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Abstract—The problem of detecting data anomaly under
unknown probability distributions is considered. Whereas the
probability distribution of the anomaly-free data is unknown,
anomaly-free training samples are assumed to be available. For
anomaly data, neither the underlying probability distribution
is known nor anomaly data samples are available. A deep
learning approach coupled with a statistical test based on
coincidence is proposed where an inverse generative adversary
network is trained to transform data to the classical uniform vs.
nonuniform hypothesis testing problem. The proposed approach
is particularly effective to detect persistent anomalies whose
distributions have an overlapping domain with that of the
anomaly-free distribution.

Index Terms—Detection and estimation, Deep learning,
Anomaly detection, Novelty detection, Semi-supervised learning,
Coincidence test.

I. INTRODUCTION

We consider the problem of universal data anomaly de-

tection. By universal detection, we mean that both the

anomaly-free and anomaly distributions are unknown and

nonparametric. Specifically, under the null hypothesis H0

that models the anomaly-free data, measurements are from

some unknown distribution f0. Under the alternative H1

that models anomaly, measurements are from an unknown

distribution that is at least ǫ distance away from f0.

More precisely, given conditionally independent and iden-

tically distributed observations Zi, i = 1, · · · , N , we consider

the following hypothesis testing problem:

H0 : Zi ∼ f0 vs. H1 : Zi ∼ f1 ∈ F , (1)

where F = {f : ||f − f0|| > ǫ} and ‖ · ‖ can be

arbitrary distance measure such as the total variation or the

KL divergence. In a paradigm of data-driven solutions to

anomaly detection, we assume that only a set of training

samples Z0 = {z1, · · · , zT } under H0 is available.

The assumption that the alternative distribution is unknown

reflects the fact that data anomaly can happen in many ways,

including the possibility that an adversary may have tampered

the data in a man-in-the-middle attack [1]. Often in these
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cases, well-calibrated anomaly data are not available, or they

are insufficient for learning.

The assumption that the distribution under the null hy-

pothesis is unknown, but with some training data is also

reasonable. For instance, data may be measured under a

quasi-stationary environment that some samples can be au-

thenticated but not enough to estimate the distribution ac-

curately. A data-driven approach to anomaly detection may

prefer using training samples directly to construct a test rather

than estimating f0 first from the training data and using the

estimated distribution to construct a test.

The above hypothesis testing problem is general and has

a wide range of applications such as healthcare informatics,

image processing, and video surveillance [2]. In such appli-

cations, it is rare to have adequate training data for anomaly.

A universal bad data detection method which only uses

anomaly-free samples in training is needed in this setting.

Another application of the universal anomaly data detec-

tion is bad data detection in power system state estimation

[3]. The bad data in power systems occur because of mea-

suring equipment failures, communication channel failures,

and cyber attacks. It is also hard to collect samples of such

cases as they occur rarely. In addition, there may be more

challenging to detect adversarial attacks such as unobservable

data attacks [4].

A. Related Work

There are limited results in the classical statistics and the

statistical signal processing literature that treats the hypoth-

esis testing problem above. Indeed, pathological examples

exist that consistent detection may not even be possible [2].

The problem is nonparametric and lacks a specific structure

to place the problem in a well-studied class. The presence

of training data under one hypothesis and the complete lack

of training data in the other makes the problem a special

machine learning problem. Here we review some recent

approaches.

In the machine learning literature, the above problem is

considered as semi-supervised anomaly detection [5]. Algo-

rithms in this category can be classified into three groups:

(i) density-based and nearest neighborhood-based techniques,

(ii) one-class support vector machine algorithm and (iii) the

auto-encoder based neural-network approaches.

Density-based methods estimate the probability density of

the samples and detect anomalies according to this estimate.
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A nearest neighborhood-based technique is proposed in [6],

where the anomaly-free data are assumed to be clustered

with small nearest neighbor distances. A more recent density-

based method using an energy-based model is proposed in

[7]. Deep structured energy-based model is used to estimate

the probability densities assuming the anomalies have a

smaller density. Such assumptions may not be appropriate

for anomalies that arise from data attacks where the attacker

can design attacks to manipulate the data population.

The technique of one-class SVM [8] learns a hyperplane to

separate an anomaly-free region from the rest of the space.

A kernel function can be used to generalize the technique

for nonlinearly separable hypotheses. For the universal data

anomaly detection, choosing the right kernel function is

highly nontrivial.

The auto-encoder based approaches [9]–[11] train an auto-

encoder on anomaly-free samples. The reconstruction errors

of new samples are used as test statistics for anomaly

detection. The work in [10] is particularly relevant to the

approach in this paper for its use of GAN in the training

of auto-encoders. The authors of [11] introduce Gaussian

mixture distribution for latent variables in training an auto-

encoder, which has the potential to capture the underlying

distribution of the anomaly-free data.

Although algorithms based on auto-encoder have shown

promising performance in popular image processing data sets,

the premise that anomaly data tend to generate greater mis-

match in an auto-encoder trained with anomaly-free data is a

suspect. When the anomaly and anomaly-free distributions

have substantial overlapping domains, auto-encoder based

techniques tend to have low false positive rates but also low

true positive rate.

The key idea that allows us to distinguish the null hypoth-

esis under f0 from the alternative distributions in F is rooted

in the classical birthday problem [12]: given M people, what

is the coincidence probability Pc that there are at least two

people having the same birthday?

It turns out that this probability is the lowest when the un-

derlying birthday distribution is uniform [12]. This suggests

that a test on some measure of coincidence can serve as a

way to distinguish the uniform distribution from all other

distribution. Such a test was proposed earlier by David in

[13] and more recently by Paniski [14]. By thresholding the

number of unique people who do not share a birthday with

others, the Paninski’s test is shown to have both false alarm

and miss-detection approach to zero in the asymptotic regime.

B. Summary of contributions

The main contribution of this work is twofold. First, we

propose a novel solution architecture consisting of an inverse

generative adversarial network (IGAN), a quantizer, and a

non-parametric coincidence test, illustrated in Fig. 1 The

design of the three functional blocks is detailed in Sec. II.

Second, the algorithmic contribution of this work includes

the use of IGAN as a nonparametric preprocessing step that

Deep Inverse
Generator M-level 

uniform 
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Coincidence
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anomly}Zi Yi Xi

H K1 ≷ Tα

Fig. 1: A schematic of universal data anomaly detection
(UAD).

transforms data modeled by an unknown distribution under

the null hypothesis to data with a uniform distribution. This

transformation allows us to apply the idea of coincidence test

for anomaly detection. Whereas Paniski’s test is formulated

to achieve diminishing probabilities of two types of errors in

the asymptotic regime, we provide a specific test threshold

when the data samples are finite. We should also note that

other uniformity tests [15], [16] can also be used within the

framework developed here.

Comparing with existing solutions, the proposed approach

achieves diminishing detection error probabilities asymptoti-

cally assuming that IGAN is trained successfully. In the finite

data sample regime, on the other hand, the proposed approach

has low sample complexity in the sense that the number of

testing samples is considerably smaller than the size of the

quantization alphabet.

We show through numerical examples that the proposed

universal data anomaly detection algorithm is effective for

some of the very challenging anomaly data scenarios.

II. UNIVERSAL ANOMALY DETECTION

A. A Schematic for Universal Anomaly Data Detection

The idea of the proposed universal anomaly detection

(UAD) is captured in the schematic in Fig. 1. Observation

samples {Zi} are passed through an inverse generator H that

maps Zi ∼ f0 to uniformly distributed samples Yi ∼ U [0, 1]
in interval [0, 1]. The existence of such a mapping is guar-

anteed by the fact that the cumulative distribution function

FZ(·) of Zi is one (but not the only one) such mapping.

Because f0 is unknown, the mapping is to be learned from

the available historical data as shown in Sec. II-B.

Upon successful training of the inverse generator H , under

H0, analog samples Yi are approximately i.i.d. uniformly

distributed. They are then quantized uniformly with M levels,

which results in M -alphabet discrete uniformly distributed

samples Xi ∼ U(M).
A coincidence test using 1-coincidence statistic K1(x)

produces the test outcome. The threshold is set depending on

the level of acceptable false-alarm (the size) of the detector,

the quantization level M , the number of test samples N , and

the detection resolution ǫ (see Sec. II-D).

B. Inverse Generative Adversary Network

In contrast to GAN [17], IGAN aims to find the inverse

of the generator of a data set. Fig. 2 shows a learning

architecture of IGAN that consists of two simultaneously
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trained neural networks: (i) an inverse generator and (ii) a

discriminator. The training data passes through the inverse

generator and the output is tested against synthetic uniformly

distributed data by a discriminator. Ideally, the inverse gener-

ator converges to a function that transforms the distribution

of the data to the uniform distribution.

We use the 1-Wasserstein distance to measure the simi-

larity between probability distributions. As shown in [18],

the Wasserstein distance measure tends to have improved

stability of the training process.

Fig. 2: An inverse generative adversary network (IGAN)
learning of an inverse generator.

An implementation of IGAN is shown in Algorithm 1. In

our approach, the weights in both networks θ, and ω are

initialized randomly and updated with the learning rate of

α. To enforce the Lipschitz constraint of the 1-Wasserstein

distance, we used gradient penalty on the discriminator’s loss

function as it is proposed in [19]. The discriminator fω is

updated more frequently than the inverse generator gθ. We

used Adam algorithm [20] for the weight updates.

C. Quantization and Coincidence Test

Once the inverse generator is learned, we have the trans-

formed data samples Yi that are uniformly distributed under

H0 and nonuniform under H1. Testing the uniformity of con-

tinuously distributed random samples without any assump-

tions on the density function is nontrivial [21]. Here we apply

the M -level uniform quantization to Yi, which gives us M -

ary discrete random samples Xi that are uniformly distributed

under H0. The distribution of Xi under H1 depends on

the hyper-parameter M . Finding the optimal choice of M

is beyond the scope of this paper. We assume that almost

everywhere in F , the inverse transformed and quantized

samples Xi are ǫ distance away from being uniform. At

the heart of the proposed approach is the coincidence test

for uniformity proposed by Paninski [14] for the following

binary hypotheses using conditionally IID samples {Xi, i =
1, · · · , N} from M -alphabet discrete distributions

H′

0 : Xi ∼ P0 = (
1

M
, · · · , 1

M
),

H′

1 : Xi ∼ P1 ∈ {p = (p1, · · · , pM )| ||p− P0|| > ǫ}.

The intuition of uniformity test is that, when Xi are from

the uniform distribution, the probability of coincidence is the

Algorithm 1 IGAN. The experiments in the paper used the

values α = 0.0001, λ = 10, m = 100, c = 5.

Require: : α, the learning rate. λ, the gradient penalty

coefficient. m, the batch size. c, the number of iterations

of the discriminator per generator iteration.

1: for Number of training iterations do

2: for t = 0, 1, ..., c do

3: for i = 1, ...,m do

4: Sample U ∼ U(0, 1) from uniform distribu-

tion.

5: Sample Z ∼ f0 from real data.

6: Ũ ← gθ(Z)
7: Û ← ǫU + (1− ǫ)Ũ
8: Li ← fω(Ũ)−fω(U)+λ(‖∇

Û
f
ω(Û)‖2−1)2

9: Update the discriminator parameters ω by de-

scending its stochastic gradient:

∇ω

[

1
m

m
∑

i=1

Li

]

10: Sample {Zi}mi=1 ∼ f0 from real data .

11: Update the inverse generator parameters θ by de-

scending its stochastic gradient:

∇θ

[

1
m

m
∑

i=1

−fω(gθ(Zi)
]

lowest, and K1(x), the number of “unique” valued samples,

is the highest. Thus, Paninski’s test for uniformity is given

by

K1(x)
H′

0

≷

H′

1

Tα

where the threshold Tα is a function of false positive level

α as well as the alphabet size (quantization level) M , the

sample size N , and distance between two hypotheses ǫ.

Paninski showed that the coincidence test is consistent

so long as N grows faster than
√
M as N = o( 1

ǫ4

√
M).

Remarkably, the sample complexity can be significantly less

than the size of the alphabet. A large-deviation bound is later

established in [22].

D. Test threshold.

When the sample size N is finite, the threshold of the test

statistics affects the true and false-positive probabilities of

the detection.

Let P0(E) be the probability of event E under hypothesis

H0. The threshold Tα of the K1 coincidence test with the

constraint on the false-positive probability to no greater than

α is given by

Tα = min{t : P0(K1 ≤ t) ≤ α}. (2)



4

The computation of Tα amounts to evaluating P0(K = 1),
which was given by Von Mises in [12]:

P0(K1 = k) =

M
∑

j=k

(−1)j+k

(

j

k

)(

m

j

)

N !

(N − j)!

(M − j)N−j

MN
.

III. SIMULATION

We tested the proposed methods on Gaussian and Gaussian

Mixture models that are more commonly used in signal

processing applications. We used a composite hypothesis for

the alternative hypothesis to capture the variability of the al-

ternative hypotheses. In general, when alternative (anomaly)

distributions do not have overlapping domains, most ex-

isting techniques (the one proposed here) work well. Our

experiments aimed to show the cases when the underlying

distributions overlap. We evaluated the following 3 scenarios,

Case 1: H0 : Zi ∼ N (0, 1) v .s . H1 : Zi ∼ N (µ, 1) where

−1 < µ < 1.

Case 2: H0 : Zi ∼ N (0, 1) v .s . H1 : Zi ∼ N (0, σ) where

0.5 < σ < 0.8.

Case 3: H0 : Zi ∼ N (0, 1) v .s . H1 : Zi = 0.

We used 100000 anomaly-free training samples to train the

iGAN. To test our algorithm, we generated 20000 batches of

N = 50 samples from the distribution in H0 and another

20000 batches of N = 50 samples from the distribution in

H1. For each batch, we varied the µ and σ. After using

the IGAN, we simply used a fixed value of 200 for the

quantization parameter M for all experiments. However,

there is a space for improvement by choosing M more

judiciously.

For each case, we compared the proposed approach with

three major deep learning benchmarks: the Deep auto-

encoding Gaussian mixture model (DAGMM) [11], the au-

toencoder approach based on the reconstruction error of f-

AnoGAN [10] and the one-class SVM [8]. We used the scikit-

learn library for the implementation of one-class SVM [23].

We implemented Universal Data Anomaly Detection and the

algorithms in [11] and [10] using TensorFlow-GPU [24].

We trained the one-class SVM using Radial Basis Function

(RBF) kernel. Using the RBF kernel one-class SVM tests

samples according to closeness to the center of training

samples.

Fig. 3 shows the receiver operating curve (ROC) of the

tested algorithms where UAD showed significant improve-

ment over the benchmarks. The two auto-encoder techniques

showed peculiar characteristics that the TPR is below the triv-

ial random choice detector. This behavior is further explored

in test Cases 2 and 3.

In Case 2, we tested a case where the anomaly samples are

much denser around the mean of the anomaly-free samples. It

is the case totally opposite to what F-AnoGAN and one-class

SVM rely on.

As shown in Fig. 4, F-AnoGAN and one-class SVM

performed poorly with very low TPR, indicating that they

classified almost all anomaly data as anomaly free. DAGMM

Fig. 3: ROC curve of the methods for Case 1.

Fig. 4: ROC curve for
Case 2.

Fig. 5: ROC curve for
Case 3.

showed better results due, perhaps, to the use of Gaussian

mixture distribution in training.

Finally, we simulated an extreme scenario, where all

anomalies are accumulated at the mean value of the anomaly-

free samples. In practice, such a case may represent the

physical “stuck-at” faults when sensors produced constant

values. As shown in Fig. 5, UAD performed perfectly

whereas competing techniques poorly. Granted that this is

perhaps a special case that favors tests that derived based

on distinguishing the underlying probability distributions,

it does expose the potential pitfall of techniques such as

auto-encoder methods based on direct matching data with

anomaly-free samples.

IV. CONCLUSION

This paper presents a novel method for the problem

of detecting data anomaly under semi-supervised settings

based on distinguishing underlying probability distributions

between the anomaly and anomaly-free data. Comparisons

with some of the benchmark solutions showed the advantages

of UAD when the distribution of the anomaly overlaps with

that of the anomaly-free data. The developed technique is

suitable for applications when an anomaly occurs persistently

when multiple but limited samples are available for detection.
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