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Abstract

We present a vast landscape of O3/O7 orientifolds that descends from the famous

set of complete intersection Calabi-Yau threefolds (CICY). We give distributions

of topological data relevant for phenomenology such as the orientifold-odd Hodge

numbers, the D3-tadpole, and multiplicities of O3 and O7-planes. Somewhat surpris-

ingly, almost all of these orientifolds have conifold singularities whose deformation

branches are projected out by the orientifolding. However, they can be resolved,

so most of the orientifolds actually descend from a much larger and possibly new

set of CY threefolds that can be reached from the CICYs via conifold transitions.

We observe an interesting class of N = 1 geometric transitions involving colliding

O-planes. Finally, as an application, we use our dataset to produce examples of

orientifolds that satisfy the topological requirements for the existence of ultra-light

throat axions (thraxions) as proposed in [1]. The database can be accessed here.
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1 Introduction and Conclusions

The landscape of flux vacua in the type IIB corner of critical string theory [2] is a fruitful

arena for model building and for addressing fundamental issues such as moduli stabilization,

and the existence of de Sitter vacua in string theory. The landscape is believed to be

vast [3–5], giving rise to a plethora of low energy effective field theories (EFT). While their

spectrum and Wilson coefficients are expected to vary seemingly randomly along the bulk

of the landscape it has been conjectured that the landscape populates only small islands

within a (much) larger space of EFTs that are not realized in string theory, known as the

swampland [6, 7]. Clearly, by charting out the boundary of the landscape one hopes to

understand how string theory constrains the set of low energy observables. A somewhat

more modest and related goal is to understand how well distinct field theory sectors can

be decoupled from one-another at the level of non-renormalizable operators, and how weak

their (renormalizable) self-interactions can be tuned. Due to the Dine-Seiberg problem [8]

this is related to how far the landscape extends away from its bulk.1

This motivates us to study on a grand scale the CY orientifolds of O3/O7 type which are

a basic starting point for constructing phenomenologically interesting vacua: Consider a

choice of Calabi-Yau (CY) threefold X together with a holomorphic involution I : X → X

that acts as (−1) on the holomorphic threeform Ω of X. This data determines a type IIB

O3/O7 orientifold with O3 and O7 planes residing at the connected components of the

geometric fixed point locus F of I in X of co-dimension three and one respectively (see

e.g. [12]). The Ramond-Ramond (RR) tadpoles induced by the O-planes can be canceled by

introducing appropriate configurations of D7 branes with or without world-volume fluxes,

bulk three-form fluxes, and/or mobile D3 branes. This generates 4d N = 1 low energy

effective supergravity theories featuring perturbative no-scale vacua with spontaneously

broken supersymmetry, non-abelian gauge theories, chiral sectors etc (see e.g. [13, 14]).

An important subset of the data determining these effective field theories is given by

simple topological data of X and its involution I. For example, the dimensions of the

orientifold even/odd cohomology groups H2,1
− , H1,1

+ , H2,1
+ , H1,1

− determine the number of

complex structure moduli, Kähler moduli, closed string U(1) vector multiplets, and axionic

chiral multiplets respectively. For simplistic choices of D7 brane configurations, the number

of connected components of F of co-dimension one sets the number of non-abelian gauge

1Examples of decoupling parameters include the magnitude of the flux superpotential in KKLT [9],
and backreaction radii of branes in comparison to the overall volume of the CY (see e.g. [10, 11] in the
same context).
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sectors with gauge algebra so(8), and the Euler characteristic of F restricts the freedom

to choose world volume and bulk three-form fluxes.

In this article, we construct a database of 2,004,513 such orientifolds, and compute a

number of topological invariants that can be used as input data for phenomenological model

building. These include the D3-tadpole, the dimensions of the orientifold-odd cohomology

groups, the number of O3 and O7 planes, and topological data of O7-divisors. The starting

point is the classic database of complete intersection CY (CICY) threefolds, as constructed

by Candelas et al [15]. We make use of their most tractable2 descriptions, obtained by

Anderson et al in [16], either as a complete intersection of hypersurfaces in certain products

of projective spaces (henceforth favourable CICYs), or del Pezzo surfaces or rational elliptic

surfaces (henceforth non-favourable CICYs). The database is constructed by finding all

ambient space involutions, and all Z2-invariant deformation classes of CICY embeddings.

For the non-favourable cases, we incorporate the involutions of del-Pezzo surfaces and

rational elliptic surfaces found by Blumenhagen et al [17] and Donagi et al [18] respectively.

Most of the orientifolds we produce are singular at co-dimension three, with a number

of conifold singularities residing on the O7 planes which cannot be deformed in a way

that would be compatible with the orientifold projection. However, all of these have a

number of distinct resolution branches that are orientifold preserving, so to each singular

orientifold there belongs a number of different geometric phases related to each other via

flop transitions. Across such transition loci, the number of O3 planes as well as the topology

of O7 divisors jumps, in a way that preserves the D3 charge.3 Thus, the number of distinct

smooth geometric phases is actually much larger than the quoted ∼ 2× 106.

Since the resolution phases are not contained in the CICY database, we produce, as a

byproduct, many CY threefolds that are connected to the CICY database via a number of

conifold transitions, but are themselves not contained in the original CICY database. It

would be interesting to understand how many of these are already contained in other lists

of CYs such as the Kreuzer-Skarke database [20], and how many are new.

We present two applications of our database. First, in section 2, we display the distri-

butions of topological data that we have obtained, comment on some of their statistical

properties, display the boundary of our CICY-orientifold landscape and speculate about

what features we expect to generalize beyond the CICY-orientifold landscape. Second, in

2The descriptions are useful because the divisor classes of the CY threefold are simply inherited by the
ones of the ambient space. Only about half of the descriptions in the original database [15] of Candelas et
al have this property.

3Similar transitions across which an O7 plane eats O3 planes have previously been described in the
literature [19].
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section 4, we use our database to find many orientifolds that satisfy all topological require-

ments known to us to realize models of ultralight throat axions, as proposed in [1,21]. We

expect these to be an ideal framework for testing and challenging swampland conjectures

such as the weak gravity conjecture [22] (WGC) and the swampland distance conjecture [7]

(SDC).

This paper is organized as follows. In section 2 we discuss the distributions of topo-

logical data that we have obtained and use this to speculate about the boundary between

the landscape and the swampland. The bulk of our paper is section 3 where we explain

how the database is constructed. In section 4 we show how to find examples with throat

axions.

2 Results

In this section we display interesting features of the distributions we have obtained. First,

let us explain what topological properties we have computed for each orientifold, and why:

(a) The orientifold-odd Hodge number h1,1
− : This determines the number of perturba-

tively massless axionic chiral multiplets Gi ≡
∫

Σi
2
C2− τB2 [23]. Here, C2 and B2 are

the two-form potentials of the ten-dimensional type IIB supergravity theory, and Σi
2

are the orientifold-odd two-cycles. These axions are promising inflaton-candidates in

models of axion-monodromy [24] such as [1, 25]. A histogram is shown in figure 1.

The fraction of orientifolds with h1,1
− > 0 is about 17%.4

(b) The orientifold-odd Hodge number h2,1
− : This computes the number of bulk complex

structure moduli that remain after the orientifold projection. These have to be

stabilized by three-form fluxes [2]. See figure 1 for a histogram.

(c) The Euler characteristic of the CY threefold χCY = 2(h1,1− h2,1). For orientifolds of

smooth CICYs, the Euler characteristic [15] and even the tuple (h1,1, h2,1) of the un-

derlying CY threefold is well-known [29]. However, as mentioned in the introduction,

most of the orientifolds that we determine are involutions of singular CICYs with

singularities that can be resolved in ways compatible with the orientifold projection.

The smooth threefold thus obtained has an Euler characteristic different from the one

of the CICY. Given (a) and (b) this also determines h1,1
+ −h

2,1
+ , while the computation

4See also [27,28] for results on orientifolds with h1,1− 6= 0 in the Kreuzer-Skarke database [20].
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Figure 1: Histogram showing the number of orientifolds with given h1,1
− (left) and h2,1

−

(right) on a logarithmic scale. Black dashed curve: Fit with #(hi,1− ) ∝ (hi,1− )pi/(bi+ eci h
i,1
− ),

p1 = 0. Red curve: Fit with #(hi,1− ) ∝ (hi,1− )pi/(bi + eci
√
hi,1− ), p1 = 0. The latter fit results

in parameter estimates (b1, c1) ≈ (71, 5.8) and (b2, c2, p2) ≈ (5.9× 10−5, 3.9, 3.1). It is clear
that the distributions of hi,1− have a tail heavier than exponential fall-off (compare e.g. [26]).

of the tuple (h1,1
+ , h2,1

+ ) is left for future work. The distribution of χCY is shown in

figure 2.

(d) The set of distinct O-planes: The O7 planes contribute a D7-tadpole that can be

canceled by introducing D7-branes. Stacks of seven-branes host non-abelian gauge

groups, with charged matter living on intersection curves, and chiral index set by

world volume fluxes, relevant for particle Physics model building (see e.g. [30]). Fur-

thermore, N = 1 pure Yang-Mills (YM) sectors confine and generate scalar potentials

for Kähler moduli. For each O7 plane, we compute the Euler characteristic of the

wrapped divisor χD, and its degree dD ≡
∫
D
c1(D)2. These determine the induced D3

charge dissolved in the 7-branes, and the arithmetic genus χ(D,OD). Divisors with

χ(D,OD) = 1 may generate non-perturbative superpotential terms, via euclidean D3

brane instantons, or the above mentioned strong gauge dynamics [31]. In figure 3

we display the distributions of the number O7 planes and the minimal and maximal

number of O3 planes.5

(e) The D3-tadpole: The total D3 charge of O3 planes and induced charge on seven-

5As explained in section 3.4, for each singular CICY there are many resolution branches which differ
from each other by the number of extra O3 planes that reside on the exceptional curves. The minimal
number of O3 planes corresponds to a resolution branch that produces no extra O3 planes, while the
maximal number of O3 planes corresponds to a resolution branch with the maximal number of extra O3
planes equal to the number of resolved conifolds.
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Figure 2: Histogram showing the number of orientifolds with given Euler characteristic χ
(of the CY threefold) with bin width 5. The most negative value occurs for the quintic with
χ = −200. Given that χ’s of both signs appear it is tempting to speculate that our list
of CYs contains pairs related by mirror symmetry. The mean is shifted to positive values,
because we reach smooth CYs by going through conifold transitions from the deformed to
the resolved side, strictly increasing χ.

Figure 3: Histograms showing on a logarithmic scale the number of orientifolds producing
a given number of O7 planes nO7 and O3 planes nO3. Left: The minimal number of O3
planes from resolution branches that do not produce extra O3 planes. Right: The maximal
number of O3 planes from the resolution branches that produce one extra O3 plane per
conifold singularity.
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Figure 4: Left: Histogram showing the number of orientifolds with given D3-tadpole
−QD3

SO(8) = χf/4 for local D7-charge cancellation. The tadpole takes even values in [−4, 36].
Right: D3-tadpole for a small set of examples with non-local tadpole cancellation by a
generic D7-brane. We have restricted ourselves to the subset of smooth CICYs where the
O7 divisor obviously descends from an ambient space divisor. The tadpole takes even
values in a significantly larger range [12, 132].

branes is generically negative and can be canceled via the introduction of three-form

fluxes. The larger the tadpole (which we define as minus the induced D3 charge on

O3-planes and 7-branes) the more freedom there is in choosing different three-form

fluxes. For all orientifolds, we compute this number for configurations with four D7

branes on top of each O7-plane. We compute the generically much larger D3 tadpole

for a generic D7-brane configuration for a subset of the orientifolds of smooth CICYs

(see figure 4).

Our results indicate strong correlations between the topological quantities that we have

computed. More so, our CICY-landscape clearly populates regions in the total parameter

space that have pronounced boundaries that cannot be explained by the mere finiteness

of our sample size. Two more such structures are visible in figure 5, where we display 3D

histograms showing the number of orientifolds for each value of (QD3
SO(8), χ) and for each

value of (h2,1
− , χ). The steep cliffs delineate clear islands embedded in otherwise empty

regions. It is tempting to speculate that some of these boundaries in fact mark the end

of the landscape and the beginning of the swampland. Clearly, it would be interesting to

verify or refute this by finding orientifolds in other CY-datasets such as the Kreuzer-Skarke

list [20].
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Figure 5: Histograms showing on a logarithmic scale the number of orientifolds. Left:
Count for each value of (QD3

SO(8), χ). Right: Count for each value of (h2,1
− , χ). The steep

cliffs carve out clear islands embedded in large otherwise empty regions.

3 O3/O7 orientifolds of CICYs

3.1 Defining a CICY involution

We enumerate possible Z2 actions on complete intersection Calabi-Yau (CICY) manifolds

which have a fixed point locus with connected components of complex co-dimension one

or three. The CICY manifolds of Candelas et al [15] arise as the common vanishing locus

of a set of K homogeneous polynomials in an ambient space formed by a product of r

projective spaces Pn1 × · · · × Pnr . The (non-unique) starting point for each such manifold

is the configuration matrix 
Pn1

(1) m1
1 · · · mK

1
...

...
...

Pnr

(r) m1
r · · · mK

r

 , (3.1)

where the entry mi
j denotes the weight of the i-th polynomial under the scaling of the

j-th Pnj

(j). In order for the resulting manifold to be a complex threefold we need that∑r
j=1 nj = K + 3 and in order for its first Chern class to be zero we also need to impose

that
∑K

i=1m
i
j = nj + 1. As the latter requirement determines the nj, given the mi

j, the

first column of the configuration matrix is often omitted.

We restrict ourselves to geometric involutions of the CICY manifolds that can be ex-

tended to involutions of the ambient space. While our aim is to exhaust all such involutions
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we cannot exclude the possibility that other CY involutions exist that cannot be extended

to the ambient space.

Up to linear equivalence, an involution of a Pn1 × · · · × Pnr ambient space acts as a

combination of involutions of individual Pn factors [32]

Inp : Pn −→ Pn , [x0 : ... : xn] 7−→ [−x0 : ... : −xp−1 : xp : ... : xn] , (3.2)

with fixed locus the disjoint union

Fnp ∪̇Fnn−p+1 ≡ {x0 = ... = xp−1 = 0}∪̇{xp = ... = xn = 0} , (3.3)

and swaps of two Pn factors

Sn : Pn × Pn −→ Pn × Pn , (x, y) 7−→ (y, x) , (3.4)

with fixed point locus the diagonal Pn. Clearly, Inp gives rise to the same Z2 action as Inn−p+1

because Inp = −Inn−p+1 as matrices acting on the projective coordinates, and In0 ∼ Inn+1

is the trivial involution. Near the locus Fnp we may use x0, ..., xp−1 as local transverse

coordinates that are inverted by Inp while near Fnn−p+1 it we may use xp, ..., xn as local

coordinates that are inverted by Inn−p+1. In particular, a section of some line bundle may

be Z2 symmetric in a local frame around the first fixed point locus and anti-symmetric in

another local frame around the second fixed locus.

We encode the ambient space involution into a pair
(
~I, ~S

)
, with vectors ~I = (p1, ..., pr)

T '∏
i Ini

pi
, and ~S = ((i1, j1), ...)T indicating the swaps ((P

ni1

(i1) ↔ P
nj1

(j1)), ...). Without loss of

generality we may assume that the involutions Ip and the swaps S act on distinct Pn fac-

tors. The Z2 generator g =
∏

a Iapa
∏

i Sni has an action on the set of polynomials ~f via

some matrix representation Rf (g), i.e.

g : ~f 7−→ Rf (g)~f , (3.5)

where Rf (g) is again defined up to exchanging Inp with Inn−p+1. As the action of an invo-

lution does not change the scaling weight of a polynomial, we may rotate the polynomials

into each other so that Rf (g) is block-diagonal with a number of two-dimensional blocks

σ1 =

(
0 1

1 0

)
that exchange polynomials of different scaling weights6 and otherwise diag-

6If they are the same, we may rotate them into each other in a way that diagonalizes σ1 −→ diag(1,−1).
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onal entries ±1. The σ1 blocks correspond to swaps of columns ~Sc = ((m1, n1), ...) and the

combined swaps of rows and columns must leave the configuration matrix invariant. This

is necessary for the ambient space involution to map the CY threefold to itself (but not

point-wise). Given an ambient space involution we encode the transformation properties

of the polynomials in a pair ( ~Sc, ~P) where the parity vector ~P contains entries +1 for each

polynomial that is either swapped with another one or mapped to itself, and entries −1

for each polynomial that is mapped to minus itself. A candidate orientifold of a CICY is

thus encoded in the quadruple (~I, ~S, ~Sc, ~P).

As an example, consider the ambient space involution of P1 0 0 2

P1 0 2 0

P4 1 2 2

 , (3.6)

that swaps the two P1 factors, and inverts two projective coordinates of P4. The complex

structure moduli are assumed to be adjusted so that the second and third two polynomials

are exchanged under the ambient space involution, and the first is mapped to minus itself.

This is encoded in ~I = (0, 0, 2)T , ~S = ((1, 2))T , ~Sc = ((2, 3))T and ~P = (+1,+1,−1)T .

The number of swapped Pn factors is equal to h1,1
− of the ambient space. We restrict

ourselves to configuration matrices that have the property that all the CY divisors descend

from ambient space divisors. We follow [16] in calling such embeddings favourable.7 This

allows us to simply deduce the induced Z2 action on the divisor classes of the CY from

that of the ambient space. For this purpose it is very useful that in ref. [16] the original

database of ref. [15] has been manipulated to bring all but 70 of the 7890 configuration

matrices to a favourable form via ineffective splittings, and furthermore giving a useful

alternative description of the remaining 70 cases. The latter will be dealt with separately

in section 3.7.

From eq. (3.3) it follows that the ambient space fixed locus contains 2NI disjoint com-

ponents of different dimension, where NI denotes the number of non-trivial Pn involutions

contained in the ambient space involution. We will tabulate a given ambient space fixed

locus by a vector ~q of length NI containing 1’s and 2’s that indicate which of the two fixed

loci in each involuted Pn factor is to be chosen. For a given ambient space involution and

7For favourable embeddings, the CY Kähler cone contains the one inherited from the ambient space,
but it can have additional generators. If the two cones are equivalent, the embedding is called Kähler-
favourable.
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action on the polynomial vector, for each connected component F0 of the ambient space

fixed locus we may always gauge fix the redundancy Inp ' Inn−p+1 to find a tuple ( ~I0, ~P0)

such that ~q = ~1 corresponds to F0. We will denote this choice of gauge as the frame adapted

to F0. In such a frame, the coordinates transverse to F0 are inverted, while the action

on the projective coordinates that parameterize F0 is trivial. Given a frame adapted to a

fixed locus F , we call F the canonical fixed locus.

A connected component of the ambient space fixed locus of some given co-dimension

l generically descends to a CY fixed locus of co-dimension l − k− ≥ 0 where k− is the

dimension of the (−1) eigenspace of the matrix Rf (g), in a frame adapted to the fixed

point locus in question. If l − k− < 0 it does not intersect the CY. k− is given by the

number of −1’s in the parity vector ~P plus the number of pairs of swapped polynomials in
~Sc. This is because the Z2-odd combinations of polynomials will vanish identically on the

ambient space fixed locus.8 Thus, their intersection with the CY is determined by k− fewer

constraints than one would naively expect. For a consistent O3/O7 orientifold we need

that each connected component of the ambient space fixed locus descends to a sub-variety

of the CY of co-dimension one or three, or completely misses the CY locus.

3.2 Singularities at co-dimension one

In this paper we will not consider CY three-folds at a locus in their moduli space where

they develop singularities of co-dimension one. However, many ambient space involutions

whose ambient space fixed point locus intersects the CY at co-dimension one and three

feature such singularities. They may arise as follows. Consider a frame adapted to an

ambient space fixed locus F0 of co-dimension l that intersects the CY at co-dimension

one. Then, p ≡ l − 1 polynomials are anti-symmetric around F0. If any subset of I ≤ p

anti-symmetric polynomials f i− depends non-trivially on I ′ ≤ I of the normal coordinates,

we can write

f i− =
I′∑
a=1

ciax
a
⊥ , i = 1, ..., I . (3.7)

If I ′ ≤ I the solution set has a component given by setting xa⊥ = 0 that descends to a variety

of dimension three or bigger once intersected with the symmetric polynomials. Such vari-

eties either have components of dimension bigger than three, or contain multiple reducible

8Locally, around the fixed locus, we can combine any pair of swapped polynomials f ↔ g into a Z2-even
function f + g and an odd one f − g although these combinations do not make sense globally when f and
g are sections of different line bundles.
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components of dimension three that generically intersect each other at co-dimension one.

Thus, in order to avoid singularities of co-dimension one we should require that each set of I

anti-symmetric polynomials depends non-trivially an at least I ′+1 transverse coordinates.

With a näıve brute-force scan over all subsets of anti-symmetric polynomials we would

not be able to complete the orientifold-scan as the computation time grows too quickly

with h1,1. We note, however, that solving this problem can be mapped to the following

different problem: We may define a matrix Aαi where each column corresponds to one of

the p anti-symmetric polynomials and each row corresponds to one of the l ≡ p+ 1 normal

coordinates. We set Aαi = 1 if the i-th anti-symmetric polynomial depends non-trivially

on the α’th normal coordinate, and zero otherwise. If it is possible to find a vanishing

sub-matrix of dimension I ′′ × I with at least one column, i.e. I ≥ 1, and I + I ′′ ≥ l, then

the set of I polynomials depends non-trivially on I ′ ≡ l− I ′′ ≤ I coordinates. In this case,

according to what we have said above, there are singularities of co-dimension one. Here is

an example: Consider the CICY with number 7734, given by the configuration matrix P1 2 0 0 0

P3 1 1 1 1

P3 0 2 1 1

 , (3.8)

and an orientifold specified by the involution I = (1, 0, 2)T , no row or column swaps,

and parity P = (1,−1, 1,−1). We consider its canonical fixed locus. There are two anti-

symmetric polynomials, and three normal coordinates (one normal to the point x0 = 0 in

P1, and two normal to P1 ⊂ P3). The dependence of the two anti-symmetric polynomials

on these normal coordinates is encoded in the matrix

A =

0 0

1 1

1 1

 . (3.9)

Clearly, there is a vanishing sub-matrix of dimension (1, 2), so 3 = I+I ′′ ≥ l = 3. Thus, the

two anti-symmetric polynomials depend non-trivially only on two transverse coordinates

and there are co-dimension one singularities in this Z2-symmetric CY. For this example,

this is obvious, but an efficient search for null-submatrices in larger matrices is not as

straightforward.

We solve this problem as follows: To A we can associate a graph Γ as follows. There are

p + l vertices, one for each row and one for each column. We connect with an undirected
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edge each pair of rows and each pair of columns, and connect each pair of row and column

if and only if the corresponding matrix element vanishes. In our example, this produces

the following graph,

Γ =

 

, (3.10)

where blue vertices correspond to rows and red vertices correspond to columns. The middle

vertex correspond to the first row and is thus connected by undirected edges to both column

vertices.

Finding the largest possible vanishing submatrix (with size defined as I + I ′′) corre-

sponds to finding the largest clique Γc (i.e. complete subgraph) that contains at least one

of the column vertices. In our example this is given by the maximal clique,

Γc =

 

, (3.11)

with clique number equal to 3.

The maximal clique problem is non-trivial in general (see e.g. [33]), though easily imple-

mented in Mathematica. This step of the computation dominates the overall computational

cost at large h1,1.

3.3 Singularities at co-dimension three

Having avoided singularities at co-dimension one, most Z2 symmetric CYs still contain

singularities of co-dimension three, generically conifold singularities, that cannot be de-

formed in a Z2 preserving way, but instead can be resolved.9 These singularities always

reside on top of O7 planes which wrap divisor classes that have no correspondent in the

deformed CY, but instead correspond to the new divisor classes that arise upon resolving

the conifolds (we will call them resolution divisors). As the orientifold projection elim-

inates the deformation (Coulomb) branch in complex structure moduli space, we denote

these singularities frozen conifold singularities.

The generic appearance of this phenomenon is seen as follows.10 We consider a com-

9We thank Fabian Rühle for a comment that led us to drop the requirement that the orientifolds are
smooth as orientifolds of the original CICY manifolds.

10For the basics of applied algebraic geometry, see e.g. the introductory chapters of [34].
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ponent F of the ambient space fixed locus of co-dimension l. In order for this to descend

to a divisor inside the CY the dimension of the Z2-odd eigenspace of Rf (g) must be l− 1.

Then, the intersection of F with the divisors D+
i associated with the Z2 symmetric poly-

nomials is a surface B, but its divisor class need not descend from an ambient space divisor

class, unless of course l = 1. For now, let us assume for simplicity that the anti-symmetric

polynomials fk− all take values in the same divisor line bundle O(E). Then, the pull back of

their differentials to the fixed locus Fl take values in the co-normal bundle N∗F tensored

with O(E) because the dependence on the local coordinates of the fixed locus F dies out

near F . The system of differentials of the l − 1 anti-symmetric sections degenerates at a

co-dimension two locus along F that is Poincaré dual to the Chern class c2(N∗F ⊗O(E)).

Thus, the number of conifold singularities along the CY divisor is given by

nBcf =

∫
B
c2(N∗F ⊗O(E)) . (3.12)

This is straightforward to evaluate because

NF =
⊕
Inp

OPn(1)p ⊕
⊕
Sm

OPm
d

(1)m+1

C∗
, (3.13)

where the first factor comes because the fixed locus of an involution is given by fixing

p projective coordinates and the second comes about because the normal bundle of the

diagonal Pnd is the same as its tangent bundle, and the latter is isomorphic to OPn
d
(1)n+1/C∗

as is seen from the Euler sequence. Furthermore, using ch(E⊗F ) = ch(E)ch(F ), one shows

that

c2(N∗F ⊗O(E)) = c2(NF)− (l − 1)E · c1(NF) +
l(l − 1)

2
E2 . (3.14)

This needs to be generalized to the case where the antisymmetric polynomials are actually

sections of l − 1 distinct line bundles O(Ei). The appropriate generalization of eq. (3.12)

is

nBcf =

∫
B

{
c2(NF)−

l−1∑
i

Ei · c1(NF) +
l−1∑
i≤j

Ei · Ej

}
. (3.15)

A configuration matrix description for the fixed divisor B is easily determined (and can be

found here):

(a) For each involution Inp one replaces Pn −→ Pn−p in the configuration matrix.

(b) For each Pn swap one sums up the two corresponding rows.
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(c) All columns associated with anti-symmetric polynomials are omitted.

(d) For each pair of swapped columns, either one of the two is omitted.

The divisor line bundles O(Ei) are those associated with the omitted columns.11 This de-

scription also allows one to compute the triple intersection numbers between the resolution

divisors wrapped by O7 planes and the bulk ones, by intersecting with the appropriate

ambient space divisor classes. The triple intersection numbers that involve two or three

resolution divisors wrapped by distinct O7 planes vanish identically, because the fixed locus

of eq. (3.3) is a disjoint union. In general there can be further resolution divisors that are

not wrapped by O7 planes. We leave the computation of the triple intersection numbers

that involve these, as well as the dimension of the resolution branch for future work.12

Knowing the dimension of the resolution branch would allow one to determine the pair

(h2,1
+ , h1,1

+ ), i.e. the number of vector multiplets and Kähler moduli for each orientifold.

Let us explain why the frozen conifold singularities can always be resolved in a way

that maintains the CY condition, producing an O3/O7 orientifold of a different smooth

CY threefold. Before applying the orientifold projection, in the local non-compact conifold

geometry it is always possible to deform or resolve the singularity [35]. Globally, however,

there is generically an obstruction against the resolution in the form of a D-term potential

for Strominger’s hypermultiplets [36, 37]. It admits a flat resolution (Higgs) branch if and

only if at the singular locus in moduli space a collection of at least two three-cycles {Ai}
has shrunken that satisfy at least a single homology relation

∑
i[Ai] = 0, i.e. there exists

a four-chain Σ̃4 s.t.
∑

iAi = ∂Σ̃4 [37]. Upon resolving, this four-chain turns into a divisor

that intersects the exceptional P1 transversally. Now consider one of the O7 divisors of our

setting that passes through at least one conifold singularity. Locally, around one of the

singularities it looks precisely like the resolution divisor Σ4 (for details see the discussion in

the next section 3.4), so upon deforming it turns into a four-chain with boundary containing

the deformed three-sphere A at the tip of the conifold. If the boundary of this four-chain

were to contain only this single connected component A, we could compute its volume

by integrating the holomorphic threeform Ω, i.e. Vol(A) ∼ |
∫
A

Ω| = |
∫

Σ̃4
dΩ|, which

vanishes because Ω is closed, in contradiction to our assumption that we had deformed the

singularity. Therefore, there must exist a set of at least two shrunken three-spheres that

11Note that the anti-symmetric part of a pair of swapped polynomials makes sense only locally near
the fixed divisors. They make sense as sections of line bundles on B associated with either of the swapped
columns, which cannot be obtained as pullbacks of ambient space line bundles.

12Its dimension is of course bounded from below by the number of O7 planes containing conifold
singularities.
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form the boundary of the four-chain Σ̃4 and so a resolution is possible, as claimed. As

argued in the next section, the orientifolding does not project out the resolution branch.

3.4 Conifolds on O7 planes & their resolution branches

We have stated that many O3/O7 orientifolds contain O7 planes that pass through conifold

singularities in the singular CY threefold that can be resolved, but not deformed. Here we

would describe the local description of the orientifold in the conifold geometry. Locally,

we may write the deformed conifold as the locus [35]

detZ = 0 , Z ≡

(
x u

v y

)
= ε , (x, y, u, v) ∈ C4 , (3.16)

where ε is the deformation parameter. Consider now the involution

x −→ −x , v −→ −v . (3.17)

In order for this to be a symmetry of the conifold, we have to take the singular limit ε −→ 0.

Only then, the defining eq. (3.16) transforms homogeneously under the Z2 action, and the

deformation of the conifold is projected out by the orientifold. We are left with an O7 plane

residing on the locus x = v = 0 that passes through the singular point x = y = u = v = 0.

Although it contains the conifold singularity, it wraps a smooth surface C2 ⊂ C4. In other

words, at the singular point, the tangent bundle to the fixed surface inside the CY threefold

is regular, while the normal bundle of its embedding into the conifold degenerates.

The symmetry group of the singular conifold is SU(2) × SU(2) × U(1)R and a group

element (L,R, eiφ) acts as

Z −→ eiφLZR† , (3.18)

on the conifold coordinates. The geometric involution corresponds to the group element

(1,−iσ3, e
iπ/2), and the deformation modulus is projected out by the orientifolding due to

its R-charge r = 2, i.e. it has a spurious Z2 transformation ε 7−→ −ε.
Locally, there are two ways to resolve the conifold with an exceptional P1 by replacing

the defining equation (3.16) either by

A : Z ·

(
α

β

)
= 0 , or B : ZT ·

(
α

β

)
= 0 , [α, β] ∈ P1 , (3.19)
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which we will refer to as the A-type and B-type resolution respectively. Locally, and before

orientifolding, these two resolution look the same and are related by a flop transition (see

e.g. Example 7.6.4 of [34]).

The would-be singular point Z = 0 is replaced by an exceptional P1 parameterized by

the two projective coordinates [α, β]. For the A-type resolution, the resolved conifold is Z2

invariant if the P1 coordinates transform as

[α, β] 7−→ [−α, β] = [α,−β] . (3.20)

Thus, on the P1, there are now two fixed points [1, 0] and [0, 1]. The former is a point on

the fixed divisor ∼ C2, while the latter is an isolated fixed point. Thus, upon resolving

the conifold, we are left with an O7 plane wrapping C2, transversally intersecting the

exceptional P1, and a disjoint O3 plane. Thus, one may think of the singular orientifold

of the conifold as containing an O3 plane collapsed onto an O7 plane. For the B-type

resolution, the P1 coordinates are left invariant by the Z2 action, and the fixed locus is

given by

x = v = αu+ βy = 0 , (3.21)

which is C2 parameterized by (u, y), blown up at the origin. In a compact setting, C2

would be replaced by the surface B as described in the previous section, so the O7 wraps a

surface B̃ defined as B blown up at ncfB points. Its Euler characteristic is χ(B̃) = χ(B)+ncfB .

The A-type and B-type resolutions are related by a flop transition, under which an SO(8)

seven-brane stack eats up an O3 plane, while changing its topology in a way that preserves

the D3 tadpole. This is similar to a transition through orbifold singularities described

in [19].

Finally, on both resolution branches, we have an N = 2 hypermultiplet with bosonic

components furnished by the resolution modulus, B2 and C2 integrated over the exceptional

P1, and C4 integrated over the divisor transversally intersecting the exceptional P1. Away

from the tip of the resolved conifold B2 and C2 are proportional to the harmonic two-form

of T 1,1 while C4 is proportional to dr ∧ ω3 where r is the radial coordinate and ω3 is the

harmonic three-form of T 1,1. As these forms are invariant under the global symmetry group

of the conifold, the geometric Z2 action leaves them invariant as well. Since C2 and B2

are intrinsically odd under the orientifold action, the associated axions are projected out,

and we are left with an N = 1 chiral multiplet formed by the resolution modulus and the

C4 axion contributing to the orientifold even Hodge number h1,1
+ . As the orientifold-odd
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Hodge number h1,1
− does not receive contributions from the resolution moduli, we may infer

it from geometrical data of the deformed side CY.

3.5 The algorithm

Having laid out the prerequisites, we now explain how precisely we enumerate the set

of orientifolds. The Mathematica notebook used to execute the algorithm that we now

describe can be found here.

(a) First, we exhaust all possible choices of pairs of swaps of rows ~S and swaps of columns
~Sc whose combined action leaves the configuration matrix invariant.

(b) Next, we exhaust all choices of distinct involutions ~I that do not act on Pn factors

that are swapped.

(c) Then, we exhaust all choices of distinct parity vectors ~P .

(d) Finally, we remove the cases with co-dimension one singularities.

(a) can be done using brute-force methods. (b) is trivial as well: For each Pn factor

that is not exchanged with any other Pn factor, one simply goes through the involutions

(In1 , ..., In[n+1
2 ]

). The upper bound on the number of inverted coordinates can be seen as a

gauge fixing constraint for the Z2 gauge equivalences Inp ∼ Inn−p+1. This fixes the gauge

except for Pn factors with n odd, and involutions Inn+1
2

which are mapped to themselves

under the Z2 actions. These will be referred to as self-dual rows and will be relevant in

what follows. (c) is done by listing all combinations of ± entries in P subject to two gauge

fixing constraints: First, the polynomials that are swapped can be chosen even without loss

of generality. Second, for every self-dual row there remains an unfixed Z2 gauge symmetry

that exchanges the involutions

{[x0, ..., xn] 7→ [x0, ..., xn+1
2
,−xn+1

2
+1, ...,−xn]}

↔ {[x0, ..., xn] 7→ [−x0, ...,−xn+1
2
, xn+1

2
+1, ..., xn]} , (3.22)

18



and the polynomials transform with charge equal to the corresponding configuration matrix

entry modulo 2. As an example, consider the CICY 7701,
P1 1 1 0 0

P1 1 0 1 0

P1 1 0 0 1

P1 2 0 0 0

P3 1 1 1 1

 , (3.23)

and orientifold involution with I = (1, 1, 1, 0, 2), and no row and column swaps. The first

three rows and the last one are self-dual, so we produce a charge matrix
1 1 0 0

1 0 1 0

1 0 0 1

1 1 1 1

 , (3.24)

where each row corresponds to an unfixed Z2 gauge symmetry, and each column collects

the Z2-charges of one of the four polynomials.

In general, one finds a gauge fixing constraint that fixes a maximal set of Z2-redundancies

by taking the charge matrix, reducing modulo two, applying row-reduction over Z2, and

fixing the polynomials associated with the first non-vanishing entry in each row to be

positive. In the above example we get
1 1 0 0

1 0 1 0

1 0 0 1

1 1 1 1

 row reduction−→


1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 0

 . (3.25)

Thus we gauge fix P = (+1,+1,+1,±1).

Finally, (d) is solved by the graph theory exercise described in 3.2. Before we proceed,

let us comment on the data that we extract for each orientifold:

• The splitting h1,1 −→ (h1,1
+ , h1,1

− ). As we are considering favourable CICY descrip-

tions, and the conifold resolution cycles do not contribute to h1,1
− , the value of h1,1

− of

the CICY coincides with the one of the ambient space. This, in turn, is given by the

number of pairs of Pn factors that are swapped. As we do not know the dimension

19



of the resolution branch, we cannot determine h1,1
+ from this information alone.

• The splitting h2,1 −→ (h2,1
+ , h2,1

− ). We use the Lefschetz fixed point theorem to com-

pute h2,1
− in terms of h1,1

− ,

h2,1
− = h1,1

− +
χf − χCY

4
− 1 . (3.26)

From this, and knowledge of the CY Euler characteristic, the value of h1,1
+ − h2,1

+

follows, but without extra input we do not know how to compute h1,1
+ and h2,1

+

separately. The Euler characteristic of the fixed point set χf is the sum of the Euler

characteristics of the fixed divisors and the number of O3 planes. As explained in

sections 3.3 and 3.4, the Euler characteristics that we use are those of the resolution

branches of the conifold singularities. For each fixed divisor B it is given by

χB = χ0
B + ncfB , (3.27)

where χ0
B is the Euler characteristic computed by ignoring contributions from the

conifold singularities, and ncfD is the number of conifold singularities that reside on

the divisor. Depending on which resolution branch is chosen, the latter contribution

is attributed either to points blown up on B, or additional isolated fixed points hosting

O3 planes. χCY is obtained by adding twice the number of conifold singularities to

the Euler characteristic of the CICY we start with [38]. As a consistency check we

have computed the resulting value of h2,1
− also by counting monomials in examples

where this method can be applied (see e.g. Appendix B). The results match.

• For each orientifold, we compute the induced D3 brane charge on the seven branes

in a configuration where 4 D7 branes sit on top of the fixed point locus, i.e. the O7

plane, thus canceling the D7 tadpole locally. It is given by

−QD3
SO(8) =

1

4
χf , (3.28)

as follows from a straightforward expansion of the α′ corrected CS action of D7

branes and O7 planes, and the fact that each O3 plane carries −1
4

units of D3 charge.

This is the simplest in that the monodromy transformations around seven-brane

stacks are in the center of Sl(2,Z), such that the axio-dilaton does not run. In the

generic situation, the D7 branes are split off the O7 plane and have recombined into
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a single-component D7 brane wrapping a generic Z2-invariant divisor in the class

8[O7], subject to the constraint that it intersects the O7 plane only along double

curves [39,40]. The resulting D3 tadpole is [40]

−QU(1) = −QD3
SO(8) + 7[O7]3 , (3.29)

matches the flux-less F-theory result, and can be much larger than (3.28). For the

small number of orientifolds where the O7 divisor [O7] descends in an obvious way

from an ambient space class, we also compute QU(1). The resulting distribution is

shown in figure 4.

For each orientifold we produce an entry{
~I, ~S, ~Sc, ~P , χCY , h1,1

− , h
2,1
− , {{~qO71 , χO71 , dO71 , n

cf
O71}, ...}, {{~qO31 , nO31}, ...},

1

4
χf

}
,

(3.30)

where ~qO3/O7i encodes the ambient space fixed locus from which the i-th set of O3 planes or

the i-th O7 plane divisor descends, (χO7i , dO7i , n
cf
O7i

) denote the Euler characteristic, degree

(≡
∫

(c1)2) and number of conifold singularities on the i-th O7 plane divisor13, nO3i is the

number of O3 planes in this set, and nO3 denotes the total number of O3 planes. The full

list of orientifolds can be found here.

3.6 Examples

3.6.1 The quintic threefold

We follow traditional practice in starting with the quintic threefold [P4|5], number 7890 of

the CICY-list. Clearly we cannot swap two rows so all orientifolds will have h1,1
− = 0. The

first involution is I4
1 which acts as

I4
1 : P4 −→ P4 , [x0 : · · · : x4] 7−→ [−x0 : x1 : · · · : x4] , (3.31)

or shorthand ~I = (1). Its fixed locus is the disjoint union {x0 = 0}∪{x1 = x2 = x3 = x4 =

0} with co-dimension one respectively four in the ambient space. Choosing the polynomial

to be symmetric under the involution (i.e. ~P = (1)), the ambient space divisor x0 = 0

descends to a CY divisor D hosting an O7 plane. Its Euler number is easily computed

13(χO7i , dO7i) corresponds to the surface wrapped by the O7 on the A-type resolution branch.
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to be χD = 55. Near the second fixed locus it is more useful to write the involution as

[x0 : · · · : x4] 7−→ [x0 : −x1 : · · · : −x4] because we may use the inverted coordinates as

local transverse coordinates to the fixed point. As the weight of the polynomial is odd,

it is anti-symmetric across the fixed point, so the co-dimension four ambient space locus

{x1 = x2 = x3 = x4 = 0} descends to an isolated fixed point inside the CY hosting an O3

plane. Thus, the D3 tadpole is (55 + 1)/4 = 14. We compute the value of h2,1
− using the

index theorem,

h2,1
− = 0 +

55 + 1

4
− −200

4
− 1 = 63 . (3.32)

In total, we produce the following entry for this orientifold,

{{1}, {}, {}, {1},−200, 0, 63, {{{1}, 55, 5, 0}}, {{{2}, 1}}, 14} . (3.33)

Next, let us consider the involution ~I = (2), i.e.

I4
1 : P4 −→ P4 , [x0 : · · · : x4] 7−→ [−x0 : −x1 : x2 : x3 : x4] . (3.34)

with two ambient space fixed loci of co-dimensions two respectively three. The polynomial

must be chosen anti-symmetric across the first locus so that it descends again to a divisor

D hosting an O7 plane rather than a locus of co-dimension two. Thus, ~P = (−1). The

second fixed locus descends to a set of
∫
CY

H3 =
∫

P4 5H4 = 5 isolated fixed points hosting

5 O3 planes. The divisor D is a P2 ⊂ P4 so it has Euler number χD = 3. The normal

bundle is isomorphic to OP2(1)2, so c1(NF) = 2H and c2(NF) = H2. The anti-symmetric

polynomial takes values in O(E) = OP2(5). Thus, we encounter∫
P2

c2(NF)− c1(NF) · E + E2 = 1− 2 · 5 + 52 = 16 (3.35)

conifold singularities along it. Therefore, the D3 tadpole is (5 + 3 + 16)/4 = 6. Moreover,

h2,1
− = 0 +

5 + 3 + 16

4
− −200 + 2 · 16

4
− 1 = 47 . (3.36)

The corresponding entry in our list is

{{2}, {}, {}, {−1},−168, 0, 47, {{{1}, 3, 9, 16}}, {{{2}, 5}}, 6} . (3.37)
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Note that this is the singular limit of a smooth CICY orientifold, obtained via the B-

resolution of the conifold singularity. It is given by an orientifold of the CICY 7885,[
P1 1 1

P4 4 1

]
, (3.38)

with entry

{{0, 2}, {}, {}, {1,−1},−168, 0, 47, {{{1}, 19,−7, 0}}, {{{2}, 5}}, 6} . (3.39)

3.6.2 Anti-canonical hypersurface in P2 × P2

As a second example we would like to consider an anti-canonical hypersurface in P2 × P2,

with CICY number 7884. First, we consider ~I = (1, 0), acting on only one of the P2s. There

are two ambient space fixed loci, of co-dimensions one respectively two. The polynomial

has to be chosen symmetric across the first locus which then descends to a divisor D.

One computes χD = 36. Then, across the second fixed locus, the polynomial is anti-

symmetric giving a P2 divisor with nine conifold singularities along it. The D3 tadpole is

(36 + 3 + 9)/4 = 12, and h2,1
− = 47. The entry is

{{0, 1}, {}, {}, {1},−144, 0, 47, {{{1}, 36, 0, 0}, {{2}, 3, 9, 9}}, {}, 12} , (3.40)

containing a P2 divisor with 9 conifold singularities. The B-resolution leads to the smooth

orientifold of CICY number 7875,  P1 1 1

P2 1 2

P2 0 3

 , (3.41)

with orientifold-entry

{{0, 1, 0}, {}, {}, {1, 1},−144, 0, 47, {{{1}, 36, 0, 0}, {{2}, 12, 0, 0}}, {}, 12} . (3.42)

The P2 divisor has been blown up at nine points, producing the rational elliptic surface

dP9.

We may also consider involuting both factors, i.e. ~I = (1, 1)T . This gives four ambient

space fixed loci of co-dimensions (2, 3, 3, 4). The polynomial must be chosen antisymmetric
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across the first locus so that it descends to a divisor inside the CY. It has the topology of

P1 × P1, and along it one finds 13 conifold singularities. The other fixed loci give rise to

3 + 3 + 1 = 7 O3 planes. Thus, the D3 tadpole is (4 + 13 + 7)/4 = 6, and h2,1
− = 39, and

the orientifold entry reads

{{1, 1}, {}, {}, {−1},−136, 0, 39, {{{1, 1}, 4, 8, 13}},

{{{1, 2}, 3}, {{2, 1}, 3}, {{2, 2}, 1}}, 6} . (3.43)

The Euler characteristic of a resolution of the conifold singularities is χCY = χ0
CY + 2ncf =

−162 + 26 = −136. No such CY threefold is contained in the CICY list.

Finally, we may swap the two P2 factors giving h1,1
− = 1. The diagonal P2 has a normal

bundle isomorphic to its tangent bundle so c(NF) = (1+Hd)
3. The omitted anti-symmetric

polynomial is in E = 3H1 + 3H2 which pulls back to 6Hd so the divisor contains

3H2
d − 3Hd · 6Hd + (6Hd)

2 = 21 (3.44)

conifold singularities. Therefore, the D3 tadpole is (3 + 21)/4 = 6, and h2,1
− = 35. The

orientifold entry reads

{{0, 0}, {{1, 2}}, {}, {−1},−120, 1, 36, {{{}, 3, 9, 21}}, {}, 6} , (3.45)

containing a P2 surface hosting 21 conifold singularities. The B-type resolution of this

orientifold gives the CICY with number 7846, P2 2 1 0

P2 2 0 1

P2 1 1 1

 , (3.46)

with orientifold entry

{{0, 0, 0}, {{1, 2}}, {{2, 3}}, {1, 1, 1},−120, 1, 36, {{{}, 24,−12, 0}}, {}, 6} . (3.47)

The P2 has been blown up at 21 points producing a surface which is not nef.
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3.6.3 [P5|4 2]

Finally, we consider the orientifold of [P5|4 2] (CICY number 7889) specified by ~I = (2), and
~P = (1,−1)T . One may show that there is a single O7 plane divisor D with (χD, dD, n

cf
D ) =

(24, 0, 4), as well as four O3 planes. The orientifold entry is

{{2}, {}, {}, {1,−1},−168, 0, 49, {{{1}, 24, 0, 4}}, {{{2}, 4}}, 8} , (3.48)

containing a K3 surface with 4 conifold singularities.

In this case, the two different resolutions of the conifold lead to different orientifolds of

the same CY with CICY number 7886,[
P1 0 1 1

P5 4 1 1

]
. (3.49)

The B-type resolution leads to

{{0, 2}, {}, {}, {1, 1,−1},−168, 0, 49, {{{1}, 28,−4, 0}}, {{{2}, 4}}, 8} , (3.50)

where K3 is blown up at four points. The A-type resolution leads to

{{1, 2}, {}, {}, {1, 1, 1},−168, 0, 49,

{{{2, 1}, 24, 0, 0}}, {{{1, 1}, 4}, {{1, 2}, 4}}, 8} , (3.51)

and four extra O3 planes have been produced.

Note that while the ability to describe at least one of the resolution branches of a

given singular CICY orientifold via a smooth orientifold of a different CICY appears quite

frequently at low values of h1,1, at larger values of h1,1 approximately half of the resolved

CYs have positive Euler characteristic and are therefore not contained in the CICY list.

3.6.4 An example with vanishing D3 tadpole

It is also possible to find orientifold vacua that are consistent without the inclusion of

either D3 branes or three-form fluxes. These are precisely those with vanishing overall D3
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tadpole. As an example, consider the CICY 7888 and its smooth orientifold specified by[
P1 0 2

P4 4 1

]
, ~I = (0, 2)T , ~P = (1,−1)T . (3.52)

The first ambient space fixed point locus descends to a divisor D of topology P1 × [P2|4],

and [P2|4] is a genus two Riemann surface. Its Euler characteristic is χD = −8, and its

degree is d = −16. There are no conifold singularities along it, so the induced D3 charge

on the seven branes is +2. The second ambient space fixed point locus descends to a set

of 8 isolated fixed points in the CY, hosting O3 planes that precisely cancel the positive

contribution from the seven branes. The D3 tadpole therefore vanishes in the absence of

fluxes and D3 branes. The orientifold entry is

{{0, 2}, {}, {}, {1,−1},−168, 0, 41, {{{1},−8,−16, 0}}, {{{2}, 8}}, 0} . (3.53)

3.7 The non-favourable CICYs

Now we turn to the remaining CICY manifolds whose complete set of divisors does not

descend from the ambient space divisors via intersection with the CY threefold, i.e. they

are not favourable with respect to an ambient space that is a product of Pn’s. Out of the

70 configuration matrices that are left non-favourable, a total of 22 matrices are either T 6

or K3 × T 2. As we are interested in N = 1 orientifolds we discard these. The other 48

matrices fall into two classes [16],

(a) 33 matrices describe CY threefolds that can be rewritten as favourable hypersurfaces

in an ambient space B1 × B2 where B1,2 are del Pezzo surfaces. It is well known

that the del-Pezzo surfaces {P2,P1 × P1, dP1, ..., dP7} can be obtained as a complete

intersection manifold [41]. Thus, the anti-canonical hypersurface in each pairing

appears in the list of CICYs.

(b) 15 matrices describe the same manifold, the Schoen manifold [42] which can be

obtained as an anti-canonical hypersurface in dP9 × dP9, where dP9 is a rational

elliptic surface, i.e. P2 blown up at nine points. dP9 can also be written as a CI

manifold. The anti-canonical hypersurfaces in B1 × dP9 with B1 almost del-Pezzo

surface are all equivalent to the Schoen manifold (Theorem 3.1 of [41]).
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3.7.1 CY hypersurfaces in products of del-Pezzo surfaces

Let us first focus on (a). The Z2 involutions of the ambient space come in two classes. I:

Combinations of involutions of the two factors, and II: swaps of the two factors whenever

B1 ' B2.

We start with I. All possible Z2 involutions of del Pezzo surfaces have been exhibited

in ref. [17].14 There exist 28 pairs (B, σ) where B is one of the ten del Pezzo surfaces and σ

is a non-trivial involution, see table 3. First, consider an involution that acts non-trivially

only on (say) the first ambient space factor. Its fixed locus inside B1 is a union of a set of

fixed divisors Do
i and a set of nfp isolated fixed points. Choosing the anti-canonical section

to be Z2 symmetric the Do
i descend to generically smooth CY O7 divisors Do

i,CY while the

nfp isolated fixed points descend to CY O7 divisors D̃o
j,CY hosting conifold singularities. It

is straightforward to show that the former have Euler characteristic

χDo
i,CY

= 12

∫
B1
Do
i · c1(B1) , (3.54)

and vanishing degree. Each isolated fixed point contributes a del Pezzo CY divisor with

the topology of B2, containing a number of conifold singularities equal to the degree of B2.

The D3 tadpole takes a universal value,

−QD3 =
1

4

∑
i

χDo
i,CY

+
1

4
nfp

(
χB2 +

∫
B2
c1(B2)2

)

= 3

(∑
i

∫
B1
Do
i · c1(B1) + nfp

)
= 12 , (3.55)

where the last equality is shown to hold by going through the list of involutions one by

one.

Second, we consider involutions that act non-trivially on both del Pezzo factors. The

ambient space fixed point locus has various different components. One, surfaces C1
i × C2

j

where the C1,2
i are fixed curves inside B1,2, and two, curves for each pairing of isolated

14We exclude dP8. A boring reason for discarding it is that anti-canonical hypersurfaces of B × dP8

do not appear in the CICY list. A better reason for doing so is that dimH0(K̄, dP8) = 2. Thus, any
global section F of the anti-canonical line bundle on B × dP8 can be expanded as F = f1g

1 + f2g
2 with

fi ∈ H0(K̄,B) and gi ∈ H0(K̄, dP8). Then, a general CY hypersurface has conifold singularities at the
dB ≡

∫
B c1(TB)2 points where f1 = f2 = g1 = g2 = 0 that cannot be deformed (i.e. Bertini’s theorem

cannot be applied). They can, however, be resolved by blowing up the single point on dP8 that is Poincaré
dual to c1(TdP8)2. The result is the Schoen manifold constructed in ref. [42].
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fixed points in B1 with fixed curves in B2 and vice versa, and three, isolated fixed points

for each pairings of isolated fixed points in the two ambient space factors. For an O3/O7

orientifold, the anti-canonical section has to be chosen anti-symmetric across the first locus

giving rise to a set of CY divisors Do
ij of topology C1

i × C2
j with Euler characteristic

χDo
ij

= (C1
i )

2(C2
j )

2 − (C1
i )

2(C2
j · K̄B2)− (C2

j )
2(C1

i · K̄B1) + (C1
i · K̄B1)(C2

j · K̄B2) , (3.56)

containing

ncf = (C1
i )

2(C2
j )

2 − (C1
i )

2(C2
j · K̄B2)− (C2

j )
2(C1

i · K̄B1) + 2(C1
i · K̄B1)(C2

j · K̄B2) (3.57)

conifold singularities. All other ambient space fixed loci give rise to a total number of O3

planes computed as

nO3 = n1
fpn

2
fp + n1

fp

∑
j

C2
j · K̄B2 + n2

fp

∑
i

C1
i · K̄B1 . (3.58)

In order to avoid singularities of co-dimension smaller than three we must impose additional

requirements. Consider an involution (σ1, σ2) acting non-trivially on both del-Pezzo factors,

and consider one of the two factors, say B1. As just explained, if both σ1,2 have non-trivial

fixed curves (C1, C2) we get a non-trivial fixed divisor C1 × C2 in the CY if we choose the

anti-canonical section F to be anti-symmetric across the surface C1×C2 ⊂ B1×B2 defined

via the vanishing of two global sections f i ∈ Γ(O(Ci)). Now, pick a point p ∈ C2 ⊂ B2 and

define G ≡ F (p) which is a global anti-canonical section on B1. As g is anti-symmetric

across C1 under the involution, it vanishes at least linearly along C1. Therefore, we may

globally define G/f 1 which is a section of O(K̄ −C1). If G/f 1 vanishes identically the CY

threefold is singular along C1 × C2. Thus, we need that the line bundle O(K̄ − C1) has at

least one non-trivial global section. This section is either constant, i.e. [K̄] = [C1], or it has

a vanishing locus which is another effective curve C̃ ∼ K̄ − C1. In the latter case, since B1

is Fano, and thus K̄ ·C > 0 for all effective curves C, we must require that K̄ · (K̄−C1) > 0.

This is not met by all the del-Pezzo involutions classified in [17].

The class II of orientifolds comes from involutions that interchange two isomorphic

ambient space del Pezzo surfaces B1 ←→ B2 ' B1 ≡ B. The fixed surface has the topology

of B, and the normal bundle is isomorphic to TB. For an O3/O7 orientifold, the anti-

canonical section has to be anti-symmetric across the fixed surface. Therefore, the number
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of conifold singularities is given by

ncf =

∫
B
c2(B)− 2c1(B)2 + (2c1(B))2 = χB + 2dB . (3.59)

The D3 tadpole is thus given by −QD3 = 1
4
(2χB+2dB) = 6. A list of all the non-favourable

orientifolds and some of their relevant data can be found here.

3.7.2 The Schoen manifold

The Schoen manifold is represented by the remaining 15 configuration matrices, and has

(h1,1, h2,1) = (19, 19). A favourable description is given by the anti-canonical hypersurfaces

in dP9 × dP9 where dP9 is a rational elliptic surface, i.e. P2 blown up at nine points. As

h1,1(dP9 × dP9) = 20, there must exists two distinct ambient space divisor classes that

become equivalent once pulled back to the CY threefold, namely [16]

[K̄1]|CY = [K̄2]|CY . (3.60)

Up to this subtlety, the discussion of orientifolds of the Schoen manifold is analogous to

what we discussed in the previous section. Holomorphic involutions of dP9 have been

analyzed in [18], and we now give a very brief account of them, following [43]. dP9 is an

elliptic fibration over P1 with generically twelve degenerate fibers. It has h1,1 = 10 and a

standard basis of divisor classes (l, e1, ..., e9) that satisfy

l2 = 1 , l ei = 0 , eiej = −δij , (3.61)

where l is the proper transform of the hyperplane class of the base P1 and the ei are the

exceptional divisors associated with the blown up points. The class of the generic fiber is

the anti-canonical class K̄ = 3l −
∑

i=1 ei, and the zero section can be identified with the

exceptional divisor e9. The fibration can be given a Weierstrass representation as follows:

Consider a degree (6, 3) hypersurface in the toric variety specified by the GLSM(
1 1 2 3 0

0 0 1 1 1

)
. (3.62)

The first two coordinates (t1, t2) are the projective P1 coordinates and the latter three are

projective P2 coordinates that we label (x, y, z), which are also sections of (OP1(2),OP1(3),OP1).
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dP9 is the vanishing locus of

P ≡ −y2z + x3 + g2[t1, t2]xz2 + g3[t1, t2]z3 = 0 , (3.63)

with g2 and g3 generic degree four respectively six polynomials in the P1 coordinates.

The first basic involution is given by

(−1)B : (t1 : t2 : x : y : z) 7→ (t1 : t2 : x : −y : z) , (3.64)

which acts trivially on the base and can be shown to reflect points in each fiber over the

origin. Its fixed point divisor Do is the disjoint union of the zero section e9 given by

x = z = 0 with the divisor Dy defined by the transverse intersection of y = 0 with the

hypersurface. This intersects the generic fiber at four points, so K̄ · D0 = 4. Moreover,

e2
9 = −1 and D2

y = 9, and there are no isolated fixed points.

The second basic involution is given by

αB : (t1 : t2 : x : y : z) 7→ (t1 : −t2 : x : y : z) , (3.65)

and the fixed point set is {t1 = 0} ∪ {t2 = y = 0} ∪ {t2 = x = z = 0} which is the disjoint

union of the fiber over the point t1 = 0 in the base and four isolated fixed points on the

fiber over t2 = 0. The former is in the anti-canonical class so has self-intersection zero.

Two further involutions are obtained by composing the above with a translation along

the fiber by a section ξ, denoted tξ. tξ ◦ (−1)B is an involution for any section ξ, while

tξ◦αB is only an involution if αB(ξ) = (−1)B(ξ). As shown in section 4 of [18] such sections

can be found at particular loci in the moduli space of dP9. For one such choice, the action

on cohomology of (−1)B, αB and tξ has been fully worked out (see table 1 of [18]). We have

that tξ ◦ αB has no fixed divisor but four isolated fixed points on the fiber t1 = 0. Finally,

tξ ◦ (−1)B has a fixed divisor that intersects the generic fiber at four points, and whose

class can be identified with 2(3l −
∑8

i=2 ei) by noting the following. According to table 1

of [18] tξ ◦ (−1)B exchanges e1 ↔ e9. As these are exceptional divisors, the involution in

fact exchanges the two exceptional curves which do not intersect the fixed locus because

e1e9 = 0. Thus, we can blow down both exceptional divisors and obtain an involution

of dP7 with no isolated fixed points. By comparing the action on cohomology with the

results of [17] one finds that the involution one ends up after the blow-down indeed has

one fixed divisor in 2(3l −
∑7

i=1 ei) without isolated fixed points. We summarize these
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involution fixed divisor Do Do · c1 Nfp h1,1
−

(dP9, (−1)B) e9 ∪Dy 4 0 6

(dP9, (−α)B) 3l −
∑9

i=1 ei 0 4 4

(dP9, tξ ◦ (−1)B) 2(3l −
∑8

i=2 ei) 4 0 8
(dP9, tξ ◦ (−α)B) - - 4 4

Table 1: Some Z2 involutions of dP9 surfaces, the fixed divisor Do
1, its intersection with

the anti-canonical divisor Do
1 · c1, the number of isolated fixed points Nfp, and the values

of h1,1
− .

results in table 1. The resulting orientifolds, are grouped with the other orientifolds of

non-favourable CICYs.

4 Application: Ultra light throat axions

The CICYs are famously known to form a web of geometric phases connected to each other

via conifold transitions [38]. At the level of the configuration matrices, these are described

by determinantal splittings[
M a1 · · · an+1

0 1 · · · 1

]
−→

[
M

∑n+1
i=1 ai

]
(4.1)

The manifolds described by the matrices on both sides are inequivalent if and only if

their Euler numbers are different. If they are, the splitting is called effective. Following

through such a transition, h1,1 decreases while h2,1 increases. At the level of type II CY

compactifications the low energy physics near the conifold transition loci was understood by

Strominger [36] and Greene, Morrison, and Strominger [37]: The deformation branch can

be thought of as the Coulomb branch of the bulk U(1)h
2,1

gauge theory, and the resolution

branch corresponds to a partial Higgsing.

At the level of O7 orientifolded N = 1 flux compactifications there are arise new

interesting phenomena: Generic three-form fluxes stabilize all complex structure moduli

[2, 44] and more so, generically stabilize them exponentially close to conifold points in

moduli space [2,5]. Backreaction of fluxes replaces the conifold regions by warped throats

with exponential red-shifting [2, 45].

Moreover, momentarily disregarding the truncation of the spectrum due to orientifold-

ing, the change in h1,1 across theN = 2 transition locus counts the number of exponentially

light complex axions (thraxions) whose field excursion weakly twists the various throats
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against each other [1, 21]. These axions can be identified with the massless axions one

obtains on the resolved side of the transition by integrating C2 and B2 over the inde-

pendent resolution two-cycles. On the deformed side they receive an exponentially small

superpotential of order the deformation parameter.

However, there are two necessary conditions that have to be satisfied in order for the

thraxions to actually be part of the light spectrum. First, at the N = 2 level, it must be

possible to cross the transition locus in a way that preserves a geometric Z2 symmetry,

namely the one we would like to use to define an O3/O7 orientifold projection. In other

words, across the locus h1,1
+ must increase toward the resolved side. Second, the set of extra

light axions one obtains on the resolved side of the transition must not be fully projected

out by the O7 orientifold projection, i.e. h1,1
− must also increase by at least one toward

the resolved side. Thus, two independent resolution cycles must shrink to a set of conifold

singularities, and the geometric Z2 involution associated with the O3/O7 orientifold must

interchange them.

It is easy to find explicit conifold transitions between orientifolds of anti-canonical

surfaces in products of del Pezzo surfaces that satisfy all properties. As recalled in appendix

B a blow up/down of exceptional divisors in either of the two del Pezzo factors generically

descends to a conifold transition in the CY threefold. Thus, we are instructed to inspect the

web of Z2-compatible blow up/down transitions which has been listed in Figure 10 of [17],

and find transitions across which h1,1
− jumps at least by one. One caveat that we need to

pay attention to is the following. If two Z2 symmetric del Pezzo surfaces that are connected

by a blow up/down transition have different number of fixed divisors and/or isolated fixed

points, the number of O-planes will jump across the transition locus. Thus, in the vicinity

of the transition locus, some of the stacks are on the brink of merging or collapsing. While

it would be interesting to analyze the spectrum of light degrees of freedom that appears

when a CY orientifold is stabilized in such a region of moduli space, for now we would

like to avoid this complication. Thus, we will restrict to blow-up/down transitions across

which both the number of isolated fixed points and connected fixed divisors is invariant.

We then expect that the seven-branes and O3 planes do not play an important role for the

discussion. We list the blow up/down maps in table 2

Let us look in detail at the CY orientifold transitions obtained from the anti-canonical
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del-Pezzo transitions # fixed divisors # fixed points
(dP4, σ2) −→ (dP2, σ3) −→ (P2, σ) 1 1

(dP5, σ1) −→ (dP3, σ2) −→ (dP1, σ2) 1 2
(dP5, σ2) −→ (dP3, σ3) −→ (P1 × P1, σ3) 1 0

(dP6, σ1) −→ (dP4, σ1) −→ (dP2, σ2) 1 3
(dP7, σ1) −→ (dP5, σ3) −→ (dP3, σ4) 0 4

(dP7, σ3) −→ (dP5, σdJ) 1 0
(dP8, σ2) −→ (dP6, σ2) 1 1

Table 2: The Z2-invariant del-Pezzo transitions that lead to conifold singularities in the
associated CY threefold that avoid the O-plane loci. Across each transition both h1,1

+ and
h1,1
− decrease by one. In the first five lines, two subsequent transitions are possible leading

to jumps of h1,1
± by two.

hypersurfaces in the chain of transitions

(dP5, σ2)× (P2,1)

(h1,1
+ , h1,1

− ) = (4, 3)

(h2,1
+ , h2,1

− ) = (11, 32)

−→
(dP3, σ3)× (P2,1)

(h1,1
+ , h1,1

− ) = (3, 2)

(h2,1
+ , h2,1

− ) = (19, 40)

−→
(P1 × P1, σ3)× (P2,1)

(h1,1
+ , h1,1

− ) = (2, 1)

(h2,1
+ , h2,1

− ) = (27, 48)

(4.2)

In each of the three orientifolds the D3 tadpole is equal to 12, and there are no conifold

singularities at generic points in moduli space. Across each of the two transitions there

appear 9 conifold singularities (18 in the double cover) that are not located on top of

O7 planes and that can subsequently be deformed in a way that is compatible with the

orientifolding. Locally, this looks just like the N = 2 conifold transitions. Upon stabilizing

the deformation modes near one or both of the conifold singularities, one obtains strongly

warped throats with one respectively two independent complex axions with exponentially

small superpotential as described in [1].

For the orientifolds of favourable CICYs, one searches for involutions that swap at least

one pair of rows, each containing only one’s and zero’s, with at most one common non-

vanishing entry. If this is the case, the first row can be collapsed using (4.1), such that

the second row that is obtained after the splitting still contains only one’s and can thus be

collapsed as well. There are 319, 521 orientifolds in our list that fulfill this requirement (see

thraxion candidates). These are ∼ 94% of the cases with h1,1
− 6= 0. In addition, analogously

to what we have said for the conifold transitions in the non-favourable cases, one might

want to further require that the O3 and O7 planes are not transformed by the conifold

transition. Filtering out these, we obtain a list of 11,533 orientifold conifold transitions15

15This list is not complete because we have only considered cases where a suitably obvious set of swaps
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(thraxion transitions) each encoded in an entry

{{iCICY , io−fold, irow−pair}, {jCICY , jo−fold}} , (4.3)

where the first entry corresponds to the resolved side and contains the CICY number

iCICY , the position of the orientifold in our list io−fold, and an index irow−pair indicating

that the irow−pair -th pair of rows interchanged by the involution is collapsed. The second

entry specifies the deformed side CICY-orientifold. 1,279 of these are transitions between

pairs of orientifolds of CICYs that are smooth away from the transition locus, as opposed

to orientifolds of the larger set of smooth CYs that are reached from the CICYs via the

resolution of frozen conifold singularities. Here is an example,
P2 1 1 1 0

P1 0 0 1 1

P1 0 1 0 1

P1 1 0 0 1

P2 0 0 0 3

 −→
 P1 1 1

P2 1 2

P2 0 3

 . (4.4)

On the resolved side, the second and third row as well as the second and third column

are interchanged by the involution, I = (1, 0, 0, 0, 0), and all parities are positive. The

deformed side is reached by collapsing the two interchanged rows. No further rows and

columns are interchanged, I = (0, 1, 0), and again all parities are positive. On both sides

there are two smooth O7 divisors with (χ1, d1) = (36, 0) and (χ2, d2) = (12, 0) respectively,

so the D3-tadpole is 12. The Hodge numbers (h1,1
+ , h1,1

− , h
2,1
+ , h2,1

− ) transform as

(4, 1, 20, 39) −→ (3, 0, 28, 47) , (4.5)

and on the transition locus of the double-cover of the orientifold there are |∆χCY |/2 =

18 conifold singularities with two homology relations among the shrinking three-spheres.

These can be grouped into a pair of 9 conifolds each that is interchanged by the orientifold

action.

We leave the phenomenology of this interesting class of axion-models for future work.

Here, we note only that the examples with two axions we have considered feature a diagonal

kinetic matrix. Then, at the classical level, the two axion-sectors are sequestered from one-

of rows and columns brings the configuration matrix obtained via the splitting to the form of one of the
configuration matrices recorded in the CICY-list.
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another in that their scalar potentials simply add up.
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A Basic properties of del Pezzo surfaces

In this appendix we recall a quick collection of basic facts about algebraic geometrical

properties of del Pezzo surfaces. See for example [41] for a more detailed treatment.

By definition a Fano variety X over an algebraically closed field F is a complete irre-

ducible algebraic variety such that its anticanonical sheaf K̄X is ample. In the following

we will only focus on Gorenstein Fano varieties, so the anticanonical bundle exists and by

definition it has to be ample. The Nakai–Moishezon criterion implies that the ampleness

of the anticanonical bundle is equivalent to the requirement that for every effective curve

C, the intersection with the anti-canonical divisor K̄ is positive, i.e. K̄ · C > 0. A del Pezzo

surface is a smooth projective Fano variety of Krull dimension 2.

From now on, we will only consider del Pezzo surfaces over the field C, and Krull

dimension coincides with ordinary dimension in differential geometry. Complex del Pezzo

surfaces can be classified as follows: we can either take P2 and blow up k = 0, · · · 8 points,

or we can take P1 × P1 and blow up k = 0, · · · 7 generic points. We will call the first class

of surfaces dPk and the latter Fk. It is well known that Fk ' Bk+1, so in particular it is

enough to consider just P1 × P1 and dPk. Note that trivially dP0 ' P2. In the following

we will denote with B any of those 10 del Pezzo surfaces.

Let us discuss the topological properties of B, and let us start with dPk. We denote by
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l the proper transform of the hyperplane class of the P2, and ei the exceptional divisors,

associated to the blown-up points. The intersection numbers read

l · l = 1, l · ei = 0, ei · ej = −δij, i, j = 1, · · · , k (A.1)

The anti-canonical class of the del Pezzo surfaces is given by

K̄ = c1(dPk) = 3l −
k∑
i=1

ei , (A.2)

and its Euler characteristic is 3 + k. Its degree is

d =

∫
dPk

c1(dPk)
2 = 9− k , (A.3)

and measures the number of points where two generic anti-canonical divisors intersect. For

k = 0, 1, 2, 3 the dPk are toric varieties, while for higher k this is no longer true. Let us

briefly move to P1×P1 now. Being the direct product of two projective planes, it has two

hyperplane classes H and H ′, first Chern class c1 = 2H + 2H ′, degree d = 8, and it also

admit a toric description.

The fans for the toric del Pezzos dP0, ..., dP3 and P1×P1 are given in figure 6, and the

associated GLSM charge matrices are

QP2 =

1

1

1

 , QP1×P1 =


1 0

1 0

0 1

0 1

 , QdP1 =


1 0

1 1

1 1

0 −1

 ,

QdP2 =


1 0 1

1 1 0

1 1 1

0 −1 0

0 0 −1

 , QdP3 =



1 0 1 1

1 1 0 1

1 1 1 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (A.4)

The automorphism groups Aut(B) are easily determined from the automorphism group of

P2 which is PGL(3,C). Their image under the blow-down map dPk −→ P2 is simply the

subgroup of PGL(3,C) that leaves the set of k marked points (the ones that are blown up)
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Figure 6: The fans of the toric del Pezzo surfaces. The blue edges are associated with toric
coordinates ei s.t. the locus ei = 0 corresponds to the exceptional divisor Ei.
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invariant. Their dimensions are

dim Aut(B) = max{2d− 10, 0} , (A.5)

which holds also for P1×P1. We would also like to know the number of complex structure

moduli of a del Pezzo surface hcs(B) = dimH1(B, TB). As each of the k blown up points

is labeled by two complex coordinates we have hcs(B) = max{2k − dim Aut(P2), 0}, i.e.

hcs(B) = max{10− 2d, 0} , (A.6)

which again holds for P1 × P1 as well. We may also write

hcs(B)− dim Aut (B) = 10− 2d . (A.7)

A further important quantity is the dimension of the space of global sections of the anti-

canonical line bundle on a del Pezzo surface B. The Grothendieck-Riemann-Roch theorem

says that

dimH0(B, K̄)− dimH1(B, K̄) + dimH2(B, K̄)

=

∫
ch(K̄)Td(B) = d+ 1 (A.8)

where ch(K̄) is the Chern class of the anticanonical bundle, and Td(B) the Todd class

of (the tangent bundle on) B. The Kodaira-vanishing theorem implies the vanishing of

dimH i(B, K ⊗L) for all i > 0 if the line bundle L is positive. Choosing L = 2K̄ which is

positive for Fano spaces, we deduce from (A.8) that in fact

dimH0(B, K̄) = d+ 1 . (A.9)

Finally, we recall that all the del Pezzo surfaces with degree d 6= 1 can be written as a

complete intersection of hypersurfaces in a product of projective spaces. This is why they
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appear in the CICY list. One of many ways to represent them is as follows,

dP1 =

[
P1 1

P2 1

]
, dP2 =

 P1 1 0

P1 0 1

P2 1 1

 , dP3 =

[
P2 1 1

P2 1 1

]
,

dP4 =

[
P1 1

P2 2

]
, dP5 =

[
P4 2 2

]
, dP6 =

[
P3 3

]
, dP7 =

[
P1 2

P2 2

]
.

(A.10)

B The anticanonical hypersurface in a product of two

del Pezzos

In the main text, we are interested in CY threefolds that arise as anti-canonical divisors

in B1 × B2 with B1,2 del Pezzo, and in determining their number of Kähler and complex

structure moduli. In this appendix we fill in some details. Let d1 (resp. d2) be the degree

of B1 (resp B2).

For the Kähler moduli, we will use the following theorem of Kollár [46]:

Theorem 1. (Kollár) Let X be a smooth Fano variety with dim(X) ≥ 4. Let Y ⊂ X be a

smooth divisor in the class K̄X . Let NE(Y ) (resp. NE(X)) be the Kleiman-Mori cone of

Y (resp. X). Then the natural inclusion

i∗ : NE(Y )→ NE(X) (B.1)

is an isomorphism.

This theorem implies that in our case under study, all the Kähler moduli of the CY

threefold simply descend from the ambient space ones, so

h1,1 = 20− d1 − d2 . (B.2)

The number of complex structure moduli can be determined from the Euler charac-

teristic by subtraction. Using the adjunction formula one determines χCY = −2d1d2 and

therefore

h2,1 = 20− d1 − d2 + d1d2 . (B.3)
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It is useful to rewrite this as follows

h2,1 =dimH0(B1, K̄) · dimH0(B2, K̄)+

− 1− dim Aut(B1)− dim Aut(B2)+

+ hcs(B1) + hcs(B2) . (B.4)

Equation B.4 implies that we can think of all of the h2,1 complex structure moduli as co-

efficients appearing in a general global section of the anti-canonical line bundle of B1×B2,

subtracting one for the overall scaling and the dimension of the ambient space automor-

phism group, and finally adding the complex structure moduli inherited from the ambient

space. Clearly, if we want to compute h2,1
− for a given Z2 involution acting only on the first

factor B1, we replace H0(B1, K̄) by the vector space of Z2-even global sections H0
+(B1, K̄),

replace Aut(B1) by the subgroup of the automorphism group that commutes with the Z2

action, denoted Aut+(B1), and replace hcs(B1) by h+
cs(B1). This way of computing h2,1

− ,

rather than employing the Lefschetz fixed point formula (3.26), is employed as a cross-

check.

Furthermore, it is important to note that upon blowing down an exceptional divisor

of the first ambient space factor B1, one obtains d2 =
∫
B2 c1(B2)2 conifold singularities in

the CY. This is seen most easily as follows: Every exceptional divisor of dPk intersects the

anti-canonical divisor at one point, i.e. c1(dPk) · Ei = 1. Thus, upon blowing down an

exceptional divisor to a point, thus creating dPk−1, the anti-canonical divisor will contain

this point. This is why dim H0(B, K̄) increases with the degree. This point is given by the

intersection of two divisors D1 and D2 in dPk−1 that are represented as the vanishing loci

of global sections p1,2 of the respective divisor line bundles. Because this point is contained

in the anti-canonical divisor we started with, the anti-canonical divisor is represented by

a global section f of the anti-canonical line bundle that can be expanded as16

f = p1 · g1 + p2 · g2 , (B.5)

where g1 and g2 are global sections of the anti-canonical line bundle of B2 with coefficients

that are global sections of a line bundle L1 respectively L2 on dPk−1. Generically, the

common vanishing locus p1 = p2 = g1 = g2 = 0 produces a conifold singularity in the

CY because all four sections will vanish linearly. The number of such points is given by

16Of course, also before the blow-down the generic section can be expanded as in eq. (B.5), but the
intersection D1 ·D2 is empty in dPk, so there are no conifold singularities.
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the generic number of intersections between two anti-canonical divisors in B2, i.e. by the

degree d2 of B2. Of course, once the exceptional divisor is blown down, we can deform the

singularity by dialing the d2 − 1 newly acquired complex structure moduli. Thus, we have

described a conifold transition in the CY from the resolved to the deformed side across

which h1,1 decreases by one, and h2,1 increases by d2 − 1. Since dPk is P2 blown up at

generic points, no pair of them coincides. Therefore, we may blow down any number n ≤ k

of exceptional divisors without producing more severe singularities than conifolds in the

threefold. Using this, one obtains conifold transitions across which h1,1 decreases by n and

h2,1 increases by n(d2 − 1).

C Involutions of del Pezzo surfaces

The involutions of del Pezzo surfaces have been classified in [17], and are listed in table 3

Let us explain in detail the possible Z2 involutions of the toric del Pezzo surfaces, i.e.

P ' dP0,P1 × P1, dP1, dP2 and dP3. We associate a toric coordinate xρ to each generator

of a one-dimensional cone ρ ∈ Σ(1) of the fan. It is useful to first consider the case of dP3.

There are four scaling relations among the six toric coordinates {xv1 , xv2 , xv3 , xe1 , xe2 , xe3},

(xv1 , xv2 , xv3) ∼ λ0(xv1 , xv2 , xv3) ,

(xv2 , xv3 , xe1) ∼ (λ1xv2 , λ1xv3 , λ
−1
1 xe1) ,

(xv1 , xv3 , xe2) ∼ (λ2xv1 , λ2xv3 , λ
−1
2 xe2) ,

(xv1 , xv2 , xe3) ∼ (λ3xv1 , λ3xv2 , λ
−1
3 xe3) , (C.1)

To each toric coordinate we associate a toric divisor Dρ, {Dv1 , Dv2 , Dv3 , De1 , De2 , De3}, that

satisfy homology relations

[Dv1 ] + [De2 ] = [Dv2 ] + [De3 ]

[Dv1 ] + [De3 ] = [Dv3 ] + [De1 ]

[Dv2 ] + [De3 ] = [Dv3 ] + [De2 ] . (C.2)

Let us work in a basis of divisor classes

[l] ≡ [Dv1 ] + [De2 ] + [De3 ] = [Dv2 ] + [De1 ] + [De3 ] = [Dv3 ] + [De1 ] + [De2 ]

[e1] = [De1 ] , [e2] = [De2 ] , [e3] = [De3 ] . (C.3)
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involution fixed divisor Do Do · c1 Nfp h1,1
− action on H2

(P2, σ) l 3 1 0 11

(P1 × P1, σ1) (H) ∪ (H ′) 4 0 0 12

(P1 × P1, σ2) - - 4 0 12

(P1 × P1, σ3) H +H ′ 4 0 1 F
(dP1, σ1) (l) ∪ (e1) 4 0 0 12

(dP1, σ2) l − e1 2 2 0 12

(dP2, σ1) (l − e1) ∪ (e2) 3 1 0 13

(dP2, σ2) l − e1 − e2 1 3 0 13

(dP2, σ3) l 3 1 1 11 ⊕ F
(dP3, σ1) (l − e1 − e2) ∪ (e3) 2 2 0 14

(dP3, σ2) l − e3 2 2 1 12 ⊕ F
(dP3, σ3) 2l − e1 − e2 4 0 2 I

(2)
dP3

(dP3, σ4) - - 4 1 I
(3)
dP3

(dP4, σ1) l − e1 − e2 1 3 1 13 ⊕ F
(dP4, σ2) l 3 1 2 11 ⊕ F ⊕ F
(dP5, σ1) l − e1 2 2 2 12 ⊕ F ⊕ F
(dP5, σ2) 2l − e1 − e2 4 0 3 I

(2)
dP3
⊕ F

(dP5, σ3) - - 4 2 I
(3)
dP3
⊕ F

(dP5, σdJ) 3l −
∑5

i=1 ei 4 0 4 I
(5)
dP5

(dP6, σ1) l − e1 − e2 1 3 2 13 ⊕ F ⊕ F
(dP6, σ2) 3l −

∑6
i=1 ei 3 1 4 I

(5)
dP5
⊕ 11

(dP7, σ1) - - 4 3 I
(3)
dP3
⊕ F ⊕ F

(dP7, σ2) 3l −
∑7

i=1 ei 2 2 4 I
(5)
dP5
⊕ 12

(dP7, σ3) 3l −
∑5

i=1 ei 4 0 5 I
(5)
dP5
⊕ F

(dP7, σG) 6l − 2
∑7

i=1 ei 4 0 7 I
(9)
dP7

(dP8, σ1) 3l −
∑8

i=1 ei 1 3 4 I
(5)
dP5
⊕ 13

(dP8, σ2) 3l −
∑6

i=1 ei 3 1 5 I
(5)
dP5
⊕ 11 ⊕ F

(dP8, σB) 9l − 3
∑8

i=1 ei 3 1 8 I
(9)
dP8

Table 3: Table adopted from table 6 of [17]: The possible Z2 involutions of del Pezzo
surfaces, the fixed divisor Do

1, its intersection with the anti-canonical divisor Do
1 · c1, the

number of isolated fixed points Nfp, the values of h1,1
− , and actions on the divisor classes

(l, e1, ..., en) respectively (H,H ′). F denotes a flip ei ←→ ej, respectively H ←→ H ′.
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We expand the Kähler form as J = t0[l]−
∑3

i=0 t
i[ei]. All divisors have positive volume if

t0 − ti − tj > 0 , i, j = 1, 2, 3 , i 6= j , and ti > 0 , i = 1, 2, 3 . (C.4)

For dP2 we delete the last row of (C.1) and set De3 → 0, for dP1 we delete the second and

third rows, set De1,2 → 0 and relabel e3 −→ e1, and for dP0 ' P2 only the first remains

and all exceptional divisors are shrunken. P1 × P1 is obtained by shrinking v3 and e3. A

geometric action on the toric ambient space coordinates translates to a geometric action

on the fan. dP2 admits a Z2 symmetry that exchanges

xv1 ←→ xv2 , xe1 ←→ xe2 . (C.5)

The Z2 fixed point locus {xv1xe2 − xv2xe1 = 0} ∪ {xv1xe2 + xv2xe1 = x3 = 0} is the disjoint

union of a P1 and an isolated fixed point. The action on our basis of divisors is

E1 ←→ E2 . (C.6)

Thus, CY threefolds obtained as a hypersurface of dP2 × ... orientifolded by the above Z2

action will have h1,1
− = 1. dP0,1 admit an analogous Z2 action, but the action on the divisor

classes is trivial, so h1,1
− = 0.

dP3 admits two distinct Z2 actions with co-dimension one fixed point locus. The first

is the same as the one of dP2, so the discussion is analogous. The Z2 fixed point locus is

{xv1xe2 − xv2xe1 = 0} ∪ {xv1xe2 + xv2xe1 = x3 = 0} ∪ {xv1xe2 + xv2xe1 = xe3 = 0}, so it is

the disjoint union of a P1 and two isolated fixed points.

The second Z2 action is called I
(2)
dP3

and acts as

xv1 ←→ xe2 , xv2 ←→ xe1 , xv3 ←→ xe3 . (C.7)

The action on the divisor classes is

l −→ 2l −
3∑
i=3

ei , e1 −→ l − e1 − e3 ,

e2 −→ l − e2 − e3 , e3 −→ l − e1 − e2 . (C.8)
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This maps the Kähler form

J −→ J ′ = (2t0 −
∑
i

ti)l − (t0 − t1 − t3)e1 − (t0 − t2 − t3)e2 − (t0 − t1 − t2)e3 , (C.9)

which is in the Kähler cone if J is in the Kähler cone. For Z2 invariance of the Kähler

form we have to set t0 =
∑3

i=1 t
i and t1 = t2. As the requirement of Z2 invariance fixes

two linear combinations of the Kähler parameters, we have h1,1
− = 2.

Finally, I
(3)
dP3

is defined by reflecting the fan over the origin, but the fixed point locus of

this action is given by two constraints x2
1x

2
e2

= x2
2x

2
e3

= x2
3x

2
e1

, so it is of co-dimension two.

It acts on the divisor classes as

l −→ 2l −
3∑
i=3

ei , e1 −→ l − e2 − e3 ,

e2 −→ l − e1 − e3 , e3 −→ l − e1 − e2 . (C.10)

This maps the Kähler form

J −→ J ′ = (2t0 −
∑
i

ti)l − (t0 − t2 − t3)e1 − (t0 − t1 − t3)e2 − (t0 − t1 − t2)e3 , (C.11)

which is also in the Kähler cone if J is in the Kähler cone. Again, for Z2 invariance of the

Kähler form we have to set t0 =
∑3

i=1 t
i, so h1,1

− = 1.

References

[1] A. Hebecker, S. Leonhardt, J. Moritz and A. Westphal, Thraxions: Ultralight Throat

Axions, JHEP 04 (2019) 158, [1812.03999].

[2] S. B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D66 (2002) 106006, [hep-th/0105097].

[3] L. Susskind, The Anthropic landscape of string theory, hep-th/0302219.

[4] S. Ashok and M. R. Douglas, Counting flux vacua, JHEP 01 (2004) 060,

[hep-th/0307049].

[5] F. Denef and M. R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072,

[hep-th/0404116].

44



[6] C. Vafa, The String landscape and the swampland, hep-th/0509212.

[7] H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the

Swampland, Nucl. Phys. B766 (2007) 21–33, [hep-th/0605264].

[8] M. Dine and N. Seiberg, Is the Superstring Weakly Coupled?, Phys. Lett. 162B

(1985) 299–302.

[9] S. Kachru, R. Kallosh, A. D. Linde and S. P. Trivedi, De Sitter vacua in string

theory, Phys. Rev. D68 (2003) 046005, [hep-th/0301240].

[10] B. Freivogel and M. Lippert, Evidence for a bound on the lifetime of de Sitter space,

JHEP 12 (2008) 096, [0807.1104].

[11] F. Carta, J. Moritz and A. Westphal, Gaugino condensation and small uplifts in

KKLT, JHEP 08 (2019) 141, [1902.01412].

[12] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond. Cambridge

Monographs on Mathematical Physics. Cambridge University Press, 2007,

10.1017/CBO9780511618123.

[13] L. E. Ibanez and A. M. Uranga, String theory and particle physics: An introduction

to string phenomenology. Cambridge University Press, 2012.

[14] M. Grana, Flux compactifications in string theory: A Comprehensive review, Phys.

Rept. 423 (2006) 91–158, [hep-th/0509003].

[15] P. Candelas, A. M. Dale, C. A. Lutken and R. Schimmrigk, Complete Intersection

Calabi-Yau Manifolds, Nucl. Phys. B298 (1988) 493.

[16] L. B. Anderson, X. Gao, J. Gray and S.-J. Lee, Fibrations in CICY Threefolds,

JHEP 10 (2017) 077, [1708.07907].

[17] R. Blumenhagen, V. Braun, T. W. Grimm and T. Weigand, GUTs in Type IIB

Orientifold Compactifications, Nucl. Phys. B815 (2009) 1–94, [0811.2936].

[18] R. Donagi, B. A. Ovrut, T. Pantev and D. Waldram, Spectral involutions on rational

elliptic surfaces, Adv. Theor. Math. Phys. 5 (2002) 499–561, [math/0008011].

45



[19] F. Denef, M. R. Douglas, B. Florea, A. Grassi and S. Kachru, Fixing all moduli in a

simple F-theory compactification, Adv. Theor. Math. Phys. 9 (2005) 861–929,

[hep-th/0503124].

[20] M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in

four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209–1230, [hep-th/0002240].

[21] A. Hebecker, J. Moritz, A. Westphal and L. T. Witkowski, Towards Axion

Monodromy Inflation with Warped KK-Modes, Phys. Lett. B754 (2016) 328–334,

[1512.04463].

[22] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes

and gravity as the weakest force, JHEP 06 (2007) 060, [hep-th/0601001].

[23] T. W. Grimm and J. Louis, The Effective action of N = 1 Calabi-Yau orientifolds,

Nucl. Phys. B699 (2004) 387–426, [hep-th/0403067].

[24] E. Silverstein and A. Westphal, Monodromy in the CMB: Gravity Waves and String

Inflation, Phys. Rev. D78 (2008) 106003, [0803.3085].

[25] L. McAllister, E. Silverstein and A. Westphal, Gravity Waves and Linear Inflation

from Axion Monodromy, Phys. Rev. D82 (2010) 046003, [0808.0706].

[26] C. Long, L. McAllister and P. McGuirk, Heavy Tails in Calabi-Yau Moduli Spaces,

JHEP 10 (2014) 187, [1407.0709].

[27] X. Gao and P. Shukla, On Classifying the Divisor Involutions in Calabi-Yau

Threefolds, JHEP 11 (2013) 170, [1307.1139].

[28] R. Altman, Systematic Phenomenology on the Landscape of Calabi-Yau

Hypersurfaces in Toric Varieties, Ph.D. thesis, Northeastern University, Jan., 2017.

[29] P. S. Green, T. Hubsch and C. A. Lutken, All Hodge Numbers of All Complete

Intersection Calabi-Yau Manifolds, Class. Quant. Grav. 6 (1989) 105–124.

[30] T. Weigand, F-theory, PoS TASI2017 (2018) 016, [1806.01854].

[31] E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B474

(1996) 343–360, [hep-th/9604030].

46



[32] V. Braun, On Free Quotients of Complete Intersection Calabi-Yau Manifolds, JHEP

04 (2011) 005, [1003.3235].

[33] S. Aaronson, NP-complete problems and physical reality, Submitted to: Sigact News

(2005) , [quant-ph/0502072].

[34] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa et al., Mirror

symmetry, vol. 1 of Clay mathematics monographs. AMS, Providence, USA, 2003.

[35] P. Candelas and X. C. de la Ossa, Comments on Conifolds, Nucl. Phys. B342 (1990)

246–268.

[36] A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B451

(1995) 96–108, [hep-th/9504090].

[37] B. R. Greene, D. R. Morrison and A. Strominger, Black hole condensation and the

unification of string vacua, Nucl. Phys. B451 (1995) 109–120, [hep-th/9504145].

[38] P. Candelas, P. S. Green and T. Hubsch, Rolling Among Calabi-Yau Vacua, Nucl.

Phys. B330 (1990) 49.

[39] A. P. Braun, A. Hebecker and H. Triendl, D7-Brane Motion from M-Theory Cycles

and Obstructions in the Weak Coupling Limit, Nucl. Phys. B800 (2008) 298–329,

[0801.2163].

[40] A. Collinucci, F. Denef and M. Esole, D-brane Deconstructions in IIB Orientifolds,

JHEP 02 (2009) 005, [0805.1573].

[41] T. Hubsch, Calabi-Yau manifolds: A Bestiary for physicists. World Scientific,

Singapore, 1994.

[42] C. Schoen, On fiber products of rational elliptic surfaces with section.,

Mathematische Zeitschrift 197 (1988) 177–200.

[43] B. A. Ovrut, T. Pantev and R. Reinbacher, Torus fibered Calabi-Yau threefolds with

nontrivial fundamental group, JHEP 05 (2003) 040, [hep-th/0212221].

[44] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys.

B584 (2000) 69–108, [hep-th/9906070].

47



[45] I. R. Klebanov and M. J. Strassler, Supergravity and a confining gauge theory:

Duality cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052,

[hep-th/0007191].

[46] C. Borcea and J. Kollar, Homogeneous Vector Bundles and Families of Calabi-Yau

Threefolds. II, Proc. Symp. Pure Math. 52 (1991) .

48


	1 Introduction and Conclusions
	2 Results
	3 O3/O7 orientifolds of CICYs
	3.1 Defining a CICY involution
	3.2 Singularities at co-dimension one
	3.3 Singularities at co-dimension three
	3.4 Conifolds on O7 planes & their resolution branches
	3.5 The algorithm
	3.6 Examples
	3.6.1 The quintic threefold
	3.6.2 Anti-canonical hypersurface in P2P2
	3.6.3 [P5|42]
	3.6.4 An example with vanishing D3 tadpole

	3.7 The non-favourable CICYs
	3.7.1 CY hypersurfaces in products of del-Pezzo surfaces
	3.7.2 The Schoen manifold


	4 Application: Ultra light throat axions
	A Basic properties of del Pezzo surfaces
	B The anticanonical hypersurface in a product of two del Pezzos
	C Involutions of del Pezzo surfaces

