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Abstract

We present a vast landscape of O3/07 orientifolds that descends from the famous
set of complete intersection Calabi-Yau threefolds (CICY). We give distributions
of topological data relevant for phenomenology such as the orientifold-odd Hodge
numbers, the D3-tadpole, and multiplicities of O3 and O7-planes. Somewhat surpris-
ingly, almost all of these orientifolds have conifold singularities whose deformation
branches are projected out by the orientifolding. However, they can be resolved,
so most of the orientifolds actually descend from a much larger and possibly new
set of CY threefolds that can be reached from the CICYs via conifold transitions.
We observe an interesting class of A/ = 1 geometric transitions involving colliding
O-planes. Finally, as an application, we use our dataset to produce examples of
orientifolds that satisfy the topological requirements for the existence of ultra-light

throat axions (thrazions) as proposed in [1]. The database can be accessed here.
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1 Introduction and Conclusions

The landscape of flux vacua in the type IIB corner of critical string theory [2] is a fruitful
arena for model building and for addressing fundamental issues such as moduli stabilization,
and the existence of de Sitter vacua in string theory. The landscape is believed to be
vast [3-5], giving rise to a plethora of low energy effective field theories (EFT). While their
spectrum and Wilson coefficients are expected to vary seemingly randomly along the bulk
of the landscape it has been conjectured that the landscape populates only small islands
within a (much) larger space of EFTs that are not realized in string theory, known as the
swampland [6,7]. Clearly, by charting out the boundary of the landscape one hopes to
understand how string theory constrains the set of low energy observables. A somewhat
more modest and related goal is to understand how well distinct field theory sectors can
be decoupled from one-another at the level of non-renormalizable operators, and how weak
their (renormalizable) self-interactions can be tuned. Due to the Dine-Seiberg problem 8]
this is related to how far the landscape extends away from its bulk.!

This motivates us to study on a grand scale the CY orientifolds of O3/O7 type which are
a basic starting point for constructing phenomenologically interesting vacua: Consider a
choice of Calabi-Yau (CY) threefold X together with a holomorphic involution Z : X — X
that acts as (—1) on the holomorphic threeform € of X. This data determines a type IIB
03/07 orientifold with O3 and O7 planes residing at the connected components of the
geometric fixed point locus F of Z in X of co-dimension three and one respectively (see
e.g. [12]). The Ramond-Ramond (RR) tadpoles induced by the O-planes can be canceled by
introducing appropriate configurations of D7 branes with or without world-volume fluxes,
bulk three-form fluxes, and/or mobile D3 branes. This generates 4d N’ = 1 low energy
effective supergravity theories featuring perturbative no-scale vacua with spontaneously
broken supersymmetry, non-abelian gauge theories, chiral sectors etc (see e.g. [13,14]).
An important subset of the data determining these effective field theories is given by
simple topological data of X and its involution Z. For example, the dimensions of the
orientifold even/odd cohomology groups Hz’l,Hi’l,Hi’l,Hi’l determine the number of
complex structure moduli, Kéhler moduli, closed string U(1) vector multiplets, and axionic
chiral multiplets respectively. For simplistic choices of D7 brane configurations, the number

of connected components of F of co-dimension one sets the number of non-abelian gauge

'Examples of decoupling parameters include the magnitude of the flux superpotential in KKLT [9],
and backreaction radii of branes in comparison to the overall volume of the CY (see e.g. [10,11] in the
same context).



sectors with gauge algebra so(8), and the Euler characteristic of F restricts the freedom
to choose world volume and bulk three-form fluxes.

In this article, we construct a database of 2,004,513 such orientifolds, and compute a
number of topological invariants that can be used as input data for phenomenological model
building. These include the D3-tadpole, the dimensions of the orientifold-odd cohomology
groups, the number of O3 and O7 planes, and topological data of O7-divisors. The starting
point is the classic database of complete intersection CY (CICY) threefolds, as constructed
by Candelas et al [15]. We make use of their most tractable? descriptions, obtained by
Anderson et al in [16], either as a complete intersection of hypersurfaces in certain products
of projective spaces (henceforth favourable CICYs), or del Pezzo surfaces or rational elliptic
surfaces (henceforth non-favourable CICYs). The database is constructed by finding all
ambient space involutions, and all Zy-invariant deformation classes of CICY embeddings.
For the non-favourable cases, we incorporate the involutions of del-Pezzo surfaces and
rational elliptic surfaces found by Blumenhagen et al [17] and Donagi et al [18] respectively.

Most of the orientifolds we produce are singular at co-dimension three, with a number
of conifold singularities residing on the O7 planes which cannot be deformed in a way
that would be compatible with the orientifold projection. However, all of these have a
number of distinct resolution branches that are orientifold preserving, so to each singular
orientifold there belongs a number of different geometric phases related to each other via
flop transitions. Across such transition loci, the number of O3 planes as well as the topology
of O7 divisors jumps, in a way that preserves the D3 charge.®> Thus, the number of distinct
smooth geometric phases is actually much larger than the quoted ~ 2 x 10°.

Since the resolution phases are not contained in the CICY database, we produce, as a
byproduct, many CY threefolds that are connected to the CICY database via a number of
conifold transitions, but are themselves not contained in the original CICY database. It
would be interesting to understand how many of these are already contained in other lists
of CYs such as the Kreuzer-Skarke database [20], and how many are new.

We present two applications of our database. First, in section 2, we display the distri-
butions of topological data that we have obtained, comment on some of their statistical
properties, display the boundary of our CICY-orientifold landscape and speculate about

what features we expect to generalize beyond the CICY-orientifold landscape. Second, in

2The descriptions are useful because the divisor classes of the CY threefold are simply inherited by the
ones of the ambient space. Only about half of the descriptions in the original database [15] of Candelas et
al have this property.

3Similar transitions across which an O7 plane eats O3 planes have previously been described in the
literature [19].



section 4, we use our database to find many orientifolds that satisfy all topological require-
ments known to us to realize models of ultralight throat axions, as proposed in [1,21]. We
expect these to be an ideal framework for testing and challenging swampland conjectures
such as the weak gravity conjecture [22] (WGC) and the swampland distance conjecture [7]
(SDC).

This paper is organized as follows. In section 2 we discuss the distributions of topo-
logical data that we have obtained and use this to speculate about the boundary between
the landscape and the swampland. The bulk of our paper is section 3 where we explain
how the database is constructed. In section 4 we show how to find examples with throat

axions.

2 Results

In this section we display interesting features of the distributions we have obtained. First,

let us explain what topological properties we have computed for each orientifold, and why:

(a) The orientifold-odd Hodge number h"': This determines the number of perturba-
tively massless axionic chiral multiplets G; = fZ% Cy — 7B5 [23]. Here, Cy and B, are
the two-form potentials of the ten-dimensional type IIB supergravity theory, and >,
are the orientifold-odd two-cycles. These axions are promising inflaton-candidates in
models of axion-monodromy [24] such as [1,25]. A histogram is shown in figure 1.
The fraction of orientifolds with 2% > 0 is about 17%.*

(b) The orientifold-odd Hodge number h*': This computes the number of bulk complex
structure moduli that remain after the orientifold projection. These have to be

stabilized by three-form fluxes [2]. See figure 1 for a histogram.

(c) The Euler characteristic of the CY threefold yoy = 2(h*' — h*'). For orientifolds of
smooth CICYs, the Euler characteristic [15] and even the tuple (A, h*!) of the un-
derlying CY threefold is well-known [29]. However, as mentioned in the introduction,
most of the orientifolds that we determine are involutions of singular CICYs with
singularities that can be resolved in ways compatible with the orientifold projection.
The smooth threefold thus obtained has an Euler characteristic different from the one
of the CICY. Given (a) and (b) this also determines h}' —h>", while the computation

4See also [27,28] for results on orientifolds with 2" # 0 in the Kreuzer-Skarke database [20].
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Figure 1: Histogram showing the number of orientifolds with given A (left) and h2_1
(right) on a logarithmic scale. Black dashed curve: Fit with #(h"") oc (R"")P: /(b; + € hil),

,1

p1 = 0. Red curve: Fit with # (k™) oc (B"1)P¢/(b; + V"), py = 0. The latter fit results
in parameter estimates (by, ¢1) &~ (71,5.8) and (by, ¢z, p2) ~ (5.9 x 107°,3.9,3.1). It is clear
that the distributions of h”" have a tail heavier than exponential fall-off (compare e.g. [26]).

of the tuple (h}r’l, hi’l) is left for future work. The distribution of xcy is shown in
figure 2.

(d) The set of distinct O-planes: The O7 planes contribute a D7-tadpole that can be
canceled by introducing D7-branes. Stacks of seven-branes host non-abelian gauge
groups, with charged matter living on intersection curves, and chiral index set by
world volume fluxes, relevant for particle Physics model building (see e.g. [30]). Fur-
thermore, N' = 1 pure Yang-Mills (YM) sectors confine and generate scalar potentials
for Kahler moduli. For each O7 plane, we compute the Euler characteristic of the
wrapped divisor xp, and its degree dp = [}, ¢1(D)?. These determine the induced D3
charge dissolved in the 7-branes, and the arithmetic genus x(D,Op). Divisors with
X(D,Op) = 1 may generate non-perturbative superpotential terms, via euclidean D3
brane instantons, or the above mentioned strong gauge dynamics [31]. In figure 3

we display the distributions of the number O7 planes and the minimal and maximal
number of O3 planes.’

(e) The D3-tadpole: The total D3 charge of O3 planes and induced charge on seven-

5As explained in section 3.4, for each singular CICY there are many resolution branches which differ
from each other by the number of extra O3 planes that reside on the exceptional curves. The minimal
number of O3 planes corresponds to a resolution branch that produces no extra O3 planes, while the

maximal number of O3 planes corresponds to a resolution branch with the maximal number of extra O3
planes equal to the number of resolved conifolds.
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Figure 2: Histogram showing the number of orientifolds with given Fuler characteristic x
(of the CY threefold) with bin width 5. The most negative value occurs for the quintic with
x = —200. Given that x’s of both signs appear it is tempting to speculate that our list
of CYs contains pairs related by mirror symmetry. The mean is shifted to positive values,
because we reach smooth CYs by going through conifold transitions from the deformed to
the resolved side, strictly increasing x.
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Figure 3: Histograms showing on a logarithmic scale the number of orientifolds producing
a given number of O7 planes np; and O3 planes nps. Left: The minimal number of O3
planes from resolution branches that do not produce extra O3 planes. Right: The maximal
number of O3 planes from the resolution branches that produce one extra O3 plane per
conifold singularity.
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Figure 4: Left: Histogram showing the number of orientifolds with given D3-tadpole
—Q55(s) = Xy/4 for local D7-charge cancellation. The tadpole takes even values in [—4, 36].
Right: D3-tadpole for a small set of examples with non-local tadpole cancellation by a
generic D7-brane. We have restricted ourselves to the subset of smooth CICYs where the
O7 divisor obviously descends from an ambient space divisor. The tadpole takes even
values in a significantly larger range [12,132].

branes is generically negative and can be canceled via the introduction of three-form
fluxes. The larger the tadpole (which we define as minus the induced D3 charge on
O3-planes and 7-branes) the more freedom there is in choosing different three-form
fluxes. For all orientifolds, we compute this number for configurations with four D7
branes on top of each O7-plane. We compute the generically much larger D3 tadpole
for a generic D7-brane configuration for a subset of the orientifolds of smooth CICYs

(see figure 4).

Our results indicate strong correlations between the topological quantities that we have
computed. More so, our CICY-landscape clearly populates regions in the total parameter
space that have pronounced boundaries that cannot be explained by the mere finiteness
of our sample size. Two more such structures are visible in figure 5, where we display 3D
histograms showing the number of orientifolds for each value of (Qgg(g), x) and for each
value of (hz_’l, X). The steep cliffs delineate clear islands embedded in otherwise empty
regions. It is tempting to speculate that some of these boundaries in fact mark the end
of the landscape and the beginning of the swampland. Clearly, it would be interesting to
verify or refute this by finding orientifolds in other CY-datasets such as the Kreuzer-Skarke
list [20].
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Figure 5: Histograms showing on a logarithmic scale the number of orientifolds. Left:
Count for each value of ( ?3(8), x). Right: Count for each value of (h*',x). The steep
cliffs carve out clear islands embedded in large otherwise empty regions.

3 03/07 orientifolds of CICYs

3.1 Defining a CICY involution

We enumerate possible Z, actions on complete intersection Calabi-Yau (CICY) manifolds
which have a fixed point locus with connected components of complex co-dimension one
or three. The CICY manifolds of Candelas et al [15] arise as the common vanishing locus
of a set of K homogeneous polynomials in an ambient space formed by a product of r
projective spaces P™ x - -+ x P". The (non-unique) starting point for each such manifold

is the configuration matriz

P my ceeomf
3 ; (3.1)
Pey | mp o myt

where the entry mé- denotes the weight of the i-th polynomial under the scaling of the

j-th P?]?). In order for the resulting manifold to be a complex threefold we need that

> -1 n; = K + 3 and in order for its first Chern class to be zero we also need to impose

that Zfil m% = n; + 1. As the latter requirement determines the nj, given the m/, the
first column of the configuration matrix is often omitted.
We restrict ourselves to geometric involutions of the CICY manifolds that can be ex-

tended to involutions of the ambient space. While our aim is to exhaust all such involutions



we cannot exclude the possibility that other CY involutions exist that cannot be extended
to the ambient space.
Up to linear equivalence, an involution of a P™ x ... x P™ ambient space acts as a

combination of involutions of individual P" factors [32]
y: P"—P", wo:. w20t =Ty 1T T, (3.2)
with fixed locus the disjoint union

FoUF o ={z0= .. = 2,1 =0}U{z, = ... = 2, = 0}, (3.3)

and swaps of two P™ factors

S": P"xXP"—P'"xP" (z,y)— (y,x), (3.4)
with fixed point locus the diagonal P". Clearly, Z7 gives rise to the same Z, action as ), .,
because ) = —Z7 ., as matrices acting on the projective coordinates, and Zy ~ Z} 4

is the trivial involution. Near the locus F}' we may use z,...,¥,-1 as local transverse
coordinates that are inverted by Z? while near F ., it we may use z,,...,z, as local
coordinates that are inverted by Z7? .. In particular, a section of some line bundle may
be Z, symmetric in a local frame around the first fixed point locus and anti-symmetric in
another local frame around the second fixed locus.

We encode the ambient space involution into a pair (f , 5) , with vectors 7= (p1y ey )T

I[,Z), and S = ((i1,j1), ...)T indicating the swaps ((PZ?) “ PZ%), ...). Without loss of
generality we may assume that the involutions Z, and the swaps S act on distinct P" fac-
tors. The Zy generator g = [], Z7 [, S™ has an action on the set of polynomials f via

some matrix representation R(g), i.e.

g: [—Rs9)f, (3.5)

where Ry(g) is again defined up to exchanging Z with Z); . ;. As the action of an invo-

lution does not change the scaling weight of a polynomial, we may rotate the polynomials

into each other so that Ry (g) is block-diagonal with a number of two-dimensional blocks

0 1
o, = (1 0) that exchange polynomials of different scaling weights® and otherwise diag-

OIf they are the same, we may rotate them into each other in a way that diagonalizes o1 — diag(1, —1).

9
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onal entries +1. The oy blocks correspond to swaps of columns S, = ((my,n1), ...) and the
combined swaps of rows and columns must leave the configuration matrix invariant. This
is necessary for the ambient space involution to map the CY threefold to itself (but not
point-wise). Given an ambient space involution we encode the transformation properties
of the polynomials in a pair (‘S?c, 73) where the parity vector P contains entries +1 for each
polynomial that is either swapped with another one or mapped to itself, and entries —1
for each polynomial that is mapped to minus itself. A candidate orientifold of a CICY is
thus encoded in the quadruple (f, S , 676, 73)

As an example, consider the ambient space involution of
Pl

Pl
P4

(3.6)

— O O
N O
N O N

that swaps the two P! factors, and inverts two projective coordinates of P*. The complex
structure moduli are assumed to be adjusted so that the second and third two polynomials
are exchanged under the ambient space involution, and the first is mapped to minus itself.
This is encoded in Z = (0,0,2)7, S = ((1,2))7, S. = ((2,3))T and P = (+1, 41, —1)7.

The number of swapped P" factors is equal to k"' of the ambient space. We restrict
ourselves to configuration matrices that have the property that all the CY divisors descend
from ambient space divisors. We follow [16] in calling such embeddings favourable.” This
allows us to simply deduce the induced Z, action on the divisor classes of the CY from
that of the ambient space. For this purpose it is very useful that in ref. [16] the original
database of ref. [15] has been manipulated to bring all but 70 of the 7890 configuration
matrices to a favourable form via ineffective splittings, and furthermore giving a useful
alternative description of the remaining 70 cases. The latter will be dealt with separately
in section 3.7.

From eq. (3.3) it follows that the ambient space fixed locus contains 27 disjoint com-
ponents of different dimension, where Nz denotes the number of non-trivial P involutions
contained in the ambient space involution. We will tabulate a given ambient space fixed
locus by a vector ¢ of length Nz containing 1’s and 2’s that indicate which of the two fixed

loci in each involuted P™ factor is to be chosen. For a given ambient space involution and

“For favourable embeddings, the CY Kihler cone contains the one inherited from the ambient space,
but it can have additional generators. If the two cones are equivalent, the embedding is called Kdhler-
favourable.

10



action on the polynomial vector, for each connected component Fy of the ambient space
. to find a tuple (Zy, Pp)
such that ¢ = I corresponds to Fy. We will denote this choice of gauge as the frame adapted

fixed locus we may always gauge fix the redundancy 7} ~ 7} .
to Fo. In such a frame, the coordinates transverse to Fy are inverted, while the action
on the projective coordinates that parameterize F is trivial. Given a frame adapted to a
fixed locus F, we call F the canonical fized locus.

A connected component of the ambient space fixed locus of some given co-dimension
[ generically descends to a CY fixed locus of co-dimension | — k_ > 0 where k_ is the
dimension of the (—1) eigenspace of the matrix R;(g), in a frame adapted to the fixed
point locus in question. If [ — k- < 0 it does not intersect the CY. k_ is given by the
number of —1’s in the parity vector P plus the number of pairs of swapped polynomials in
S.. This is because the Zy-odd combinations of polynomials will vanish identically on the
ambient space fixed locus.® Thus, their intersection with the CY is determined by k_ fewer
constraints than one would naively expect. For a consistent O3/0O7 orientifold we need
that each connected component of the ambient space fixed locus descends to a sub-variety

of the CY of co-dimension one or three, or completely misses the CY locus.

3.2 Singularities at co-dimension one

In this paper we will not consider CY three-folds at a locus in their moduli space where
they develop singularities of co-dimension one. However, many ambient space involutions
whose ambient space fixed point locus intersects the CY at co-dimension one and three
feature such singularities. They may arise as follows. Consider a frame adapted to an
ambient space fixed locus Fy of co-dimension [ that intersects the CY at co-dimension
one. Then, p = [ — 1 polynomials are anti-symmetric around Fy. If any subset of [ < p
anti-symmetric polynomials f* depends non-trivially on I’ < I of the normal coordinates,

we can write
I/
fo=) dat, i=1,..1I. (3.7)
a=1

If I’ < I the solution set has a component given by setting 29 = 0 that descends to a variety
of dimension three or bigger once intersected with the symmetric polynomials. Such vari-

eties either have components of dimension bigger than three, or contain multiple reducible

8Locally, around the fixed locus, we can combine any pair of swapped polynomials f <+ g into a Zy-even
function f 4+ ¢ and an odd one f — g although these combinations do not make sense globally when f and
g are sections of different line bundles.

11



components of dimension three that generically intersect each other at co-dimension one.
Thus, in order to avoid singularities of co-dimension one we should require that each set of 1
anti-symmetric polynomials depends non-trivially an at least I’ + 1 transverse coordinates.

With a naive brute-force scan over all subsets of anti-symmetric polynomials we would
not be able to complete the orientifold-scan as the computation time grows too quickly
with A, We note, however, that solving this problem can be mapped to the following
different problem: We may define a matrix A,; where each column corresponds to one of
the p anti-symmetric polynomials and each row corresponds to one of the [ = p+ 1 normal
coordinates. We set A,; = 1 if the i-th anti-symmetric polynomial depends non-trivially
on the a’th normal coordinate, and zero otherwise. If it is possible to find a vanishing
sub-matrix of dimension I” x I with at least one column, i.e. I > 1, and I + I” > [, then
the set of I polynomials depends non-trivially on I’ = [ — I"” < I coordinates. In this case,
according to what we have said above, there are singularities of co-dimension one. Here is

an example: Consider the CICY with number 7734, given by the configuration matrix

PLl2 0 0 0
P11 1 1], (3.8)
PSlo 2 1 1

and an orientifold specified by the involution Z = (1,0,2)%, no row or column swaps,
and parity P = (1,—1,1,—1). We consider its canonical fixed locus. There are two anti-
symmetric polynomials, and three normal coordinates (one normal to the point zy = 0 in
P!, and two normal to P* C P3?). The dependence of the two anti-symmetric polynomials

on these normal coordinates is encoded in the matrix

(3.9)

I

I
—_ = O
_ = O

Clearly, there is a vanishing sub-matrix of dimension (1,2), so 3 = I+1” > [ = 3. Thus, the
two anti-symmetric polynomials depend non-trivially only on two transverse coordinates
and there are co-dimension one singularities in this Z;-symmetric CY. For this example,
this is obvious, but an efficient search for null-submatrices in larger matrices is not as
straightforward.

We solve this problem as follows: To A we can associate a graph I' as follows. There are

p + [ vertices, one for each row and one for each column. We connect with an undirected

12



edge each pair of rows and each pair of columns, and connect each pair of row and column

if and only if the corresponding matrix element vanishes. In our example, this produces

r— I\"<: , (3.10)

where blue vertices correspond to rows and red vertices correspond to columns. The middle

the following graph,

vertex correspond to the first row and is thus connected by undirected edges to both column
vertices.

Finding the largest possible vanishing submatrix (with size defined as I + I”) corre-
sponds to finding the largest clique I'. (i.e. complete subgraph) that contains at least one

of the column vertices. In our example this is given by the maximal clique,

I, = -<: , (3.11)

The maximal clique problem is non-trivial in general (see e.g. [33]), though easily imple-

with clique number equal to 3.

mented in Mathematica. This step of the computation dominates the overall computational

cost at large h'!.

3.3 Singularities at co-dimension three

Having avoided singularities at co-dimension one, most Zy; symmetric CYs still contain
singularities of co-dimension three, generically conifold singularities, that cannot be de-
formed in a Z, preserving way, but instead can be resolved.® These singularities always
reside on top of O7 planes which wrap divisor classes that have no correspondent in the
deformed CY, but instead correspond to the new divisor classes that arise upon resolving
the conifolds (we will call them resolution divisors). As the orientifold projection elim-
inates the deformation (Coulomb) branch in complex structure moduli space, we denote
these singularities frozen conifold singularities.

The generic appearance of this phenomenon is seen as follows.' We consider a com-

9We thank Fabian Riihle for a comment that led us to drop the requirement that the orientifolds are
smooth as orientifolds of the original CICY manifolds.
0For the basics of applied algebraic geometry, see e.g. the introductory chapters of [34].
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ponent F of the ambient space fixed locus of co-dimension [. In order for this to descend
to a divisor inside the CY the dimension of the Zy-odd eigenspace of R¢(g) must be [ — 1.
Then, the intersection of F with the divisors D] associated with the Z, symmetric poly-
nomials is a surface B, but its divisor class need not descend from an ambient space divisor
class, unless of course [ = 1. For now, let us assume for simplicity that the anti-symmetric
polynomials f* all take values in the same divisor line bundle O(E). Then, the pull back of
their differentials to the fixed locus F; take values in the co-normal bundle N*F tensored
with O(E) because the dependence on the local coordinates of the fixed locus F dies out
near F. The system of differentials of the [ — 1 anti-symmetric sections degenerates at a
co-dimension two locus along F that is Poincaré dual to the Chern class co( N*F @ O(FE)).

Thus, the number of conifold singularities along the CY divisor is given by

ng :/Bc2(N*f® O(E)). (3.12)

This is straightforward to evaluate because
NF = @Opn(1)2’@@dT, (3.13)

where the first factor comes because the fixed locus of an involution is given by fixing
p projective coordinates and the second comes about because the normal bundle of the
diagonal P} is the same as its tangent bundle, and the latter is isomorphic to Opn (1)"+!/C*
as is seen from the Euler sequence. Furthermore, using ch(E®F') = ch(E)ch(F’), one shows
that
o(N*F R O(E)) = co(NF)— (I —1)E - ¢;(NF) + @ﬁﬁ : (3.14)
This needs to be generalized to the case where the antisymmetric polynomials are actually
sections of [ — 1 distinct line bundles O(E;). The appropriate generalization of eq. (3.12)
° -1 -1
n%, :/B{CQ(N}")—ZEi-cl(N]:)+ZEi-Ej} . (3.15)
i 1<j
A configuration matrix description for the fixed divisor B is easily determined (and can be
found here):

(a) For each involution Z)' one replaces P" — P"~? in the configuration matrix.

(b) For each P™ swap one sums up the two corresponding rows.
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(c¢) All columns associated with anti-symmetric polynomials are omitted.
(d) For each pair of swapped columns, either one of the two is omitted.

The divisor line bundles O(F;) are those associated with the omitted columns.!! This de-
scription also allows one to compute the triple intersection numbers between the resolution
divisors wrapped by O7 planes and the bulk ones, by intersecting with the appropriate
ambient space divisor classes. The triple intersection numbers that involve two or three
resolution divisors wrapped by distinct O7 planes vanish identically, because the fixed locus
of eq. (3.3) is a disjoint union. In general there can be further resolution divisors that are
not wrapped by O7 planes. We leave the computation of the triple intersection numbers
that involve these, as well as the dimension of the resolution branch for future work.'?
Knowing the dimension of the resolution branch would allow one to determine the pair
(hi’l, hi’l), i.e. the number of vector multiplets and Kéahler moduli for each orientifold.
Let us explain why the frozen conifold singularities can always be resolved in a way
that maintains the CY condition, producing an O3/07 orientifold of a different smooth
CY threefold. Before applying the orientifold projection, in the local non-compact conifold
geometry it is always possible to deform or resolve the singularity [35]. Globally, however,
there is generically an obstruction against the resolution in the form of a D-term potential
for Strominger’s hypermultiplets [36,37]. It admits a flat resolution (Higgs) branch if and
only if at the singular locus in moduli space a collection of at least two three-cycles {A4;}
has shrunken that satisfy at least a single homology relation > ,[A;] = 0, i.e. there exists
a four-chain ¥ s.t. 3, A; = 9%, [37]. Upon resolving, this four-chain turns into a divisor
that intersects the exceptional P! transversally. Now consider one of the O7 divisors of our
setting that passes through at least one conifold singularity. Locally, around one of the
singularities it looks precisely like the resolution divisor ¥4 (for details see the discussion in
the next section 3.4), so upon deforming it turns into a four-chain with boundary containing
the deformed three-sphere A at the tip of the conifold. If the boundary of this four-chain
were to contain only this single connected component A, we could compute its volume
by integrating the holomorphic threeform Q, ie. Vol(A) ~ | [, Q| = | [, d©|, which
vanishes because €2 is closed, in contradiction to our assumption that we had deformed the

singularity. Therefore, there must exist a set of at least two shrunken three-spheres that

"Note that the anti-symmetric part of a pair of swapped polynomials makes sense only locally near
the fixed divisors. They make sense as sections of line bundles on B associated with either of the swapped
columns, which cannot be obtained as pullbacks of ambient space line bundles.

12Its dimension is of course bounded from below by the number of O7 planes containing conifold
singularities.
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form the boundary of the four-chain ¥, and so a resolution is possible, as claimed. As

argued in the next section, the orientifolding does not project out the resolution branch.

3.4 Conifolds on O7 planes & their resolution branches

We have stated that many O3/O7 orientifolds contain O7 planes that pass through conifold
singularities in the singular CY threefold that can be resolved, but not deformed. Here we
would describe the local description of the orientifold in the conifold geometry. Locally,

we may write the deformed conifold as the locus [35]

r Uu

det Z =0, ZE(
vy

) =¢, (z,y,u,v)€C*, (3.16)

where € is the deformation parameter. Consider now the involution
r— —x, Uv— —0. (3.17)

In order for this to be a symmetry of the conifold, we have to take the singular limit e — 0.
Only then, the defining eq. (3.16) transforms homogeneously under the Z, action, and the
deformation of the conifold is projected out by the orientifold. We are left with an O7 plane
residing on the locus x = v = 0 that passes through the singular point xt =y =u =v = 0.
Although it contains the conifold singularity, it wraps a smooth surface C> C C*. In other
words, at the singular point, the tangent bundle to the fixed surface inside the CY threefold
is regular, while the normal bundle of its embedding into the conifold degenerates.
The symmetry group of the singular conifold is SU(2) x SU(2) x U(1)g and a group
element (L, R, e') acts as
Z — e“LZR", (3.18)

on the conifold coordinates. The geometric involution corresponds to the group element
(1, —ios, ¢'™/2), and the deformation modulus is projected out by the orientifolding due to
its R-charge r = 2, i.e. it has a spurious Z, transformation ¢ — —e.

Locally, there are two ways to resolve the conifold with an exceptional P! by replacing
the defining equation (3.16) either by

A: Z-(g)=0, or B: ZT~<a>=0, [a, 8] € P!, (3.19)
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which we will refer to as the A-type and B-type resolution respectively. Locally, and before
orientifolding, these two resolution look the same and are related by a flop transition (see
e.g. Example 7.6.4 of [34]).

The would-be singular point Z = 0 is replaced by an exceptional P! parameterized by
the two projective coordinates [a, 8]. For the A-type resolution, the resolved conifold is Z,

invariant if the P! coordinates transform as

[, 8] — [~a, B] = [a, =] (3.20)

Thus, on the P! there are now two fixed points [1,0] and [0, 1]. The former is a point on
the fixed divisor ~ C2, while the latter is an isolated fixed point. Thus, upon resolving
the conifold, we are left with an O7 plane wrapping C2?, transversally intersecting the
exceptional P!, and a disjoint O3 plane. Thus, one may think of the singular orientifold
of the conifold as containing an O3 plane collapsed onto an O7 plane. For the B-type
resolution, the P! coordinates are left invariant by the Z, action, and the fixed locus is
given by

r=v=oau+py=0, (3.21)

which is C? parameterized by (u,y), blown up at the origin. In a compact setting, C?
would be replaced by the surface B as described in the previous section, so the O7 wraps a
surface B defined as B blown up at ng points. Its Euler characteristic is x(B) = x(B)+n .
The A-type and B-type resolutions are related by a flop transition, under which an SO(8)
seven-brane stack eats up an O3 plane, while changing its topology in a way that preserves
the D3 tadpole. This is similar to a transition through orbifold singularities described
in [19].

Finally, on both resolution branches, we have an N’ = 2 hypermultiplet with bosonic
components furnished by the resolution modulus, By and C5 integrated over the exceptional
P!, and O, integrated over the divisor transversally intersecting the exceptional P*. Away
from the tip of the resolved conifold By and Cs are proportional to the harmonic two-form
of TH! while C, is proportional to dr A ws where r is the radial coordinate and ws is the
harmonic three-form of 71!, As these forms are invariant under the global symmetry group
of the conifold, the geometric Z, action leaves them invariant as well. Since Cy and B,
are intrinsically odd under the orientifold action, the associated axions are projected out,
and we are left with an A/ = 1 chiral multiplet formed by the resolution modulus and the

Cy axion contributing to the orientifold even Hodge number hi’l. As the orientifold-odd
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1,1 . o . . .
Hodge number h”" does not receive contributions from the resolution moduli, we may infer

it from geometrical data of the deformed side CY.

3.5 The algorithm

Having laid out the prerequisites, we now explain how precisely we enumerate the set
of orientifolds. The Mathematica notebook used to execute the algorithm that we now

describe can be found here.

(a) First, we exhaust all possible choices of pairs of swaps of rows S and swaps of columns

S. whose combined action leaves the configuration matrix invariant.

(b) Next, we exhaust all choices of distinct involutions 7 that do not act on P factors

that are swapped.
(¢) Then, we exhaust all choices of distinct parity vectors P.
(d) Finally, we remove the cases with co-dimension one singularities.

(a) can be done using brute-force methods. (b) is trivial as well: For each P™ factor

that is not exchanged with any other P™ factor, one simply goes through the involutions

gauge ﬁxian constraint for the Z; gauge equivalences I ~ Z7? ;. This fixes the gauge

(zy, ..., [ ). The upper bound on the number of inverted coordinates can be seen as a
except for P" factors with n odd, and involutions Z7,, which are mapped to themselves
under the Z, actions. These will be referred to as s;lf—dual rows and will be relevant in
what follows. (c) is done by listing all combinations of £ entries in P subject to two gauge
fixing constraints: First, the polynomials that are swapped can be chosen even without loss
of generality. Second, for every self-dual row there remains an unfixed Z, gauge symmetry

that exchanges the involutions

{[xo, ey Tn) ¥ [0, S PSR FES RPN —Z,)}

o {[zo, -y xn] = [—20, ..., —Lngt, Tagl gy, e T} (3.22)
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and the polynomials transform with charge equal to the corresponding configuration matrix

entry modulo 2. As an example, consider the CICY 7701,

Pl
Pl
Pl
Pl
P3

— N = =
_ o O O =
_ o O = O

= O = O O

(3.23)

and orientifold involution with Z = (1,1, 1,0, 2), and no row and column swaps. The first

three rows and the last one are self-dual, so we produce a charge matrix

—_ = =

_ o O =
_ O = O
_ = O O

(3.24)

where each row corresponds to an unfixed Z, gauge symmetry, and each column collects

the Zy-charges of one of the four polynomials.

In general, one finds a gauge fixing constraint that fixes a maximal set of Zy-redundancies

by taking the charge matrix, reducing modulo two, applying row-reduction over Z,, and

fixing the polynomials associated with the first non-vanishing entry in each row to be

positive. In the above example we get

[ T
_ o O
—_ o = O

— = O O

row reduction
—

Thus we gauge fix P = (+1,+1,+1, £1).
Finally, (d) is solved by the graph theory exercise described in 3.2. Before we proceed,

o O O =

o O = O

o = O O

(3.25)

SO R =

let us comment on the data that we extract for each orientifold:

e The splitting h"!' — (RL' L"), As we are considering favourable CICY descrip-

tions, and the conifold resolution cycles do not contribute to hY the value of h'! of

the CICY coincides with the one of the ambient space. This, in turn, is given by the

number of pairs of P" factors that are swapped. As we do not know the dimension
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. . 1.1 .. .
of the resolution branch, we cannot determine 2}~ from this information alone.

The splitting h%! — (hi’l, h%l). We use the Lefschetz fixed point theorem to com-

pute h*! in terms of A1,

2,1 1,1, Xf— Xcy
e +fT—1. (3.26)
From this, and knowledge of the CY Euler characteristic, the value of hi’l — hi’l
follows, but without extra input we do not know how to compute h}r’l and hi’l
separately. The Euler characteristic of the fixed point set xy is the sum of the Euler
characteristics of the fixed divisors and the number of O3 planes. As explained in
sections 3.3 and 3.4, the Euler characteristics that we use are those of the resolution

branches of the conifold singularities. For each fixed divisor B it is given by
X8 = X% +ng (3.27)

where x% is the Euler characteristic computed by ignoring contributions from the
conifold singularities, and ng is the number of conifold singularities that reside on
the divisor. Depending on which resolution branch is chosen, the latter contribution
is attributed either to points blown up on B, or additional isolated fixed points hosting
O3 planes. xc¢y is obtained by adding twice the number of conifold singularities to
the Euler characteristic of the CICY we start with [38]. As a consistency check we
have computed the resulting value of R also by counting monomials in examples

where this method can be applied (see e.g. Appendix B). The results match.

For each orientifold, we compute the induced D3 brane charge on the seven branes
in a configuration where 4 D7 branes sit on top of the fixed point locus, i.e. the O7

plane, thus canceling the D7 tadpole locally. 1t is given by

1
~ Q5o = X (3.28)

as follows from a straightforward expansion of the o' corrected CS action of D7
branes and O7 planes, and the fact that each O3 plane carries —}1 units of D3 charge.
This is the simplest in that the monodromy transformations around seven-brane
stacks are in the center of S1(2,Z), such that the axio-dilaton does not run. In the

generic situation, the D7 branes are split off the O7 plane and have recombined into
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a single-component D7 brane wrapping a generic Zy-invariant divisor in the class
8[O7], subject to the constraint that it intersects the O7 plane only along double
curves [39,40]. The resulting D3 tadpole is [40]

— Quy = —Q85) + 71O, (3.29)

matches the flux-less F-theory result, and can be much larger than (3.28). For the
small number of orientifolds where the O7 divisor [O7] descends in an obvious way
from an ambient space class, we also compute Qu1). The resulting distribution is

shown in figure 4.

For each orientifold we produce an entry

{f, §,5., B, xov, kY W2 {{don, xom, dom, nh, ), ...},{{qogl,nogl},...},ixf} ,
(3.30)
where ¢ps/07: encodes the ambient space fixed locus from which the i-th set of O3 planes or
the i-th O7 plane divisor descends, (xo7i, do7i, ncofw-
(= [(e1)?) and number of conifold singularities on the i-th O7 plane divisor

) denote the Euler characteristic, degree
13 nosi is the
number of O3 planes in this set, and nps denotes the total number of O3 planes. The full

list of orientifolds can be found here.

3.6 Examples
3.6.1 The quintic threefold

We follow traditional practice in starting with the quintic threefold [P*|5], number 7890 of
the CICY-list. Clearly we cannot swap two rows so all orientifolds will have A™' = 0. The

first involution is Z{ which acts as
TP — Pt [mgreimg] = [mxg i ay s ay], (3.31)

or shorthand Z = (1). Its fixed locus is the disjoint union {zq = 0} U{z; = 25 = 23 = 24 =
0} with co-dimension one respectively four in the ambient space. Choosing the polynomial
to be symmetric under the involution (i.e. P = (1)), the ambient space divisor zy = 0

descends to a CY divisor D hosting an O7 plane. Its Euler number is easily computed

13(xori,do7:) corresponds to the surface wrapped by the O7 on the A-type resolution branch.
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to be xp = 55. Near the second fixed locus it is more useful to write the involution as
[xg : -+ 1 wy] — X0 1 —21 ¢ -+ 1 —x4] because we may use the inverted coordinates as
local transverse coordinates to the fixed point. As the weight of the polynomial is odd,
it is anti-symmetric across the fixed point, so the co-dimension four ambient space locus
{z1 = x9 = 23 = x4 = 0} descends to an isolated fixed point inside the CY hosting an O3
plane. Thus, the D3 tadpole is (55 + 1)/4 = 14. We compute the value of h*' using the

index theorem,

55+1  —200
1 1

In total, we produce the following entry for this orientifold,

hAt =0+ 1=63. (3.32)

{13 {3 {3 {1}, =200, 0,63, {{{1},55,5,0} }, {{{2}, 1}}, 14} . (3.33)

Next, let us consider the involution Z = (2), i.e.
TPt — P (mg i mg) > [—mo s —2y i @g w3 ) (3.34)

with two ambient space fixed loci of co-dimensions two respectively three. The polynomial
must be chosen anti-symmetric across the first locus so that it descends again to a divisor
D hosting an O7 plane rather than a locus of co-dimension two. Thus, P = (—1). The
second fixed locus descends to a set of [, H* = [,, 5H* = 5 isolated fixed points hosting
5 O3 planes. The divisor D is a P? C P* so it has Euler number yp = 3. The normal
bundle is isomorphic to Opz(1)?, so ¢;(NF) = 2H and co( NF) = H?. The anti-symmetric

polynomial takes values in O(FE) = Op2(5). Thus, we encounter
/ co(NF)—ci(NF)-E4+FE*=1-2-5+5=16 (3.35)
p2

conifold singularities along it. Therefore, the D3 tadpole is (5 4 3 + 16)/4 = 6. Moreover,

5+3+16 —-200+2-16

B2l — 0
Z + 1 1

1=47. (3.36)

The corresponding entry in our list is

{{2}7 {}7 {}7 {_1}7 _1687 07 477 {{{1}7 37 97 16}}7 {{{2}7 5}}7 6} : (337)
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Note that this is the singular limit of a smooth CICY orientifold, obtained via the B-
resolution of the conifold singularity. It is given by an orientifold of the CICY 7885,

PL|1 1
oy 1| (3.38)

with entry

{{07 2}7 {}7 {}7 {17 _1}’ _1687 07 477 {{{1}? 197 _77 O}}a {{{2}’ 5}}’ 6} : (3'39)

3.6.2 Anti-canonical hypersurface in P? x P?

As a second example we would like to consider an anti-canonical hypersurface in P? x P2,
with CICY number 7884. First, we consider Z = (1,0), acting on only one of the P?s. There
are two ambient space fixed loci, of co-dimensions one respectively two. The polynomial
has to be chosen symmetric across the first locus which then descends to a divisor D.
One computes xp = 36. Then, across the second fixed locus, the polynomial is anti-
symmetric giving a P? divisor with nine conifold singularities along it. The D3 tadpole is
(36 +3+9)/4 = 12, and h*' = 47. The entry is

{{0,1},{}, {},{1}, —144,0,47,{{{1},36,0,0},{{2},3,9,9}},{}, 12}, (3.40)

containing a P? divisor with 9 conifold singularities. The B-resolution leads to the smooth

orientifold of CICY number 7875,

PL1 1
P21 2 |, (3.41)
P2 |0 3

with orientifold-entry

{{0,1,0},{},{}, {1,1}, —144,0,47,{{{1},36,0,0}, {{2},12,0,0} }, {}, 12} . (3.42)

The P? divisor has been blown up at nine points, producing the rational elliptic surface
dP,.
We may also consider involuting both factors, i.e. 7= (1,1)T. This gives four ambient

space fixed loci of co-dimensions (2, 3, 3,4). The polynomial must be chosen antisymmetric
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across the first locus so that it descends to a divisor inside the CY. It has the topology of
P! x P!, and along it one finds 13 conifold singularities. The other fixed loci give rise to
343+ 1 =703 planes. Thus, the D3 tadpole is (4 + 134 7)/4 = 6, and h*! = 39, and

the orientifold entry reads

{{1’ 1}7 {}v {}7 {_1}7 —136, 07 39, {{{17 1}’ 47 87 13}}a
{{{1,2}, 3}, {{2,1}, 3}, {{2, 2}, 1}},6} . (3.43)

The Euler characteristic of a resolution of the conifold singularities is xcy = X2y +2n =
—162 + 26 = —136. No such CY threefold is contained in the CICY list.

Finally, we may swap the two P? factors giving k"' = 1. The diagonal P2 has a normal
bundle isomorphic to its tangent bundle so ¢(NF) = (1+H,)?. The omitted anti-symmetric
polynomial is in £ = 3H; + 3H, which pulls back to 6 H; so the divisor contains

3H; —3H, - 6Hy+ (6Hy)* = 21 (3.44)

conifold singularities. Therefore, the D3 tadpole is (3 + 21)/4 = 6, and h>' = 35. The

orientifold entry reads

{{07 O}’ {{17 2}}’ {}7 {_1}7 _1207 17 367 {{{}7 37 97 21}}7 {}7 6} ) (345)

containing a P? surface hosting 21 conifold singularities. The B-type resolution of this
orientifold gives the CICY with number 7846,

P2 | 2
P2 | 2
P2 | 1

(3.46)

_ o =
_ = O

with orientifold entry

{0,0,0%, {{1,2}}, {{2,3}}, {1, 1,1}, —120,1,36, {{{},24, —12,0}}, {},6) . (3.47)

The P? has been blown up at 21 points producing a surface which is not nef.
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3.6.3 [P°[42]

Finally, we consider the orientifold of [P?[4 2] (CICY number 7889) specified by Z = (2), and
P = (1,—1)". One may show that there is a single O7 plane divisor D with (xp, dp,n$) =
(24,0,4), as well as four O3 planes. The orientifold entry is

{{2}’ {}7 {}7 {17 _1}7 _1687 O? 49’ {{{1}’ 247 0> 4}}7 {{{2}7 4}}7 8} ) (3'48)

containing a K3 surface with 4 conifold singularities.
In this case, the two different resolutions of the conifold lead to different orientifolds of
the same CY with CICY number 7886,

Pl
P14 1 1

01 ] | (5.49)

The B-type resolution leads to

{{07 2}7 {}a {}7 {17 1? _1}’ _168> 07 497 {{{1}7 287 _4a O}}7 {{{2}’ 4}}’ 8} ) (3'50)

where K3 is blown up at four points. The A-type resolution leads to

{{1,2}, {3, 3. {1, 1,1}, -168,0, 49,
{{1{2,1}, 240,05}, {{{1, 1}, 4}, {{1, 2}, 4}}, 8} , (3.51)

and four extra O3 planes have been produced.

Note that while the ability to describe at least one of the resolution branches of a
given singular CICY orientifold via a smooth orientifold of a different CICY appears quite
frequently at low values of h'!, at larger values of h'! approximately half of the resolved

CYs have positive Euler characteristic and are therefore not contained in the CICY list.

3.6.4 An example with vanishing D3 tadpole

It is also possible to find orientifold vacua that are consistent without the inclusion of

either D3 branes or three-form fluxes. These are precisely those with vanishing overall D3
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tadpole. As an example, consider the CICY 7888 and its smooth orientifold specified by

Pl
P4

The first ambient space fixed point locus descends to a divisor D of topology P x [P?|4],

0 2

e Z=1(0,2)7", P=(,-17. (3.52)

and [P?|4] is a genus two Riemann surface. Its Euler characteristic is xp = —8, and its
degree is d = —16. There are no conifold singularities along it, so the induced D3 charge
on the seven branes is +2. The second ambient space fixed point locus descends to a set
of 8 isolated fixed points in the CY, hosting O3 planes that precisely cancel the positive
contribution from the seven branes. The D3 tadpole therefore vanishes in the absence of

fluxes and D3 branes. The orientifold entry is

{{07 2}7 {}7 {}7 {17 _1}’ _1687 O’ 417 {{{1}7 _87 _167 0}}7 {{{2}7 8}}7 0} . (353)

3.7 The non-favourable CICYs

Now we turn to the remaining CICY manifolds whose complete set of divisors does not
descend from the ambient space divisors via intersection with the CY threefold, i.e. they
are not favourable with respect to an ambient space that is a product of P™’s. Out of the
70 configuration matrices that are left non-favourable, a total of 22 matrices are either T
or K3 x T? As we are interested in A = 1 orientifolds we discard these. The other 48

matrices fall into two classes [16],

(a) 33 matrices describe CY threefolds that can be rewritten as favourable hypersurfaces
in an ambient space By x By where B; o are del Pezzo surfaces. It is well known
that the del-Pezzo surfaces {P?,P! x P! dPy,...,dP;} can be obtained as a complete
intersection manifold [41]. Thus, the anti-canonical hypersurface in each pairing
appears in the list of CICYs.

(b) 15 matrices describe the same manifold, the Schoen manifold [42] which can be
obtained as an anti-canonical hypersurface in dPy x dP,, where dF, is a rational
elliptic surface, i.e. P? blown up at nine points. dP, can also be written as a CI
manifold. The anti-canonical hypersurfaces in By x dPy with By almost del-Pezzo

surface are all equivalent to the Schoen manifold (Theorem 3.1 of [41]).
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3.7.1 CY hypersurfaces in products of del-Pezzo surfaces

Let us first focus on (a). The Z, involutions of the ambient space come in two classes. I:
Combinations of involutions of the two factors, and II: swaps of the two factors whenever
B, ~ B,.

We start with I. All possible Z, involutions of del Pezzo surfaces have been exhibited
in ref. [17].' There exist 28 pairs (B, o) where B is one of the ten del Pezzo surfaces and o
is a non-trivial involution, see table 3. First, consider an involution that acts non-trivially
only on (say) the first ambient space factor. Its fixed locus inside B; is a union of a set of
fixed divisors D{ and a set of ny, isolated fixed points. Choosing the anti-canonical section
to be Z; symmetric the D7 descend to generically smooth CY O7 divisors Df -y while the
ny, isolated fixed points descend to CY O7 divisors D¢ ? oy hosting conifold singularities. It

is straightforward to show that the former have Euler characteristic

XDZCY = 12/3 D;) . 01(81), (354)

and vanishing degree. Each isolated fixed point contributes a del Pezzo CY divisor with
the topology of B, containing a number of conifold singularities equal to the degree of Bs.

The D3 tadpole takes a universal value,

ZXD + nfp (X& + /132 01(82)2)
=3 (Z ¢ (By) + nf,,) =12, (3.55)

where the last equality is shown to hold by going through the list of involutions one by
one.

Second, we consider involutions that act non-trivially on both del Pezzo factors. The
ambient space fixed point locus has various different components. One, surfaces C} x CJ2

1,2 o , .
where the C;”” are fixed curves inside B; o, and two, curves for each pairing of isolated

14\We exclude dPs. A boring reason for discarding it is that anti-canonical hypersurfaces of B x dPs
do not appear in the CICY list. A better reason for doing so is that dim H°(K,dPs) = 2. Thus, any
global section F' of the anti-canonical line bundle on B x dPs can be expanded as F = fig' + fog? with
fi € H'(K,B) and ¢g' € H°(K,dPg). Then, a general CY hypersurface has conifold singularities at the
dg = fB c1(TB)? points where f; = fo = g' = g? = 0 that cannot be deformed (i.e. Bertini’s theorem
cannot be applied). They can, however, be resolved by blowing up the single point on dPs that is Poincaré
dual to ¢;(T'dPg)?. The result is the Schoen manifold constructed in ref. [42].
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fixed points in B; with fixed curves in By and vice versa, and three, isolated fixed points
for each pairings of isolated fixed points in the two ambient space factors. For an 03/07
orientifold, the anti-canonical section has to be chosen anti-symmetric across the first locus

giving rise to a set of CY divisors Df; of topology Cl x Cf with Euler characteristic

Xpg, = (C)*(CF)* = (CI)*(C - Ki,) — (C)*(C} - K,) + (C - K5,)(C} - Kp,),  (3.56)
containing

e = (C)*(C)* = (C)*(C} - Ki,) — (C7)*(C; - Kig,) +2(C; - K, )(C - Ki,)  (3.57)

conifold singularities. All other ambient space fixed loci give rise to a total number of O3

planes computed as

nos = n}pnfcp + n}p Z CJ2 - Kp, + nffp Z Cl - Kg, . (3.58)

J

In order to avoid singularities of co-dimension smaller than three we must impose additional
requirements. Consider an involution (o1, 03) acting non-trivially on both del-Pezzo factors,
and consider one of the two factors, say B;. As just explained, if both o4 » have non-trivial
fixed curves (C',C?) we get a non-trivial fixed divisor C! x C? in the CY if we choose the
anti-canonical section F' to be anti-symmetric across the surface C! x C? C B x B, defined
via the vanishing of two global sections f* € T'(O(C?)). Now, pick a point p € C* C B, and
define G = F(p) which is a global anti-canonical section on By. As ¢ is anti-symmetric
across C! under the involution, it vanishes at least linearly along C!. Therefore, we may
globally define G/ f! which is a section of O(K — C'). If G/f* vanishes identically the CY
threefold is singular along C' x C2. Thus, we need that the line bundle O(K — C') has at
least one non-trivial global section. This section is either constant, i.e. [K] = [C1], or it has
a vanishing locus which is another effective curve C ~ K — C'. In the latter case, since B,
is Fano, and thus K -C > 0 for all effective curves C, we must require that K - (K —C') > 0.
This is not met by all the del-Pezzo involutions classified in [17].

The class II of orientifolds comes from involutions that interchange two isomorphic
ambient space del Pezzo surfaces By «<— By ~ By = B. The fixed surface has the topology
of B, and the normal bundle is isomorphic to TB. For an O3/O7 orientifold, the anti-

canonical section has to be anti-symmetric across the fixed surface. Therefore, the number
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of conifold singularities is given by

Nep = / co(B) — 2¢1(B)* + (2¢1(B))* = x5 + 2d5 . (3.59)
B

The D3 tadpole is thus given by —QP3 = }1(2XB—I—2dB) = 6. A list of all the non-favourable

orientifolds and some of their relevant data can be found here.

3.7.2 The Schoen manifold

The Schoen manifold is represented by the remaining 15 configuration matrices, and has
(hY1 h21) = (19,19). A favourable description is given by the anti-canonical hypersurfaces
in dPy x dPy where dP, is a rational elliptic surface, i.e. P? blown up at nine points. As
h*1(dPy x dPy) = 20, there must exists two distinct ambient space divisor classes that

become equivalent once pulled back to the CY threefold, namely [16]
[KM|ey = [K*|ey - (3.60)

Up to this subtlety, the discussion of orientifolds of the Schoen manifold is analogous to
what we discussed in the previous section. Holomorphic involutions of dFP, have been
analyzed in [18], and we now give a very brief account of them, following [43]. dPy is an
elliptic fibration over P! with generically twelve degenerate fibers. It has h'! = 10 and a

standard basis of divisor classes ([, e, ..., €9) that satisfy
l2 = ]_7 l@i = 0, €i€; = _5ij y (361)

where [ is the proper transform of the hyperplane class of the base P! and the e; are the
exceptional divisors associated with the blown up points. The class of the generic fiber is
the anti-canonical class K = 3] — >"._, €;, and the zero section can be identified with the
exceptional divisor eg. The fibration can be given a Weierstrass representation as follows:

Consider a degree (6,3) hypersurface in the toric variety specified by the GLSM

11230
. (3.62)
00111

The first two coordinates (¢1,%) are the projective P* coordinates and the latter three are

projective P? coordinates that we label (x, y, z), which are also sections of (Op1(2), Op1(3), Op1).
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dPy is the vanishing locus of
P=—y’z+ 2%+ gty to]w2® + gslts, 12]2° = 0, (3.63)

with go and g3 generic degree four respectively six polynomials in the P! coordinates.

The first basic involution is given by
(—Dp: (ti:ta:rx:y:2z)—= (t1:ta:x:—y: 2), (3.64)

which acts trivially on the base and can be shown to reflect points in each fiber over the
origin. Its fixed point divisor D¢ is the disjoint union of the zero section ey given by
x = z = 0 with the divisor D, defined by the transverse intersection of y = 0 with the
hypersurface. This intersects the generic fiber at four points, so K - D = 4. Moreover,
¢g = —1 and D; =9, and there are no isolated fixed points.

The second basic involution is given by
ag: (t1:teixy:z)—>(t1:—ty:x:y:2), (3.65)

and the fixed point set is {t; = 0} U {ta =y = 0} U {t2 = © = 2z = 0} which is the disjoint
union of the fiber over the point ¢t; = 0 in the base and four isolated fixed points on the
fiber over t; = 0. The former is in the anti-canonical class so has self-intersection zero.
Two further involutions are obtained by composing the above with a translation along
the fiber by a section £, denoted t¢. t¢ o (—1)p is an involution for any section £, while
teoap is only an involution if ap(§) = (—1)5(§). As shown in section 4 of [18] such sections
can be found at particular loci in the moduli space of dFPy. For one such choice, the action
on cohomology of (—1)p, ap and t¢ has been fully worked out (see table 1 of [18]). We have
that t¢ o ap has no fixed divisor but four isolated fixed points on the fiber ¢; = 0. Finally,
te o (—1)p has a fixed divisor that intersects the generic fiber at four points, and whose
class can be identified with 2(3[ — Z§:2 e;) by noting the following. According to table 1
of [18] t¢ o (—1)p exchanges e; <+ eg. As these are exceptional divisors, the involution in
fact exchanges the two exceptional curves which do not intersect the fixed locus because
ereg = 0. Thus, we can blow down both exceptional divisors and obtain an involution
of dP; with no isolated fixed points. By comparing the action on cohomology with the
results of [17] one finds that the involution one ends up after the blow-down indeed has

one fixed divisor in 2(3] — ZZ:1 e;) without isolated fixed points. We summarize these
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involution fixed divisor D° | D°-c; | Ngp Rt
(dPy, (—1)5) e UD, 4 0 | 6
(dPy, (—a) ) 330 e 0 4 | 4
(dPy,teo (=1)p) | 2(31 =30, ¢) 4 0| 8
(dPy, te o (—a)p) - - 4 4

Table 1: Some Z, involutions of dPy surfaces, the fixed divisor DY, its intersection with
the anti-canonical divisor DY - ¢, the number of isolated fixed points Ny,, and the values

of hbL.

results in table 1. The resulting orientifolds, are grouped with the other orientifolds of
non-favourable CICYSs.

4 Application: Ultra light throat axions

The CICYs are famously known to form a web of geometric phases connected to each other
via conifold transitions [38]. At the level of the configuration matrices, these are described

by determinantal splittings

M a - apn
o 1 --- 1

] N [M D az} (4.1)

The manifolds described by the matrices on both sides are inequivalent if and only if
their Euler numbers are different. If they are, the splitting is called effective. Following
through such a transition, h'!' decreases while h?! increases. At the level of type II CY
compactifications the low energy physics near the conifold transition loci was understood by
Strominger [36] and Greene, Morrison, and Strominger [37]: The deformation branch can
be thought of as the Coulomb branch of the bulk U(1)"*" gauge theory, and the resolution
branch corresponds to a partial Higgsing.

At the level of O7 orientifolded N' = 1 flux compactifications there are arise new
interesting phenomena: Generic three-form fluxes stabilize all complex structure moduli
[2,44] and more so, generically stabilize them exponentially close to conifold points in
moduli space [2,5]. Backreaction of fluxes replaces the conifold regions by warped throats
with exponential red-shifting [2,45].

Moreover, momentarily disregarding the truncation of the spectrum due to orientifold-
ing, the change in h'! across the N' = 2 transition locus counts the number of exponentially

light complex axions (thrazions) whose field excursion weakly twists the various throats

31



against each other [1,21]. These axions can be identified with the massless axions one
obtains on the resolved side of the transition by integrating C'; and By over the inde-
pendent resolution two-cycles. On the deformed side they receive an exponentially small
superpotential of order the deformation parameter.

However, there are two necessary conditions that have to be satisfied in order for the
thraxions to actually be part of the light spectrum. First, at the A/ = 2 level, it must be
possible to cross the transition locus in a way that preserves a geometric Z; symmetry,
namely the one we would like to use to define an O3/O7 orientifold projection. In other
words, across the locus hi’l must increase toward the resolved side. Second, the set of extra
light axions one obtains on the resolved side of the transition must not be fully projected
out by the O7 orientifold projection, i.e. h™' must also increase by at least one toward
the resolved side. Thus, two independent resolution cycles must shrink to a set of conifold
singularities, and the geometric Z, involution associated with the O3/0O7 orientifold must
interchange them.

It is easy to find explicit conifold transitions between orientifolds of anti-canonical
surfaces in products of del Pezzo surfaces that satisfy all properties. As recalled in appendix
B a blow up/down of exceptional divisors in either of the two del Pezzo factors generically
descends to a conifold transition in the CY threefold. Thus, we are instructed to inspect the
web of Zy-compatible blow up/down transitions which has been listed in Figure 10 of [17],
and find transitions across which A" jumps at least by one. One caveat that we need to
pay attention to is the following. If two Zy symmetric del Pezzo surfaces that are connected
by a blow up/down transition have different number of fixed divisors and/or isolated fixed
points, the number of O-planes will jump across the transition locus. Thus, in the vicinity
of the transition locus, some of the stacks are on the brink of merging or collapsing. While
it would be interesting to analyze the spectrum of light degrees of freedom that appears
when a CY orientifold is stabilized in such a region of moduli space, for now we would
like to avoid this complication. Thus, we will restrict to blow-up/down transitions across
which both the number of isolated fixed points and connected fixed divisors is invariant.
We then expect that the seven-branes and O3 planes do not play an important role for the
discussion. We list the blow up/down maps in table 2

Let us look in detail at the CY orientifold transitions obtained from the anti-canonical
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del-Pezzo transitions # fixed divisors | # fixed points

(dP4,0'2) — (dPQ,O'g) — (PQ,O') 1 1
(dP5,0'1) — (dPg,O'Q) — (dP17O'2) 1 2
(dP5,0'2) — (dPg,O'g) — (Pl X P1,0'3) 1 0
(dpg,al) — (dP4,0'1) — (dPQ,O'Q) 1 3
(dP7,0'1) — (dPg,,O'g) — (dP3,0'4) 0 4
(dP7,O'3) — (dP5,O'dJ) 1 0
(dPg,O'Q) — (dPﬁ,O'Q) 1 1

Table 2: The Zs-invariant del-Pezzo transitions that lead to conifold singularities in the
associated CY threefold that avoid the O-plane loci. Across each transition both hfr’l and
h'! decrease by one. In the first five lines, two subsequent transitions are possible leading
to jumps of hi' by two.

hypersurfaces in the chain of transitions

(dPs,02) x (P?,1) (dP3,03) x (P?,1) (P' x P! o3) x (P?,1)
(2 hEY =14,3) —  BYLeMhY =320 — (M RMHY=(2,1)  (42)
(K>, > = (11,32) (h2' h2h) = (19, 40) (%' h2h) = (27,48)

In each of the three orientifolds the D3 tadpole is equal to 12, and there are no conifold
singularities at generic points in moduli space. Across each of the two transitions there
appear 9 conifold singularities (18 in the double cover) that are not located on top of
O7 planes and that can subsequently be deformed in a way that is compatible with the
orientifolding. Locally, this looks just like the N/ = 2 conifold transitions. Upon stabilizing
the deformation modes near one or both of the conifold singularities, one obtains strongly
warped throats with one respectively two independent complex axions with exponentially
small superpotential as described in [1].

For the orientifolds of favourable CICYSs, one searches for involutions that swap at least
one pair of rows, each containing only one’s and zero’s, with at most one common non-
vanishing entry. If this is the case, the first row can be collapsed using (4.1), such that
the second row that is obtained after the splitting still contains only one’s and can thus be
collapsed as well. There are 319, 521 orientifolds in our list that fulfill this requirement (see
thrazion_candidates). These are ~ 94% of the cases with h"" # 0. In addition, analogously
to what we have said for the conifold transitions in the non-favourable cases, one might
want to further require that the O3 and O7 planes are not transformed by the conifold

transition. Filtering out these, we obtain a list of 11,533 orientifold conifold transitions!®

15This list is not complete because we have only considered cases where a suitably obvious set of swaps
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(thrazion_transitions) each encoded in an entry

{{iCICY7 io—foldy irow—pair}a {jCICY7 jo—fold}} ) (43)

where the first entry corresponds to the resolved side and contains the CICY number
tcrcy, the position of the orientifold in our list i,— o4, and an index ¢youy—pqeir indicating
that the ¢,u—peir -th pair of rows interchanged by the involution is collapsed. The second
entry specifies the deformed side CICY-orientifold. 1,279 of these are transitions between
pairs of orientifolds of CICYs that are smooth away from the transition locus, as opposed
to orientifolds of the larger set of smooth CYs that are reached from the CICYs via the

resolution of frozen conifold singularities. Here is an example,

[ P21 1 1 0|
PLIO 0 1 1 PLl1 1
PLlo 1 0 1| —|P2|1 2 (4.4)
PLI1 0 0 1 P20 3

| P210 0 0 3 |

On the resolved side, the second and third row as well as the second and third column
are interchanged by the involution, Z = (1,0,0,0,0), and all parities are positive. The
deformed side is reached by collapsing the two interchanged rows. No further rows and
columns are interchanged, Z = (0, 1,0), and again all parities are positive. On both sides
there are two smooth O7 divisors with (x1,d;) = (36,0) and (x2,d2) = (12,0) respectively,
so the D3-tadpole is 12. The Hodge numbers (hi’l, nht hi’l, h%l) transform as

(4,1,20,39) —> (3,0, 28,47), (4.5)

and on the transition locus of the double-cover of the orientifold there are |Axcy|/2 =
18 conifold singularities with two homology relations among the shrinking three-spheres.
These can be grouped into a pair of 9 conifolds each that is interchanged by the orientifold
action.

We leave the phenomenology of this interesting class of axion-models for future work.
Here, we note only that the examples with two axions we have considered feature a diagonal

kinetic matrix. Then, at the classical level, the two axion-sectors are sequestered from one-

of rows and columns brings the configuration matrix obtained via the splitting to the form of one of the
configuration matrices recorded in the CICY-list.
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another in that their scalar potentials simply add up.
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A Basic properties of del Pezzo surfaces

In this appendix we recall a quick collection of basic facts about algebraic geometrical
properties of del Pezzo surfaces. See for example [41] for a more detailed treatment.

By definition a Fano variety X over an algebraically closed field F is a complete irre-
ducible algebraic variety such that its anticanonical sheaf Kx is ample. In the following
we will only focus on Gorenstein Fano varieties, so the anticanonical bundle exists and by
definition it has to be ample. The Nakai—-Moishezon criterion implies that the ampleness
of the anticanonical bundle is equivalent to the requirement that for every effective curve
C, the intersection with the anti-canonical divisor K is positive, i.e. K-C > 0. A del Pezzo
surface is a smooth projective Fano variety of Krull dimension 2.

From now on, we will only consider del Pezzo surfaces over the field C, and Krull
dimension coincides with ordinary dimension in differential geometry. Complex del Pezzo
surfaces can be classified as follows: we can either take P? and blow up k = 0, - - - 8 points,
or we can take P! x P! and blow up k& = 0, - - - 7 generic points. We will call the first class
of surfaces dP and the latter Fy. It is well known that Fj ~ By, so in particular it is
enough to consider just P! x P! and dP,. Note that trivially dPy ~ P2 In the following
we will denote with B any of those 10 del Pezzo surfaces.

Let us discuss the topological properties of B, and let us start with dP,. We denote by
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[ the proper transform of the hyperplane class of the P?, and e; the exceptional divisors,

associated to the blown-up points. The intersection numbers read
llzl, lel:(], 62"6]':—52‘]', Z,]:l,,]{? (A].)

The anti-canonical class of the del Pezzo surfaces is given by

K =ci(dPy) = 31 — Zei, (A.2)

=1

and its Euler characteristic is 3 + k. Its degree is

d= / ci(dP)? =9k, (A.3)
dP;

and measures the number of points where two generic anti-canonical divisors intersect. For
k = 0,1,2,3 the dP, are toric varieties, while for higher k& this is no longer true. Let us
briefly move to P! x P! now. Being the direct product of two projective planes, it has two
hyperplane classes H and H’, first Chern class ¢; = 2H 4+ 2H', degree d = 8, and it also
admit a toric description.

The fans for the toric del Pezzos dP,, ...,dPs; and P! x P! are given in figure 6, and the

associated GLSM charge matrices are

] 10 1 0
1 0 1 1
Q= 1|11, Qpiypr = 0 1| Qap, = ERE
01 0 —1
1 0 1 1
1 0 1
1 1 0 1
L 0 1 1 1 0
=11 1 1], . = Ad
Qur Q=g o (A1)
0O -1 0
0O 0 -1 0
0O 0 -1
0O 0 0 -1

The automorphism groups Aut(B) are easily determined from the automorphism group of
P? which is PGL(3,C). Their image under the blow-down map dP, — P? is simply the
subgroup of PGL(3,C) that leaves the set of k marked points (the ones that are blown up)
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Figure 6: The fans of the toric del Pezzo surfaces. The blue edges are associated with toric
coordinates e; s.t. the locus e; = 0 corresponds to the exceptional divisor E;.
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invariant. Their dimensions are
dim Aut(B) = max{2d — 10,0}, (A.5)

which holds also for P! x P'. We would also like to know the number of complex structure
moduli of a del Pezzo surface h.s(B) = dim H'(B,TB). As each of the k blown up points
is labeled by two complex coordinates we have h.s(B) = max{2k — dim Aut(P?),0}, i.e.

hes(B) = max{10 — 2d, 0}, (A.6)
which again holds for P! x P! as well. We may also write
hes(B) — dim Aut (B) =10 — 2d. (A7)

A further important quantity is the dimension of the space of global sections of the anti-
canonical line bundle on a del Pezzo surface B. The Grothendieck-Riemann-Roch theorem

says that

dim H°(B, K) — dim H*(B, K) + dim H*(B, K)

_ / h(R)Td(B) = d + 1 (A8)

where ch(K) is the Chern class of the anticanonical bundle, and T'd(B) the Todd class
of (the tangent bundle on) B. The Kodaira-vanishing theorem implies the vanishing of
dim H(B, K @ L) for all i > 0 if the line bundle £ is positive. Choosing £ = 2K which is

positive for Fano spaces, we deduce from (A.8) that in fact
dim H(B,K) =d +1. (A.9)

Finally, we recall that all the del Pezzo surfaces with degree d # 1 can be written as a

complete intersection of hypersurfaces in a product of projective spaces. This is why they
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appear in the CICY list. One of many ways to represent them is as follows,

- - p!l
P! |1 P21 1
dP1: ) dP2: Pl O 1 ) dP3: )
P2 |1 P21 1
L h P2
dP4:_P1 ] dP5=[P4\2 2} dPGZ[P?)\:s} AP, = Ph2
| P22 ] ’ ’ P2 |2
(A.10)

B The anticanonical hypersurface in a product of two

del Pezzos

In the main text, we are interested in CY threefolds that arise as anti-canonical divisors
in By x By with By del Pezzo, and in determining their number of Kahler and complex

structure moduli. In this appendix we fill in some details. Let d; (resp. ds) be the degree
of By (resp Ba).

For the Kéhler moduli, we will use the following theorem of Kollar [46]:

Theorem 1. (Kollar) Let X be a smooth Fano variety with dim(X) > 4. Let Y C X be a
smooth divisor in the class Kx. Let NE(Y) (resp. NE(X)) be the Kleiman-Mori cone of
Y (resp. X ). Then the natural inclusion

i, : NE(Y) - NE(X) (B.1)

s an isomorphism.

This theorem implies that in our case under study, all the Kéhler moduli of the CY

threefold simply descend from the ambient space ones, so
Pt =20 —d; —dy. (B.2)

The number of complex structure moduli can be determined from the Euler charac-
teristic by subtraction. Using the adjunction formula one determines ycy = —2d;d, and
therefore

h*t =20 —dy — dy + dyds. (B.3)
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It is useful to rewrite this as follows

h2’1 =dim H0<Bl, K) - dim HO(BQ, K)+
— 1 —dim Aut(B;) — dim Aut(By)+
+ hes(By) + hes(B2) (B.4)

Equation B.4 implies that we can think of all of the h*! complex structure moduli as co-
efficients appearing in a general global section of the anti-canonical line bundle of B; x Bs,
subtracting one for the overall scaling and the dimension of the ambient space automor-
phism group, and finally adding the complex structure moduli inherited from the ambient
space. Clearly, if we want to compute h>' for a given Z, involution acting only on the first
factor By, we replace H°(By, K) by the vector space of Zy-even global sections H (B, K),
replace Aut(B;) by the subgroup of the automorphism group that commutes with the Z,
action, denoted Aut(B,), and replace h.(B;) by h(B;). This way of computing h>",
rather than employing the Lefschetz fixed point formula (3.26), is employed as a cross-
check.

Furthermore, it is important to note that upon blowing down an exceptional divisor
of the first ambient space factor By, one obtains dy = [ ¢1(Bs)? conifold singularities in
the CY. This is seen most easily as follows: Every exceptional divisor of d P, intersects the
anti-canonical divisor at one point, i.e. ¢;(dP;) - E; = 1. Thus, upon blowing down an
exceptional divisor to a point, thus creating dP;_1, the anti-canonical divisor will contain
this point. This is why dim H°(B, K) increases with the degree. This point is given by the
intersection of two divisors Dy and Dy in dP,_; that are represented as the vanishing loci
of global sections p; » of the respective divisor line bundles. Because this point is contained
in the anti-canonical divisor we started with, the anti-canonical divisor is represented by

a global section f of the anti-canonical line bundle that can be expanded as'®

f=pi-g1+p2- 92, (B.5)

where g; and g, are global sections of the anti-canonical line bundle of By with coefficients
that are global sections of a line bundle £; respectively L5 on dPj_;. Generically, the
common vanishing locus p; = py = g1 = go = 0 produces a conifold singularity in the

CY because all four sections will vanish linearly. The number of such points is given by

160f course, also before the blow-down the generic section can be expanded as in eq. (B.5), but the
intersection D - Dy is empty in dPy, so there are no conifold singularities.
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the generic number of intersections between two anti-canonical divisors in By, i.e. by the
degree dy of By. Of course, once the exceptional divisor is blown down, we can deform the
singularity by dialing the dy — 1 newly acquired complex structure moduli. Thus, we have
described a conifold transition in the CY from the resolved to the deformed side across
which h'! decreases by one, and h*! increases by dy — 1. Since dP; is P? blown up at
generic points, no pair of them coincides. Therefore, we may blow down any number n < k
of exceptional divisors without producing more severe singularities than conifolds in the
threefold. Using this, one obtains conifold transitions across which h''! decreases by n and

h*! increases by n(dy — 1).

C Involutions of del Pezzo surfaces

The involutions of del Pezzo surfaces have been classified in [17], and are listed in table 3

Let us explain in detail the possible Z, involutions of the toric del Pezzo surfaces, i.e.
P~ dPy,P' x P!, dPy,dP, and dP;. We associate a toric coordinate x, to each generator
of a one-dimensional cone p € ¥(1) of the fan. It is useful to first consider the case of dPs.

There are four scaling relations among the six toric coordinates {zy,, Ty, Tug, Teys Teys Tes |

2

A()('I’Ln ) x’uza x’u3)

~ (/\11:1)27 )\lwvga )\ erl)

~ (A2$U17 )\21‘1)3, )\ :BEQ)
(

—1
Lypy Lygy Leg) ™~ )‘vaw >\3xv2; )‘3 -7753) ) (Cl)

To each toric coordinate we associate a toric divisor D,, {D,,, Dy,, Dy, De,, Dey, Dey }, that

satisfy homology relations

[D'Ul] + [DEQ] = [DUQ] + [D€3]
[Dm] + [Des] = [Dvg] + [De1]
[sz] + [De:a] = [Dvs] + [Dez] . (0'2)

o~
—
—

Dvl} + [Dez] + [szs] = [sz] + [Del} + [De3] = [Dvs] + [De1] + [Dez]
[e1] = [De],  e2] = [Deo],  les] = [Dey] - (C.3)
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involution fixed divisor D° D?-c; | Ny, Y| action on Ho
(PZ,U) l 3 1 0 11
PIxPLay) | (H)U(H) [0 ]0 1,
(Pl X Pl,O'Q) - - 4 0 12
(P x PL, o) H+H 4 0| 1 F
(dpl, 0'1) (l) U (61) 4 0 0 12
(dPl,O'g) l—61 2 2 0 12
(dPQ,O'l) (l—el) U(62> 3 1 0 13
(dPQ,O'Q) l—€1 — €9 1 3 0 13
(dPQ, 03) [ 3 1 1 11 @D F
(dPg, 0'1) (l — €1 — 62) U (63) 2 2 0 14
(dPg,Ug) l—€3 2 2 1 12@F
(dpg,ag) 2[-61 — €9 4 0 2 Ié?s
(dP370'4) - - 4 1 I(g?g
(dP4,0'1) l—€1—€2 1 3 1 13@F
(dP4,0'2) { 3 1 2 11@F@F
(dP5,0'1) l—61 2 2 2 12@FEBF
(dP5,UQ) 21—61 — €9 4 0 3 [C(ﬁ% @F
(dPs, 03) - - 4 | 2 I eF
(Ps,00)) | 31=37 e 4 |0 |4 Lip,
(dP@,Ul) l—€1—62 1 3 2 ld@F@F
(dpﬁ, 0'2) 3l — Z?:l €; 3 1 4 16(15’)5 D 11
(dPs, 0v) - - 4 | 3| IeoFaF
(dP7, 0'2) 3l — 21'7:1 €; 2 2 4 ]C(liz&,) @ 12
(dPy, o3) -0 e 4 0|5 I eF
7 (9)
(dP;, 0¢) 6l — 2 Zgz-:l e 4 0 | 7 (5)Idp7
(dPg,Ul) 3[-21-:1 €; 1 3 4 IdP5 @15
(dPs, o) 3—-50 e 3 1|5 |[IDelLeF
(dPs,05) 9-3%"% e 3 1| 8 5

Table 3: Table adopted from table 6 of [17]: The possible Zy involutions of del Pezzo
surfaces, the fixed divisor DY, its intersection with the anti-canonical divisor DY - ¢y, the
number of isolated fixed points Ny,, the values of hY! and actions on the divisor classes
(I,e1,...,e,) respectively (H, H'). F denotes a flip e; <— e, respectively H <— H'.
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We expand the Kihler form as J = t°[] — 3°_ '[e;]. All divisors have positive volume if
-t —t'>0, i,7=1,2,3, i#j,and >0, i=1,273. (C.4)

For dP, we delete the last row of (C.1) and set D, — 0, for dP; we delete the second and
third rows, set D, ,

and all exceptional divisors are shrunken. P! x P! is obtained by shrinking vs and es. A

— 0 and relabel e5 — e, and for dPy ~ P? only the first remains

geometric action on the toric ambient space coordinates translates to a geometric action

on the fan. dP, admits a Z, symmetry that exchanges
Ty, 6 Ty,  Tey > Tey - (C.5)

The Z, fixed point locus {2y, Te, — Ty, T, = 0} U {2y, Te, + Ty, xe, = 3 = 0} is the disjoint

union of a P! and an isolated fixed point. The action on our basis of divisors is
E1 — E2 . (C6)

Thus, CY threefolds obtained as a hypersurface of dP, x ... orientifolded by the above Z,
action will have A1 = 1. dFPy; admit an analogous Z, action, but the action on the divisor
classes is trivial, so hY! = 0.

dP3; admits two distinct Z, actions with co-dimension one fixed point locus. The first
is the same as the one of dP;, so the discussion is analogous. The Z, fixed point locus is
{Zp, ey — Tpy@ey = 0} U{Ty,Tey + Tpye, = X3 = 0} U {X4, Tey + Ty Tey, = Tey = 0}, s0 it is
the disjoint union of a P! and two isolated fixed points.

. 2
The second Z5 action is called [ CS P)3 and acts as
Ty, > Ty, Tyy > Teyy  Tyg > Tey - (C.7)

The action on the divisor classes is

3
l—>21—2617 61—>l—61—€3,
=3

62—>l—62—63, 63—)[—61—62. (08)
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This maps the Kahler form

J— T =2 =Y )= (" —t' —t%)e; — (t° =17 = )y — (1° — ' = P)e5, (C.9)

which is in the Ké&hler cone if J is in the Ké&hler cone. For Z, invariance of the Kahler
form we have to set t° = Z?Zl t and t!' = t2. As the requirement of Z, invariance fixes
two linear combinations of the Kahler parameters, we have b = 2.

Finally, I 531’3)3 is defined by reflecting the fan over the origin, but the fixed point locus of

2 2.2 2.2

this action is given by two constraints zaz?, = x322, = 23x? , so it is of co-dimension two.

It acts on the divisor classes as

3
l—>2l—Zei, 61—>l—€2—€3,
1=3

62—>l—61—637 63—>l—61—62. (ClO)
This maps the Kahler form

J—J =@ =Yt — (' = = t)e; — (t° —t' — t¥)ey — (1" — ' —?)e5, (C.11)

which is also in the Kéahler cone if J is in the Kéhler cone. Again, for Z, invariance of the

Kihler form we have to set t* = 327 # so hb' = 1.
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