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Abstract—The problem of detecting data anomaly under
unknown probability distributions is considered. Whereas the
probability distribution of the anomaly-free data is unknown,
anomaly-free training samples are assumed to be available. For
anomaly data, neither the underlying probability distribution
is known nor anomaly data samples are available. A deep
learning approach coupled with a statistical test based on
coincidence is proposed where an inverse generative adversary
network is trained to transform data to the classical uniform vs.
nonuniform hypothesis testing problem. The proposed approach
is particularly effective to detect persistent anomalies whose
distributions have an overlapping domain with that of the
anomaly-free distribution.

Index Terms—Detection and estimation, Deep learning,
Anomaly detection, Novelty detection, Semi-supervised learning,
Coincidence test.

I. INTRODUCTION

We consider the problem of universal data anomaly de-
tection. By universal detection, we mean that both the
anomaly-free and anomaly distributions are unknown and
nonparametric. Specifically, under the null hypothesis Hg
that models the anomaly-free data, measurements are from
some unknown distribution fy. Under the alternative H;
that models anomaly, measurements are from an unknown
distribution that is at least ¢ distance away from fy.

More precisely, given conditionally independent and iden-

tically distributed observations Z;,7 = 1,--- , N, we consider
the following hypothesis testing problem:

/Ho:ZiNfO VS. H1:Z¢Nf1€./—'., (1)
where F = {f : ||f — foll > €} and || - | can be

arbitrary distance measure such as the total variation or the
KL divergence. In a paradigm of data-driven solutions to
anomaly detection, we assume that only a set of training
samples 2y = {z1,---, zr} under H, is available.

The assumption that the alternative distribution is unknown
reflects the fact that data anomaly can happen in many ways,
including the possibility that an adversary may have tampered
the data in a man-in-the-middle attack [1]. Often in these
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cases, well-calibrated anomaly data are not available, or they
are insufficient for learning.

The assumption that the distribution under the null hy-
pothesis is unknown, but with some training data is also
reasonable. For instance, data may be measured under a
quasi-stationary environment that some samples can be au-
thenticated but not enough to estimate the distribution ac-
curately. A data-driven approach to anomaly detection may
prefer using training samples directly to construct a test rather
than estimating f; first from the training data and using the
estimated distribution to construct a test.

The above hypothesis testing problem is general and has
a wide range of applications such as healthcare informatics,
image processing, and video surveillance [2]. In such appli-
cations, it is rare to have adequate training data for anomaly.
A universal bad data detection method which only uses
anomaly-free samples in training is needed in this setting.

Another application of the universal anomaly data detec-
tion is bad data detection in power system state estimation
[3]. The bad data in power systems occur because of mea-
suring equipment failures, communication channel failures,
and cyber attacks. It is also hard to collect samples of such
cases as they occur rarely. In addition, there may be more
challenging to detect adversarial attacks such as unobservable
data attacks [4].

A. Related Work

There are limited results in the classical statistics and the
statistical signal processing literature that treats the hypoth-
esis testing problem above. Indeed, pathological examples
exist that consistent detection may not even be possible [2].
The problem is nonparametric and lacks a specific structure
to place the problem in a well-studied class. The presence
of training data under one hypothesis and the complete lack
of training data in the other makes the problem a special
machine learning problem. Here we review some recent
approaches.

In the machine learning literature, the above problem is
considered as semi-supervised anomaly detection [5]. Algo-
rithms in this category can be classified into three groups:
(i) density-based and nearest neighborhood-based techniques,
(ii) one-class support vector machine algorithm and (iii) the
auto-encoder based neural-network approaches.

Density-based methods estimate the probability density of
the samples and detect anomalies according to this estimate.
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A nearest neighborhood-based technique is proposed in [6],
where the anomaly-free data are assumed to be clustered
with small nearest neighbor distances. A more recent density-
based method using an energy-based model is proposed in
[7]. Deep structured energy-based model is used to estimate
the probability densities assuming the anomalies have a
smaller density. Such assumptions may not be appropriate
for anomalies that arise from data attacks where the attacker
can design attacks to manipulate the data population.

The technique of one-class SVM [8] learns a hyperplane to
separate an anomaly-free region from the rest of the space.
A kernel function can be used to generalize the technique
for nonlinearly separable hypotheses. For the universal data
anomaly detection, choosing the right kernel function is
highly nontrivial.

The auto-encoder based approaches [9]—-[11] train an auto-
encoder on anomaly-free samples. The reconstruction errors
of new samples are used as test statistics for anomaly
detection. The work in [10] is particularly relevant to the
approach in this paper for its use of GAN in the training
of auto-encoders. The authors of [11] introduce Gaussian
mixture distribution for latent variables in training an auto-
encoder, which has the potential to capture the underlying
distribution of the anomaly-free data.

Although algorithms based on auto-encoder have shown
promising performance in popular image processing data sets,
the premise that anomaly data tend to generate greater mis-
match in an auto-encoder trained with anomaly-free data is a
suspect. When the anomaly and anomaly-free distributions
have substantial overlapping domains, auto-encoder based
techniques tend to have low false positive rates but also low
true positive rate.

The key idea that allows us to distinguish the null hypoth-
esis under fj from the alternative distributions in F is rooted
in the classical birthday problem [12]: given M people, what
is the coincidence probability P, that there are at least two
people having the same birthday?

It turns out that this probability is the lowest when the un-
derlying birthday distribution is uniform [12]. This suggests
that a test on some measure of coincidence can serve as a
way to distinguish the uniform distribution from all other
distribution. Such a test was proposed earlier by David in
[13] and more recently by Paniski [14]. By thresholding the
number of unique people who do not share a birthday with
others, the Paninski’s test is shown to have both false alarm
and miss-detection approach to zero in the asymptotic regime.

B. Summary of contributions

The main contribution of this work is twofold. First, we
propose a novel solution architecture consisting of an inverse
generative adversarial network (IGAN), a quantizer, and a
non-parametric coincidence test, illustrated in Fig. 1 The
design of the three functional blocks is detailed in Sec. II.

Second, the algorithmic contribution of this work includes
the use of IGAN as a nonparametric preprocessing step that
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Fig. 1: A schematic of universal data anomaly detection
(UAD).

transforms data modeled by an unknown distribution under
the null hypothesis to data with a uniform distribution. This
transformation allows us to apply the idea of coincidence test
for anomaly detection. Whereas Paniski’s test is formulated
to achieve diminishing probabilities of two types of errors in
the asymptotic regime, we provide a specific test threshold
when the data samples are finite. We should also note that
other uniformity tests [15], [16] can also be used within the
framework developed here.

Comparing with existing solutions, the proposed approach
achieves diminishing detection error probabilities asymptoti-
cally assuming that IGAN is trained successfully. In the finite
data sample regime, on the other hand, the proposed approach
has low sample complexity in the sense that the number of
testing samples is considerably smaller than the size of the
quantization alphabet.

We show through numerical examples that the proposed
universal data anomaly detection algorithm is effective for
some of the very challenging anomaly data scenarios.

II. UNIVERSAL ANOMALY DETECTION
A. A Schematic for Universal Anomaly Data Detection

The idea of the proposed universal anomaly detection
(UAD) is captured in the schematic in Fig. 1. Observation
samples {Z;} are passed through an inverse generator H that
maps Z; ~ fo to uniformly distributed samples Y; ~ /[0, 1]
in interval [0,1]. The existence of such a mapping is guar-
anteed by the fact that the cumulative distribution function
Fz(-) of Z; is one (but not the only one) such mapping.
Because fj is unknown, the mapping is to be learned from
the available historical data as shown in Sec. II-B.

Upon successful training of the inverse generator [, under
Hy, analog samples Y; are approximately i.i.d. uniformly
distributed. They are then quantized uniformly with M levels,
which results in M -alphabet discrete uniformly distributed
samples X; ~ U(M).

A coincidence test using 1-coincidence statistic K(z)
produces the test outcome. The threshold is set depending on
the level of acceptable false-alarm (the size) of the detector,
the quantization level M, the number of test samples NV, and
the detection resolution € (see Sec. II-D).

B. Inverse Generative Adversary Network

In contrast to GAN [17], IGAN aims to find the inverse
of the generator of a data set. Fig. 2 shows a learning
architecture of IGAN that consists of two simultaneously



trained neural networks: (i) an inverse generator and (ii) a
discriminator. The training data passes through the inverse
generator and the output is tested against synthetic uniformly
distributed data by a discriminator. Ideally, the inverse gener-
ator converges to a function that transforms the distribution
of the data to the uniform distribution.

We use the 1-Wasserstein distance to measure the simi-
larity between probability distributions. As shown in [18],
the Wasserstein distance measure tends to have improved
stability of the training process.

Inverse Generator

Ze % —

Discriminator

Fig. 2: An inverse generative adversary network (IGAN)
learning of an inverse generator.

An implementation of IGAN is shown in Algorithm 1. In
our approach, the weights in both networks 6, and w are
initialized randomly and updated with the learning rate of
a. To enforce the Lipschitz constraint of the 1-Wasserstein
distance, we used gradient penalty on the discriminator’s loss
function as it is proposed in [19]. The discriminator f,, is
updated more frequently than the inverse generator gg. We
used Adam algorithm [20] for the weight updates.

C. Quantization and Coincidence Test

Once the inverse generator is learned, we have the trans-
formed data samples Y; that are uniformly distributed under
‘Ho and nonuniform under #;. Testing the uniformity of con-
tinuously distributed random samples without any assump-
tions on the density function is nontrivial [21]. Here we apply
the M-level uniform quantization to Y;, which gives us M-
ary discrete random samples X; that are uniformly distributed
under Hy. The distribution of X; under #; depends on
the hyper-parameter M. Finding the optimal choice of M
is beyond the scope of this paper. We assume that almost
everywhere in F, the inverse transformed and quantized
samples X,; are e distance away from being uniform. At
the heart of the proposed approach is the coincidence test
for uniformity proposed by Paninski [14] for the following
binary hypotheses using conditionally IID samples {X;,i =
1,--+, N} from M-alphabet discrete distributions

1 1
Hy - XiNPOZ(Ma"' ’M)’
Hy: Xi~Pre{p=(p1,--,pm)l [[p — Pol| > €}

The intuition of uniformity test is that, when X, are from
the uniform distribution, the probability of coincidence is the

Algorithm 1 IGAN. The experiments in the paper used the

values o« = 0.0001, A = 10, m = 100, ¢ = 5.

Require: : «, the learning rate. A\, the gradient penalty
coefficient. m, the batch size. ¢, the number of iterations
of the discriminator per generator iteration.

1: for Number of training iterations do

2 for t =0,1,...,c do

3: fori=1,...,m do

4: Sample U ~ U(0,1) from uniform distribu-

tion.
5: Sample Z ~ fy from real data.
6: U+ go(2)
7: (A]<—6U—|—~(1—e)l~]
8: Li + fu(U) = fu(U)+ MIVp £y 2= 1)°
9: Update the discriminator parameters w by de-

scending its stochastic gradient:
m

Vol X Li]
i=1
10: Sample {Z;}7™, ~ fo from real data .
11: Update the inverse generator parameters 6 by de-

scending its stochastic gradient:
Vo= > —fulge(Zi)]
i=1

lowest, and K (x), the number of “unique” valued samples,
is the highest. Thus, Paninski’s test for uniformity is given
by

Ho
K1 (’I) 2 Ta
M,

where the threshold 7}, is a function of false positive level
a as well as the alphabet size (quantization level) M, the
sample size N, and distance between two hypotheses .

Paninski showed that the coincidence test is consistent
so long as N grows faster than /M as N = o(e%\/ﬁ)
Remarkably, the sample complexity can be significantly less
than the size of the alphabet. A large-deviation bound is later
established in [22].

D. Test threshold.

When the sample size N is finite, the threshold of the test
statistics affects the true and false-positive probabilities of
the detection.

Let Py(&) be the probability of event £ under hypothesis
Ho. The threshold T, of the K coincidence test with the
constraint on the false-positive probability to no greater than
« is given by

T, = min{t : Py(K; <t) < a}. (2)



The computation of 7, amounts to evaluating Py(K =
which was given by Von Mises in [12]:
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III. SIMULATION

We tested the proposed methods on Gaussian and Gaussian
Mixture models that are more commonly used in signal
processing applications. We used a composite hypothesis for
the alternative hypothesis to capture the variability of the al-
ternative hypotheses. In general, when alternative (anomaly)
distributions do not have overlapping domains, most ex-
isting techniques (the one proposed here) work well. Our
experiments aimed to show the cases when the underlying
distributions overlap. We evaluated the following 3 scenarios,

Case 1: Ho : Z; ~N(0,1) v.s. Hy : Zi ~ N(p, 1) where
-l<pu<l

Case 2: Ho : Z; ~ N(0,1) v.s. Hy : Z; ~ N(0,0) where
0.5 <0 <0.8.

Case 3: Ho : Z; ~ N(0,1) v.s. Hy: Z; = 0.

We used 100000 anomaly-free training samples to train the
1GAN. To test our algorithm, we generated 20000 batches of
N = 50 samples from the distribution in Hy and another
20000 batches of N = 50 samples from the distribution in
‘H,. For each batch, we varied the p and o. After using
the IGAN, we simply used a fixed value of 200 for the
quantization parameter M for all experiments. However,
there is a space for improvement by choosing M more
judiciously.

For each case, we compared the proposed approach with
three major deep learning benchmarks: the Deep auto-
encoding Gaussian mixture model (DAGMM) [11], the au-
toencoder approach based on the reconstruction error of f-
AnoGAN [10] and the one-class SVM [8]. We used the scikit-
learn library for the implementation of one-class SVM [23].
We implemented Universal Data Anomaly Detection and the
algorithms in [11] and [10] using TensorFlow-GPU [24].

We trained the one-class SVM using Radial Basis Function
(RBF) kernel. Using the RBF kernel one-class SVM tests
samples according to closeness to the center of training
samples.

Fig. 3 shows the receiver operating curve (ROC) of the
tested algorithms where UAD showed significant improve-
ment over the benchmarks. The two auto-encoder techniques
showed peculiar characteristics that the TPR is below the triv-
ial random choice detector. This behavior is further explored
in test Cases 2 and 3.

In Case 2, we tested a case where the anomaly samples are
much denser around the mean of the anomaly-free samples. It
is the case totally opposite to what F-AnoGAN and one-class
SVM rely on.

As shown in Fig. 4, F-AnoGAN and one-class SVM
performed poorly with very low TPR, indicating that they
classified almost all anomaly data as anomaly free. DAGMM

U AD (AUC = 0.78)

0.9 [ | s DAG MM (AUC = 0.57)
One-Class SVM(AUC = 0.37)
[ |====F-Ancgan (AUC = 0.38)

TPR

1] 0.1 0.2 03 04 0.5 06 07 0.8 09 1

FPR

Fig. 3: ROC curve of the methods for Case 1.
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Fig. 5: ROC curve for
Case 3.

Fig. 4: ROC curve for
Case 2.

showed better results due, perhaps, to the use of Gaussian
mixture distribution in training.

Finally, we simulated an extreme scenario, where all
anomalies are accumulated at the mean value of the anomaly-
free samples. In practice, such a case may represent the
physical “stuck-at” faults when sensors produced constant
values. As shown in Fig. 5, UAD performed perfectly
whereas competing techniques poorly. Granted that this is
perhaps a special case that favors tests that derived based
on distinguishing the underlying probability distributions,
it does expose the potential pitfall of techniques such as
auto-encoder methods based on direct matching data with
anomaly-free samples.

IV. CONCLUSION

This paper presents a novel method for the problem
of detecting data anomaly under semi-supervised settings
based on distinguishing underlying probability distributions
between the anomaly and anomaly-free data. Comparisons
with some of the benchmark solutions showed the advantages
of UAD when the distribution of the anomaly overlaps with
that of the anomaly-free data. The developed technique is
suitable for applications when an anomaly occurs persistently
when multiple but limited samples are available for detection.
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