 of X. Finally, we obtain the Hitchin
morphism hy : .#x — o/x, where <7y is the affine space (1.1).

The main result of [11, Section 5] asserts that, under the assumption gy > 2,
the generic fiber is isomorphic to a union of Abelian varieties if we ignore isotropy
groups. For instance, in the case G = GL,,, Hitchin defines for every a € &y a spec-
tral curve X 7. As a varies, the spectral curves X7 form a linear system on the cotan-
gent bundles of X . The assumption on the genus gx > 2 implies that the linear system
is ample and its generic member is a smooth projective curve. If X is smooth, then
the Hitchin fiber .Z, = h}l (@) is isomorphic to the Picard stack Zic(X_) which is
isomorphic to a disjoint union of Abelian varieties if we ignore automorphisms. For
classical groups, Hitchin also constructs certain spectral curves using their standard
representations. For a general reductive group, Donagi constructs a cameral cover X,
of X for every a € @7y and proves that the Hitchin fiber .#,, is isomorphic to a union
of Abelian varieties if the cameral cover X, , 1s a smooth curve.

Since we will attempt to generalize the construction of cameral curves for Higgs
bundles over higher-dimensional varieties, let us recall their construction in the case of
curves. The construction, due to Donagi [7, Section 4.2], derives the cameral covering
T - X a — X from the Cartesian diagram

— [t/Gn]

X,
i i 2.4)
X —

[¢/Gm]

where the morphism a : X — [c/G,,] at the bottom line comes from the G-
equivariant morphism a : Tx — c¢. Since the morphism 7 : t — ¢ is finite and flat,
1, also has these properties. Away from the discriminant locus discrg C ¢, the mor-
phism 7 : t — c is finite, étale, and Galois with Galois group W. In [18], we denote
by 437)? the open subset of .7y consisting of maps a : X — [¢/G,,] whose image is
not contained in [discrg /G,]. By construction, for a € 42%)? , X, — X is generically
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a finite étale Galois morphism with Galois group W. The fibers .#, are much better
understood under the assumption a € gf/}? . In particular, there is a natural Picard
stack &2, constructed in [18], acting on .#, with a dense open orbit.

3. The Higgs stack and the universal spectral data morphism

Let X be a proper smooth variety of dimension d over k. A G-Higgs bundle over
X is a G-bundle E over X equipped with an Oy -linear map 6 : Ty — ad(E) from
the tangent sheaf Jx of X to the adjoint vector bundle ad(E) of E satisfying the
integrability condition: for all local sections vy, v, of Ty, we have

[6(v1).0(v2)] =0. (3.1)

Let Qﬁé C g? be the commuting scheme. It is defined as the scheme-theoretic zero
fiber of the commutator map

¢ —>Jle.  Or.....00—]]6:.6;.

i<j i<j

The k-points of (’:‘é consist of (A1,...,04) € g?(k) such that [6;,6;)] =0 for 1 <
i, j <d.We note that the commuting relations are automatically satisfied in the case
d = 1. Let V; denote the dual vector space of k4 equipped with the standard basis
U1, ...,Vq. We will identify gd with the space of all linear maps 6 : V; — g by attach-
ing to (6;,...,64) € g¢ the unique linear map 6 : V; — g satisfying 0(v;) = 6;. The
commuting scheme Q‘é can then be identified with the closed subscheme of gd con-
sisting of all k-linear maps 6 : V; — g such that [6(v), 8(v")] =0 for all v,v" € V.

Given this description of Qﬁ‘é, we have an action of GL; x G on C‘é coming from
the natural action of GL; on V; and the adjoint action of G on g. We will call the
quotient

[¢4/(GL, x G)], (3.2)

in the sense of algebraic stacks, the Higgs stack. It attaches to every test scheme S
the groupoid of triples (¥, &, 6) consisting of a vector bundle ¥ of rank d over S,
a principal G-bundle & over S, and an Og-linear map 6 : ¥ — ad(&’) satisfying
[6(v),B(v")] = 0 for all local sections v, v’ of ¥. A Higgs field on a d-dimensional
proper smooth variety X can be represented by a map

0:X — [€4/(GLy x G)] (3.3)

lying over the map X — BGL, representing the cotangent bundle 7'y. Here, we de-
note by BGL, the classifying stack of GL,.

The construction of the Hitchin morphism derives from G -invariant functions on
CdG. Studying G-invariant functions on @g amounts to investigating the morphism
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[€&/Gl—>¢& )G (3.4)

between quotients of the commuting scheme Q‘é by the diagonal action of G in the
sense of algebraic stacks and geometric invariant theory, respectively. By definition,
the categorical quotient CdG /| G is the affine scheme whose ring of functions is the
k-algebra

k[eL ) G| = k[e]C

of G-invariant functions on @‘é.

The commuting scheme Qfd has been studied intensively, especially in the case
d = 2. It has a nonempty open locus Qd ™ consisting of commuting linear maps
0 : V4 — g such that the image 6(V;) has nonempty intersection with the regular
semisimple locus g™* of g. This open locus is smooth. In the case d = 2, Richardson
[20] proved that the underlying topological space of €2G is irreducible, in particular,
that the locus €%"

schemes on A?, with d > 3, imply that irreducibility is no longer true for d > 3.

is dense in QﬁzG. Results of Iarrobino [14] on punctual Hilbert

There is a long-standing conjecture saying that the commuting scheme Q‘ZG is
reduced. The generalization of this conjecture to the case in which d > 3 seems to be

rather doubtful, since we have very little understanding of other components of Q‘l‘é

other than the component containing C‘é s

The categorical quotient @‘é /| G behaves better. In [13], Hunziker proved a weak
version of the Chevalley restriction theorem for the commuting scheme. If t is a Car-
tan subalgebra of g, then the embedding 4 gd factors through Q‘é since t is com-
mutative. Since orbits of the diagonal action of W on t¢ are contained in orbits of the
diagonal action of G on ¢d , the restriction of a G -invariant function on @‘é to t4 is
W -invariant. In other words, we have a morphism

4w et )G (3.5)

Based on Richardson’s fundamental result in [20], Hunziker proved that this mor-
phism is a universal homeomorphism, that is, it is a finite morphism inducing a bijec-
tion on k-points (see [ 13, Theorems 6.2, 6.3])." In particular, 4 /| W is the normaliza-
tion of the underlying reduced subscheme (Q‘CI; // G)*4. Since 4 J/ W is irreducible,
the categorical quotient Qﬁé /| G is also irreducible.

In [13, Section 6], Hunziker works with the reduced quotient R4 of the ring R of functions on QdG. As
we are over kK = C, the Reynolds operator implies that there exists an isomorphism between (RY)™¢ and
(R for any k-algebra of finite type with G-action (see, e.g., [16, p. 29]). Thus, Hunziker proves that
t4 ) W — (€% J G)™4 is a universal homeomorphism. This is equivalent to saying that t¢ J W — ¢% / G
is a universal homeomorphism.
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CONJECTURE 3.1
The morphism (3.5) is an isomorphism.

We note that Conjecture 3.1 is equivalent to asserting that the categorical quotient
Qf‘(l; // G is reduced and normal. Indeed, since t¢ // W is obviously reduced and normal,
if (3.5) is an isomorphism, then Qf‘(l; /| G also is reduced and normal. Conversely, if
Qf‘é /| G is reduced and normal, then the map (3.5), known to be a normalization, has
to be an isomorphism. Note also that Conjecture 3.1 together with (3.4) implies that
there is a G-invariant morphism

sd: ¢ >y w (3.6)

to be called the universal spectral data morphism, making the following diagram
commute:

fd

—

7

W —— €L )G

As the existence of this morphism would be important to the study of the Hitchin mor-
phism, we state the following conjecture, which is a weaker form of Conjecture 3.1.

CONJECTURE 3.2
There exists a G-invariant morphism sd : Qﬁ‘é — 4 /| W making the diagram (3.7)
commute.

We note that Conjecture 3.2 implies that the categorical quotient C‘é J G is re-
duced. Indeed, the right triangle of (3.7) gives rise to a commutative triangle of rings,
which says that the composition of homomorphisms

k[€E1C — k[t/]V — k[ed]

is the inclusion map. It follows that the homomorphism k[@‘é]G — k[t4)V is injec-
tive. Since k[t¢]" is an integral domain, k[Qf‘é]G is also an integral domain and, in
particular, reduced.

In the next section (see Theorem 4.2), we will construct a canonical map
@‘é (k) > ¢ /| W(k) making the diagram (3.7) commute on the level of k-points. For
the moment, let us construct this map in the case G = GL,. A k-point 8 € Q‘é (k)
consists of a commuting family of endomorphisms 61,...,6; on the standard n-
dimensional k-vector space k". It defines a S(V;)-module structure on k" where



ON THE HITCHIN MORPHISM 1979

v; € S(Vg) = kvy,...,v4] acts by 6;. Let F denote the corresponding finite S(V;)-
module. We have a decomposition F = @, e Fu, Where Fy is an S(V;)-module
annihilated by some power of the maximal ideal my corresponding to the point
o € A% (k), where A% = Spec(S(Vy)). This decomposition gives rise to a 0-cycle

20)= ) lg(Fa)a

achd (k)

of length n in A¢. This construction gives rise to a G(k)-invariant map Q‘é (k) —
Chow,, (A%)(k), where

Chow, (A%) = Spec((S(Vd)®")6”).

As G = GL,,, one can identify Chow, (A?) with t¢ J/ W, and we thus obtain the
desired map from E‘l‘é (k) to t¢ /| W(k). We shall show that the construction above
works in families.

THEOREM 3.3
Conjecture 3.2 holds in the case of GL,,. In particular, for G = GL,,, the categorical
quotient Q‘:‘é /| G is reduced.

Proof

The construction of the universal spectral data morphism sd : C‘é — ¢ J W=
Chowy,, (Ad) in the case G = GL,,, is due to Deligne [6, Section 6.3.1]. For the reader’s
convenience, we will recall his construction. For any k-algebra R, we will construct
a functorial map C‘é (R) — Chow, (A%)(R) following Deligne. A collection of d
matrices o1, ...,¢g € g(R) = gl,(R) gives rise to a k-linear map « : V; — g(R). If
a1,...,0q commute with each other, then « gives rise to a map

S(a) : S(Vy) — g(R).

By composing with the determinant, we get a map detoS(«) : S(Vz) — R which is
a homogeneous algebraic map of degree n on the infinite-dimensional vector space
S(Vz). It must derive from a polynomial linear map

z(a) : (S(V)®")°" > R (3.8)
characterized by the property that
2(e)(f®") = detoS(@)(f)

for f € S(V;). Since detoS(«) is multiplicative, z(«) is a homomorphism of k-
algebras. In other words, z(«) defines an R-point of Chow,, (A?). This finishes the
construction of the map sd : C‘é -t w.
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We shall prove that the composition C‘é X /W ¢ C’é /| G is the quotient
map. Equivalently, the induced map

k[€&1% — k1Y — k[ed]

on rings of functions is the natural inclusion map.

Let X(i) € g(k[g?]) be the n x n matrix whose (a, b)-entry is given by the coordi-
nate function for the (a, b)-entry of the ith copy of g in g¢. The embedding t¢ — g¢
gives rise to a map g(k[g?]) — g(k[t?]), and we define T'(i) € g(k[t%]) to be the im-
age of X (i) under this map. We use the same notation X (i) € g(k[@‘é]) for the image
of X (i) under the natural map g(k[g?]) — g(k [Qﬁ‘é]). It is known (see, e.g., [19]) that
the ring of G-invariant functions k[g?]¢ is generated by

Tr(X (1) -~ X(ip)).

where k € Zsg and 1 <iy,...,ix <d. As the restriction map k[g¢]% — k[€4]C is
surjective and [X(i), X(j)] =0 € g(k [Qﬁ‘é]), it follows that k[Qﬁ‘é]G is generated by
the G-invariant functions

Tr(X (1) -+ X(d)*),

where a; € Z>o. It is easy to see that the image of Tr(X(1)?! --- X(d)?¢) under the
map k[€4]9 — k[t?]V is equal to

Tr(T(l)“1 cee T(d)“d).
Thus, to prove the desired claim, it suffices to show that
z(a) (Tr(T(l)"1 - T(d)* )) = Tr(X(l)"1 e X(d)ad), (3.9)

where z(0r) = sd* : k[t4]V = (S(V4)®")®" — k[€%] is the map in (3.8) in the uni-
versal case: R = k[(’:‘é] and o : V; — g(R) corresponds to the identity map id €

¢ (R).
Let vq,..., v, be the coordinate vectors of V;. We have
S(@)(vi) = X(i) € g(k[€E]). (3.10)
For any x € k, consider the element f = x — v{! ~-v;d e S(Vy) =kl[vy,...,vq]. It

follows from the definition of z(«) that

z(a)(f®") = detoS(a)(f) = det(xid — S(a)(v]") - S(@)(v5"))
=x" _Tr(S(Ol)(v‘lll)...S(a)(vsd))xn—l Toeen, 311
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On the other hand, under the canonical identification (S(V;)®")%» = k[t4]V, the
element f®" becomes

det(xid — T(1)* ---T(d)*?)
and it follows that
z()(f®") = z(a)(det(xid — T (1) --- T(d)*?))
=x" —z(a)(Tr((T (1)1 - T(d)*)))x" " +---. (3.12)
Comparing the coefficients of x”~1 in (3.11) and (3.12), we obtain

z(@)(Tr(T (1) -+ (T(d))*) = Tr(S (@) (v1)! -+ S(@) (vg)*?), (3.13)
which implies that

G.13)

z(@)(Te(T ()™ -+ (T(d))*) "="Tr(S (@) (v1)™ - S(e) (vg)*)
L Te(X(1)%1 - X(d)).

Equation (3.9) follows. This completes the proof of Theorem 3.3. O

Although we do not know the validity of Conjectures 3.1 and 3.2 in general, we
know they are true on the level of topological spaces. This will allow us to work
around and predict the image of the Hitchin morphism.

Remark 3.1
In [9], Gan and Ginzburg proved the reducedness of Qi‘é // G in the case G = GL,,
d =2, by a different method.

4. Weyl’s polarization and the universal Hitchin morphism

Weyl’s polarization is a method used to construct G-invariant functions on the space
g? of d arbitrary elements 6, ..., 0, € g. The idea is as follows. Given a G-invariant
function ¢ on g and x1,...,x4 € k, the map

01,...,05) > c(x161 + -+ x4604)

defines a G-invariant function on g¢. Although those G-invariant functions on g¢
in general may not generate k[g?]% (see, e.g., [15]), as we shall see, they are close
to forming a set of generators of the ring k[Qﬁé]G of G-invariant functions on the
commuting scheme, and they do in the case G = GL,,.
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We will formalize the construction above as follows. For every affine variety Y
equipped with an action of G,,, the functor on the category of k-algebras which as-
sociates with each k-algebra R the set of Gy,-equivariant maps V; @ R — Y is
representable by an affine scheme, denoted by Yg ﬁ For instance, if Y is the affine
line A! = Spec(k[x]) equipped with an action of G,, given by ¢ - x = t°x, then Y(GI,/ Z
is the eth symmetric tensor of A% = Spec(S(Vy)). For Y = g, the space g(gdm can be
identified with g?. Let us also consider the case Y = ¢, where ¢ = g // G. Since ¢ is iso-

morphic to an n-dimensional affine space with homogeneous coordinates cy,...,c,
|75 .
of degree ey, ..., e,, the space A = G, 18 isomorphic to
n
A~ []sA%. (4.1)
i=1
The isomorphism depends on the choice of homogeneous coordinates cq, ..., cy.

Since the morphism g — ¢ is G-invariant and G,,-equivariant, it induces a G-
invariant morphism

n
pol:g¢ — A~ []s%A? (4.2)
i=1
which embodies Weyl’s polarization method for the diagonal action of G on
g?. For example, in the case in which G = GL,, given d arbitrary matrices
6 = (A1.....04) € (gl,)?, the trace of the ith power of x;0; + --- + x40, is an
ith symmetric form in the variables x;,...,x; and thus defines a point pol;(f) in
SA? and we have pol(f) = (pol;(0),...,pol,(6)). Instead of using trace of powers
of an endomorphism, we may also use the homogeneous coordinates of ¢ given by the
ith coefficient of the characteristic polynomial of an endomorphism for 1 <i <n.
The latter invariant function is used by Simpson [23] to define the Hitchin morphism
for GL,, for higher-dimensional varieties. We have seen that the choice of coordinates
of ¢ is unimportant as it just gives rise to different isomorphisms (4.1).
By restricting (4.2) to the commuting scheme €%, we obtain a G -invariant mor-
phism

h:¢d — 4 (4.3)

to be called the universal Hitchin morphism. To study the structure of the Hitchin
morphism, and in particular the image thereof, we need to understand the image of
the map (4.3) and its relation to the Chevalley restriction morphism (3.5). For that
purpose, we will also need to use Weyl’s polarization construction for the diagonal
action of W on 4. The morphism t — ¢ = t J/ W is W -invariant and G,,-equivariant.
As a result, we have a W -invariant morphism
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poly ¢ J W — A. (4.4)

We recall the following result.

THEOREM 4.1 ([15, Theorem 2.15])

The morphism poly, of (4.4) is finite and induces an injective map on k-points. In
other words, there exists a unique reduced closed subscheme B of A such that poly,
factors through a morphism

b:t¢ W — B, (4.5)

which is a universal homeomorphism and normalization. For G = GL,,, poly, is a
closed embedding and b is an isomorphism.

Remark 4.1

In the case G = GL,, the preceding theorem is the first fundamental theorem for sym-
metric groups, which is a classical theorem of Weyl [25, Chapter I1.A.3]. According
to Hunziker [13], poly, is a closed embedding for groups of types B and C. According
to Wallach [24], poly, fails to be a closed embedding for groups of type D.

Example 4.2

Let us describe the closed subscheme B of A in the case G = SL, and d = 2. In this
case, the Cartan algebra can be identified with t >~ Spec(k[t]). The Weyl group W =
&, acts on t by w(t) = —t, where w is the nontrivial element of W. The categorical
quotient ¢ = Spec(k [u]) with u = #? and the morphism g — ¢ is given by u = det(g).
Since the exponent e = 2, we have A = S2A2, which is a 3-dimensional vector space.
The map t* = A2 — 4 = S?(A?) is given by v — v2. In coordinates, this is the
map A2 — A3 given by (x,y) — (x2,2xy, y?). Thus, B is the closed subscheme
of A = A3 defined by the equation h? — 4ac = 0, which can be identified with the
categorical quotient of A2 by the action of &, given by (x,y) > (—x,—y).

We have the following factorization of the universal Hitchin morphism 4 : Q‘é —
A.

THEOREM 4.2

There exists a closed subscheme B’ of A, which is a thickening of the closed sub-
scheme B of A, as in Theorem 4.1, such that the universal Hitchin morphism h :
Qf‘é — A in (4.3) factors through a morphism

sd : ¢4 — B (4.6)
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In particular, there is a canonical G(k)-equivariant morphism Qié (k) — ¢ /) W (k).
For G = GL,,, we have B’ = B and (4.6) is equal to the universal spectral data
morphism sd : C‘é 4 | W ~ B constructed in Theorem 3.3.

Proof

By [13, Theorem 6.3], the Chevalley restriction map ¢ / W — €% / G is a home-
omorphism. Therefore, the diagram (3.7) implies that the G-invariant morphism / :
Qf‘é — A factors through a thickening B’ of the closed subscheme B of A. The first
claim follows. The second claim follows from Theorem 3.3. O

One may ask whether Theorem 4.2 holds for B’ = B for general G. This would
follow from Conjecture 3.2.

5. The spectral data morphism, postulated image of the Hitchin morphism, and
cameral covers

Let X be a proper smooth algebraic variety over k of dimension d. A Higgs bundle

over X is represented by a map 6 : X — [Q‘é /(G x GL4)] lying over the map ¥ :

X — BGLy given by its cotangent bundle T'y. By composing it with the map [7] :

[Qf‘é /(G x GLg)] — [A/GL,4] derived from (4.3), we obtain the Hitchin morphism

hxiﬂx—xﬂx,

where <7y is the space of maps X — [A/GLg] lying over ty. By choosing a system
of homogeneous coordinates ¢, . .., c, of c of degrees ey, ..., e,, we can identify &y
with the vector space @5;_; HO(X, S¢ Q}).

Let #x denote the space of maps X — [B/GLy], where B is the closed sub-
scheme of A defined in Theorem 4.1, lying over ty. It is clear that By is a closed
subscheme of oy. We call it the postulated image of the Hitchin morphism A x. By
replacing B by its thickening B’ as in Theorem 4.2, we have a thickening %', of Xx.
The schemes #x and %'y have the same underlying topological space.

PROPOSITION 5.1

Let X be a proper smooth algebraic variety of dimension d over an algebraically
closed field k of characteristic 0, and let M x be the moduli stack of Higgs bundles
over X. Then the Hitchin morphism hy : #x — fx factors through a map

sdy : Mx — By

to be called the spectral data morphism. In particular, the image of every geometric
point 0 € M x (k) under the Hitchin morphism belongs to By (k).
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Proof

By Theorem 4.2, for any S-point 8 : S x X — [QﬁdG/(G x GLg)] in #x (S) where S
is a k-scheme, its image hx(0) : S x X — [4/GLy] factors through ' : S x X —
[B’/GLg]. This gives the desired factorization sd'y : .#x — % of the Hitchin mor-
phism. Assume that 6 € .# (k). Since X is reduced, its image b’ : X — [B’/GLy]
factors through a morphism b : X — [B/GLy]; that is, we have hx (6) € Bx (k). The
proposition follows. U

CONJECTURE 5.2
For every b € Bx (k), the fiber h}l (b) is nonempty.

Example 5.1

Consider the case in which X is a d-dimensional Abelian variety. By choosing an
isomorphism between the Lie algebra of X and the d-dimensional vector space V,
we will have an isomorphism &y = A and ZAx = B which is a strict subset of A for
d > 2. We can also prove that the spectral data map .Zx (k) — %x (k) is surjective
by restricting ourselves to the subset of .Zx (k) consisting of Higgs bundles (E, 6),
where E is the trivial G-bundle.

One can think of Bx (k) as the subset of x (k) consisting of points b € &7y (k)
for which one can construct a cameral covering. For any scheme Y with an action of
GLg, we can form the twist YT; of Y by the GL,;-torsor given by T'y. Then a point

b e Bx (k) givesrisetoamap b : X — Br; and, since the map ey W)T; — Br;

induced from t¢ ) W — B is the normalization and X is normal, the map b lifts to a
map X — (t¢ / W)T;. We define X to be the fiber product

Xy ()7

I

X —— ) W)r;

The projection Xp — X, which is a finite surjective morphism, is called the cameral
covering associated with b.

Let B° denote the open dense locus of B, where the morphism t¢ — B is a finite
étale Galois morphism with Galois group W. This is a GL;-equivariant open subset
of B.
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Definition 5.3
We define %g(k) to be the open locus of Ay (k) consisting of maps b : X —
[B/GL,;] whose image has nonempty intersection with [B°/GL].

For every b € %’2 (k), the cameral covering X; — X is generically a finite étale
Galois morphism with Galois group W. We will prove Conjecture 5.2 in the case
G=GL,andd =2forallb e %g (k). In the 1-dimensional case, and for G = GL,,,
it is well known that spectral curves are more convenient than cameral curves for the
purpose of constructing Higgs bundles. Cameral and spectral covers are generally not
flat in higher dimension, but in the case of dimension 2, there is a canonical way to
make them flat.

From now on, we will assume that G = GL,,.

6. Spectral covers

Let us first review the construction of the universal spectral cover for d = 1. For
the group GL,,, t = A" = Spec(k[x1,...,X,]) is the space of diagonal matrices with
entries xi,...,Xx,. The Weyl group W is the symmetric group S, acting on A" by
permutation of coordinates xi,...,X,. By the fundamental theorem of symmetric
polynomials, the categorical quotient ¢ = A" // &, is the affine space of coordinates

c1=x1+- -+ xp,

Cr =X1X2 +X1X3+ -+ Xp—1Xn,

Cpn = X1+ Xp.

The universal spectral cover is a finite flat covering ¢® — ¢ of degree n. To construct it
we consider the action of the subgroup &, of G, on A" permuting the coordinates

(x1,...,xn—1) and leaving x, fixed. The categorical quotient ¢* = A" J &,_; is the
affine space of coordinates (c7,...,c,_;,X,) with
ci=x14 -+ xpm1, e, Ch_q =X1...Xp—1.

The induced morphism p : ¢® — c is a finite flat morphism of degree 7. One can rep-
resent the finite morphism ¢* — ¢ in terms of equations by considering the morphism

tie® —>cx Al givenby (cf,...,clh_q,%n) > (€1, ..., Cp, 1) wWith
/ / / /
t = Xp, 1 =c¢y + Xp, €y =Cy +CyXp, e Cn=Cp_1Xn. (6.1)

This is a closed embedding that identifies ¢® with the closed subscheme of ¢ x Al
defined by the equation t” — c "~ ! 4 -+ + (—=1)"¢c, = 0.
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We will now generalize this construction to the case d > 2. For G = GL,, we
have t = (A9)". The categorical quotient t¢ J/ W can be identified with the Chow
scheme Chow, (A%) = (A4)" /| 6y classifying O-dimensional cycles of length n of
A?. We will represent a point of Chow, (A?) as an unordered collection of n points
of A?

[X1.....xn] € Chow, (A?). 6.2)

By Theorem 4.1, the morphism

n
poly : Chow,,(Ad) — l_[ STA4, [x1,...,x5] > (c1,...,Cn), (6.3)

i=1

where ¢; € S'A? is the ith elementary symmetric polynomial of variables x;, ...,
x, € A%, is a closed embedding. We will construct the universal spectral covering of
Chow,, (A?) as follows. Consider the morphism

A ad 1 Chow, (AY) x A9 — s" A4 (6.4)
given by
Xad (X1, x0),X) = (x = x1) - (x = Xp) =x" =1 X" oo+ (=1)"cn. (6.5)
We define the closed subscheme Cayley, (A?) to be
Cayley, (A%) = 174 ({0}). (6.6)

the fiber over 0 € S" A4 .

PROPOSITION 6.1

(1) The projection p : Cayley, (A?) — Chow, (A?) is a finite morphism which
is étale over the open subset Chow, (A?) of Chow,(X) consisting of
multiplicity-free 0-cycles.

2) For every point a = [x’f1 veee s Xp"] € Chow,, (Ad), where X1, ..., Xy are dis-
tinct points of A? and ny,... ,ny, are positive integers such that ny + --- +
nm = n, the fiber of p : Cayley, (A?) — Chow, (A?) over a is the finite sub-
scheme of A4

m
Cayley, (a) = |_| Spec(Gya , /m%0). 6.7)

i=1

where Oy . is the local ring of A? at x;, and My, its maximal ideal. In
particular, as soon as d > 2 and n > 2, then the cover Cayley, (Ad) —
Chow,, (A?) is not flat.
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(3)  Let F be a finite Oya-module of length n, and let a € Chow, (A?) be its
spectral datum. Then F is supported by the finite subscheme Cayley, (a) of
A (This is a generalization of the Cayley—Hamilton theorem.)

Proof

We will first describe a set of the generators of the ideal defining the closed subscheme
Cayley,, (A?) of Chow,, (A9) x A% Let V; be the space of linear forms on A¢. Every
v: A4 — A'in V,; induces a map on Chow varieties [v] : Chow, (A?) — Chow, (A)
mapping a = [x1,. .., X,] € Chow, (A?) to

v(a) = [v(xl), .. .,v(xn)] € Chow, (Al).

As the diagram

Xpd
Chow, (A?) x A¢ N
[v]xv l l S (v) (6.8)
Chow, (A!) x Al —— S"A!l = Al
X4l

is commutative, the function f, = y,1 o ([v] x v) : Chow,, (A%) x A — A vanishes
on Cayley, (A?). Explicitly, for every a = [x1,...,x,] € Chow,(A¢), we have

folax) = () = o) -+ (v(x) — v(xa)). 6.9)

Moreover, since S”(v) generates the ideal defining 0 in S”A? as v varies in Vg,
the functions f, generate the ideal defining Cayley,, (A?) inside Chow, (A%) x A4,
This provides a convenient set of generators of this ideal, albeit infinite and even
innumerable as k may be.

(1) Let vq,..., vy be the standard basis of V; whose symmetric algebra S(V) is
the ring of functions of A4 The functions Joys--- fo, cutout a closed subscheme
Z of Chow,(A%) x A? which is finite flat of degree n? over Chow, (A%). Since
Cayley, (A9) is a closed subscheme of Z, it is also finite over Chow, (A?). This
proves the first assertion of the proposition.

(2) We will prove that for a = [x;l1 so.., Xn"] € Chow,, (Ad), where x1,..., Xn,
are distinct points of Ad, and ny,...,n, are positive integers such that n; + --- +

n, = n, Cayley, (a) is the closed subscheme of A? defined by the ideal myl-my”
of S(V), where m,, is the maximal ideal corresponding to the point x; € X

Let us denote by I, the ideal of S(V;) defining the finite subscheme Cayley,, (a)
in A4. We first prove that I = | x1 ***Ix,, where A/l is supported by some fi-
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nite thickening of the point x;. For this we only need to prove that for every x ¢
{X1,...,Xm}, there exists a function f € I, such that f ¢ m,. We recall that the
ideal I, is generated by the functions f,(a) : A2 — A! as v varies in V. Choose a
linear form v € V; on A? such that v(x) # v(x;) foralli € {1,...,m}. Then we have
Jv(@)(x) # 0 by (6.9).

As x1,...,Xx, play equivalent roles, we can focus our attention on x;. It only
remains to prove that the images of the functions f, (a) in the localization S(Vy)x, of
S(Vy4) at x1, as v varies in Vj, generate the ideal mﬁ{ From (6.9), we already know
that f,(a) € my! for every v € V. By Nakayama’s lemma, we only need to prove
that the images of f(a) in my! / mﬁ}“ generate this vector space as v varies in V.
We observe that for v € V; such that v(xy) # v(x;) fori € {2,...,m}, the factors
v(v)—v(x2),...,v(v) —v(vy) are all invertible at x1, so it is enough to prove that for
v € Vy satisfying the open condition v(x;) # v(x;) fori € {2,...,m}, the functions
(v(v) —v(x1))" generate my! /mY! *1 Here we again use the fact that the image of
the nth power map m,/m2 — m” /m”*1 spans m” /m”*! and this conclusion does
not change even after we remove from m, /m2 a closed subset of smaller dimension.

(3) By the Chinese remainder theorem, we are easily reduced to proving that if
F is a finite S(V;)-module of length n, supported by a finite thickening of x € A?,
then F is annihilated by m’. Since F is supported by a finite thickening of x € A
it has the structure of an S(V;),-module, where S(V,;)y is the localization of S(V;)
at x. We consider the decreasing filtration F D my F Dm2F D ---. By Nakayama’s
lemma, we know that for m € N, m™ E/m”*!E = 0 implies m” F = 0. It follows
that as long as m™ F # 0, we have dimy (m’. F/m.1 F) > 1 foralli € {0,...,m} and
it follows that m + 1 < n. We conclude that m” F = 0.

This completes the proof of Proposition 6. 1 ([

There is another construction possibly giving rise to a slightly different spec-
tral cover of Chow, (A?). We consider the action of &,_; on (A9)" permuting
(x1....,%p_1) and leaving x, fixed. The categorical quotient (A?)" / &,_; is a nor-
mal scheme equipped with a morphism (A9)" /| &,_; — (A%)" J &, which is finite
and generically finite étale of degree n. We also have a morphism

L1 (A" ) S, = Chow,_1(A%) x A — Chow, (A9) x A?
given by ([x1,...,Xp—1],Xn) = ([X1, ..., Xn], Xn).

PROPOSITION 6.2
The morphism ¢ : (A?)" // Sy—1 — Chow, (A?)x A% is a closed embedding. It factors
through a universal homeomorphism
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(A" | &,_1 — Cayley, (A?), (6.10)

which is an isomorphism over Chow,, (A?).

Proof
We have the following commutative diagram

(A9 ) &,—y = Chow,— (A9) x A? ' Chow, (A4 ) x A4

| |

[T/ STAY x A¢ [T/, STA4 x A?

where the vertical arrows are the closed embeddings induced from (6.3) and the

lower horizontal arrow is the closed embedding sending (ci,...,c;l_l,xn) to
(c1s.-.,¢n,xy), where cy,...,c, are given by (6.1). It follows that ¢ is a closed
embedding.

Let Chow, (A?) denote the open subscheme of Chow,(A¢) consisting of
multiplicity-free 0-cycles. Let us denote by (A?)™° the preimage of B°® which is the
complement in (A?)" of all diagonals. The morphism (A%)"° — Chow,, (A9) is fi-
nite, étale, and Galois of Galois group &,,. The morphism (A%)"° — (A9)"° /&, _,
is a finite étale Galois morphism with Galois group &,_;. It follows that the mor-
phism (A%)"° J/ &,_; — Chow (A?) is finite étale of degree |G,|/|Gp—1| = n.

Over Chow?(A?), the morphism ¢ : (A4)"° J &,_; — B° x A? clearly in-
duces an isomorphism of (A9)"° / G,_; on Cayley(A?) which is the preimage
of Chow,, (A?) in Cayley,, (A?). Since (A%)" /| &, is an integral scheme, the func-
tion x” —c1x"~! 4. 4 (=1)"c, which vanishes over (A?)"° / &,_; has to vanish
on all (A?)" / &,_;. It follows that the morphism ¢ factors through a morphism
(A9 | &,y — Cayley, (A?). This morphism is finite since (A?)" / &,_ is finite
over Chow,, (A9). One can check directly that the finite morphism (A?)" / &,_; —
Cayley,, (A?) induces a bijection over the k-points, which implies that it is a universal
homeomorphism. O

Remark 6.1
Drinfeld asked the question whether the morphism (6.10) is an isomorphism, as in the
case d = 1. This is equivalent to saying that Cayley,, (A?) is reduced and normal.

Recall that in the case G = GL,,, the closed subscheme B of A constructed in
Theorem 4.1 is B = Chow,, (A9). As the universal spectral cover on B, we will take

B*® = Cayley, (A?)
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instead of (A9)" // &,_;. The reason is that, in Proposition 6.1, we have a nice de-
scription of the fibers of B® over B, and a generalization of the Cayley—Hamilton
theorem.

For every geometric point b € Xy (k), we have a morphism b : X — [B/GL,]
lying over the morphism % : X — BGL, corresponding to the cotangent bundle 75 .
By forming the Cartesian product

X; — [B*/GLy]

l ” l 6.11)
b

X —— [B/GLy4]

we obtain the spectral cover X of X corresponding to b. Since B* — B is a finite
morphism, the map pp, : X — X is a finite covering. If b € #Y), that is, b(X) has
nonempty intersection with [B°/GLg], then the covering pp : X, — X is generically
finite étale of degree n.

If X is a curve, and if the spectral curve X b’ is integral, then, after Beauville,
Narasimhan, and Ramanan [3], there is an equivalence of categories between the cat-
egory of Higgs bundles with spectral datum b and the category of torsion-free & Xp ’s
of generic rank 1. This equivalence can be generalized to the case d > 1 with the
concept of Cohen—Macaulay sheaves.

Let M be a coherent sheaf on a finite type scheme Y. Let d = codim(Supp(M)).
Recall that M is called Cohen—Macaulay of codimension d if H (D(M)) = 0 for
i # d. A Cohen-Macaulay sheaf M is called maximal if it has codimension 0.

We also recall an important fact about Cohen—Macaulay modules. Suppose that R
is a finite A-algebra of degree n with A being a regular ring of pure dimension m. Let
M be an R-module of finite type. Then M is a locally free A-module of rank » if and
only if M is maximal Cohen—Macaulay of generic rank 1. We refer to [4, Section 2]
for a nice discussion on Cohen—Macaulay modules and for further references therein,
or to [5] for a comprehensive treatment.

PROPOSITION 6.3
For every b € 932 (k), the fiber h}l (b) of the Hitchin morphism is isomorphic to the
stack of maximal Cohen—Macaulay sheaves of generic rank 1 on the spectral cover
X.

b

Proof

Let (E,0) € h}l (b) be a Higgs bundle of rank n whose spectral datum is b %’g (k).
Then E = p«F, where p : T*X — X is the projection map and F is a coherent
sheaf on the cotangent 7'y. By the Cayley—Hamilton theorem (see Proposition 6.1),
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F is supported by the spectral cover X, C Ty. We have then E = ppy F, where pj, :
X, — X is the map in (6.11) and F is a coherent sheaf on X. Since pp : Xy — X is
a finite morphism, and E is a vector bundle over X, F is a maximal Cohen—Macaulay
sheaf. Moreover, since pj, is generically finite étale of degree n, F has generic rank 1.
Conversely, if F is a maximal Cohen—Macaulay sheaf of generic rank 1 over X, then
E = pp. F is a vector bundle of rank n over X. It is naturally equipped with a Higgs
field 0 : E @py Ix — E as Xl: is a closed subscheme of T'y. O

In spite of the simplicity of the description of 4" (b), the proposition above is not
of great use. For instance, it does not imply that 3! (b) is nonempty. The difficulty is
that, in general, the spectral cover X itself might not be Cohen—-Macaulay; equiva-
lently, the map X, — X might not be flat. Therefore, it is not clear how to construct
coherent Cohen—-Macaulay sheaves on X, . At this point, we see that in order to obtain
a useful description of h3! (b), we need to construct a finite Cohen-Macaulayfication
of Xp. This can be done in the case of surfaces.

7. Cohen—Macaulay spectral surfaces

In the case of surfaces, for every b € %2 (k), the spectral surface X b’ admits a canon-
ical finite Cohen—Macaulayfication whose construction relies on the theory of Hilbert
schemes of points on surfaces and Serre’s theorem on extending vector bundles on
smooth surfaces across closed subschemes of codimension 2. We will first recall
Serre’s theorem on extending locally free sheaves across a closed subscheme of codi-
mension 2 (see [21, Proposition 7]).

THEOREM 7.1

Let X be a smooth surface over k, let Z be a closed subscheme of codimension 2 of
X, and let j : U — X be the open immersion of the complement U of Z in X. Then
the functor V. — j,V is an equivalence of categories between the category of locally
free sheaves on U and locally free sheaves on X. Its inverse is the functor j*.

As we are now considering the case G = GL, and d = 2, the subscheme B
of A =A% x S?2A? x --- x S"A? is canonically isomorphic to the Chow scheme
Chow,, (A?) of 0-cycles of length n on A2. We recall that a point b € %y is a section
b : X — [Chow,(A?)/GL,] lying over 75 : X — BGL, representing the cotangent
bundle T;. In other words, b is a section of the relative Chow scheme

Chow, (T35 /X) — X

obtained from Chow,, (A?) by twisting it by the GL,-torsor attached to the cotangent
bundle 7'y of X.
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Recall the open locus Chow;, (A?) of Chow, (A?) consisting of multiplicity-free
0-cycles, and Q its complement. Let Chow, (Ty / X) be the corresponding open locus
in Chow, (Ty/X), and let Q(Ty/X) be its complement. Recall the open locus %’g
in Zx consisting of maps b : X — [Chow,, (A?)/GL,] which maps the generic point
of X to the open locus [Chow,, (T'y / X)/GL,]. In other words,

H3 =1{be By |dimb™ (Q(T5/X)) < 1}. (7.1)

We first recall some well-known facts about the Hilbert schemes of 0-dimensional
subschemes of a surface (see, e.g., [17]). Let Hilb, (A?) denote the moduli space of 0-
dimensional subschemes of length n of A2. A point of Hilb, (A?) is a 0-dimensional
subscheme Z of A2 of length n that will be of the form Z = | |,c,2 Za, Where Zg is
a local 0-dimensional subscheme of A2 whose closed point is . It is known that the
Hilbert—-Chow morphism

HC,, : Hilb, (A?) — Chow, (A?) (7.2)

given by Z — ), .2 length(Zy)o, where length(Z,,) is the length of Z,, is a res-
olution of singularities of Chow,, (A2). It is clear that HC, is an isomorphism over
Chow?, (A2).

As the morphism (7.2) is GL;-equivariant, we can twist it by any GL;-bundle, in
particular, by the GL,-bundle associated to the cotangent bundle Ty over a smooth
surface X. By doing so, we obtain

HCry /x : Hilb, (Tx /X ) — Chow, (T%/X). (7.3)

This morphism is a proper morphism and its base change to the open subset
Chow, (T / X) is an isomorphism.

PROPOSITION 7.2
For every b € Z; (k), there exists a unique finite flat covering

ng : XISM - X (7.4)

of degree n, equipped with an X -morphism ¢ : X ZSM — Ty satisfying the following
property: there exists an open subset U C X, whose complement is a closed subset
of codimension at least 2, such that ¢ is a closed embedding over U and for every
x €U, the fiber (pg™)~'(x) is a point of Hilb, (T / X) lying over the point b(x) €
Chow, (T /X). Moreover, the morphism v : X bCM — Ty factors through the closed
subscheme X of Ty and the resulting morphism qEM : XISM — Xy is a finite Cohen—

Macaulayfication of Xp.
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Proof

Let U° be the preimage of Chow, (Ty /X) by the section b : X — Chow, (Ty/X).
By the assumption b € B3, U° is a nonempty open subset of X. As the morphism
HCT; /x of (7.3) is an isomorphism over Chow, (T'y / X), we have a unique lifting

by - U° — Hilb, (T /X) xx U°

lying over the restriction b° = b|U°.

Since the Hilbert—Chow morphism (7.3) is proper, there exists an open subset
U C X, larger than U°, whose complement X — U is a closed subscheme of codi-
mension at least 2, such that " : U°® — Hilb;,(T¥ /X ) xx U* extends to

bY, 1 U — Hilb, (T /X) xx U.

By pulling back from Hilb, (75 / X) the tautological family of subschemes of 75, we
get a finite flat morphism UbJr — U of degree n, equipped with a closed embedding
w:US > Tg.

According to Serre’s theorem on extending vector bundles over surfaces, there
exists a unique finite flat covering X bCM — X of degree n extending the finite flat
covering UbJr of U. The closed embedding ty : UbJr — Ty extends to a morphism
X bCM — T¢ which may not be a closed embedding.

By construction, ng X ZSM — X is a finite flat morphism of degree 7, so it
follows from smoothness of X that X ISM is a Cohen—Macaulay surface. Apply the
generalized Cayley—Hamilton theorem to the vector bundle pgi’[ ﬁxgm; as an ﬁT; -

module over Ty, it is supported by X. It follows that the morphism XM — T
factors through a map ¢g™ : Xg™ — X7 C Ty. Since XS™ is finite over X, it is
also finite over X;. As g5

subset U°, it is a finite Cohen—Macaulayfication of X g . O

M XM — X} is an isomorphism over the nonempty open

Remark 7.1

Instead of using the Hilbert scheme, we can construct X bCM over the height 1 points
as follows. Let U° = b~ !(Chows, (T% /X)), and let Z be the complement of U°.
Let z be the generic point of an irreducible component of Z of dimension 1. The
localization of X at z is X; = Spec(Ox,;), where Ox ; is a discrete valuation ring. By
restricting pp« & xp to Ox .z we get amodule of finite type which may have torsion. By
considering the quotient Spec(pb*ﬁX; / (pb*ﬁ;‘(’;:s)), we obtain a locally free Oy -
module and thus a section X; — Hilb,(T% /X) xx X, over b|x.. By uniqueness of
such a section, we have an isomorphism

Spec(pps Oxy /(s Ox3)" ") = Spec(py Oxem) (7.5)

over the complement of a codimension 2 subscheme of X .
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Remark 7.2

We do not know whether the construction of the Cohen—-Macaulay spectral surface
X EM works well in families. The issue is that the construction makes use of the equiv-
alence of categories from Theorem 7.1 which does not work well in families.

THEOREM 7.3
Foreveryb € %’2 (k), the fiber h}l (D) is isomorphic to the stack of Cohen—Macaulay
sheaves F of generic rank 1 over the Cohen—Macaulay spectral surface X bCM' It
contains, in particular, the Picard stack &y of line bundles on X I(;M. The action of
Py, on itself by translation extends to an action of 22y, on h}l ).

In particular, h}l (b) is nonempty.

Proof
Let (E,0) € #x be a Higgs bundle over X lying over b € 55’2(/(). The Higgs
field 6 : 7y — Endg, (E) defines a homomorphism S(Zx) — Endg, (E) which
factors through pg+« & X3 by the generalized Cayley—Hamilton theorem (see Proposi-
tion 6.1(3)).

Let U° and Z be as in Remark 7.1, and let z be the generic point of an irreducible
component of Z of dimension 1. Over X, we have a homomorphism

PbxOxs ®ox Ox. — Endgy (E) ®cy OX..

Since the target is clearly torsion-free, this homomorphism factors through (7.5).
Thus, over an open subset U C X whose complement is of codimension 2, the above
morphism factors through a homomorphism of algebras

PO By O — Endoy (E) 80, Ou.

By applying Serre’s theorem again, we have a canonical homomorphism pgf % XM >
Endg, (£). It follows that E = pg« F', where F' is a Cohen-Macaulay & et -module
of generic rank 1.

Since ppM: XM
vector bundle of rank n carrying a Higgs field. Thus, h}l (b) contains &,. We have
an action of &7, on h}l (b) givenby (L, F)+—~ L ®ﬁX§M F, where L is a line bundle

— X is finite flat, for every line bundle L on X;™, pt™L is a

on XEM and F is a Cohen—Macaulay sheaf of generic rank 1. O

Remark 7.3

Let b € %’g (k) be such that the Cohen—Macaulay surface X ISM is integral. Consider
the functor associating to a k-scheme Y the set of isomorphism classes of a family of
Cohen—Macaulay sheaves of generic rank 1 on X bCM parameterized by Y. According
to [1, Corollary 6.7, Theorem 7.9], the fppf sheafification of this functor is represented
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by a k-scheme Pic(X$™)~ locally of finite type. In addition, Pic(XS™)™ admits a
compactification Pic(X EM)= whose k-points are given by isomorphism classes of
torsion-free rank 1 sheaves on X Z?M.

Definition 7.4
We define %’2 (k) to be the subset of %2 (k) consisting of those points b such that
the corresponding Cohen—Macaulay spectral surface X ISM is normal.

LEMMA 7.5
Forb € 93?( (k), the neutral component @g of Py is a quotient of an Abelian variety
by G, acting trivially.

Proof

This is a consequence of a theorem of Geisser [10, Theorem 1]. Geisser’s theorem
states that the multiplicative part of the neutral component P° of the Picard variety
P of an algebraic variety Y is trivial if and only if H. (Y, Z) is trivial, whereas the
unipotent part is trivial if and only if Y is seminormal. If Y is normal, then 71 (Y)
is a profinite group, being a quotient of the Galois group of the generic point, and
therefore cannot afford a nontrivial continuous homomorphism to Z. It follows that
H;t(Y, Z) is trivial. On the other hand, a normal variety is certainly also seminormal.
Assume that X™ is normal. Then the neutral component P of the Picard variety Py,
of X;™ is an Abelian variety. We have &) = [P?/Gp]. O

PROPOSITION 7.6
Forb e 35’?( (k), the action of &) on the Hitchin fiber h}l (b) is free and h}l (b)isa
disjoint union of Py-orbits.

Proof

If a line bundle L € &7, has a stabilizer F € h}l (b), then, as any such F, regarded
as a sheaf on X ZSM, is locally free of rank 1 on the smooth locus Uy of X EM, the
line bundle L is trivial on Up. Since X EM is normal, and the compliment X ZSM \ Up
is O-dimensional, it implies that L is trivial, and hence, the action of 47, is free.
We claim that the £2j,-orbits on h}l (b) are open and closed. The closedness follows
from the lemma above. To show that the &7;-orbits are open, we observe that h}l (b)
is isomorphic to the stack of reflexive sheaves of rank 1 on X IfM and, for any F €
h%'(b), the assignment sending F’ € h3! (b) to the reflexive hull of F’ ®xen F (ie.,
the double dual of F/ ® oSy F) defines an automorphism of h}l (b) mapping &,
isomorphically to the 7-orbit through F. Since &7, is open in h}l (b) (see [1]), it
implies that the &7p-orbits are open in h}l (b). The proposition follows. O



ON THE HITCHIN MORPHISM 1997

We expect that %’?‘, (k) is a nonempty open subset of Zx (k) for most algebraic
surfaces. The nonemptiness of %2 (k) is closely related to questions on the zero locus
of symmetric differentials, of which very little seems to be known in higher dimen-
sion.

8. Surfaces fibered over a curve

In this section, we investigate the spectral surfaces X, and the Cohen-Macaulay spec-
tral surface XbCM in the case when X is a fibration over a curve C and apply our
findings to ruled and elliptic surfaces.

Let X be a proper smooth surface, and let C be a proper smooth curve. Assume
that there is a proper flat surjective map 7 : X — C such that the generic fiber is a
proper smooth curve. We denote by X° C X the largest open subset such that 7 is
smooth. Consider the cotangent morphism d : Tg x¢ X — Ty. It induces a map

[d ] : Chow, (T5/C) x¢ X — Chow,(Tx/X)

on the relative Chow varieties. For every section bc : C — Chow, (T/C), the com-
position

by : X ~C x¢ X " Chown (T¢/C) xc X 2 Chown (T X)
is a section of Chow, (75 /X) — X and the assignment bc — by defines a map
Ly Be — PBx. (8.1)
We claim that the map above is a closed embedding. To see this, we observe that there

is a commutative diagram

PBe —— PBx

[, ]

Jr
de — Ay

where the vertical arrows are the natural embeddings, and the bottom arrow is the
embedding

n n
Jn e = PHC.S'Qp) — oy = PH(X.S'Q))
i=1 i=1

induced by the injection of vector spaces H’(C,S'Q() = HO(X,n*S'Qf) —
H° (X, St Q}(). The claim follows. Note that since dim C = 1, the left vertical arrow
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in (8.2) is in fact an isomorphism. From now on, we will view %¢ as a subspace of
Ay . Since the cotangent map dr : T xc X — Ty is a closed embedding over the
open locus X°, we have

BE = Bc N B

For any b € %c¢, we denote by C, — C the corresponding spectral curve and
we define X ; = C*® x¢ X. The natural projection map p; X ;r — X is finite flat of
degree n. Since X is smooth, it follows that X ;r is a Cohen—Macaulay surface.

LEMMA 8.1

There exists a finite X -morphism q;' X ;‘ — Xp which is a generic isomorphism if
be %’g If the fibration 7w : X — C has only reduced fibers, then for any b € BY,
the map q;' X ]j' — X, is isomorphic to the finite Cohen-Macaulayfication ng :
XbCM — X, in Proposition 7.2 (which is well defined since b € %’g}.

Proof

Leti b+ X ; — T be the restriction of the cotangent morphism dr : T xc X — Ty
to the closed subscheme X lj C T¢ xc X. By the Cayley—Hamilton theorem, the map
i b+ factors through the spectral surface X. Let q;r .4 ; — X, be the resulting map.
As X ; is finite over X, the map q;r is finite. In addition, if b € %’O, then both X ;
and X, are generically étale over X of degree n and it implies that q; is a generic
isomorphism.

Assume that the fibers of 7 are reduced. Then the smooth locus X ° of the map =
is open and its complement X — X ° is a closed subset of codimension 2. Since the map
i b+ X ;’ — Ty is a closed embedding over X °, Proposition 7.2 implies that the fi-
nite flat covering q;r X ;’ — X, is isomorphic to the finite Cohen-Macaulayfication
g™ XM X3 O

Definition 8.2
We define %’g to be the open subset of %g consisting of those points b such that the
corresponding spectral curve Cp is smooth and irreducible.

COROLLARY 8.3
Assume that the fibration w : X — C has only reduced fibers. Then we have %’8 -
%2, that is, the surface X ISM is normal for b € %’g

Proof
Since X EM is Cohen—Macaulay, by Serre’s criterion for normality, it suffices to show
that the X bCM ~ X ,;r is smooth in codimension at most 1. The assumption implies that
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the complement X — X ° has codimension at least 2. Since Cp is smooth for b € B,
the open subset X;° =C, xc X° C X;r is smooth (since the map X;r° — Cp and
Cp are smooth) and the complement X ; - X ; ° has codimension at least 2. The
corollary follows. O

Example 8.1

Consider the case when X = C xP! andn = 2. We have By = B¢ =H(C, Q) ®
HO(C,S2QL). Let b = (by,by) € B, and let py : X; — X be the corresponding
spectral surface. Then €tale locally over X, the surface X, is isomorphic to the closed
subscheme of Spec(k[x1, x2,11,12]) defined by the equations

174 b1ty + by =0,
(2t +b1) =0, (8.3)
13=0,

where x1, x, are local coordinates of C and P! and b; € k[x;]. Let discrc = (bf —
4by = 0) C C be the discriminant divisor for 5. From (8.3) we see that X, is an
étale cover of degree 2 away from the divisor discrc x P! C X. Note that the spectral
surface pp : Xp — X is not flat over X as the pushforward Pb*ﬁxg has length 3
over discrc x P'. The finite Cohen-Macaulayfication X ™ — X is given by the flat
quotient Spec(pp«Ox s /(Ppx Ox)'™™) which is isomorphic to XM~ Cp x P The
Hitchin fiber h3! (b) is isomorphic to

hy' (b) ~ h! (b) x Pic(P).

PROPOSITION 8.1

Let X be a smooth projective surface, and let w : X — C be either a ruled surface,
or a nonisotrivial elliptic surface with reduced fibers. Then for every n, the pullback
map

H°(C,8"Qf) — HY(X,S"QY)
is an isomorphism.

It follows from the proposition above that in the case of ruled surfaces and non-
isotrivial elliptic surfaces with reduced fibers, we have </c = @x. Since B¢ = Y,
we have By = B¢ and %’2 and 93;? are open dense in Ay . For every b € A,
we have a spectral curve Cp; which is finite flat of degree n over C. We also have
the spectral surface X, which is a finite scheme over X embedded in its cotangent
bundle Ty . The Cohen—Macaulayfication of X is X ; = Cp Xc X.In the case of el-
liptic surfaces, the morphism X bCM — Xp may not be an isomorphism, and X bCM may
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not be embedded in the cotangent bundle T’y . The existence of the Cohen-Macaulay
spectral cover guarantees that h}l (b) is nonempty.

Proposition 8.1 is obvious for ruled surfaces. Let us investigate it in the case
of elliptic surfaces. We assume that there is a proper flat map 7 : X — C from X
to a smooth projective curve C with general fiber a smooth curve of genus 1. We
will focus on the case when 7 : X — C is not isotrivial, relatively minimal, and
has reduced fibers (e.g., semistable nonisotrivial elliptic surfaces). Let X° denote the
largest open subset of X such that the restriction of 7 to X° is a smooth morphism
7°: X° — C. Since the geometric fibers of & are all reduced, the complement of X °
in X is a 0-dimensional subscheme. Over X °, we have an exact sequence of tangent
bundles

0— f)p/c—)gxo—)(ﬂo)*yc — 0. (8.4)
For every n € N, we have the exact sequence of symmetric powers
0— S""'Txo ® Txo/c — S" Txo — (1°)*S" T — 0. (8.5)

Let n € C be the generic point of C with residue field K, and let X;, = X x¢ n,
which is an elliptic curve over K. The restriction of (8.4) to X, is a short exact se-
quence making the rank 2 vector bundle Jx|x, a self-extension of the trivial line
bundle of X,. As we assume that the elliptic fibration 7 is nonisotrivial, that is, the
Kodaira—Spencer map is not zero, .7x|x,, is a nontrivial self-extension of the triv-
ial line bundle on X,,. After Atiyah [2], such a nontrivial extension is unique up to
isomorphism:

0— 0%, — & — Ox, —0. (8.6)

In other words, the restriction of (8.4) to the generic fiber X, is isomorphic to (8.6).

LEMMA 8.4
The exact sequence of symmetric powers derived from (8.6)

0—>S""'¢—>8"8— 0x,—0 (8.7)
is not split.
Proof
Indeed, if
0—>¥% —-&6—L—0 (8.8)

is an extension of a line bundle .Z by a line bundle .#”, then there is a canonical
filtration
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0=%yCF C--CFp_1CF=5"¢

of S"& such that for every i € {I,...,n} we have .% ~ S'& ® £'®" and
Fi| Fiog ~ L% @ L"®" ' Moreover, the exact sequence

Oﬁyn—l/yn—Z_)yn/yn—Zﬁyn/gin—l_>0 (8.9)

is isomorphic to the sequence (8.8) tensored by £®®~1 In particular, if (8.8) is not
split, then (8.9) is not split either, and as a consequence, the exact sequence

0> Fyo1 = Fp—> L% 50

is not split. Applying above discussion to (8.6), we see that (8.7) is not split. O

LEMMA 8.5

For every n € N, we have that

(1)  dimgExt'(0%,.8"&) =1,

2) dimg Hom(S" &, O,) = 1,

3) the restriction map Hom(S" &, Ox,) — Hom(S"~1&, Ox,,) is zero.

Proof
It follows from induction on 7 using the Ext long exact sequences derived from (8.7).
O

It follows from the above lemmas that, for every n € N, S” &’ is the unique exten-
sion of O, by S"~1&, up to isomorphism.
Now we prove that pulling back 1-forms defines an isomorphism

H(C,S"Q¢) ~ HY(X,S"QY).

This map is obviously injective. Let us prove that it is also surjective. A symmetric
form « € H(X, S"Q% ) gives rise to a linear form « : $” 7x — Ox. By restriction to
the generic fiber X, of the elliptic fibration, we obtain a map o, : S"& — O, . By
the previous lemma, the restriction of a;, to S"~1& is zero. It follows that in the exact
sequence (8.5), the restriction of a to S"~!.7xo ® Txo/c is zero, that is, it factors
through (7°)*S"” 7¢. Since the complement of X° in X is O-dimensional, « factors
through (7)*S" J¢, that is, it comes from a symmetric form on C. This finishes the
proof of Proposition 8.1.

These calculations show that the Hitchin morphism for ruled and elliptic surfaces
is closely related to the Hitchin morphism for the base curve. This is compatible
with the fact that under the Simpson correspondence in [22], stable Higgs bundles
for a smooth projective surface X correspond to irreducible representations of the
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fundamental group 71 (X), and in the case of ruled surfaces and nonisotrivial elliptic
surfaces with reduced fibers, we have 71 (X) >~ 71(C), where C is the base curve
(see, e.g., [8, Section 7]).
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