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Techniques are proposed to reduce numerical oscillations in a fourth-order, finite-volume 
algorithm for solving thermally-perfect, reacting fluid flows with strong discontinuities, 
such as shock or detonation waves. These additional mechanisms have proven necessary 
for multispecies flows solved at fourth-order accuracy, and contribute towards bounding 
the variation of the solution in the vicinity of strong discontinuities. There, oscillations 
can form due to strong gradients in the flow and may be further intensified by numerical 
procedures introduced to treat the thermally-perfect thermodynamic system and physical 
constraints on species mass fractions. The new techniques are designed to respect the 
conservative property of the base algorithm, retain fourth-order accuracy of the solution 
in regions of smooth flow, and cooperate with the high-order piecewise parabolic method 
limiter. Extensive numerical tests, ranging from multispecies mixing flows to reacting flows 
with detonations, are performed to verify that the new techniques meet the design criteria 
while effectively suppressing oscillations. The proposed techniques are applied to solve 
the Shu-Osher and double Mach reflection problems and a set of oblique detonation wave 
problems. The results demonstrate the effectiveness and robustness of the algorithm.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Finite-volume methods (FVMs) are inherently conservative and benefit from computational efficiency on structured grids. 
Traditionally, FVMs in computational fluid dynamics (CFD) engineering applications have been constrained to second-order 
accuracy because high-order methods are more complicated and lack the significant research investment of second-order 
methods [1,2]. However, increasing the order of accuracy of an algorithm from second-order to higher order (e.g., fourth-
order, which is of interest to the present study) has the potential to deliver higher accuracy on a given mesh. This is 
particularly important when solving flows that contain unsteady vortices, complex dynamics, or small scale resolvable fea-
tures, such as those encountered in large-eddy simulation, where low-order algorithms are overly diffusive. Additionally, 
high-order methods can take advantage of modern computational hardware in terms of increasing the arithmetic intensity 
for the same level of accuracy.

In recent years, interest in the development and application of high-order CFD methods has increased. International 
workshops on high-order methods offer an open forum for CFD researchers from academia, government, and industry to 
share the development and evaluation of high-order methods [3]. Nevertheless, extending FVMs from first or second-order 
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Nomenclature

cn Mass fraction of the nth species
ed Unit normal vector in the dth direction
�F Convective flux dyad, i.e., [Fx , Fy , Fz]
i Vector denoting a spatial index
Mn Molecular weight of the nth species
Nr Total number of reactions
Ns Total number of species
p Pressure
Rn Gas constant for the nth species
T Temperature
U Conservative variable vector

u Velocity vector
W Native primitive variable vector
W̃ Nonnative primitive variable vector
xd Position in physical space in the dth direction
ρ Density
ξd Position in computational space in the dth di-

rection
ω̇n Chemical production rate of the nth species
〈·〉i Cell-averaged value
〈·〉i+ 1

2 ed Face-averaged value

·|(2) Second-order value

to high-order accuracy increases the complexity of the algorithm and the potential for numerical oscillations in nonsmooth 
regions of fluid flow. Furthermore, these issues can be exacerbated when solving thermally-perfect, reacting, gaseous flows 
with shock and detonation waves. Many techniques have been developed to obtain solutions for flows containing shock 
or detonation waves in the context of high-order FVMs, including the piece-wise parabolic method (PPM) [4,5], essentially 
non-oscillatory (ENO) and weighted ENO (WENO) schemes [6,7], multi-dimensional limiting process [8,9], and hybrid lim-
iters [10], to name a few. Many strategies often pose constraints in terms of the solution accuracy, computational efficiency, 
and algorithmic complexity. Compromises are sometimes made to increase monotonicity of an algorithm. One such com-
promise is when conservation is sacrificed in favor of a less oscillatory, quasi-conservative method (the double-flux method 
[11–13]). Another compromise, made in nonsmooth flow regions, is when a fifth-order, linear WENO scheme is replaced 
with a total variation diminishing limiter, such as the hybrid method [10], which blends a double-flux method [14], a 
superbee-centering approach [15], a nonlinear error controlled WENO method [16], a low Mach number adjustment [17], 
and a monotonic upwind scheme for conservation laws [18]. Published literature [19,20] also indicates that simply adding 
numerical dissipation is not sufficient to eliminate or mitigate problems that arise from strong nonlinearities of the ther-
modynamic system, and inconsistently added dissipation can potentially lead to decreased stability. In the present work, we 
develop techniques in “Chord” [21–24] using the PPM limiter as a basis to suppress numerical oscillations in discontinuous 
flows. There, an emphasis is made on using adaptive-mesh refinement (AMR) with fourth-order accuracy in space and time.

The primary goal of this paper is to develop and apply techniques to reduce numerical oscillations in high Reynolds 
number, multispecies flows with strong shock and detonation waves using a fourth-order FVM. The remainder of the pa-
per is organized as follows. The mathematical and numerical modeling framework are briefly described in Section 2. The 
relevant numerical operations in the fourth-order FVM are detailed in Section 3. The new oscillation reduction techniques 
are provided in Section 4. Technical details of these new techniques are provided in Sections 4.2 and 4.3, including a de-
scription of the methodology and demonstrations of oscillation reduction through test cases. Section 5 provides verification 
and numerical solutions to the Shu-Osher problem [25], double Mach reflection problem, and a series of oblique detonation 
waves (ODWs) over a wedge to demonstrate the satisfactory performance of the techniques. Finally, Section 6 states the 
conclusions.

2. Mathematical and numerical modeling framework

2.1. Mathematical modeling

In this work, gaseous fluid flow is modeled using the Euler equations and a set of species transport equations with 
reaction kinetics, when combustion is considered. The computational domain is Cartesian, and the physical space is mapped 
to computational space using the generalized curvilinear coordinate transformation. Further, the grid is assumed to not 
deform over time. When transformed using grid metrics, the system of governing equations for a compressible gas on a 
mapped domain, including the continuity, momentum, energy, and a set of species transport equations, is given by

∂

∂t
( Jρ) + �∇ξ · (NTρu

) = 0 , (1)

∂

∂t
( Jρu) + �∇ξ ·

(
NT(ρuu + p��I)

)
= Jρ �f , (2)

∂

∂t
( Jρe) + �∇ξ ·

(
NTρu(e + p

ρ
)

)
= Jρ �f · u , (3)

∂

∂t
( Jρcn) + �∇ξ · (NTρcnu

) = Jρω̇n , n = 1 , . . . , Ns , (4)
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where J is the metric Jacobian, NT is the transformation grid metrics, e is the total specific energy, ��I is the identity tensor, 
and �f is the body force terms. The total specific energy is given by

e =
∣∣�u∣∣2

2
+

Ns∑
n=1

cnhn − p

ρ
, (5)

where hn is the total specific enthalpy of the nth species. Additionally, the ideal gas law is

p = ρT
Ns∑

n=1

Rncn . (6)

The governing equations on mapped domains can be written in the conservative form as

∂ JU

∂t
+ �∇ξ ·

(
NT�F

)
= J S , (7)

where U is the solution variable vector, �F is the convective flux dyad, and S is the source term vector; these are given by

U =

⎡⎢⎢⎣
ρ
ρu
ρe
ρcn

⎤⎥⎥⎦ , �F =

⎡⎢⎢⎣
ρu

ρuu + p��I
ρu (e + p/ρ)

ρcnu

⎤⎥⎥⎦ ,S =

⎡⎢⎢⎣
0

ρ �f
ρ �f · u
ρω̇n

⎤⎥⎥⎦ . (8)

Additionally, we define the primitive variables as W = [ρ , u , p , cn]T, and the nonnative primitive variables are [W̃]T =
[WT, T ]T.

The thermodynamic must be approximated to close the system of governing equations. Under the thermally-perfect 
fluid assumption, the thermodynamic properties (such as enthalpy and specific heat) are functions of temperature. For each 
species, the properties are evaluated using curve fit polynomials [26,27]. For example, the enthalpy of the nth species is 
computed using

hn(T ) = Rn T

(
a8,n

T
− a1,n

T 2
+ a2,n

T
ln T +

7∑
i=3

ai,n

i − 2
T (i−3)

)
, (9)

where the coefficients a1,n to a8,n are empirically fit over a set range of temperature. Typically, one set of coefficients is 
provided for a range of 200 − 1000 K and another for a range of 1000 − 6000 K. This means that Eq. (9) is only valid for 
200 K < T < 6000 K. The properties of the gaseous mixture are evaluated using certain mixing rules. For example, the total 
specific enthalpy for the fluid mixture is h = ∑Ns

n=1 cnhn .

2.2. Numerical framework

To solve the nonlinear system of governing partial differential equations of Eq. (7), a semi-discrete form is derived for 
each cell i using the finite-volume method as

d

dt
〈 JU〉i = −1

h

D∑
d=1

(
〈NT

d
�F〉i+ 1

2 ed − 〈NT
d
�F〉i− 1

2 ed

)
+ 〈 JS〉i , (10)

where 〈NT
d
�F〉i+ 1

2 ed is the mapped convective fluxes and 〈 J S〉i is the mapped source term. Again, we employ FVMs because 
we are interested in solving flows with strong discontinuities on locally-structured grids with AMR [28]. These flows ben-
efit from the conservation property of FVMs. Other spatial discretization methods, such as finite-difference, finite-element, 
discontinuous Galerkin, or lattice-Boltzmann, can also be used for solving the system of equations. Readers are referred to 
literature [29–32] for strengths and limitations of each method. The time evolution of the solution is achieved using the 
standard, four-stage Runge-Kutta (RK4) time marching method [33]. While monotonic fluxes at each stage of the standard 
RK4 methods does not guarantee stability of the updated solution, the present work focuses on reducing numerical os-
cillations associated with the fourth-order spatial discretization scheme. More stable time-marching methods, such as the 
flux-corrected transport method [34], will be considered in future work.

Although this research contains no new work on AMR, all functionality in the present work is implemented in an 
AMR framework to allow solutions to utilize AMR. Parallel AMR in Chord makes use of the Chombo library [5,28]. AMR 
allows increased mesh resolution at areas of interest without the increased computational costs associated with having 
increased mesh resolution throughout the entire domain. Areas of interest, such as combustion flame fronts, should use 
a finer mesh to reduce the error. Time marching on refined levels can employ sub-cycling, meaning the solution on the 
finer level advances multiple smaller time steps relative to the coarser level solution. Additionally, all solutions in this work 
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utilize artificial viscosity in the vicinity of shocks. More information about the sub-cycling and artificial viscosity techniques 
used are provided by Guzik et al. [21]. Details regarding the numerical framework of Chord can be found in previous 
work [21–24].

3. Numerical operators

This section details the numerical operations relevant to the techniques that will be presented in Section 4. The numer-
ical oscillations of interest to this work fundamentally reside with the spatial operators in the present fourth-order FVM 
algorithm when solving flows with strong discontinuities. First, we discuss the fourth-order deconvolution/convolution (DC) 
operators, since they are extensively used in the present algorithm and are prone to introduce numerical oscillations, as 
demonstrated in Section 4.3. Next, we outline the methodology for computing the fourth-order, mapped, convective fluxes. 
Finally, we present the nonlinear physics and the techniques for constraining species mass concentrations and mass frac-
tions.

3.1. Deconvolution/convolution operators

Most second-order FVMs use the midpoint rule to approximate cell-averaged or face-averaged data, meaning 〈φ〉i =
φi + O(�ξ2), where φ can be any quantity, 〈φ〉i is a cell-averaged value, φi is a cell-centered value, and �ξ is the spatial 
resolution in computational space. However, the fourth-order FVM in the present study uses a convolution operation to 
approximate the averaged value in a cell or at a face. The fourth-order convolution of a cell-centered value is used to 
approximate a cell-averaged value and is defined as

〈φ〉i = φi + �ξ2

24
�

(2)
ξ φi +O

(
�ξ4

)
, (11)

where

�
(2)
ξ φi =

D∑
d=1

(
∂2φ

∂ξ2
d

)
i

=
D∑

d=1

φi+ed − 2φi + φi−ed

�ξ2
d

. (12)

Correspondingly, the fourth-order deconvolution of a cell-averaged value can be used to approximate a cell-centered value 
when conversion between averaged and point values is necessary and is defined as

φi = 〈φ〉i − �ξ2

24
�

(2)
ξ 〈φ〉i +O

(
�ξ4

)
. (13)

Equations (11) and (13) are referred to as the convolution and deconvolution operators in cells, respectively. The convolution 
of a face-centered value is used to approximate a face-averaged value and is defined as

〈φ〉i+ 1
2 ed = φi+ 1

2 ed + �ξ2

24
�

(⊥,d)
ξ φi+ 1

2 ed +O
(
�ξ4

)
, (14)

where 〈φ〉i+ 1
2 ed is a face-averaged value, φi+ 1

2 ed is a face-centered value, and

�
(⊥,d)
ξ 〈φ〉i+ 1

2 ed =
D∑

d′ 	=d

(
∂2〈φ〉
∂ξ2

d′

)
i+ 1

2 ed

=
D∑

d′ 	=d

〈φ〉i+ 1
2 ed+ed′ − 2〈φ〉i+ 1

2 ed + 〈φ〉i+ 1
2 ed−ed′

�ξ2
d′

.

(15)

Similarly, the deconvolution of a face-averaged value can be used to approximate a face-centered value when conversion 
between averaged and point values is necessary and is defined as

φi+ 1
2 ed = 〈φ〉i+ 1

2 ed − �ξ2

24
�

(⊥,d)
ξ 〈φ〉i+ 1

2 ed +O
(
�ξ4

)
. (16)

The product of cell-averaged or face-averaged values also require convolution operations. The product of two cell-averaged 
values is evaluated by

〈φψ〉i = 〈φ〉i〈ψ〉i + �ξ2

12

D∑
d=1

(
∂〈φ〉
∂ξd

)
i

(
∂〈ψ〉
∂ξd

)
i
+O

(
�ξ4

)
, (17)

where ψ can be any quantity and
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(
∂〈φ〉
∂ξd

)
i
= 〈φ〉i+ed − 〈φ〉i−ed

2�ξd
. (18)

The product of two face-averaged values is

〈φψ〉i+ 1
2 ed = 〈φ〉i+ 1

2 ed 〈ψ〉i+ 1
2 ed + �ξ2

12

D∑
d′ 	=d

(
∂〈φ〉
∂ξd′

)
i+ 1

2 ed

(
∂〈ψ〉
∂ξd′

)
i+ 1

2 ed

+O
(
�ξ4

)
,

(19)

where(
∂〈φ〉
∂ξd′

)
i+ 1

2 ed
=

〈φ〉i+ 1
2 ed+ed′ − 〈φ〉i+ 1

2 ed−ed′

2�ξd′
. (20)

3.2. Solution procedure

The following 14 steps prescribe the solution procedure for evaluating the convective fluxes.

S.1 Calculate the second-order, nonnative primitive state (which includes temperature),(
W̃|(2)

)
i = W

(〈U〉i
)
. (21)

S.2 Approximate the fourth-order accurate, cell-centered conservative state, U, using

Ui = 〈U〉i − �ξ2

24
�

(2)
ξ 〈U〉i . (22)

S.3 Directly calculate the cell-centered nonnative primitive state,

W̃i = W (Ui) . (23)

S.4 Approximate the fourth-order accurate, cell-averaged nonnative primitive state using

〈W̃〉i = W̃i + �ξ2

24
�

(2)
ξ

(
W̃|(2)

)
i . (24)

S.5 Interpolate the fourth-order accurate, face-averaged primitive state using Eq. (42)
S.6 Apply the slope flattening and PPM limiter [35,36] to the face-averaged primitive state. The PPM limiter modifies the 

interpolant on each cell adjacent face to constrain the parabolic profile in each cell. These techniques require the 
undivided, second-order second derivative, δ2W. Note, these limiting methods are only necessary for certain types of 
flows, like flows with discontinuities.

S.7 Resolve the interpolated left and right states by solving a Riemann problem. Note that the solution to the Riemann 
problem depends on which variables of ρ , p, and T are interpolated and which is calculated using the ideal gas law 
(this is discussed further in Section 4.2). Numerical experimentation shows that limiting temperature and pressure 
and calculating density provides the largest reduction in numerical oscillations.

S.8 Calculate the second-order accurate temperature using the face-averaged native primitive state using

(
T |(2)

)
i+ 1

2 ed =
〈p〉i+ 1

2 ed

〈ρ〉i+ 1
2 ed

Ns∑
n=1

Rn〈cn〉i+ 1
2 ed

. (25)

S.9 Deconvolve the face-centered primitive state from the face-averaged primitive state.
S.10 Calculate the face-centered temperature from the face-centered primitive state.

T i+ 1
2 ed =

pi+ 1
2 ed

ρi+ 1
2 ed

Ns∑
n=1

Rn (cn)i+ 1
2 ed

. (26)

S.11 If the face-averaged temperature is required, as is the case for diffusive flows, convolve the face-averaged temperature 
using

〈T 〉i+ 1 ed = T i+ 1 ed + �ξ2

�
(⊥,d)
ξ

(
T |(2)

)
i+ 1 ed , (27)
2 2 24 2
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S.12 Calculate the face-centered convective flux dyad, �F.
S.13 Convolve the face-centered convective flux dyad to find the face-averaged flux dyad, 〈�F〉.
S.14 Solve the mapped, face-averaged convective fluxes using

〈NT�F〉i+ 1
2 ed = 〈NT〉i+ 1

2 ed 〈�F〉i+ 1
2 ed + �ξ2

12

D∑
d′ 	=d

(
∂〈NT〉
∂ξd′

)
i+ 1

2 ed

(
∂�F
∂ξd′

)
i+ 1

2 ed

. (28)

3.3. Nonlinear physics

For calorically-perfect fluids, the primitive variable, T , can be explicitly computed from the conservative variables using

T = γ − 1
Ns∑

n=1

U(D+2+n)Rn

(
U(D+2) −

D∑
d=1

U2
(d+1)

2U(1)

)
, (29)

where U(i) represents the ith component of the U vector from Eq. (8). However, for thermally-perfect, gaseous fluids, T is 
implicitly related to the internal energy from the function

f (U, T ) =
D∑

d=1

U2
(d+1)

2U(1)

+
Ns∑

n=1

(
U(D+2+n)

(
hn(T ) − Rn T

)) − U(D+2) . (30)

Solving for T from Eq. (30) requires an iterative solution. In the present work, the Brent’s method [37] is utilized to solve 
for temperature using f (U, T ) = 0. The solution in Brent’s method is converged only if the following is true∣∣Tnew − Told

∣∣ ≤ (
4ε1

∣∣Tnew
∣∣ + ε2

)
, (31)

where ε1 and ε2 are 3 × 10−15 and 1 × 10−12, respectively.
The enthalpy term, hn(T ), in Eq. (30) is computed using the curve fit polynomials from Eq. (9). As previously mentioned, 

these polynomials are only valid within a given range of temperature. Therefore, Brent’s method will fail to converge to a 
value of T if it falls outside of the temperature range of the polynomial fits; in Section 4.3, we demonstrate how severe 
numerical oscillations can cause temperature to fall outside valid temperature range.

3.4. Physical constraints

The physical constraints on mass fractions are

Ns∑
n=1

cn = 1 and 0 ≤ cn ≤ 1, ∀n ∈ Ns . (32)

The first physical constraint in Eq. (32) is adhered to due to the law of mass conservation, but positivity of cn is not 
inherently ensured due to numerical errors; therefore, the physical constraints must be explicitly enforced. There are many 
different ways to enforce Eq. (32). One common practice is to simply modify the mass fraction of a single inert species 
to meet the physical constraints. However, this technique can result in significant changes to enthalpy estimates and lead 
to divergence of Eq. (30). Instead, the physical constraints are enforced by correcting all present species depending on the 
relative quantity of each species, so the more mass concentration or mass fraction of a particular species that exists in a 
cell or at a face, the more that species is adjusted. The correction of species mass concentrations is done using

(ρcn)
f = (ρ̃cn)ρ∑Ns

j=1 ρ̃c j

, (33)

where

ρ̃cn = max
(
0,min(ρ,ρcn)

)
, (34)

and (ρcn) f is the adjusted species mass concentration. Equation (32) can also be enforced on the primitive mass fractions 
using

(cn) f = c̃n∑Ns c̃ j

, (35)

j=1
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where

c̃n = max
(
0,min(1, cn)

)
, (36)

and (cn) f is the adjusted species mass concentration. Many different constraint techniques were tested over the course 
of this work. However, any technique for constraining species leads to violation of the conservation of species mass con-
centration. Therefore, it is best to minimize the necessity and application of these constraint techniques. Since numerical 
oscillations are responsible for the appearance of nonphysical species values, it is more beneficial to suppress numerical 
oscillations than to improve species constraint enforcement techniques.

4. Numerical oscillation reduction techniques

4.1. Overview

In previous research that utilizes Chord [24,38], the PPM limiter [5] sufficiently suppressed oscillations for flows with 
strong discontinuities. However, issues associated with numerical oscillations were observed when modeling reacting flows. 
In combination with the PPM limiter, new techniques are necessary. The techniques must have the following properties. 
First, the techniques must suppress oscillations in flow solutions that contain detonation waves. Ideally, the techniques 
would not increase the number of interior neighboring cells involved in the solution. Finally, the techniques must retain 
fourth-order accuracy in regions of smooth flow.

Accordingly, the following techniques have been devised, implemented, and tested:

• Face value limiting techniques

– face value limiting (FVL)
– primitive variable limiting selection

• DC limiting (DCL) techniques

– cell- and face-based DC flattening
– face construction order reduction (FCOR)

Subsequent sections will delineate the methodology and demonstrate the reduction of numerical oscillations on problems 
with shocks.

4.2. Face value limiting

While the base limiting approach that we use is the high-order extension to the PPM limiter recommended by Mc-
Corquodale and Colella [5], the original PPM limiter [39] can be viewed as three separate steps:

1. limit the face value interpolation;
2. limit the parabolic interpolant construction with consideration for smooth extrema;
3. apply slope flattening to the interpolants.

As recommended by McCorquodale and Colella, the first step is typically not applied to avoid excessive dissipation. However, 
our numerical experiments of flows with strong shock and detonation waves have shown that FVL appears to be necessary 
for multispecies or reacting flows. The FVL method developed in this research is based, in part, on the fourth-order face 
value limiting proposed by Colella and Sekora [4].

The remainder of this subsection provides the detailed methodology and a demonstration of improvements to the solu-
tion.

4.2.1. Methodology
The proposed FVL method replaces the fourth-order face interpolation in step S.5 in Section 3.2. A few terms are defined 

for the sake of improving readability of the method. The fourth-order, undivided second derivative at a face is calculated 
using (

δ2φ
)

i+ 1
2 ed

= (〈φ〉i+2ed − 〈φ〉i+ed − 〈φ〉i + 〈φ〉i−ed

)
/2 . (37)

The undivided third derivative at a face is calculated using(
δ3φ

)
1 d

=
(
δ2φ

)
d
−

(
δ2φ

)
, (38)
i+ 2 e i+e i



8 L.D. Owen et al. / Journal of Computational Physics 415 (2020) 109515
where(
δ2φ

)
i
= 〈φ〉i+ed − 2〈φ〉i + 〈φ〉i−ed . (39)

The error in a cell is estimated using [10]

ei =
∣∣∣∣−〈φ〉i−2ed + 4〈φ〉i−ed + 4〈φ〉i+ed − 〈φ〉i+2ed

6〈φ〉i
− 1

∣∣∣∣ . (40)

The FVL methodology, applied at a face i + 1
2 ed for each primitive variable, is described by the following 4 steps:

1. Interpolate the fifth-order face value using

〈φ〉i+ 1
2 ed = 〈φ〉i + 〈φ〉i+ed

2
−

(
δ2φ

)
i− 1

2 ed + 18
(
δ2φ

)
i+ 1

2 ed + (
δ2φ

)
i+ 3

2 ed

120
, (41)

where the undivided second derivatives are computed using Eq. (37). Note that if 
(
δ2φ

)
i− 1

2 ed , 
(
δ2φ

)
i+ 1

2 ed , and 
(
δ2φ

)
i+ 3

2 ed

are all computed from a polynomial fit through 〈φ〉i−ed , 〈φ〉i , and 〈φ〉i+ed , the standard fourth-order approximation [40]
is recovered,

〈W〉i+ 1
2 ed = −〈W〉i−ed + 7〈W〉i + 7〈W〉i+ed − 〈W〉i+2ed

12
. (42)

2. If 
(〈φ〉i+ 1

2 ed −〈φ〉i
)(〈φ〉i+ed −〈φ〉i+ 1

2 ed

)
> 0, then the face value is not a local extremum and FVL is not applied. Similarly, 

if ei < 1 ×10−3 and ei+ed < 1 ×10−3, then the values around the face are smooth and FVL is not applied; these tolerances 
come from Houim and Kuo [10]. Otherwise, continue to the next step.

3. Check that the interpolated face value is not a small perturbation of a cubic interpolation using

α max

(∣∣∣∣(δ3φ
)min

i+ 1
2 ed

∣∣∣∣ , ∣∣∣∣(δ3φ
)max

i+ 1
2 ed

∣∣∣∣) ≤
(
δ3φ

)max

i+ 1
2 ed

−
(
δ3φ

)min

i+ 1
2 ed

, (43)

where α = 0.1 (from McCorquodale and Colella [5]),(
δ3φ

)min

i+ 1
2 ed

= min

((
δ3φ

)
i+ 1

2 ed
,
(
δ3φ

)
i− 1

2 ed
,
(
δ3φ

)
i+ 3

2 ed

)
, (44)

and (
δ3φ

)max

i+ 1
2 ed

= max

((
δ3φ

)
i+ 1

2 ed
,
(
δ3φ

)
i− 1

2 ed
,
(
δ3φ

)
i+ 3

2 ed

)
. (45)

If Eq. (43) is false, do not apply any FVL. Otherwise, continue to the next step. This test is similar to one used by 
McCorquodale and Colella [5].

4. Set the face value based on the undivided first derivative to the left and right of the face using

(δφ)L = 〈φ〉i+ed − 〈φ〉i −
(
δ2φ

)
i+ 1

2 ed
, (46)

and

(δφ)R = 〈φ〉i+ed − 〈φ〉i +
(
δ2φ

)
i+ 1

2 ed
, (47)

respectively. If the derivatives change signs, set the face value to a linear average of the adjacent cells. Otherwise, check 
the magnitudes of the derivatives. If the derivative on one side of the face is three times the derivative on the other side 
of the face, fit a quadratic through both cells that ensures the smaller derivative becomes zero. This can be shown in 
equation form as

〈φ〉i+ 1
2 ed = 〈φ〉i + 〈φ〉i+ed

2
− 1

6

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if (δφ)L (δφ)R < 0 ,

〈φ〉i − 〈φ〉i+ed , if | (δφ)L | > 3| (δφ)R | ,
〈φ〉i+ed − 〈φ〉i, if | (δφ)R | > 3| (δφ)L | ,(
δ2φ

)
1 d , otherwise .

(48)
i+ 2 e
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Fig. 1. Density profiles of the shock (right) and contact surface (left) at solution time t = 49 μs. The blue dashed line: density is interpolated and FVL is not 
applied; red dash-dot line: temperature is interpolated and FVL is not applied; gray line: density is interpolated and FVL is applied; black line: temperature 
is interpolated and FVL is applied. Pressure is always interpolated/limited. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

4.2.2. Demonstration
A shock tube case with a shock strength of Ma ≈ 4.9 is used to demonstrate the capability of the FVL method and 

impact of the selection of primitive variable to calculate using the ideal gas law. The shock tube domain is Lx × L y =
31.25 cm × 0.4883 cm, and the initial discontinuity is at x = 15.625 cm. The mesh is Nx × N y = 512 × 8. The domain is 
periodic in the y-direction, and the x-direction boundary conditions are slip walls. Half of the shock tube is composed of air 
and the other half is composed of helium. A large gradient of the mixture gas constants form at the initial discontinuity due 
to disparate molecular weights of He and O2/N2. The shock tube is initialized with the following left and right properties, 
denoted by subscripts L and R , respectively,(

p, T , cN2 , cO2 , cHe

)
L
=

(
7.20 × 106 Pa,2 × 103 K,0,0,1

)
(

p, T , cN2 , cO2 , cHe

)
R

=
(

1 × 105 Pa,300 K,0.767,0.233,0

)
.

It is worth mentioning that, through numerical experiments, we found that the severity of numerical oscillations in 
the solution depend on which primitive variables are interpolated/limited and which are calculated at a face. If all three 
variables (ρ , p, and T ) are interpolated independently, the state on the face violates the ideal gas law. Therefore, only two 
variables can be interpolated, and the third must be calculated from the ideal gas law. Shock tube tests run as part of this 
work demonstrated that pressure must always be interpolated/limited to obtain a solution.

Four different solutions are shown in Figs. 1 and 2. In the figures, “w/ FVL” denotes FVL is applied and “w/o FVL” denotes 
that FVL is not applied. Also, the variable shown in the legend denotes the variable that is interpolated/limited. The density 
profiles in Fig. 1 show that the overshoot at the contact surface is eliminated when FVL is applied. Since temperature is 
a function of density, energy, and mass fractions, the temperature profiles in Fig. 2 demonstrate more severe numerical 
oscillations than the density profiles. As in the profiles of density, numerical oscillations arise around the contact surface. 
Oscillations around the contact surface are eliminated when temperature is interpolated and density is calculated using the 
ideal gas law. The implication from these results is that the least oscillatory scheme is obtained when applying all three steps 
in the PPM limiter, with the new technique described in Section 4.2.1 used as step 1, to all primitive states except density, 
which is calculated using the ideal gas law. Chord solutions shown beyond this point are obtained by interpolating/limiting 
temperature and pressure, solving for density at the face, and applying FVL, unless otherwise specified.

It is insightful to assess the performance of the FVL method by comparing with other limiting techniques for thermally-
perfect, multispecies flows with strong discontinuities, such as the family of WENO limiting schemes. Specifically, the 
WENO-Z limiter is investigated with the PeleC code [41] using the shock tube problem. Details regarding this limiter are 
provided by Motheau et al. [42]. Both Chord and PeleC are compressible FVM solvers; the latter is not globally fourth-order 
accurate and does not explicitly enforce the physical constraints in Eq. (32), potentially leading to
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Fig. 2. Temperature profiles of the shock (right) and contact surface (left) at solution time t = 49 μs. The blue dashed line: density is interpolated and 
FVL is not applied; red dash-dot line: temperature is interpolated and FVL is not applied; gray line: density is interpolated and FVL is applied; black line: 
temperature is interpolated and FVL is applied. Pressure is always interpolated/limited.

Fig. 3. Density profiles of the shock (right) and contact surface (left) at solution time t = 49 μs. The blue dashed line: PeleC solution using the fifth-order 
WENO-Z limiter; red dash-dot line: PeleC solution using the third-order WENO-Z limiter; gray line: PeleC solution using the seventh-order WENO-Z limiter; 
black line: Chord solution using the PPM limiter with FVL.

ρ 	=
Ns∑

n=1

ρcn . (49)

To ensure the comparisons are reasonable, the WENO-Z solutions also use temperature-based limiting.
Figs. 3 and 4 show the density and temperature profiles, respectively, to compare the WENO-Z limiting schemes in PeleC 

with the PPM/FVL in Chord. The density profiles in Fig. 3 show the third-order WENO-Z scheme introduces dissipation 
around the contact surface. The PPM/FVL solution is slightly more dissipative than the fifth and seventh-order WENO-Z 
but less dissipative than the third-order WENO-Z. There is more variability between the temperature profiles in Fig. 4. All 
three WENO-Z solutions have an undershoot prior to the contact surface followed by an overshoot at the contact surface; 
this overshoot is sharp for the fifth and seventh-order schemes. In contrast, this sharp overshoot at the contact surface is 
eliminated in the Chord solution. The results in Figs. 3 and 4 suggest that the PPM/FVL scheme suppresses severe oscillations 
near discontinuities more than the low-dissipation WENO-Z schemes for thermally-perfect, multispecies flows.
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Fig. 4. Temperature profiles of the shock (right) and contact surface (left) at solution time t = 49 μs. The blue dashed line: PeleC solution using the fifth-
order WENO-Z limiter; red dash-dot line: PeleC solution using the third-order WENO-Z limiter; gray line: PeleC solution using the seventh-order WENO-Z 
limiter; black line: Chord solution using the PPM limiter with FVL.

4.3. Deconvolution/convolution limiting

Existing limiting techniques for FVMs [5,35,36] focus on reducing oscillations at the faces through means such as inter-
polant limiting and slope flattening. These existing techniques are often sufficient for second-order FVMs, where the cell 
and flux integrals are approximated using the midpoint rule, and for fourth-order solutions of calorically-perfect gases. As 
previously mentioned, the finite-difference approximation of the derivatives require information from neighboring cells or 
faces. Near large gradients or discontinuous regions, these numerical approximations can introduce severe, nonphysical os-
cillations into the flow. Furthermore, the impact of these nonphysical oscillations can be exacerbated by the nonlinearities 
of the thermodynamic system. To give a relevant scenario (coming from our many observations), assume that severe oscil-
lations are introduced during the deconvolution of 〈U〉i in Eq. (22). An algorithm would traditionally rely on face limiting 
or slope flattening mechanisms to eliminate these oscillations. However, due to the issues detailed in Section 3.3, these 
oscillations must be addressed before limiting or flattening face values.

Additionally, the PPM face and cell-interpolant limiting and slope flattening are unable to eliminate oscillations intro-
duced during the face-based DC operations due to the order of operations. Unfortunately, literature regarding techniques to 
alleviate such oscillations in high-order FVMs [43] is scarce. Therefore, it is our hope that the DCL techniques developed 
and tested in the present research will help resolve these issues and contribute to the literature in this particular context.

4.3.1. Methodology: deconvolution/convolution flattening
The DC flattening technique selectively reduces the order of accuracy of the DC operations based on the normalized 

difference between the fourth-order and second-order approximation of a variable. The normalized difference is calculated 
using

(�φ)DC =
∣∣φ(2) − φ(4)

∣∣
C1 + ∣∣φ(2)

∣∣ , (50)

where the constant C1 is 1 × 10−20 to prevent the denominator from going to zero. The DC flattening coefficient is then 
solved as

ηDC =
{

0, if (�φ)DC > εDC ,

1, otherwise ,
(51)

where εDC = 0.2 is the tolerance for the DC order reduction. The value of εDC is determined from numerical experimenta-
tion. The tolerance εDC tolerance represents a trade-off between accuracy and numerical oscillations. Generally, the lower 
the tolerance, the greater the reduction in oscillations at the cost of decreased accuracy. The DC flattening coefficient is 
applied using

φF = (1 − ηDC)φ(2) + ηDCφ(4) , (52)
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where φF represents the final flattened value in a cell or at a face. If the nonlinear solution in Eq. (30) fails to converge to 
a solution, the values for T and p are set to 1.2 × 10300 so that (�φ)DC ≈ 1 > εDC. This ensures the order of accuracy is 
dropped when the nonlinear solution fails to converge.

Regarding Eq. (50), special care must be taken when velocity values approach zero. To address this issue, the constant 
C1 = 1 when φ = u. Special care must also be taken when applying DC flattening to values that are less than one, like mass 
fractions. To address this issue, the solution of Eq. (50) when φ = cn, ∀n ∈ Ns is

(�φ)DC =
∣∣φ(2) − φ(4)

∣∣
C1 + ∣∣φ(2)

∣∣ + ∣∣φ(4)
∣∣ . (53)

4.3.2. Methodology: face construction order reduction
In addition to DC flattening, it is necessary to selectively modify the order of accuracy of the values used during the 

construction and limiting of face values. Three different checks are required to see if FCOR is necessary. The first check at 
the i + 1

2 ed face involves the percent difference between the linear face construction using fourth-order average values and 
second-order values and is given by

φmax
i+ 1

2 edε
FR
1 <

(
φmax

i+ 1
2 ed − φmin

i+ 1
2 ed

)
, (54)

where εFR
1 = 1 × 10−3,

φmax
i+ 1

2 ed = 1

2
max

(∣∣∣φ(2)

i+ed + φ
(2)
i

∣∣∣ ,

∣∣∣φ(4)

i+ed + φ
(4)
i

∣∣∣) , (55)

and

φmin
i+ 1

2 ed = 1

2
min

(∣∣∣φ(2)

i+ed + φ
(2)
i

∣∣∣ ,

∣∣∣φ(4)

i+ed + φ
(4)
i

∣∣∣) . (56)

The second check evaluates the normalized difference between the undivided, second-order face derivatives. The second 
check at the i + 1

2 ed face is

δ1,maxεFR
2 <

∣∣∣δ1
(
φ(2)

)
− δ1

(
φ(4)

)∣∣∣ , (57)

where εFR
2 = 1 × 10−3, the second-order, first derivative on the face is calculated using

δ1 (φ) = φi+ed − φi , (58)

and

δ1,max = max
(∣∣∣δ1

(
φ(2)

)∣∣∣ ,

∣∣∣δ1
(
φ(4)

)∣∣∣) . (59)

The tolerances for both tests are determined through numerical experimentation conducted as part of this research. As with 
the DC flattening, the lower tolerances generally result in greater reduction of oscillations at the cost of decreased accuracy. 
The final check comes from the tolerance check for the Brent’s nonlinear solver. It is performed to ensure FCOR is not 
applied in regions where round-off error becomes significant. This test is

δ1,max >

(
4ε1φ

max
i+ 1

2 ed + ε2

)
, (60)

where the tolerances for ε1 and ε2 come from Eq. (31). If Eqs. (54), (57), and (60) are all true, then the face values are 
constructed using the second-order, primitive state.

4.3.3. Implementation
Implementing the DCL techniques requires modifying the standard solution procedure described in Section 3.2.

• After step S.4, the DC flattening coefficient is calculated using the normalized difference of(
�〈W̃〉)DC =

∣∣W̃|(2) − 〈W̃〉∣∣
C1 + ∣∣W̃|(2)

∣∣ . (61)

The DC flattening coefficient is applied using

〈W̃〉F = (1 − ηDC)W̃|(2) + ηDC〈W̃〉 , (62)

where 〈W̃〉i is replaced by 〈W̃〉F
i throughout the remainder of the solution procedure in Section 3.2. This step is then 

repeated for the cell-centered nonnative primitive state, W̃.
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Fig. 5. Demonstration of oscillations produced during solution procedure. The solid, black lines are the fourth-order, cell-averaged values and the dashed, 
black lines are the second-order, cell-averaged values.

• If Eqs. (54), (57), (60) are all true (where φ(2)
i → (

W̃|(2)

)
i from Eq. (21) and φ(4)

i → 〈W̃〉i from Eq. (24)), then the FVL 
technique in Section 4.2 uses (W̃|(2))i instead of 〈W̃〉i in Eqs. (41) and (48).

• Following the solution of the nonnative primitive state on the faces in step S.11, the DC flattening is applied to the 
following:

– Compute a new value of ηDC using Eqs. (50) and (51) where φ(2) → 〈W〉i+ 1
2 ed , φ(4) → Wi+ 1

2 ed , and Wi+ 1
2 ed is 

replaced with WF
i+ 1

2 ed from Eq. (52) for the remainder of the solution procedure.

– Repeat the last step except φ(2) → (
T |(2)

)
i+ 1

2 ed from Eq. (25), φ(4) → T i+ 1
2 ed from Eq. (26), and T i+ 1

2 ed is replaced 

with T F
i+ 1

2 ed from Eq. (52) for the remainder of the solution procedure.

– Repeat the last step except φ(2) → (
T |(2)

)
i+ 1

2 ed from Eq. (25), φ(4) → T i+ 1
2 ed from Eq. (27), and 〈T 〉i+ 1

2 ed is replaced 

with 〈T 〉F
i+ 1

2 ed from Eq. (52) for the remainder of the solution procedure.

4.3.4. Demonstration: deconvolution/convolution flattening
A shock tube problem demonstrates the numerical oscillations that occur due to the DC operations near large gradients. 

The shock tube domain is Lx × L y = 10 cm × 0.625 cm, and the initial discontinuity is at x = 5 cm. The mesh is Nx × N y =
128 × 8 cells with two refined levels, each with a refinement ratio of 2. Refinement is based on gradients of density. This 
shock tube problem differs from the one in Section 4.2 because each case is deliberately designed to expose different issues. 
The initial left and right states in the shock tube are given as(

p, T , cN2 , cO2 , cCO, cCO2

)
L
=

(
1.177 × 106 Pa,4.905 × 103 K,0.1,0.8,0,0.1

)
(

p, T , cN2 , cO2 , cCO, cCO2

)
R

=
(

1. × 105 Pa,1.607 × 103 K,0.5,0,0.25,0.25

)
.

Fig. 5 shows the profiles of cO2 and the normalized temperature on the first refined mesh level during the first time 
step. The dashed, black line is the solution of Eq. (21) and the solid, gray line is the solution of Eq. (24). Fig. 5a shows 
a nonphysical, negative cell-averaged mass fraction at the discontinuity. Fig. 5b shows the cell-averaged temperature is 
1278 K at x = 5 cm, while the second-order, cell-averaged temperature is 1744 K; this produces a value of (�T )DC = 0.26
from Eq. (50). If cCO is replaced with cH2 in the initialization, the oscillations introduced during deconvolution cause the 
nonlinear solution for the cell-centered temperature to diverge during the first time step. The DC flattening technique would 
reduce the order of the DC operations at this discontinuity and eliminate the oscillations in Fig. 5.

4.3.5. Demonstration: face construction order reduction
An ODW over a wedge is used to demonstrate the improvements provided by the FCOR technique. Fig. 6 depicts the 

basic structure of an ODW over a wedge. In the figure, a reactive mixture moving at a high Mach number encounters a 
wedge, causing an oblique shock to form. The heating from the oblique shock induces deflagration and ultimately produces 
a detonation wave. In the present work, a Schwarz-Christoffel mapping transformation [44] is used to model the wedge, as 
illustrated in Fig. 7, where lr represents the length of the ramp and ls represents the length of the lead up to the ramp.

For the current problem, θ = 23.8◦ , Ma∞ = 8, p∞ = 34 kPa, and T∞ = 300 K. The mixture is a stoichiometric mixture 
of hydrogen and air. The current setup is based on a case run by Figueria da Silva and Deshaies [45] except the reaction 
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Fig. 6. Schematic of the basic structure of an ODW over a wedge.

Fig. 7. Demonstration of the computational domain for the wedge geometry.

Fig. 8. ODW temperature profiles extracted in computational space at solution time t = 11.2 μs. The profile is at a constant value of η = 3 × 10−4.

mechanism is the 9 species, 19-step mechanism from Billet et al. [46]. The lengths of the ramp and lead up to the ramp are 
lr = 7 cm and ls = 0.5 cm, respectively. The base mesh is 320 × 128, and the computational domain lengths are Lξ × Lη =
1 × 0.4. The mesh has three additionally refined levels; the first two levels have refinement ratios of 4 and the third level 
has a refinement ratio of 2. Refinement is based on gradients of temperature, and there is fixed refinement in the layer of 
cells adjacent to the wall.

Fig. 8 shows temperature profiles taken along the direction of the lower boundary in the rectangular computational 
domain at a fixed point of η = 3 × 10−4, or 0.075% of the domain in the wall normal direction; this location represents 
the top of the numerical overheat region and at solution time t = 11.2 μs. The profiles show the temperature far behind 
the oblique shock wave (OSW), which forms at ξ/Lξ × 100 ≈ 4.9. The rise in temperature is due to the heat release from 
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Fig. 9. ODW temperature profiles extracted in computational space at solution time t = 22.1 μs. The profiles are at a constant value of η = 0.01.

the reactions which are initiated due to the numerical overheating at the wall [47]. More information regarding ODWs and 
numerical overheating is provided in Section 5. Two different profiles are shown, the dashed line is the solution with FCOR 
applied, and the solid line is the solution without FCOR applied. Both solutions utilize FVL and DC flattening. The solution 
without FCOR contains severe oscillations as heat release occurs. These oscillations cause the solution to diverge shortly 
after the solution time t = 11.2 μs. The heat release locations between the solutions with and without FCOR differ by 
approximately 4% of the computational domain length. However, the oscillations are eliminated when the FCOR is utilized. 
In fact, FCOR is applied where the heat release induced by the numerical overheat at the wall interacts with the flow in 
the induction zone. Incurring increased overheating near the wall to reduce severe oscillations in the flow is deemed an 
acceptable trade-off to solve problems involving hypersonic flows with chemical reactions.

Figs. 9a and 9b show temperature profiles taken along the direction of the lower boundary in the rectangular compu-
tational domain at a fixed point of η = 0.01. The profiles are taken at solution time t = 22.1 μs. The figures use a red box 
to show locations where DC flattening and/or FCOR have reduced the order of accuracy of temperature during the stages 
of the latest time step. Fig. 9a shows the temperature profile from the nonreactive shock (the sharp rise at the left) to the 
heat release at the deflagration wave (the gradual rise at the right). Fig. 9b is a magnified view of Fig. 9a at the nonreactive 
shock. Since deflagration is a smooth phenomenon, we want to retain high-order accuracy in this region. However, we desire 
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Fig. 10. Demonstration of a warped mesh with a single refined level where �S = (0.1,0.1).

order reduction around the nonreactive shock to eliminate or mitigate the formation of numerical oscillations. Both figures 
show that the DCL tests are properly calibrated to reduce the order near the shock but not in the region of deflagration.

5. Results

The limiting techniques presented in this work are tested and compared on a series of cases. First, the order of accuracy 
of the scheme is verified using a shear problem. Next, a shock tube problem is used to demonstrate the improvements 
provided by the techniques to the conservation of species mass concentrations. The calorically-perfect Shu-Osher and double 
Mach reflection problems are used to demonstrate the impact that the techniques have on discontinuities and small scale 
structures. Finally, the techniques are applied to solve a set of ODW problems. Other test cases, such as a mass diffusion 
bubble, were used for verification and validation but are not shown here for the sake of brevity. Previous work provides 
more details about some of these cases [22–24].

5.1. Order of accuracy verification

Algorithm accuracy is verified by examining the solution errors. Errors are measured with the L∞-, L1-, and L2-norms 
of the difference between the “exact” solution and the numerical solution. The “exact” solution is analytically computed, if 
possible, or determined using Richardson extrapolation. The order of accuracy n, as in O(�ξn), is defined by

n = log

(
Lm(r�ξ)

Lm(�ξ)

)
/ log (r) , (63)

where Lm(�ξ) is the m-norm of the error from a solution with a mesh of resolution �ξ , and r is the refinement ratio 
between the meshes. For the verification in the present study, r = 2.

Richardson extrapolation is performed to project a more accurate solution based on the numerical solutions obtained 
at different spatial resolutions. More information regarding order of accuracy verification with Richardson extrapolation is 
provided by Guzik et al. [21]. For convenience, acronyms are used to denote mesh types. “PC” stands for the precoarse mesh, 
“C” for coarse, “M” for medium, “F” for fine, and “PF” for postfine. The convergence rates between two adjacent meshes are 
denoted as “PC-C”, “C-M”, etc. The PF solution is used to extrapolate an “exact” solution for a coarser grid solution.

Order of accuracy verification using a shear problem is a stringent test of transverse terms in the algorithm and uncovers 
many issues related to accuracy. Other verification test cases (such as a Gaussian acoustic pulse and mass diffusion bubble) 
were performed but are not shown here for the sake of brevity. The domain length is Lx × L y = 1 m × 1 m with all 
periodic boundaries and diffusion is neglected. The domain is initialized to a uniform pressure and temperature of p = 1 atm
and T = 300 K, respectively. The initial fluid is comprised of mass fractions cO2 = 0.233 and cN2 = 0.767. The velocity is 
initialized using

u(x, y) = 100 cos (2π y) , v(x, y) = 100 cos (2πx) . (64)
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Fig. 11. Shear problem solution accuracy of x-momentum both without and with face value limiting, labeled “w/o FVL” and “w/ FVL”, respectively.

In order to verify that the techniques work with curvilinear coordinate transformation, the shear problem uses a mesh 
that is warped according to

xd = ξd + Sd

D∏
p=1

sin

(
2πξp

Lp

)
, d = 1, . . . , D , (65)

where �L is the length of the domain and �S is a scaling factor that must be bounded by 0 ≤ 2π Sd ≤ Ld to ensure the mesh 
does not tangle. The scaling factor for the shear problem is Sd = 0.1. When AMR is used in the solution, the grid on the 
finer level is fixed in computational space from (0.25, 0.25) to (0.75, 0.75) with a refinement ratio between levels of 2. The 
refined level is placed so that large gradients occur at AMR interfaces. The warped mapping and refinement are illustrated 
in Fig. 10. More information regarding this specific mapping is provided by Colella et al. [48].

The solution accuracy of 〈 Jρu〉 is measured at solution time t = 44.8 μs and plotted in Figs. 11, 12, and 13. The PF 
mesh has 20482 cells, and the refinement ratios between the meshes is 2. Fig. 11 compares the solution accuracy between 
single-level solutions with and without FVL. The impact of FVL on the solution error is negligible. Fourth-order accuracy is 
achieved for all grids and solution norms. Fig. 12 compares the solution accuracy between solutions on single-level grids 
and solutions with one additional AMR level with neither solution using FVL. The resolution of the finest level of each AMR 
grid matches the resolution of the corresponding single-level grid. The error from the solution with one additionally refined 
level is larger than the error from the single-level solution. As described by Guzik et al. [21], a loss of up to one-order 
of accuracy can occur in coarse cells adjacent to the interfaces between coarse and fine levels; this impact is made more 
apparent when the interface is exposed to strong gradients. The order of accuracy of the L1- and L2-norms converges to 
approximately 3.95, while the L∞-norm continues to increase from 3.5 to 3.82 as the grid is refined. Fig. 13 shows the 
same data as Fig. 12 except both solutions use FVL. The order of accuracy of the L1- and L2-norms begin to converge 
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Fig. 12. Shear problem solution accuracy of x-momentum without face value limiting using both single-level grids and AMR grids. For the AMR grids, each 
AMR grid has one additional level of refinement. The resolution of the finest level of each AMR grid matches the resolution of the corresponding single-level 
grid.

to approximately 3.94, while the L∞-norm continues to increase from 3.48 to 3.87 as the grid is refined. These figures 
demonstrate FVL does not impair convergence to fourth-order accuracy of the algorithm.

Verification of the DCL techniques is shown in Table 1. All solutions use FVL. The top of the table compares the con-
vergence rates between solutions with and without DCL techniques for single-level solutions, i.e., no AMR. Similarly, the 
bottom of the table compares convergence rates for solutions that use an additional refinement level. This demonstrates 
that DC flattening and FCOR do not impair convergence to fourth-order accuracy for flow solutions on warped grids with or 
without AMR.

5.2. Conservation of species mass concentration

One important benefit to using FVMs is that they ensure conservation. However, the species mass concentration cor-
rections described in Section 3.4 can violate the conservation of an individual species mass concentration, even when no 
mechanism for creating or destroying species, such as chemical reactions, are in place. Therefore, minimizing the impact 
of the species mass concentration corrections is of great importance. To test this, the shock tube problem described in 
Section 4.2.2 is used to evaluate the impact that the limiting techniques have on the conservation of species mass concen-
trations. The test does not use any reaction source terms, and the boundaries are walls in the x-direction and periodic in 
the y-direction to ensure mass, energy, and species are not added or removed at the boundaries.

To measure conservation, conserved variables are integrated over the domain at the start of the simulation and at solu-
tion time t = 49 μs for five different test cases. The values listed in Table 2 are the difference between the initial integrated 
value and the integrated value at the end of the solution as a percentage of the initial integrated value. The test cases use 
the different techniques as follows: Test 1 does not use FVL, DC flattening, or FCOR; Test 2 uses FVL only; Test 3 uses FVL 
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Fig. 13. Shear problem solution accuracy of x-momentum with face value limiting using both single-level grids and AMR grids. For the AMR grids, each AMR 
grid has one additional level of refinement. The resolution of the finest level of each AMR grid matches the resolution of the corresponding single-level 
grid.

and DC flattening; Test 4 uses FVL, DC flattening, and FCOR; and Test 5 is the solution from PeleC using the default fifth-
order WENO-Z limiter. All Chord test cases use the PPM limiter, artificial viscosity, and interpolate/limit temperature and 
calculate density, as recommended in Section 4.2.2. Additionally, all Chord test cases utilize the species corrections detailed 
in Section 3.4.

The species mass concentrations for individual species are evidently not conserved in Tests 1 and 2. This loss of conser-
vation is due to repeated corrections of the species mass concentrations with Eq. (33). The impact of the species corrections 
on conservation for Tests 3 and 4 appears to be negligible. In Test 5, conservation is violated for all variables. This could 
be due to a number of reasons. One possible explanation for the violation of conservation is insufficient limiting near the 
contact surface. The decoupling of species mass concentrations from the total mass from Eq. (49) could also explain the 
violation of conservation. The results show that the DCL techniques, as well as FVL, can significantly improve conservation 
of species mass concentrations.

5.3. The Shu-Osher problem

The Shu-Osher problem tests a shock-capturing scheme’s ability to resolve small-scale flow features while capturing 
the shock. The Shu-Osher problem simulates the propagation of a normal shock wave into flow with density fluctuations. 
Unlike other test cases in this work, the fluid is assumed to be calorically-perfect and single species; this is done to avoid 
convergence issues associated with Eq. (30) and to use conditions that are consistent with other literature data [42]. The 
domain is periodic in the y-direction since the test problem is essentially 1-D. The domain is Lx × L y = 10 m × 80/Nx m, 
and the shock is initially located at xs = 1 m. The domain length in the y-direction is varied to ensure N y = 8 for all 
resolutions of Nx . The fluid relative to the initial shock location, xs , is initialized as
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Table 1
Convergence rates between consecutively refined grid resolutions for the shear flow problem without and 
with DCL techniques, labeled “w/o DCL” and “w/ DCL”, respectively. The DCL techniques are the DC flattening 
and the FCOR. The convergence rates are based on the L∞-, L1-, and L2-norms. All solutions use FVL.

AMR Var Grids w/o DCL w/ DCL

L∞ L1 L2 L∞ L1 L2

None Jρu PC-C 4.00 4.00 4.00 4.00 4.00 4.00
C-M 4.00 4.00 4.00 4.00 4.00 4.00
M-F 4.00 4.00 4.00 4.00 4.00 4.00

Jρv PC-C 4.00 4.00 4.00 4.00 4.00 4.00
C-M 4.00 4.00 4.00 4.00 4.00 4.00
M-F 4.00 4.00 4.00 4.00 4.00 4.00

Jρe PC-C 4.00 4.00 4.00 4.00 4.00 4.00
C-M 4.00 4.00 4.00 4.00 4.00 4.00
M-F 4.00 4.00 4.00 4.00 4.00 4.00

1-Level Jρu C-M 3.48 3.97 3.95 3.48 3.97 3.95
M-F 3.87 3.97 3.94 3.87 3.97 3.94

Jρv C-M 3.48 3.97 3.95 3.48 3.97 3.95
M-F 3.87 3.97 3.94 3.87 3.97 3.94

Jρe C-M 4.04 3.98 4.00 4.04 3.98 4.00
M-F 3.83 3.97 3.97 3.83 3.97 3.97

Table 2
The percent change of the conservative solution variables integrated over the domain from the 
initial state to the state at solution time t = 49 μs for a shock tube problem.

Variable Test 1 Test 2 Test 3 Test 4 Test 5

Jρ 3.365 × 10−12 2.904 × 10−12 3.411 × 10−12 3.288 × 10−12 1.964 × 10−6

Jρe 8.088 × 10−12 9.082 × 10−12 8.981 × 10−12 9.217 × 10−12 7.381 × 10−6

J cN2 1.318 × 10−1 6.312 × 10−3 3.379 × 10−13 3.504 × 10−13 7.752 × 10−7

J cO2 1.318 × 10−1 6.312 × 10−3 7.827 × 10−13 8.239 × 10−13 1.897 × 10−6

J cHe 8.796 × 10−2 4.211 × 10−3 2.088 × 10−12 3.227 × 10−12 3.261 × 10−6

(ρ, u, p) =
{

(3.857143,2.629369,10.3333) , if x ≤ xs ,

(1 + 0.2 sin(5x),0,1) , otherwise .
(66)

The solutions are run to a solution time of t = 1.2 s. Solutions are single-level (no AMR) with resolutions of Nx = 256, 512, 
1024, and 2048. The “exact” solution is run with the PPM limiter on a very fine mesh of Nx = 40960. The CFL number is 
0.75 in all simulations. All solutions are run with the base algorithm PPM limiter and artificial viscosity. Configurations are 
presented with the base algorithm limiting, FVL applied, and both FVL and DCL applied, shown as dashed lines, solid gray 
lines, and dotted lines, respectively.

The coarse solution (Nx = 256) is shown in Fig. 14. All three configurations in the figure show errors in the phase of 
the waves and amplitude relative to the “exact” solution. The figure shows that applying FVL causes more dissipation at the 
shock and that the amplitudes of the high-frequency waves are further under-predicted. The figure also shows very little 
difference between the FVL solution and the solution using both FVL and DCL. In the region further upstream, shown in 
Fig. 14c, the FVL solution does not capture the smooth extrema around x ≈ 2.3 m. However, the extrema is captured when 
the DCL is added to the solution. At finer resolutions, there is virtually no difference between the “FVL” solutions and the 
“FVL & DCL” solutions. Only the “FVL” solutions will be shown for the remaining plots.

Fig. 15 shows the density profiles for the high-frequency waves behind the shock when the resolution is doubled. For 
the PPM profile, the wave amplitudes are much closer to the exact solution; however, there are slight errors in the phase 
of the waves. For the FVL profile, the errors in the phase of waves are corrected but more dissipation occurs at the shock 
wave, causing smaller amplitudes. A similar trend is seen at the Nx = 1024 resolution, shown in Fig. 16.

Density profiles at the finest resolution (Nx = 2048) are shown in Fig. 17. At this resolution, all of the solutions are 
virtually indistinguishable. The FVL method dissipates the shock more than the PPM limiter, but does not show significant 
differences in the high-frequency waves. Fig. 17b shows slight oscillations at the smooth extrema in the high-frequency 
waves for the PPM solution; these oscillations persist even when FVL is added.

Overall, these results show reasonable performance of the limiting techniques. The additional clipping at peaks caused 
by the limiting techniques is deemed a reasonable trade-off for monotonicity in temperature, which is critical for reacting 
flows. With AMR, smooth minima and maxima can still be accurately predicted where required.
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Fig. 14. Shu-Osher density profiles for Nx = 256.

5.4. The double mach reflection problem

In the double Mach reflection problem, an incident shock at Mach 10 reflects off of a ramp, producing double Mach stems 
[35]. The Schwarz-Christoffel mapping, shown in Section 4.3.5, is used to model the ramp. This problem setup mirrors the 
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Fig. 15. Shu-Osher density profiles for Nx = 512.

Fig. 16. Shu-Osher density profile for Nx = 1024.

problem setup by Guzik et al. [44]. The normalized pressure, density, and speed of sound in front of the shock are 1, 1.4, 
and 1, respectively. From Fig. 7, θ = 30◦ , lr = 40 cm, and ls = 8 cm. The shock is initialized at 5 cm left of the start of the 
ramp, which is at (0, 0). The base mesh size is 96 × 24. The fine grid solution has three additional refinement levels with 
refinement ratios of 4 for each level; the coarse grid solution only has two additional refinement levels. Refinement is based 
on gradients of density. The upper boundary condition is set to the freestream conditions before or after the shock. The 
location of the shock is estimated using the solution time. This boundary condition allows for a smaller domain in the wall 
normal direction but can introduce numerical artifacts into the solution.

Fig. 18 shows the double Mach reflection pseudo-color and contour plots of density at solution time t = 0.025. Figs. 18a 
and 18b are the fine grid solutions with and without the limiting techniques (FVL, DC flattening, and FCOR), respectively. 
Likewise, Figs. 18c and 18d are the corresponding solutions on the coarse grid. These plots show Kelvin-Helmholtz instabil-
ities developing along the slip line. As expected, these instabilities are more dissipated in the coarse grid solutions. Aside 
from differences along the slip line, attributed to the chaotic nature of the instabilities, the differences from using the ad-
ditional limiting techniques are negligible. This demonstrates that the limiting techniques do not significantly impact the 
modeling of small-scale structures in discontinuous flows.

5.5. Oblique detonation waves

We report the results for three test cases of ODWs are obtained by applying the all limiting techniques (FVL, DC flatten-
ing, and FCOR) to the base algorithm, Chord. The present solutions are compared with literature data. For all cases studied 
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Fig. 17. Shu-Osher density profiles for Nx = 2048.

herein, the computational domain is shown in Figs. 7 and 19, with the wedge angle denoted by θ and the freestream Mach 
number denoted by Ma∞ . In all tests, a stoichiometric mixture of hydrogen and air (H2 : O2 : N2/2 : 1 : 3.76) flows from left 
to right at high Mach number and encounters a ramp. Heating from the resultant oblique shock induces deflagration after 
an induction delay. Because the combustion is constrained by the wall of the ramp, compression waves are produced that 
propagate inwards while coalescing to ultimately produce a detonation wave. The transition in steady 2-D space is anal-
ogous to deflagration-to-detonation (DDT) observed in unsteady 1-D space when deflagration is initiated at a wall, except 
that thermal diffusion is not required for flame propagation in an ODW. The observed structures match those described by 
Li et al. [49].

As shown in Section 4.3.5, a Schwarz-Christoffel mapping transformation is used to model the wedge. The wedge tip is 
at (0, 0) in physical space. By contrast, studies from the literature commonly use a Cartesian grid with an angled velocity 
vector, as shown in Fig. 19. In all simulations, the top boundary is sufficiently far from the wall as to not interact with 
waves produced in the simulations. Supersonic inflow and outflow boundary conditions are used along with slip boundaries 
at the walls. Solutions obtained with Chord use AMR to reduce errors where required, especially near discontinuities, while 
minimizing computational cost elsewhere. Refinement is based on gradients of temperature; additionally, refinement is fixed 
in the layer of cells adjacent to the wall.

Comparisons are made with three different ODW cases from the literature. The wedge angle, freestream conditions, 
domain lengths, number of reactions in the reference reaction mechanism, number of reactions in the Chord reaction mech-
anism, and literature reference are provided in Table 3. The footnotes list the species considered in the reaction mechanism. 
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Fig. 18. Pseudo-color and contour plots of density and corresponding legend for the double Mach reflection at solution time t = 0.025. Viewing window is 
from (11 cm, 10 cm) to (24 cm, 18 cm) in physical space.

In all cases, the fluid is a stoichiometric mixture of hydrogen and air, and diffusion is neglected. The same reaction mecha-
nisms used in the references are also used in Chord except for Case 1, where the 12-step model from Thaker and Chelliah 
[50] is used. When necessary, the Chord results in this section are taken from a rotated physical domain to make compar-
isons with literature possible. See the axis in Fig. 19 for reference.

5.5.1. Case 1: Ma∞ = 8, θ = 29◦
The first case is taken from the work by Li et al. [49] with Ma∞ = 8, θ = 29◦ . The reference study uses a uni-

form grid spacing of �x = �y = 6 μm and a two-step reaction mechanism. The solution by Chord is obtained with 
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Fig. 19. Comparison between wedge domains.

Table 3
List of each reference ODW case and relevant details.

Case θ Ma∞ p∞ (atm) T∞ (K) lr (mm) ls (mm) Nr -Ref Nr -Chord Ref.

1 29◦ 8 1 300 4 0.5 2a 12b [49]
2 27◦ 9.3 1 300 5 1 12b 12b [50]
3 15◦ 4.3 0.5527 1021 60 5 23c 23c [51]

a Two-step reaction mechanism involving 5 species: H2, O2, N2, H2O, and a representation for intermediate 
species [49].

b 12-step reaction mechanism involving 8 species: H2, O2, N2, H2O, HO2, OH, O, and H [50].
c 23-step reaction mechanism involving 11 species: H2, O2, N2, H2O, HO2, OH, H2O2, O, H, N, and NO [52].

Fig. 20. Oblique shock location comparison for Case 1.

one additional refinement level with a refinement ratio of 4. The base mesh size is 192 × 96 (finest level grid spacing: 
(�x , �y) ≈ (5.86 μm , 5.86 μm)). The 12-step mechanism described by Thaker and Chelliah [50] models the reaction.

Comparisons of the OSW and ODW profiles are shown in Fig. 20. There is poor agreement in the length of the induction 
region and the slopes of the detonation waves. The disparate rates of heat release behind the detonation, caused by the 
different reaction models, account for the observed differences; the reaction model used by Li et al. in their early work 
is limited in capability. The reference predicts increased heat addition, which causes a more abrupt transition and steeper 
detonation wave due to a shorter induction region. Regardless, the geometry of the detonation is otherwise similar to the 
reference. In particular, the same steepening of the detonation, just after transition, can be observed in the reference and 
leads to a small region of subsonic flow.

5.5.2. Case 2: Ma∞ = 9.3, θ = 27◦
The second case reproduces a problem studied by Thaker and Chelliah [50]. The parameters of the setup from the 

reference are θ = 27◦ , Ma∞ = 9.3, and a grid spacing of (�x, �y) = (25 μm, 16.6 μm). In Chord, the base mesh is 192 × 48
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Fig. 21. Pseudo-color of temperature and corresponding legend for Case 2. Viewing window is from (−4 × 10−2 mm, 0 mm) to (4 mm, 3 mm) in physical 
space.

Fig. 22. Oblique shock location comparison for Case 2.

with one additional refinement level with refinement ratio of 4 (finest level grid spacing: (�x, �y) ≈ (7.8 μm, 7.8 μm)). 
Additionally, a solution with a comparable resolution to the reference uses a refinement ratio of 2 instead of 4 (finest level 
grid spacing: (�x, �y) ≈ (15.6 μm, 15.6 μm)); this is denoted as the “coarse” solution. In both the reference and the Chord 
simulations, the 8 species, 12-step reaction mechanism described by Thaker and Chelliah [50] is used to model the chemical 
reactions. For boundary conditions, the reference enforces ∂T /∂ y = 0 and ∂ p/∂ y = 0 whereas no such restrictions are used 
in Chord. Fig. 21 shows the steady-state temperature pseudo-color plot of the finer solution. The green area near the corner 
of the wedge is the induction zone behind the OSW; the following red region represents the heat release and fully coupled 
ODW.

The OSW and ODW profiles are compared in Fig. 22. Interestingly, the oblique shocks have different slopes while the 
slopes of the detonations are in good agreement. In all other comparisons, Chord matches the oblique shock angle from 
the literature. Furthermore, oblique shock predictions should reasonably match analytical theory for a calorically-perfect gas 
with frozen composition. This curve is also plotted as a dotted line which is in much better agreement with Chord. The 
reference predicts an abrupt transition whereas Chord predicts a much more gradual one.

Temperature profiles across the wedge, shown in Fig. 23, provide more information. Across an ODW, one expects that the 
temperature profile would consist of the following: a nonreactive shock, signaled by an initial discontinuous temperature 
rise; an induction zone, signaled by a temperature plateau; and finally, a region of heat release indicated by monotonic 
temperature rise, either in the form of a deflagration wave for regions near the wall or a more energetic release following 
a detonation. Accordingly, the temperature profile predicted by Chord in Fig. 23 consists of an oblique shock, induction 
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Fig. 23. Temperature profiles along varying wall normal planes for Case 2; y1 = 33.2 μm and y2 = 83 μm.

Fig. 24. Mesh patches overlying temperature contour lines. The lighter boxes are the first refined level and the darker boxes are the second refined level. 
The darker lines are contours of temperature. The mesh refines around temperature increases associated with the oblique shock and regions of significant 
heat release in the flow.

zone, and heat release. The coarse solution temperature profiles from Chord show that the resolution used in the reference 
is insufficient to capture the induction zone behind the nonreactive shock. The temperature profiles from the reference 
solution smear the oblique shock and heat release with no distinct induction region. The reference solution also shows 
the heat release occurs at the same streamwise location for different wall normal planes, which is inconsistent with the 
expected physics. In summary, there is some doubt about the numerically accuracy of the reference solution in the vicinity 
of the oblique shock and induction zone.

5.5.3. Case 3: Ma∞ = 4.3, θ = 15◦
The third ODW reference was simulated by Wang et al. [51]. In this problem, θ = 15◦ and Ma∞ = 4.3. The reference also 

utilizes AMR with a grid spacing of (�x , �y) = (25 μm , 25 μm) on the finest grid level. A base mesh size of 200 × 80 is 
used in Chord with two additional refinement levels, each with a refinement ratio of 4 (finest level grid spacing: (�x , �y) ≈
(20.3 μm , 20.3 μm)). When the shock structures are developed, the AMR grid appears as shown in Fig. 24.

In both the reference and the Chord simulation, the 11 species, 23-step reaction mechanism from CHEMKIN [52] is 
employed to model the chemical reactions.

The nonreactive shock and flame profiles are compared in Fig. 25. The flame location is identified based on a critical 
temperature of T = 2070 K; this temperature corresponds to the temperature at the end of the Zel’dovich-von Neumann-
Döring (ZND) induction zone. The shock profiles from the present study are in very good agreement with slight deviations 
near the outlet. The flame locations differ slightly in the near wall region. The reference predicts a flame that appears almost 
perpendicular to the wall whereas Chord predicts a steep angle leading into the wall.

Since the walls are slip walls, the most reasonable expectation for the flame shape near the wall is a straight line with a 
slope similar to the ODW. Positive curvature is expected as one moves away from the wall due to compression waves that 
result from constrained deflagration. The solutions from both codes deviate from an expected profile. The reference does not 
detail how temperature is handled at the wall, but enforcement of ∂T /∂ y = 0 at the wall is consistent with the shape of 
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Fig. 25. Shock and flame location comparison for Case 3.

Fig. 26. Pressure profiles along varying wall normal planes for Case 3; y1 = 3 mm, y2 = 6 mm, and y3 = 9 mm.

the flame profile near the wall in Fig. 25. In Chord, cells adjacent to the wall suffer from overheating at the oblique shock, 
shortening the induction zone length adjacent to the wall. When solving the jump conditions across a shock, the interior 
scheme relies on an error cancellation property in the fluxes on each side of a cell. However, the exact momentum flux 
at the wall is used as a boundary condition so the errors do not cancel. The error manifests as the observed heating; this 
effect is described in detail by Woodward [47]. Overheating at the wall is purely numerical and not representative of any 
physical phenomena; it scales with mesh resolution and does not affect convergence. The overheating at the wall would 
vanish if the viscous scales were resolved near the wall.

Pressure and temperature profiles at varying wall normal planes are shown in Figs. 26 and 27, respectively. From the 
pressure profiles, it is evident that the y1 curve shows deflagration, y2 is near transition, and at y3 a single pressure rise of 
a detonation is observed. The induction zone is the plateau in the temperature profile following the shock. This induction 
zone becomes smaller as the distance from the wall grows and is quite brief in the detonation (y3). The peaks in pressure 
correspond to the heat release from the reactions. For the y1 profile, the separation between the initial pressure rise and the 
pressure peak means the nonreactive shock is followed by a set of deflagration waves. The y3 profile captures the oblique 
detonation since the oblique shock and the heat release are fully coupled. The profile at y2 corresponds to an intermediate 
structure between the decoupled and fully coupled nonreactive and reactive shocks. The Chord solution agrees well with 
the reference solution, and the profiles are consistent with the observations of Li et al. [49], except the detonation induction 
zone is clearly seen by both predictions for the present case (y3 in Fig. 27).
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Fig. 27. Temperature profiles along varying wall normal planes for Case 3; y1 = 3 mm, y2 = 6 mm, and y3 = 9 mm.

6. Conclusions and future work

In this study, we devised, developed, and tested new limiting techniques for reducing numerical oscillations in a fourth-
order FVM algorithm for solving thermally-perfect, multispecies, compressible fluid flows. The capability of these techniques 
is verified with problems containing strong shock and detonation waves. Furthermore, a shock tube solution indicates that 
limiting temperature and pressure, applying FVL, and using DC flattening and FCOR provides the least oscillatory solution 
while maintaining conservation of species mass concentrations in cold mixing flows. We verify that the techniques do not 
engage in regions of smooth flow and do not negatively impact the accuracy of the underlying numerical algorithm. The 
algorithm is applied to solve the Shu-Osher and double Mach reflection problems and a series of ODWs; these results 
demonstrate that the techniques successfully remove spurious oscillations while meeting the design criteria. Future work 
will focus on modeling these problems in three dimensions and investigating the physics and structure of the cellular 
detonations in normal and oblique detonation problems.
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