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In this work, we focus on investigating the impact of data assimilation on CFD modeling
of complex fluid dynamics in a more realistic geometry. The maximum likelihood ensemble
filter (MLEF) method is applied due to its advantages for applications to large-scale, nonlinear
dynamical systems. The data assimilation impact on the predictability is firstly investigated
using the three-dimensional non-premixed Methane-Oxygen flame in a double-shear layer
flow configuration. The methodology is then tested for the predictability of flow dynamics
structures in a two-dimensional bluff-body geometry. The initial results are encouraging, and
data assimilation demonstrates a promising improvement for CFD modeling of complex fluid
dynamics in a realistic geometry. Future workwill focus on its application to three-dimensional
turbulent flows.

I. Nomenclature

Q̂ Control vector
O Observation vector
R Observation covariance matrix
P Ensemble perturbation matrix
H Observation operator

h Time step
TDA Data assimilation frequency
t Superscripts for the truth
f Superscripts for the forecast
a Superscripts for the analysis

II. Introduction
For computational fluid dynamics (CFD) modeling of turbulence and combustion in engineering fluid flows, it is well

understood that turbulence modeling is difficult and intricate because of the accuracy of the turbulence models. Since
direct numerical simulation (DNS) of turbulence is still not feasible even for today’s computing power, Reynolds-averaged
Navier-Stokes (RANS) or large-eddy simulation (LES) are commonly used as the practical engineering approaches
for turbulent combustion modeling. Nevertheless, the challenge is to predict correctly the interactions between the
turbulence, chemical kinetics, and thermodynamics properties of the fluid. For instance, LES is a promising approach,
however, the accuracy of its prediction is often significantly influenced by the uncertainties in the subgrid-scale (SGS)
models. To improve the prediction accuracy, it is important to understand the uncertainties in the dynamical system,
including uncertainties in the physical models, model parameters, initial conditions, boundary conditions, numerical
methods etc. Data assimilation (DA) algorithm, developed from the application aspect of Bayes theorem, is the science
of combining the observations’ uncertainties of the dynamical system with the uncertainties in numerical prediction
of the system to obtain a more accurate description of the system. The uncertainty estimate is an intrinsic part of the
solution in data assimilation algorithm. Our recent work [1–4] has shown great promise in applying data assimilation
to CFD modeling of simplified combustion problems for improved prediction and parameter estimation. The present
research is interested in applying data assimilation to improve the CFD predictions of more realistic turbulence and
combustion problems. While many different types of DA methods are available, such as the variational method [5, 6]
(e.g., three-dimensional variational (3D-Var), four-dimensional variational (4D-Var)), the ensemble method [7, 8] (e.g.,
ensemble Kalman filter (EnKF), ensemble Kalman smoother (EnKS), square root ensemble Kalman filter, maximum
likelihood ensemble filter (MLEF)), and the particle method [9–11] (e.g., particle filter, particle smoother), the MLEF
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method is adopted for its advantages in applications to large-scale, nonlinear dynamical systems. In this study, we
extend our existing data-assimilated CFD modeling framework with MLEF to obtain understanding of the predictability
of the turbulence and combustion in a bluff-body combustor (BBC) geometry.

Fig. 1 The schematic of the bluff-body combustor geometry developed by the US Air Force Research Lab
(AFRL).

This bluff-body combustor [12], as illustrated in Fig. 1, resembles the practical combusting devices with three
core elements including the anchored flame region, the recirculation region, and the mixing shear layer. For the
present study, two stages of investigations are carried out in sequential in order to elucidate the assimilation impact on
predictability by isolating the complex physics factors. As a starting investigation, we focus on improving the prediction
of mixing-layer dynamics with data assimilation. A double shear layer (DSL) non-premixed Methane-Oxygen flame
(without wall boundaries) is configured to demonstrate the validity of the data-assimilated CFD algorithm. This simple
reaction problem mimics the mixing regions in the BBC as shown by the boxed region in Fig. 2 and helps to assess
the performance of the data assimilation for estimating multiple non-observed model states in the coupled dynamical
system. This facilitates the building of the framework for future investigations of the turbulent combustion in the BBC
geometry. Secondly, the complete domain as shown in Fig. 1 is investigated by focusing on data assimilation impact on
the turbulent flow dynamics structures with geometric influence.

Fig. 2 The iso-surfaces of vorticity magnitude [13].

The organization of this paper is as follow. In section III, we briefly overview the forward model and the data
assimilation algorithm, along with the observation quality control, initialization strategy, and quality assessment of
data assimilation. The setup of the numerical experiment is detailed in section V. Section VI presents the results to
demonstrate the improvement of turbulence predictability with MLEF for two-dimensional BBC cold flows. Concluding
remarks and future work are given in Section VII.

III. Algorithms

A. Forward Model: Chord
A fourth-order finite-volume code, Chord [14–18], is used as the forward model. Chord is our inhouse CFD code,

designed for achieving high-order accuracy in time and space on modern high performance computing architecture for
modeling fluid flows with turbulence and combustion. Chord features adaptive mesh refinement (AMR) in space and
time, accommodates complex geometry while preserving free-stream conditions with mapped multiblock technique,
and scales to at least 1×105 cores. Readers interested in Chord are referred to the above references.

B. Data Assimilation Algorithm: Maximum Likelihood Ensemble Filter (MLEF)
The maximum likelihood ensemble filter [19] (MLEF), one of the ensemble-based data assimilation methods, is

implemented and applied to improve the CFD predictions under the circumstances where large uncertainties exist in
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initial conditions. In general, MLEF has a theoretical advantage in nonlinear data assimilation problems over standard
ensemble methods because it is a straightforward application of standard optimization algorithms developed in control
theory, which is suitable for high dimensional nonlinear applications. Briefly, we review the core concept of the MLEF
method. Following Bayes formula, one can obtain the posterior probability density function (PDF) from the prior, the
conditional, and the observation PDFs. Then, following a general derivation of the cost function under the assumption
of the Gaussian PDF (e.g., [20, 21]), the cost function, J(·), is defined as a negative logarithm of the posterior PDF

J(Q̂) = 1
2

[
Q̂ − Q̂ f

]T
P−1
f

[
Q̂ − Q̂ f

]
+

1
2

[
O −H(Q̂)

]T
R−1

[
O −H(Q̂)

]
, (1)

where Q̂ f is the forecast control vector, P f is the forecast error covariance matrix, R is the observation error covariance
matrix, O is the observation vector, and H is a generally nonlinear observation operator that maps state space to
observation space. By minimizing the cost function, MLEF finds the maximum a-posteriori point of the posterior
probability distribution that produces a good estimate of the analysis and the uncertainty over the data assimilation
intervals.

C. The DA-CFD Framework
In the DA-CFD system, it is critical to couple the CFD and data assimilation algorithms and ensure proper

data/information communication between these two components. Chord manages its data based on the structured AMR.
When working with complex geometries, such as the case of BBC, Chord employs mapped multiblock techniques to map
the physical domain (as shown in Fig. 3a) to the computational one (as shown in Fig. 3b). MLEF uses one-dimensional
array for data allocation. In the MLEF-Chord system, the CFD simulation is performed in the computational domain,
while the MLEF method calculates the statistical error covariance analysis in the physical domain. Accordingly, a data
transfer process is implemented to handle the data communication between Chord and MLEF.

0

1 2

3

4

5 6

(a) A sample mapped multi-block grid in physical space.

0 1 2 3 4 5 6

(b) A sample mapped multi-block grid in computational space.

Fig. 3 A sample conforming mapped multi-block grid. Seven blocks are shown in this example, each with a
mapping function from its Cartesian computational grid to the curvilinear one in physical space.

There are three steps in the MLEF-Chord system framework. Firstly, each member in the ensemble is propagated by
the forward CFD model to the time when the observation data are available and P f is evaluated at that time. Then, the

observation operator is employed to map the states to the observation space. The observation increment
(
O−H(Q̂)

)
is

calculated. TheH is the observation operator for mapping the model state space into the observation space since they
are not necessarily the same. For instance, Fig. 4 describes an averaging operation process. Introduce the observation
operator to beH(·) = G · A · S(·). The matrix S is a nonlinear operators for spatial mapping from three dimensions to
two dimensions in state space. The matrix A is an averaging operation to convert two dimensions to one dimension in
state space. The matrix G maps one-dimensional state space to one-dimensional observation space. Finally, Eq. (1) is
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optimized with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method to achieve an optimal deterministic state (Q̂a)
by

Q̂a
= argmin

Q̂

(
Ja(Q̂)

)
,

which is then used to evaluate the square-root analysis error covariance matrix (P1/2
a ). To complete the process, all

members are updated by using the P1/2
a and Q̂a, which initializes the next DA cycle. Our recent work [22] provides a

greater detail.

3DState 2DState 1DState 1D
Observation

S A G

Fig. 4 The schematic of the observation operator,H(·).

IV. Performance Measures and Strategies
The quality of available information plays an important role in assimilation performance and computational efficiency.

Furthermore, the selection of ensemble is critical in the study of initial uncertainties. In this section, we provide
necessary background on the performance measures and DA initialization strategies.

A. Observation Quality Control
In order to inspect the potential unfavorable impact of data on the MLEF-CFD solution process and the potential

computational cost, the quality of the observation data is examined by the measurements, such as, an error of the
observational increment during DA cycles. Under the assumption of Gaussian distribution for the uncertainty, the error
of the observational increment should also be expected to follow the Gaussian distribution. However, observations may
be distant from the predictions by the forward model at certain time and space, which, if assimilated, would increase the
computational cost in the process of determining the optimal state by the MLEF minimizer while have little impact
on the analysis. Therefore, a quality region (marked as red shaded region), as shown in Fig. 5, is specified and used
to guide the process by eliminating the large error of the observation increment with some thresholds. For example,
observation data are assimilated into the MLEF-CFD system only when the errors fall inside the quality region,

−CTσobs ≤ E
[
(εobs − E[εobs])2

]
≤ CTσobs , εobs ∈

(
O −H(Q̂)

)
,

where E[·] is the expected value in probability theory. The σobs is the standard deviation (SD) of the expected observation
error for each model variable, and CT is the coefficient of the quality control. According to the properties of the Gaussian
distribution, 95% of sample that is following the Gaussian distribution falls inside the region of ± 3SD. Therefore, the
CT is generally set to be 3.0 in the quality control concept. In Fig. 5, only the data inside the yellow shaded region are
assimilated.
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CTσ−CTσ 0

Observational Increment
p
([

Oi −H(Q̂i)
])

Forecast Propagation

p
(
H(Q̂f

i )
)

Fig. 5 The schematic of quality control concept used in MLEF method.

B. DA Initialization Strategy
Before any data assimilation can begin, it is necessary to define an initial state and its uncertainty. For initial

conditions (ICs) of the assimilation process, the lagged forecast method [23] is used, which typically uses free CFD runs
over a time window, 4Tτ (usually, Tτ = TDA). As shown in Fig. 6, we randomly create Ne unbiased CFD simulations
along the 4TDA interval, and use those time-lagged predictions to initialize the members (marked as “X”) in the
ensemble. Moreover, when initializing the deterministic vector Q̂0 (marked as “∆”), the choice can be either selecting
a time-lagged run near th = 0 or simply taking the mean of the initial members in the ensemble. This approach has
been used in MLEF with success in the past [7, 19]. Although the perturbations in ICs favor time differences between
simulations, some spatial differences are also included as dynamical features are advected over time, so that MLEF is
able to recover proper error covariance after only a couple of DA cycles.

t

t

-2tτ -tτ th=00 tτ 2tτ

Members
CFD

DA-CFD

Q1 Q2 Q3 Q̂ Q4 Q5 Q6

tDA=00

For DA Initialization

tDA=1

Apply
DA

Fig. 6 The schematic of the lagged forecast method.
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C. Quality Assessment of Data Assimilation
The data assimilation performance is evaluated by assessing the solution accuracy, the total cost function error

reduction, and χ2 value. Specifically, the error reduction of the total cost function (γtot) is given by

γtot =

(
J(Q̂ f ) − J(Q̂a)

J(Q̂ f )

)
× 100% . (2)

Since the uncertainty should be reduced after each DA cycle, the total cost function value and error covariance at the
analysis stage should always be smaller than the values at the forecast stage. Some large error reduction values are
expected at the beginning of DA process. The trajectory along the DA cycles is expected to converge as close to zero as
possible. Furthermore, the χ2 value is calculated by

χ2 =
XTX
Nobs

, X=
(
R+H(Q̂)P fHT(Q̂)

)−1/2 (
O−H(Q̂)

)
. (3)

Based on our previous studies, the expected values should be close to 1.0 for cold flows. For a combustion problem, the
expected value should be smaller than that of the case without using data assimilation.

V. Numerical Test

y

x

z

U1

U1

U2

U2

O2 with T2

ρ1, P1

ρ1, P1

ρ2, P2

CH4 with T1

CH4 with T1

Fig. 7 The schematic of the double shear layer case.

A preliminary study of obtaining the solution-
dominant covariance interaction of different physical
processes is investigated for the assimilation performance
assessment using the 3DDSL problem. The configuration
of the 3D non-premixed Methane-Oxygen double shear-
layer test case is illustrated in Fig. 7. The computational
domain is, Lx×Ly×Lz = 137δθ×137δθ×68δθ , with triple
periodic boundary conditions. The momentum thickness,
δθ , is δω/4, where δω is the initial vorticity thickness
(δω = 0.0005m). Three parallel streams along x-direction
are initialized where the center O2 stream (referred to
as stream 2) moves to the left at the root-mean-square
velocity of U1,rms = 34.03 m/s with T2 = 1350K and the
top/bottom CH4 streams (referred to as stream 1) move to
the right at the same velocity with T1 = 300K. Two shear
layers will develop and reaction will occur as soon as
CH4 mixes with O2. A 12-species and 38-step chemical
mechanism developed by Xu and Wang [24] is used. In
this chemical mechanism, the 12 species are H2, H, O2, O, OH, HO2, H2O, CH3, CH4, CO, CO2, and CH2O. The flow
has a Mach number of 0.1 based on a velocity equal to the arithmetic mean of the absolute value of the two stream
velocities, U1,rms and U2,rms, a Prandtl number, Pr = 0.71, a specific heat ratio, γ = 1.4, and a Reynolds number of 11650,
based on Reδω,0 = ρ |Urms | δω/µ with µ being the Oxygen viscosity (µO2 = 2.02 × 10−5Pa · s). The hyperbolic tangent
profiles are used for initial U(y) and the mass fractions of O2 and CH4. The velocities in each stream are sinusoidally
perturbed and computed from a stream function in order to achieve an analytically divergence free initial velocity field.

In this study, all conservative variables are considered to have uncertainties. Twelve members in the ensemble
are selected from the lagged-forecast method with setting TDA = 7 × 10−5sec (∼ 9000 time steps). To facilitate the
assessment of the assimilation performance, the “observed” components, the mass fraction of the major reactants and
the products (CH4, O2, CH3, H2O, H2, CO and CO2), the density, and the x, y and z-momentum, are synthesized by
using the perfect solution from the forward model. The present MLEF-Chord system is considered as a “perfect model
scenario” by neglecting the forward model error. In addition, for the purpose of better assessing the MLEF performance,
free CFD runs (i.e., DA is not applied) are performed to compare with the DA-CFD results and truth.
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Q̂
free

Q̂
t

Q̂
DA

(a) The mass fraction of CH4.

Q̂
free

Q̂
t

Q̂
DA

(b) The magnitude of vorticity estimate.

Q̂
free

Q̂
t

Q̂
DA

(c) The mass fraction of CO2.

Fig. 8 The solution contour comparison after 5th DA cycle at the middle xy-plane.

The data assimilation performance is firstly assessed by comparing the solution of the model states between the
predictions and the truth. The results in Fig. 8 are taken from the DA cycle 5. In each of the subfigures, there are 3
columns, representing the free CFD run, the truth, and the analysis (DA-CFD) from left to right. As shown in Fig. 8a,
the mixing of species through convection is captured more sharply in the DA-CFD solution, which appears to have a
positive impact on the prediction of CH4 mass fraction. Furthermore, by comparing the resolutions of the vorticity
contours in Fig. 8b, the DA-CFD solution shows increased vorticity magnitude and less dispersion of vortices after 5 DA
cycles. When focusing on the vortex cores, the DA-CFD solution is not as dissipated as the free CFD run. Nevertheless,
the DA-CFD result is not appreciably improved. Partially, this may be due to the way comparing instantaneous data.
Perhaps, comparing some statistical mean data over a characteristic time and/or space region would be more reasonable.
Overall, this case demonstrates the interaction between the observed and unobserved quantities in the data assimilation
algorithm through the error covariance. Furthermore, this MLEF performance is verified by examining the trajectories
of the convergence history of the χ2 value. By tracking the χ2 value over the DA cycles and comparing with the free
CFD run in Fig. 9, we find that data assimilation is effective in uncertainty reduction because χ2 of DA-CFD is smaller
than that in the free CFD run, as expected. It demonstrates that the data assimilation is implemented properly.
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0 2 4 6
1

1.5

2

2.5

3

DA cycle

χ
2
va
lu
e

DA-CFD
Free-Run

Fig. 9 χ2 value over the DA cycles.

VI. Results
The MLEF-CFD is applied to the two-dimensional AFRL BBC problem. The computational domain size of the

combustor is Lx × Ly = 0.829m × 0.127m, with a 38.1mm equilateral triangle flame holder centered in the combustor,
as shown in Fig. 10. For the inflow condition on the left boundary, we apply an air inlet velocity of 14.9m/s and an inlet
temperature of 310K. The target condition for the total pressure on the right boundary is set to be 100 KPa. No-slip
and adiabatic conditions are applied to the top and bottom walls of the combustor as well as the wall of the bluff-body.
There are 24 blocks used inside the computational domain, where the minimum mesh size in a single block is 24 × 16
cells, and the maximum mesh size in a single block is 32 × 16 cells. The cells are refined near the walls. The stretching
ratio in x and y-direction is limited to be less than 10%. The total number of computational cells is 12,032 with the
minimal spatial resolution being 4 mm.

Fig. 10 Computational domain for the two-dimensional AFRL bluff-body combustor.

In this case, we assume all the conservative variables are with uncertainties. There are 19 members in the ensemble
created from the lagged-forecast method. The data assimilation frequency is 0.38 flow through time (TDA = 0.021
sec). As a reference, a unit flow through time is defined as the total amount of time that a particle travels from the inlet
boundary to the outlet boundary along the streamline, which is in form of

1 flow through time =
Lx

vinlet
= 0.05564 sec . (4)

The “observed” variables are the density, x and y-momentum inside the physical location region of 0 ≤ xloc ≤ 0.677m
and −0.635 ≤ yloc ≤ 0.635m. The observations are synthesized by using the “perfect” solution from the forward model

O = H
(
Q̂t

)
+ ®η , ®η ∈ N(0,R) , (5)

where, the observation errors along the diagonal term of R are set to be 5-8%. Three DA cycles are performed. In
addition, for the purpose of better assessing the MLEF performance, free CFD runs are also performed to compare with
the DA-CFD predictions and the truth.
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Q̂
f

Q̂
t

Q̂
a

Fig. 11 The ρ contour comparison after 1st DA cycle.

Q̂
f

Q̂
t

Q̂
a

Fig. 12 The ρu contour comparison after 1st DA cycle.

Q̂
f

Q̂
t

Q̂
a

Fig. 13 The ρv contour comparison after 1st DA cycle.
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The analysis results after the first DA cycle for the conservative variables, ρ, ρu, and ρv, are compared to the truth
and the forecast solutions in Figs. 11 – 13. In each of the figures, there are 3 rows, representing the forecast, truth, and
analysis from top to bottom, respectively. By comparing the contours, we clearly see that the DA-CFD predictions
are greatly pulled toward the observations after 1 DA cycle. Without using data assimilation, the velocity fluctuating
patterns are completely missed in the free CFD runs. This becomes remarkable in the solutions at the third DA cycle
as shown in Figs. 14 – 17. Specially, when comparing the resolutions of the ρu and ρv contours in Figs. 15 and
16, the downstream portion of the flow structures shown in the analysis contours are getting strongly corrected with
the observation information. The free CFD runs do not even produce the correct flow oscillating pattern behind the
bluff-body. In general, the analysis results demonstrate that the data assimilation is performed properly.

Q̂
free

Q̂
t

Q̂
DA

Fig. 14 The ρ contour comparison at 3rd DA cycle.

Q̂
free

Q̂
t

Q̂
DA

Fig. 15 The ρu contour comparison at 3rd DA cycle.
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Q̂
free

Q̂
t

Q̂
DA

Fig. 16 The ρv contour comparison at 3rd DA cycle.

Q̂
free

Q̂
t

Q̂
DA

Fig. 17 The energy contour comparison after 3rd DA cycle.

It is worth mentioning that we treat ρε as a non-observed variable in the DA-CFD system, and it is expected that the
observed data will impact its prediction positively. By comparing the resolutions of the energy contours in Fig. 17, we
see that the DA-CFD prediction captures the fluctuating pattern correctly while the free CFD run clearly does not. This
improvement is achieved through the coupled dynamics and the solution-dominant covariance between the uncertainties
generated in the DA-CFD system.
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(a) Error reduction in cost function.
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Free-Run

(b) The χ2 value.

Fig. 18 The total cost function error reduction and χ2 value.

Moreover, in Fig. 18, we examine the trajectories of the error reduction in the total cost function and χ2 value
for the quality assessment. The trajectory of the error reduction shown in Fig. 18a is clearly consistent with what we
have observed above. The overall impact of data assimilating is expected to be decreasing as the DA-CFD predictions
converge toward the observations more and more by the DA process. By comparing the χ2 values along the DA cycles in
Fig. 18b, the DA-CFD results are much smaller than the results without using data assimilation, which shows promising
uncertainty reduction in the DA-CFD system.

VII. Concluding Remarks and Future Work
Through this study, we have investigated the data assimilation impact on the predictability of flow dynamics structures

in a more realistic geometry using MLEF method. Artificial uncertainties are created for the initial conditions, leading
to erroneous CFD simulation. This erroneous CFD simulation is then corrected using manufactured observation. The
DA-CFD predictions are appreciably improved during the data assimilation process, which demonstrates that the MLEF
DA method is a promising tool to improve CFD modeling of complex fluid dynamics when there are data available.
Future work will focus on its application to three-dimensional turbulent flows using experimental data for assimilation.
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