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Abstract—We develop new abstractions for reasoning about
three relaxations of differential privacy: Rényi differential privacy,
zero-concentrated differential privacy, and truncated concentrated
differential privacy, which express bounds on statistical diver-
gences between two output probability distributions. In order
to reason about such properties compositionally, we introduce
approximate span-lifting, a novel construction extending the
approximate relational lifting approaches previously developed
for standard differential privacy to a more general class of di-
vergences, and also to continuous distributions. As an application,
we develop a program logic based on approximate span-liftings
capable of proving relaxations of differential privacy and other
statistical divergence properties.

I. INTRODUCTION

Differential privacy [1] is a strong, statistical notion of data
privacy that has attracted the attention of theoreticians and
practitioners alike. One reason for its success is that differen-
tial privacy can usually be proved compositionally, enabling
easy construction of new private algorithms and making formal
verification practical. By now, researchers have developed a
wide variety of programming languages and program analysis
tools to prove differential privacy [2], [3], [4], [5], [6], [7],
[8], [9] ([10] provide a recent survey).

Seeking more refined composition properties, researchers
have recently proposed new relaxations of differential pri-
vacy: Rényi differential privacy (RDP) [11], zero-concentrated
differential privacy (zCDP) [12], and truncated concentrated
differential privacy (tCDP) [13]. Roughly speaking, standard
differential privacy requires a bound on the magnitude of a
random variable measuring the privacy loss, while RDP, zCDP,
and tCDP model finer bounds on the moments of this random
variable. (Recall that the first moment of a random variable is
its average value, and the second moment of a random variable
is its variance.) These relaxations capture fine-grained aspects
of the privacy loss, enabling more precise privacy analyses and
allowing algorithms to add less random noise to achieve the
same privacy level.

RDP, zCDP, and tCDP are all defined in terms of Rényi
divergences [14], distances on distributions originating from
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information theory. Inspiring our work, Barthe and Olmedo
previously developed abstractions for reasoning about a family
of divergences called f-divergences as part of their work
on the program logic fpRHL [15], [16]. In particular, the
semantic foundation of fpRHL is a 2-witness relational lifting
for f-divergences, which tracks the f-divergence between
related pairs of distributions. However, their framework is
not sufficient to establish our target properties for two rea-
sons. First, Rényi divergences are not f-divergences (for
one differenc, f-divergences are jointly convex while Rényi
divergences are only quasi-convex [17]), moreover, zCDP and
tCDP are supremums of Rényi divergences. As a result, these
properties cannot be described in terms of f-divergences,
nor captured in fpRHL. We develop new relational liftings
supporting significantly more general divergences, allowing
direct reasoning about RDP, zCDP, and tCDP.

Second, the 2-witness relational lifting approach has only
been proposed for discrete distributions, while many algo-
rithms satisfying relaxations of differential privacy—indeed,
the motivating examples—sample from continuous distribu-
tions, such as the Gaussian distribution. Handling these dis-
tributions requires a careful treatment of measure theory.
Previous work [18] has considered a different semantic model
for standard differential privacy over continuous distributions
using witness-free relational lifting, but it is not clear how to
extend this model beyond differential privacy.

To overcome these challenges, we generalize 2-witness
liftings in two directions. First, we replace the notion of f-
divergence with a more general class of divergences, identify-
ing the basic properties needed for compositional reasoning.
Second, we generalize to continuous probability measures.
The main challenge is establishing a sequential composi-
tion principle—the continuous case introduces measurability
requirements for composition. Accordingly, we extend the
structure of 2-witness liftings to a new notion called approx-
imate span-liftings, which have the necessary data to ensure
closure under sequential composition. Finally, we instantiate
our general model with divergences for RDP, zCDP, and tCDP,
establishing categorical properties needed to build approximate
span-liftings. As an extended application, we develop a rela-
tional program logic that can verify differential privacy, RDP,
zCDP, and tCDP within a single logic for programs using
discrete or continuous sampling, and interpret the logic via
approximate span-liftings.

After motivating the various relaxations of differential pri-
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vacy, summarizing the key technical challenges (Section II),
and introducing mathematical preliminaries (Section III), we
present our main contributions.

o We identify a general class of divergences supporting
basic properties composition properties, and we show that
our class can model RDP, zCDP and tCDP (Section IV).

o We extend 2-witness relational liftings to the continuous
case by introducing a novel notion of approximate span-
lifting. We show how to translate composition properties
of specific divergences to their corresponding approxi-
mate span-liftings (Section V).

e We develop a program logic supporting four flavors
of differential privacy—standard DP, RDP, zCDP, and
tCDP—where programs may use both discrete and con-
tinuous random sampling, and show soundness (Sec-
tion VI). We demonstrate our logic on three examples
(Section VII).

We survey related work (Section VIII) and then conclude with
promising future directions (Section IX).

II. MOTIVATION AND TECHNICAL CHALLENGES

For simplicity, in this section we consider probability dis-
tributions that have associated density functions.

A. Differential Privacy and its Relaxations

A randomized algorithm is a measurable function A: X —
Prob(Y) from a set X of inputs to the set Prob(Y) of
probability distributions on a set Y of outputs.

Definition 1 (Differential Privacy (DP) [1]). A randomized
algorithm A: X — Prob(Y) is (e, d)-differentially private
w.r.t an adjacency relation ® C X x X if for any pairs of

inputs (z,z') € ®, and any measurable subset S C Y, we
have Pr[A(z) € S] < e* Pr[A(z’) € S] + 4.

Definition 2 (Rényi divergence [14]). Let o > 1. The Rényi
divergence of order o between two probability distributions
w1 and po on a measurable space X is defined by:

« dﬁf 1 1% (l’) *
D% (mllp2) = p— 10g/X p2 () (Hl(@) de. (D

Definition 3 (Rényi Differential Privacy (RDP) [11]). A
randomized algorithm A : X — Prob(Y) is (o, p)-Rényi
differentially private w.r.t an adjacency relation ® C X x X
if for all (z,z") € ®, we have D% (A(x)||A(z")) < p.

Definition 4 (zero-Concentrated Differential Privacy (zCDP)
[12]). A randomized algorithm A : X — Prob(Y) is (£, p)-
zero concentrated differentially private w.r.t an adjacency
relation ® C X x X if for all (z,z') € ®, we have

Va > 1. DY (A(z)||A(z") < €+ ap.

2

Definition 5 (Truncated Concentrated Differential Privacy
(tCDP) [13]). A randomized algorithm A : X — Prob(Y)
is (p,w)-truncated concentrated differentially private w.r.t an
adjacency relation ® C X x X if for all (z,z') € ®, we have

V1l < a <w. DY (A(x)||A(x")) < ap. 3)

While these notions may appear cryptic at first sight, they
can all be understood as bounds on the privacy loss of a
randomized algorithm:

_ Pr{A() =y

70 = baw) =y

where x, 2’ are two inputs. Intuitively, the privacy loss mea-
sures how much information is revealed when the output of
a private algorithm is seen to be y. While output values with
a large privacy loss are highly revealing—they are far more
likely to result from input x rather than a different input x'—if
these outputs are only seen with very small probability, then
their overall influence can be discounted. The different privacy
definitions bound different aspects of the privacy loss random
variable, when y is drawn from the output of the algorithm.
The following table summarizes these bounds.

Privacy Bound on privacy loss £

(£,6)0DP  Pryoam[L7% (y) <e]>1-46

(@, p)-RDP By a@)[L777 (y)*] < elo7b7

(€,p)-2CDP Vo € (1,00). Eyou(w)[L777 ()] < el DETr)
(w, p)-tCDP Vo € (1,w). By a@)[L77% (y)*] < el Dor

In particular, DP bounds the maximum value of the privacy
loss,! (a,-)-RDP bounds the a-moment, zCDP bounds all
moments, and (-,w)-tCDP bounds the moments up to some
cutoff w. Many conversions are known between these defi-
nitions; for instance, the relaxations RDP, zCDP, and tCDP
are known to sit between (¢, 0) and (e, §)-differential privacy,
up to some modification in the parameters. While this means
that RDP, zCDP, and tCDP can sometimes be analyzed by
reduction to standard differential privacy, converting between
the different notions requires weakening the parameters and
often the privacy analysis is simpler or more precise when
working with RDP, zCDP, or tCDP directly. The interested
reader can refer to the original papers [12], [11].

Two motivating examples fitting for these definitions are
the Gaussian mechanism and Sinh Normal mechanism, which
add noise according to the Gaussian distribution and the sinh-
normal distribution respectively.

B. 2-witness liftings for f-divergences in the discrete case

Barthe and Olmedo [15] observed that standard differential
privacy can be phrased in terms of a more general class of
divergences, called f-divergences.

Definition 6. A weight function is a convex function
f: R>o = R continuous at 0.2

ITechnically, this interpretation of DP only holds for mechanisms with a
well-behaved privacy loss. We mention it here because this is often used
informally to compare DP and its relaxations but there are mechanisms for
which this interpretation is problematic [19].

2As is conventional [20], we exclude the condition f (1) = 0 from the
definition of weight function to support the exponential of Rényi divergence
of order . We also assume 0f(a/0) = limy— o4 tf(a/t) for a > 0 and
0£(0/0) = 0.
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Definition 7 (f-divergence). For a weight function f, the
f-divergence Af between two distributions ju1, 1o over a
measurable space X is defined as

Aﬁ(ubuzb/xuz(x)f (Z;g) dz. )

In particular, the f-divergence APP(¢) with weight function
DP(g)(t) = max(0,1 — e°t) models differential privacy [15],
[16]. For any randomized algorithm A : X — Prob(Y") and
adjacency relation ® C X x X, we have the equivalence

A'is (£,6)-DP <= V(z,2') € ®.A% (A(x), A(2')) < 6.

To support their logic fpRHL, Barthe and Olmedo in-
troduced a 2-witness relational lifting for f-divergences as
a key abstraction to reason about f-divergence properties
of probabilistic programs. This construction lifts a relation
R C X x Y over discrete sets X,Y to a relation R¥(f%) C
Dist(X) x Dist(Y") over subprobability distributions:

I, pr € DISt(R) 1 (:U’l) = H1, } 3)

REGD) _ 7
(b2, p2) ma(pr) = p2, Af(ur, pr) <98

Above, 7;(p) is the i-th marginal of y, that is, (mq (p))(z) =
> yey Mz, y) and (m2(w))(y) = >o,cx p(z,y). The distri-
butions uy and pp are called witness distributions, since to
show that two distributions are related by a lifting, one must
show the existence of two appropriate witnesses. These liftings
have several attractive features. The equality lifting takes the
form

By = { (11, p2) ‘ Al (1, pi2) <6 }’

thus characterizing differential privacy: a program A4: X —
Dist(Y) is (g, ¢)-differentially private w.r.t. an adjacency rela-
tion ®, if (A(z), A(z')) € EqX™ ) for every (2,2') € ®.
Second, 2-witness liftings satisfy various composition prop-
erties, enabling clean verification of probabilistic programs.
However, this construction works only in the discrete case and
the logic fpRHL cannot reason about programs that sample
from continuous distributions, like the Gaussian distribution.

C. Challenge 1: Handling Richer Divergences

Much like how standard differential privacy can be viewed
in terms of f-divergences, we would like to view RDP, zCDP,
and tCDP as bounds on more general divergences. A natural
candidate for Rényi differential privacy is Rényi divergence
D®, as in its original definition. Indeed, we have:

Ais (a, p)-RDP iff V(x,2") € ®, D (A(x)||A(z")) < p.

However, the Rényi divergence D*(u1||pu2) of order « is
not an f-divergence, and so it does not fit in the 2-witness
lifting framework. Likewise, zCDP [12] and tCDP [13] can be
defined via uniform bounds on families of Rényi divergence:

Z 1 (e
A;Dp(g)(ﬂl, p2) = §1<1P > (D% (pallp2) =€) (0<8),  (6)

w ]' «
AP (g pg) = sup = (D% (pallue)) (L <w), (7
l<a<w &

letting us reformulate zCDP and tCDP as
Als (&, p)-2CDP iff ¥(z,2') € ©. AT A(x), A(2')) < p.
Ais (p,w)-tCDP iff V(z,2') € ®. AT A(z), A(2')) < p.

These divergences are also not f-divergences. Furthermore,
the RDP, zCDP and tCDP divergences may take negative val-
ues when applied to sub-probability distributions, which can
arise from probabilistic computations that may not terminate
with probability 1. Accordingly, we generalize the notion of
divergence to go beyond f-divergences and also to handle
sub-probability distributions. Starting from families of real
valued functions from pairs of distributions, we introduce basic
properties needed to give good composition properties for their
corresponding liftings.

D. Challenge 2: 2-witness Liftings for the Continuous Case

In order to support natural examples for RDP, zCDP, and
tCDP, we need a framework supporting continuous distri-
butions, such as Gaussian, Laplace, and sinh-normal distri-
butions. Unfortunately, extending 2-witness relational liftings
to the continuous case presents further technical challenges
related to composition. The relational lifting (—)*®P():9) for
standard differential privacy satisfies a sequential composition
principle:

(f.g): R-=SHOP(1)81)
(fﬁ7 gﬁ) . RE(DP(e2),62) -, GH(DP(e1+e2),01+02)

Here, we denote by R;— R a relation-preserving map from
Ry to Ry; f* and ¢* are the Kleisli liftings of f and g with
respect to the monad Dist of (discrete) subprobability distri-
butions; this composition property gives 2-witness relational
liftings a graded monad structure [21], [22]. Since the 2-
witness liftings are defined through the existence of witness
distributions, for any (d;, dy) € R¥PP(2):92) e need witness
distributions showing (f*(dy), g%(dy)) € SH#PP(s1+e2),01402)
In the discrete case, these witnesses can be constructed in two
steps:
1) For any (z,y) € R, there exist witnesses d},dy €
Dist(S) proving (f(z),g(y)) € SHPP(1)201). By apply-
ing the axiom of choice, we obtain a selection function

(i, 12): R — { (dr, dp) | ¥y, dg) < 01}

2) For any witnesses dy,,dr € Dist(R) proving (di,ds) €
RHOP(=2):02) (18 () 14(d)) is a pair of witness distri-
butions proving (f#(dy), g*(dy)) € SHPP(e1te2).01402)
by composability of APP(),

The first step is problematic to extend to the continuous case
because the witness-selecting functions [; and [/ obtained by
the axiom of choice may not be measurable—the Kleisli exten-
sions lul and lg in the second step may not be well-defined in
the continuous case. To resolve this difficulty, we introduce a
novel notion of approximate span-liftings. The key idea is that
morphisms between span-liftings carry a built-in measurable
witness selection function, making it unnecessary to use the
axiom of choice when proving sequential composition.
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III. MATHEMATICAL PRELIMINARIES

a) Measure Theory: We briefly review some definitions
from measure theory; readers should consult a textbook for
more details [23]. Given a set X, a o-algebra on X is a
collection X of subsets of X including the empty set, closed
under complements, countable unions, and countable intersec-
tions; a measurable space X is a set |X| with a o-algebra
Y. x, called the measurable sets. A countable set X yields the
discrete measurable space where all subsets are measurable:
Yx =2%. Amap f: X — Y between measurable spaces is
measurable if f(A) € Sy for all A € Xy. Any subset S
of measurable space X forms a subspace where the o-algebra
is given by ¥g = {ANS|AeXx }. g is given as the
coarsest one making the inclusion map S < X measurable. A
measure on a measurable space is a map p: X x — R>oU{oo}
such that p(@) = 0 and p(U;X;) = >, u(X;) for any
countable family of disjoint measurable sets X;. Measures
with u(X) =1 are called probability measures, and measures
with p(X) < 1 are called subprobability measures. For any
pair of subprobability measures p; on X and po on Y, the
product measure 11 ® po of py and po is the unique measure
on X x Y satisfying (11 @ p2)(A x B) = p1(A) - pe(B). For
any measurable space X and element x € X, we write d, for
the Dirac measure on X centered at z, defined as d,(A4) =1
if x € A, and d;(A) = 0 otherwise. Measurable spaces and
measurable functions form a category Meas; this category
has all limits and colimits, and finite products distribute over
finite coproducts. We denote by Fin the full subcategory of
Meas consisting of all finite discrete spaces.

b) The Sub-Giry Monad: The sub-Giry monad G is the
subprobabilistic variant of the Giry monad [24]. In brief, GX
is the set of subprobability measures on X with suitable
a-algebra for any X € Meas; functor action (Gf)(u) =
p(f(=)) for f: X - Y; unitnx( ) d, forXeMeas
and = € X; and Kleisli lifting f#(u = [y f( ) du(z)
for f: X - GY and A € Yy The monad G is commutative
strong with respect to binary products in Meas; the double
strength dstx y : G(X) x G(Y) = G(X x Y) is given by the
product measure dstx y (v1,12) = 11 ® va.

c) Graded Monads: A graded monad [21], [22] is
a monad refined by indices from a monoid. Let £ =
(E,-,1g,X) be a preordered monoid. An E-graded monad
on a category C consists of

e a family {T.}.cp of endofunctors T, on C,
e a morphism nx: X — 711,X for X € C (unit),
e a morphism (—)¢#2: C(X,T.,Y) = C(To, X, Tere,Y)
for X, Y € C and e1,e5 € A (Kleisli lifting),
o a family {C°°}. <., of natural transformations
ceve2: T, = T, (inclusion)
satisfying the following compatibility condition: for any
fiX—>T,Yand g: Y = 1.7,

E(Z€2€1)7(e263) Ofezﬁel _ (E;l,ez Of)ezﬁee,

flﬁel onx = f; f63ﬁ61 ° E;z,ez _ E(Pzﬁ) (eser) fezﬁel
n;{Eﬁe = idy x, (gelﬁez o f)eoﬁelez — gf’of’lﬂez o feoﬁm.

A typical way of constructing a graded monad is by refining
a plain monad with indices. An E-graded lifting of a monad
(T,n™,(—)*) on D along a functor U: C — D is an E-graded
monad {T¢}.ca on (C satisfying Uo T, = ToU, U(fefe1) =
(UH*, Unp) = nkp, and U(CH*?) = idryp. The functor
U erases the grading of T, yielding the original monad T'.
d) The Category of Spans on Measurable Spaces: To
extend the relational lifting approach to the continuous setting,
we work with the category of spans, whose objects generalize
relations by taking arbitrary functions in place of projections.

Definition 8. The category Span(Meas) of spans in Meas

consists of:

o Objects (X,Y, D, p1,p2) given by span X gy
in Meas.

o Morphisms (X,Y,®,p1,p2) — (Z,W, U, pl,p}) given
by triples (h,k,l) of morphisms h: X — Z, k: Y — W,
and 1: ® — U in Meas satisfying ho p; = pj ol and
kopy=phol

For simplicity, we often denote a Span(Meas)-object
(X,Y,®,p1,p2) by ®. The category Span(Meas) has all
limits, this gives us useful properties. First, the category has
binary products:

(Xaxq)apla/)?) X (Zavva‘l/vpllapé)
= (XX Z, Y X W,® x U, p; X pl, pa X ph).

We will frequently use two notions of pairing on functions. Let
fi: X =Y, fa: X - W, we have (f1,f2): X = Y xW
and f1 X fo: X x X =Y xW. As functlons (f1, f2) takes a
single input = and returns a pair (f1(z), fo(x)) while f1 x fo
take a pair of inputs (x,y) and returns (f1(x), f2(y)). The
category Span(Meas) also has coproducts:

(X7 Yv‘I)aphpQ) + (Xl,Y/a(b/apllvp/Q)
= (X + XY +Y, 0+, p1 + pl, p2 + pa).

Standard binary relations can be interpreted as spans. For
X,Y € Meas, any binary relation ® C |X| x |Y| determines
a span X &L ® 2 Y in Meas, where m; and 7o are
projections and @ is regarded as a subspace of X x Y.
Finally, relation-preserving maps can be interpreted as mor-
phisms of spans. Consider two binary relations ® C |X| x |Y]|
and ¥ C |Z] x , and suppose that they are interpreted
as spans (X,Y,®, m,m) and (Z, W, ¥, 7y, m) as above. If
f: X > Zand g: Y — W in Meas satisfy (f(x),g(y)) € ¥
for any (z,y) € ®, then we have the following morphism

(f?g fXg|q>) (X Y(b 7T177T2) (Z7VV7\I!7’H-I77T2)

in Span(Meas), where f X g|4 is the restriction of f X g on
® (we often write just f x g). These features are crucial to
interpret probabilistic program logics (see Section VI).

IV. GENERAL STATISTICAL DIVERGENCES

Now that we have covered the preliminaries, our goal is
to build a suitable graded monad on Span(Meas)—this will
be our abstraction for relational reasoning about divergences.
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We proceed in two stages. In this section, we introduce a
general class of divergences, real-valued functions on two
measures over the same space. Then, we identify important
composition properties inspired from analogous properties of
f-divergences [15], [20]. We will leverage these properties
to give a graded monad structure on Span(Meas) capturing
these divergences in the next section.

Throughout, we write R for the set R U {—o00, +00} of
extended reals. We regard both R and R>q as partially ordered
additive monoids. For the former one, the addition is extended
by o0 + (—00) = —c0.

Definition 9. A divergence is a family A = {Ax} xeMeas Of
functions B
Ax:|GX|x |GX|—R.

To describe composition of divergences, it is useful to work
with indexed families of divergences; often, two divergences
can be combined to give a new divergence with different in-
dices. For instance, the notion of zCDP can be characterized by
the family {AZCPP(©},_; introduced in Section II (Equation
6).

Definition 10. Let (A, -, 14, =) be a preordered monoid. An

A-graded family of divergences is a family A = {A%},ca
such that whenever o < 3, for any X € Meas,

Vi, po € GX. A/)B((Mhﬂz) < A% (pa, p2).

Note that the preorder on the grading is contravariant. We
will regard a divergence A as a singleton-graded family {A}.

A. Basic Properties of Divergences

We use several properties of graded families of divergences.

Definition 11. An A-graded family A = {A%},ca of
divergences is:
reflexive: if AS (u, 1) <O0.
substitutive: if for any f: X — GY,

AL (frun, fruz) < A% (1, pa)-
additive: if

ATy (1 @ pis, o @ pa) < A% (ua, piz) + AY (p3, j1a).
continuous: if

A (p1, p2) = SUp I€Fin, AT(Gk (1), Gk(p2)).
composable: if for any f, gHS( — gY,

AP (Fr a1, gF o) SAG (ua, po)+ sup,ey A5 (f(2), g(2)).

All functions are assumed to be measurable.

These properties are inspired by properties from the liter-
ature on f-divergences and differential privacy. For instance,
substitutivity generalizes the data-processing inequality for f-
divergences [25, Chapter 2], while functoriality is the spe-
cial case where the data-processing function is determin-
istic. These two properties are also known in the privacy
literature as resilience to post-processing [26, Proposition
2.1]. Composability corresponds to composition in differential
privacy, which states that we can adaptively compose two
differentially private mechanisms. Additivity corresponds to
a composition where the second mechanism does not depend

on the result of the first. Continuity generalizes continuity of
f-divergences [25, Theorem 16]; divergences of continuous
distributions are approximated by divergences of discrete
distributions.

Reflexivity and composability are key properties to give a
structure of graded monad. Intuitively, reflexivity and com-
posability of a graded family of divergences give unit and a
(graded) Kleisli lifting respectively. We also need additivity
to give a strength of the graded monad, allowing a lifting on
real-valued distributions—often available from known results
in probability theory—to be converted into a lifting on distri-
butions over larger spaces (e.g., program memories). In some
ways, composability is the most important property: reflexivity
is usually immediate, and additivity is a consequence.

Theorem 1. An A-graded family A is additive if it is
continuous and composable.

Although these properties have been studied before in the
discrete case, there are subtleties when passing to our contin-
uous ones. For example, in the case of discrete distributions,
additivity is an instance of composability [15, Proposition 4].
In the case of continuous distributions, this may no longer
hold. However, one can recover additivity from composability
by using continuity.

To prove composability, it is easier to establish two other
properties of families of divergences first: approximability and
finite-composability.

Definition 12. An A-graded family A = {A%}nca of
divergences is:

approximable: if for any X € Meas and I € Fin,
f,9: X — GI, and py,pe € GX, there are J, € Fin
and m}: X — J, and m,,: J, — X in Meas such that

A (A (), g% (2))
= lim AF((f omy om}) (u1), (g0 ma o m;,) (i2)).

finite-composable: if for any I,J € Fin, f,g: I — GJ, and
dy,ds € GI,

AGP(frd, g dy) < AF(dy,do) + sup A5 (£(i), g(i)).
1€
The function m., in the definition of the approximability of A
discretizes points in X to J,, and m,, reconstructs points in X
from J,,. Finite-composability of A means the composability
of A in the discrete case.

These properties allow us to extend composability of diver-
gences in the discrete case, witnessed by finite-composability,
to the continuous case. Finite-composability is often known
for standard divergences, or can be established by direct
calculations. If A is approximable and continuous, finite-
composability implies composability.

Theorem 2. A continuous approximable A-graded family A
is composable if finite-composable.
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B. Basic Properties of f-divergences

To discuss basic properties of divergences for DP, RDP,
zCDP, and tCDP, we begin with basic properties of f-
divergences since DP can be formulated by a graded family
AP = [APP()}, of f-divergences, and Rényi divergences
are logarithms of f-divergences. An f-divergence A of
subprobability measures is defined in the same way as f-
divergence of probability measures (4). The f-divergences are
not necessarily positive for subprobability measures, though
they are positive for proper probability measures. We can
extend the continuity of f-divergences [20, Theorem 16] to
support subprobability measures.

Theorem 3 (Cf. [20, Theorem 16]). For any weight function
f, the f-divergence Af is continuous:® for any subprobability
measures (i1, o € GX on X, we have

Al(pi,p2) = sup uAif(ul(’)
x(u1, 2) (A}, ; 2(4) p2(A;)
partition of X

As we have seen, DP can be formulated by the Rxo-
graded family AP = {APP()},__ of f-divergences, while
the Rényi divergences supporting RDP, zCDP, and tCDP are
logarithms of f-divergences. Before proving basic properties
of divergences for DP, RDP, zCDP, and tCDP, we first need
two important basic properties of f-divergences, continuity
and approximability, and we show that finite-composability of
f-divergences are extended to (proper) composability.

Theorem 4. The f-divergence AT is approximable for any
weight function f.

Thus, finite-composable f-divergences are composable.

Theorem 5. An A-graded family A = {Afe}qca of fa-
divergences is composable if it is finite-composable.

We remark here that any composable family of f-
divergences is also additive by applying Theorem 1, since f-
divergences are always continuous (Theorem 3).

C. Properties of Divergences for DP, RDP, zCDP, and tCDP

As we have seen, DP can be formulated by the R>-graded
family APP of f-divergences. By Theorem 1 and 5 and [15,
Theorem 1], we obtain the basic properties of the divergences
A™ for DP as follows:

Theorem 6 (Cf. [15, Theorem 1]). The R>-graded family
A = [APPE) Yo is reflexive, continuous, approximable,
composable, and additive.

Similarly, we can obtain basic properties for RDP, zCDP,
and tCDP. By Theorem 3 and Theorem 4, the exponential
exp(D¥) of the a-Rényi divergence is continuous and ap-
proximable because it is an f-divergence with weight function
t— exp(a/(1 — a))t*.

3Note that a measurable finite partition {A;}7_, on X is equivalent to a
measurable function k: X — I where I = {0,1,...,n}.

Since the logarithm function is monotone and continuous
except at 0, Rényi divergence is continuous and approximable
too. Reflexivity and finite-composability of Rényi divergences
follow by direct calculations. Theorem 5 yields:

Theorem 7. For any o > 1, the Rényi divergence D of
order « is reflexive, continuous, approximable, composable,
and additive (as a singleton-graded family).

We extend the following properties of Rényi divergences
which give the transitive laws of RDP and zCDP to support
subprobability measures; an analogous law for tCDP is not
currently known.

Proposition IV.1 (Cf. [17, Theorem 3]). We have

l1<a<pB = D%(ullpz) < Dy (1u|p2)-

Proposition IV.2 (Cf. [27, Lemma 4.1]). For any o > 1,
1, fo, ts € GX, and p,q > 1 satisfying % —|—% =1, we have

—1 o' %( a—1)
DR (s ||p2) + D%

a < P
DX(///lH,uB) = p(a — 1)

As we have seen in Section II-D, we can define diver-
gences for zCDP and tCDP by Equation (6) and Equation
(7). Explicitly, we introduce the divergences for zCDP and
tCDP by AZPP(&:r) = sup, _, 1 (D> — &) and ATPP)(P) =
SUD] cacw iDa respectively. Since two supremums are com-
mutative (sup,, sup, A(z,y) = sup, sup, A(z,y)) in general,
the following basic properties of the graded family of zCDP
and the divergence of tCDP are obtained from Theorem 7.

Theorem 8. The R>q-graded family AP = { AP},
for zCDP is reflexive, continuous, composable, and additive.

(| p2)-

Theorem 9. For each 1 < w, the divergence A*™*) for
w-tCDP is reflexive, continuous, composable, and additive.

Note that we may not have approximability, but the family
is still composable. These results also hold for subprobability
measures where Rényi divergence and divergences for zCDP
and tCDP are defined in a way similar to Equation (1) and
Equation (2) respectively.

V. APPROXIMATE SPAN-LIFTING

We are now ready to combine graded divergences with
spans, leading to our new relational liftings. Given an A-
graded family A = {A®},c4 of divergences, we introduce a
graded monad on Span(Meas) called the approximate span-
lifting* (—)#(A:2:9) for the family A, where & € A and § € R.
We first define its action on objects.

Definition 13. We define the span-constructor (—)* 49 g
follows: for any (X,Y,®, p1, p2) in Span(Meas), we define
the Span(Meas)-object

(Xa K (I), P1, p2)ﬂ(A70¢,5)

= (GX,GY,W(®,A,,0), Gpyom, Gpyoma)

4The name is inspired from “approximate lifting” [15].
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where W(®, A a,0) = {(v1,10) | AG(v1,19) <5} We
deal it as a subspace of the measurable space GO x GO.

Intuitively, (X,Y,®, py, po)t (A9 relates subprobability
measures with A%-distance at most . The set W (P, A, «, J)
contains all possible witness distributions, and m; and o
are canonical projections from W(®, A «,0) to GP. As
a special case, the approximate span-lifting (—)ﬁ(A*O‘V‘S) re-
covers the divergence A® by applying the equality relation
(X, X, Eqy, my, m)H (&9,

Theorem 10. For any A-graded family A, o € A, and § € R,
(X, X, X,idx, idy )HA®9)
= (GX,GX, { (u1, p2) | A% (1, p2) <6}, 71, m2).

Here, the span (X, X, X,idy,idx) is isomorphic to the
equality relation (X, X, Eqx, m1|Eq,, T1|Eqy )-

Next, we give approximate span-liftings the structure of a
graded monad with double strength. We consider the case
where A is a reflexive, composable, and additive A-graded
family of divergences; we can sometimes recover more limited
versions of approximate span-liftings by dropping or weaken-
ing these properties.

Theorem 11. If an A-graded family A is reflexive, com-
posable, and additive, then the approximate span-lifting
(—)8A0) forms an A x R-graded monad with double
strength. Namely, there are maps

Functor: For any morphism (h,k,1): (X,Y,®, p1, p2)
(Z,W, W, p}, ph) in Span(Meas) and (a,d) € A x
(Gh,Gk,Gl x Gl):

(X, Y. @, p1, p) 800 — (Z,W, W, i, ph)40).

—7
R;

Unit: For any morphism (X,Y, ®, p1, p2) in Span(Meas),

(x, 0y, (Mo, na)):
(Xa va (I)v P1, ,02) — (X7 Y’ (D’ P1, pQ)ﬁ(AJA’O)'
Kleisli lifting: For any (3,7) € A x R and any morphism
(hyk,1): (XY, ®, 1, pa) = (Z,W, 9, ph, p) &) in
Span(Meas),
(B, 2, (1 0 1)  (m3 0 1)F):
(X, Y. @, p1, p2) AP0 — (Z,W, 0, pf, g &02047)
Inclusions: For any (X,Y,®, p1, p2) in Span(Meas), and
any a = 8 and 6 < ~,
(idgx, idgy, idg<p X idg.:p):
(X,Y. @, p1, p2) 000 — (XY, ®, py, pp) AF7).
Double strength: For all (o, 8) and (B,7) in A x R and all
X, Y, ®,p1,p2) and (Z, W, ¥, p}, p5) in Span(Meas),
( 9 y P15 P 9 » ¥ P15 P2 P
by letting 0; = dste g o (m; X ;) where i = 1,2,
(dStX’Z, dSty’W, <917 62)) :
(XY, @, pa, po) 80 5 (2, W, W, i, p) 155
= (X,Y, @, p1,p2) % (Z,W, 0, pf, piy)F(A 2505

a) Approximate Span-liftings for Privacy: Finally, we get
approximate span-liftings for DP, RDP, zCDP, and tCDP by
combining Theorems 6, 7, 8, and 9 with Theorem 11.

Theorem 12 (Approximate span-lifting for DP, RDP, zCDP,
tCDP). The span-liftings listed in Figure 1 are actually graded
liftings with a double strength of the monad G X G along
U: Span(Meas) — Meas x Meas.

VI. CASE STUDY: THE PROGRAM LOGIC SPAN-APRHL

The previous section showed that the relaxations of dif-
ferential privacy RDP, zCDP, and tCDP can be captured by
relational liftings with categorical properties similar to the
ones of the relational liftings used for standard differential
privacy. As a result, we can use these liftings to give the se-
mantic foundation for formal verification of these relaxations.
To demonstrate a concrete application, we design a relational
program logic span-apRHL that can prove DP, RDP, zCDP,
and tCDP for randomized algorithms using continuous random
sampling.

a) The Language pWHILE: We take a standard, first-
order language pWHILE, augmenting the usual imperative
commands with a random sampling statement (we omit the
grammar of expressions, which is largely standard).

7 :=bool | int | real | 7¢ (d €N) | ...

v ::=Dirac(e) | Bern(e) | Lap(e1, e2) | Gauss(ey,ez) | ...

cu=skip|x Sy | c15¢0 | if e then ¢; else ¢y | while e do ¢

The type system is standard, and the value types are interpreted
as measurable spaces. To give a semantics to expressions,
distribution expressions, and commands, we interpret their
associated typing/well-formedness judgments in a context I,
interpreted as a product space. We interpret an expression
judgment I' ' e: 7 as a map [['He:7]: [I] — [7]
in Meas; we interpret a probabilistic expression judgment
I'FP v:7as amap [['FPv:7]: [T] — G[r] in Meas;
and we interpret a command judgment I' F ¢ as a map
[TFc]: [T] — G[T] in Meas.

b) Relational Assertions: Our assertion logic uses for-
mulas of the form

DU =E DAV | DV |-

where £ represents basic relational expressions which are first-
order formulas over expressions where program variables are
tagged with the symbols (1) and (2), e.g. z(1) < z(2).
Relational expressions are interpreted as formulae over pairs
of memories, and the symbols (1) and (2) indicate whether a
variable should be interpreted in the first or second memory.

Since we use span-liftings instead of relational liftings,
we interpret relational assertions as spans, that is, as
Span(Meas)-objects. This can be done by first interpreting
assertions I' F* @ as binary relations [®] C [I'] x [I], and
then converting them to spans ([I'], [T'], [®], 71, 72).
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Privacy (Graded family of )Divergence

Approximate span-lifting Grading Monoid

DP DP _ {ADP(E)}OSE

RDP D%  (Rényi divergence; see (1))
ZCDP  AZPP = [AZDPEOY, . (see (6))
(CDP AP = {AFPP)L (see (7))

{(*)ﬁ(ADP’E’5 Yo<e,0<s R>0 X Rxg
.

0<¢,peR R>0 % R
{( )ﬁ(AtCDP(N) - p)}*e{*},peﬁ R

Fig. 1.

c) Relational Program Logic Judgments, Axioms and
Rules: In span-apRHL we can prove judgments corresponding
to differential privacy, RDP, zCDP, and tCDP. For well-typed
commands I' F ¢; and T F ¢y and assertions I' 7 & and
I' 2 O, we define judgments:

Pkey ~P5c: ® = U for (,6)-D
Pheng ™™ e d — ¥ r(,)RDP

Che ~E c: @ = ¥ for (€ p)-zCDP
T'hep i) 0y: @ = U for (w, p)-tCDP

We divide the proof rules of span-apRHL in four classes:
basic rules (Figure 2), rules for basic mechanisms (Figure 3),
rules for reasoning about transitivity (Figure 4), and rules
for conversions (Figure 5). The basic rules can be used
to reason about either differential privacy, RDP, zCDP, or
tCDP. We describe the basic rules in a parametric way by
considering {Na stacao<s to stand for one of the families
{N55}0<s 0<s> {N RDP}*e{ «},0<p> 1~% 5p PYo<e.0<p and
{~utCPPY . We give a selection of the more interesting
proof rules in Figure 2, and defer the rest of the rules to the
appendix. Here, we comment briefly on the rules. The [assn]
rule for assignment is mostly standard, the only detail is that
the index 14 now depends on which notion of privacy we
want to use. The rule [seq] is the sequential composition of
commands and takes the same form no matter which family
of divergence we consider. The rule [weak] is our version of
the usual consequence rule, where additionally we can weaken
also the privacy parameters for the various privacy definitions.

In Figure 3, we show some rules for two basic mechanisms
that we support: Gauss and Sinh-normal. Rules for the other
mechanisms are in the appendix. The rules [RDP-G], [zCDP-
G], [tCDP-G] and [DP-G] are all rules for the Gaussian
mechanism. They differ in terms of the privacy definition
they provide, and for the values of the privacy parameters
they achieve. These values correspond to the ones that can be
obtained by analyzing the Gaussian mechanism in the different
relaxations of differential privacy. The rule [tCDP-SinhG] is
similar to the other rules but it supports the Sinh-normal
mechanism as analyzed in [13].

In Figure 4, we show rules for transitivity in span-apRHL.
Transitivity is important because it allows one to reason about
group privacy [26]. The different flavors of the logic have
different numeric parameters for these rules, reflecting the
slight differences in group privacy [26], [12], [11]. Finally,
Figure 5 gives rules for converting between judgments for

span-liftings for DP,zCDP, RDP, tCDP

different flavors of differential privacy. In some of them we
have a loss in the parameters, in others there is no loss. These
rules correspond to the different conversion theorems for the
different logics [12], [11]. Notice that most of these rules
require lossless programs because they have been formulated
in terms of distributions, rather than subdistributions.

A. Denotational Semantics of pWHILE

To prove the soundness of span-apRHL we interpret
pWHILE in Meas using the sub-Giry monad G. We interpret
an expression judgment I' F! e: 7 as a measurable function
[T e:7]: [T] — [r]; for instance, the variable case
' Ht z: 7 is interpreted as the projection 7, : [['] — [7].
Note that all operators @ and comparisons >< are inter-
preted to measurable functions @: [7] x [r] — [r] and
< [7] x [r] — [bool] respectively. Likewise, we interpret
a distribution expression judgment I' P v: 7 as a measurable
function [ F? v: 7]: [I'] — G[r]; for instance, the Gaussian
expression I' FP Gauss(ep,es): real is interpreted as a
Gaussian distribution: N'([T" F ey : real], [I' H ey: reall).
Finally, we interpret a judgment I' - ¢ as a measurable
function [I' F ¢]: [I'] — G[I'] defined inductively as

[T+ & v] = Gw(l | z: 7)) o stry g © (idrys [V]),

[CFeses] =[TFea] o [T F e, [T+ skip] = nyry

[T+ if b then ¢ else 3] =

([T F 8], idgry)

Here, rw(I' | z: 7): [I]x[z: 7] = [I'] (x: 7 € ') is an over-
writing operation of memory ((ai,...,ak,...,an),bk) —
(a1y...,bk,...,ay), which is encoded using projection map-
pings of Cartesian products in Meas. The function br(I'): 2x
[T] — [I] + [I] comes from the canonical isomorphism
2 x [I] =2 [T + [T given from the distributivity of Meas.

To interpret loops, we introduce the dummy “abort” com-
mand " - null that is interpreted by the null/zero measure
over [I'], and the following commands corresponding to the
finite unrollings of the loop:

[ITF c1], [T F co]] o br(T") o

[while b do c],
ifn=0

ifn=k+1

_Jif b then null else skip,
| if b then ¢;[while b do c]y,
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We then interpret loops as:

This is

FFay+ e "’1AA,0 xo  eg: Dler (1), e2(2)/x1(1),22(2)} = @ [assn]
Thenfsc):® = & The~g ¢ d — U
: : [seq]

. A ol
'k C1;C2 Na5’5+7 C,I,C/Q. b — U

TH @ — & TH W — W Thenfio:d— ¥ a<f §<ny
FFClNﬁ,YCQ:@/ = v’

[weak]

Fig. 2. Selection of span-apRHL basic rules (implications H are definecd on the next page).

Ik a; & Gauss(er,0%) ~2% oy <& Gauss(en,0%): (ler(1) — ex(2)| <7) = (a1(1) = 22(2)) [RDP-G]
T F oy ¢ Gauss(er,02) ~3% 0 2 & Gauss(ez, 0%): (Jex(1) — e2(2)] < 7) = (21(1) = 22(2)) [2CDP-G]
Tha & Gauss(e,0?) NB?ES/QUQ 7y & Gauss(ea, 02): (Jer(1) —ea(2)] <) = (21(1) = 22(2)) [tCDP-G]

e > # (210g(0.66/0) < *) A (£ <o) (DP-G]

1<1/\/p<AJS
I'kay & e1 + A - arsinh (4Gauss(0,46%/2p))

NfG/pS(S_tCDP 23 < ey + A-arsinh (4 Gauss(0,6%/2p)) :
(lex(l) = e2(2)| < 6) = (21(1) = 22(2))

[tCDP-SinhG]

Fig. 3. Rules for basic mechanisms for DP, RDP, zCDP, and tCDP in span-apRHL.

ke Ngf,él cQD:PCIJ = 21(1) = 22(2) Tt N?E,&_, c3: U = x9(1) = 23(2) (DP-Trans]
'+ C1 N81+527 max(e2 81 +62,e51 55+51) [ SoV — l‘1<1> = 173<2>

DEoep ~b2 Py @ = a1(1) = 22(2)

TF e N;I)gpocfl)/PfRDP c3: U = z9(1) = z3(2) % + % =1 1<p 1<gq
TEer~{paiyp fola-))p €35 @0 W = @1(l) = z3(2)
zCDP . —

T e g s gey, @8 @ = a1{l) =2202)

[hep e o3 W = 2p(1) =23(2) keN 1<k

ke NZEDPZLDWP c3: DoV = z1(1) = 23(2)

[RDP-Trans]

[zCDP-Trans]

Fig. 4. Span-apRHL transitivity rules for group privacy

Span(Meas)-objects. We proceed in two steps: first inter-
preting expressions as binary relations, and then converting
relations to spans. In the first step, we interpret a relation
expression I' F# @ as a binary relation over [I']:

[T - while b do ¢] =sup [I'F [while e do c],].
neN

well-defined, since the family

{[T F [while e do ¢],]}nen is an w-chain with respect
to the wCPO | -enrichment C of Measg.

B. Semantics of Relations

Since we use span-liftings instead of relational liftings,
we need to interpret relation expressions to spans, that is,

(0 F e (1) ey (2))
= { (ml,mg) | [[F "t er: ’T]](ml) > [[F l_t €o: T]](mg) }
(T 7 (e1(1) ®1 €2(2)) b (e3(1) ®2 €4(2)))

_ { (m1,ms) [T er: 7](ma) @1 [T F e2: 7] (m2) }
1, 152 i [T Ftoes: T](m1) &2 [T H ey 7] (m2)
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Do ~Poer:® = U ¢, ¢t lossless

I'ke Ngg’]}; gc2:® = ¥ ¢, lossless

' NE’CD:;CQZ(I) = U

[D/z]

c1, co: lossless

't NS?D;,CQ:(I) = U
Va>1.TFc N?’RDPCQ:CP = U
0<d<1

[z/R]

'k C1 ~PP

[z/D]
Co: P — U

E+p+24/plog(1/5), §

I'-c NECDP(W) ca: & = U, ¢q,co: lossless, f =min(w, 1 + 4/log(1/d)/p), 0 <6 <1

[t/D]

TE e ~Dbog1y)/(8-1), 6 20 @ = ¥

'k NgiRDP c: P = U

c1, Co: lossless

0<d<l1

DP
'k C1 prlog 5/

R/D]

(a—1), 5 C2: P —= U

Fig. 5. Rules for conversions between DP, RDP and zCDP in span-apRHL.

We interpret the connectives in the expected way:
CFREOAD) = (T FE®)n (T 7 D)
(THFE e v o) =T HF @)U v)
(0 =7 @) = ([I] > [T \ (L =7 @)
The binary relation (I'  ®) can be converted to the span

[T HR @] = ([T, [T], (T B7 @), 71| r-ra), T2l rera))-

We interpret the implication I' H @ == ¥ by the following
morphism in Span(Meas):

HF H @ - \I/]] = (id[[p]],id[[p]], (id[[p]] X id[[p]])h]n_}aq)D)

A judgment I' - ¢; Nﬁé c2: ® = U is valid if there exists
I: (T f @) — W([T F* ¥], A, a,d) measurable such that
the following map is a morphism in Span(Meas):

([T F ], [T F o] 0): [LHE @] — D HE \Ij]]ﬂ(A,a,s)

Finally, we define the validity in span-apRHL as follows:
ke ~P5e:® = U
iff . ([T F ], [T F e, ): [®] — [[\I,]]Ii(A1>;>75,6)7
P~ e = U
iff 3. ([T'F ], [TF e, l): [®] — [[\I,]]ﬁ(pta*,p)7
T |: Cc1 Nz.?]p)p co: d — v
M . ﬁ(AZCDPy’;p)
iff 3. ([I'F 1], [T F e2],l): [@] — [¥]
T |: Cc1 N‘;;_tCDP Co: d — v

iff 3. ([0 F 1], [0 F e2],1): [@] — W]

AW7tCDP,*,p)
Theorem 13. If ' I ¢; Nﬁé co: ® = VU is derivable in
span-apRHL, then it is valid.

VII. VERIFICATION EXAMPLES

We show how to use span-pRHL to verify concrete pro-
grams. Since the guarantees provided by RDP, zCDP, and
tCDP can all be converted into guarantees about (e, d)-DP,
one could analyze all the examples we will show under (¢, 6)-
DP. The interest however in performing as much reasoning as

possible using these relaxations is that one can achieve better
values of the parameters. This will become particularly evident
in the last example.

A. One-way Marginals

As a warm up, we begin with the following classic example
of a one-way marginal algorithm with additive noise.

Algorithm 1 A mechanism estimates the attribute means
1: procedure AttMean(n: int, p: real (const.), z: bool™
(dataset), ¢: int, y, 2z, w: real)
1+ 05y + 0;
while i < n do
yytafii—i+1;
z +—y/n;
w e Gauss(z, 1/2n%p);

AN A R

We first show the Rényi-differential privacy of AttMean. We
set a typing context I' of AttMean by z: bool™ (dataset),
1: int, and y, 2z, w: real. We show the following judgment:

I' - AttMean NiDpP AttMean:
adj(z(1),2(2)) = w(l) = w(2).

Here, the adjacent relation adj(x(l),z(2)) means that two
datasets (1) and x(2) differs at most in one record. Explicitly,
we define it by the following relation expression:

A (@i #eilE) = A @l = li)e).

The proof of this judgment follows by splitting AttMean

into two commands LoopAM; NoiseG where NoiseG = w &

Gauss(z,1/2n2p), and LoopAM is the rest of the program.
Since the loop part LoopAM is deterministic, by standard
reasoning, we obtain:

' - LoopAM ~§ " LoopAM:
adj(xz(1),z(2)) = (|z(1) = 2(2)] < 1/n).
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By [RDP-G], for the noise-adding step NoiseG we have:

I' - NoiseG Ng;RDP NoiseG:

(I2(1) = 2(2)] <1/n) = (w(1) = w(2)).

Thus, by applying [seq] we complete the proof. A similar
proof could have been carried out with both the rules for
differential privacy, zCDP, and tCDP. Due to the simplicity
of the example (that is, LoopAM is deterministic), the resulting
guarantee would have been the same.

Algorithm 2 A mechanism estimates the attribute means with
SinhNormal noise
1: procedure AMSinh(n: int, p: real (const.), x: bool™
(dataset), 7: int, y, z,w: real)
1 < 0y < 0;
while i < n do
y—ytafi;i+—i+1;
z < y/n;
w w+ A arsinh (4Gauss(0, /2n?p));

AN A o

We change the noise in the algorithm AttMean from Gaus-
sian noise to SinhNormal noise. Explicitly, we define a new
algorithm AMSinh = LoopAM;NoiseSinh where the noise-
adding part is changed to NoiseSinh = w Ewira.
arsinh (4Gauss(0, /2n%p)), where A is a constant satisfying
1 <1/\/p < A/n. In the similar way as the previous example
AttMean, for the loop part LoopAM, we obtain:

I' F LoopAM Ng'A/gftCDp LoopAM:

adj(z(1),(2)) = (|z(1) = 2(2)[ < 1/n).
By applying [tCDP-SinhG], the noise-adding part NoiseSinh
satisfies

I' - NoiseSinh N%ZVS%CDP

(I2(1) = 22| < 1/n) = (w(1) = w(2)).

NoiseSinh:

Thus, by applying [seq], we conclude that the algorithm
AMSinh is (16p,n - A/8)-tCDP.

B. A k-fold Gaussian mechanism

Consider a type DATA of dataset and an predicate ADJ(—, =)
of adjacency for the type DATA, and consider K queries
q(i,—): DATA — real (0 < ¢ < K) with sensitivity 1, that
is,

We want now to prove private the following K -fold Gaussian
mechanism. Even though standard DP can already be handled
by other verification techniques, our proof applies the conver-
sion rules between DP and zCDP along with composition in
zCDP, yielding a more precise analysis for standard DP.

Algorithm 3 Sum of K Gaussian mechanisms
1: procedure FoldGg (K : int, o: real (const.), D: DATA,
r,y,2z: real, ¢: int )
14 0;2z « 0;
while i < K do
x+q(i,D);y & Gauss(0,0);
z—x+y+zi—i+ 1

We set a typing context of FoldGg by D: DATA, x,y, z: real,
and 7: int. Following sensitivity of queries ¢, for any 0 < ¢ <
K we may assume

'k a2+ q(i,D) Ng?gp x <+ q(i,D):

ADI(D(1), D(2)) => |2(1) — 2(2)] < 1.

Thus, for the loop body c (line 5), by applying [zCDP-G],
[seq] and [assn], we have

I'kc Né)c]l:)/P2o.2 c:
ADI(D(1), D{(2)) A (2(1) = 2(2)) = =z(1) = 2z(2).

Then, by applying [assn], [seq], and [while] (the proof rule
for while-loop) rules, we conclude

[+ FoldGg Ngf?ﬁ/%Q FoldGx :
ADI(D(1), D(2)) = (1) = 2(2).

Hence, the algorithm FoldGg is (0, K/202)-zCDP. Further-
more, by applying [z/D], we conclude that the algorithm

FoldGy is | o225 + W,é)—DPforanyO <6< 1/2

202
This analysis gives a more precise bound compared to
reasoning in terms of standard differential privacy. For any
0 < 41 < 1/2, the loop body c satisfies

DP .
I'ke max((1++/3)/20,4/210g(0.66/51)/7),61 ¢

adj(D(1), D{2)) A (2{1) = 2(2)) = 2(1) = (2),
Let ¢ = max((1 + v/3)/20,\/210g(0.66/61)/0). The algo-

rithm FoldGy can be seen as K-fold adaptive composition
of the loop body c;--- ;c. By applying the advanced com-
position theorem [26, Theorem 3.20], the algorithm FoldGg

is (5~ V2K log(1/62) + Ke?, K6, +52)-DP for any 0 <
01,02 < 1/2. We compare the DP-bounds which we obtained.
When 02 < 0.4, we have 21og(0.66/d2) > 1. We also have
€ > 1.36/0 by the definition. Then, we can compute:

K 2Klog(1/s
K VERs)%) R iog(1]5) + K<
g

202

Hence, ¢ - /2K log(1/62) + Ke? > £5 + w
whenever § = K&, + 2 and 65 < 0.4.

We can conclude that verification via zCDP is actually better
than advanced composition for the algorithm FoldG. First,
in the verification via zCDP, the approximation error § is
given regardless of the number of queries K. Second, if the
approximation error satisfies 6 < 0.4 then the verification is
significantly better than advanced composition. The restriction
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0 < 0.4 is quite weak since the approximation error § in
the (¢,0)-DP is thought as the probability of failure of e-
DP. Moreover in practical use of (g, )-DP, the parameter ¢ is
usually taken to be quite small (e.g., § ~ 1075).

VIII. RELATED WORKS

a) Relational liftings for f-divergences: Our work is in-
spired by work on verifying probabilistic relational properties
involving f-divergences by [15]; we generalize their results to
a broader class of divergences and also to handle continuous
distributions. Barthe and Olmedo also consider f-divergences
that satisfy a more limited version of composability, called
weak composability. Roughly, these composition results only
apply when corresponding pairs of distributions have equal
weight; the KL-divergence, Hellinger distance, and x? di-
vergences only satisfy this weaker version of composability.
While we do not detail this extension, our framework can natu-
rally handle weakly composable divergences in the continuous
case.

A similar approach has also been used by [28] in the context
of an higher order functional language for reasoning about
Bayesian inference. Their type system uses a graded monad
to reason about f-divergences. The graded monad supports
only discrete distributions and is interpreted via a set-theoretic
semantics, again using the lifting by [15].

b) Relational liftings for differential privacy: Approxi-
mate relational liftings were originally proposed for program
logics targeting differential privacy. The first such system used
a one-witness definition of lifting [4], which was subsequently
refined to several notions of two-witness lifting [15], [29].
[18] developed approximate liftings and a program logic for
continuous distribution using witness-free lifting based on a
categorical monad lifting [30], [31]. A witness-free relational
lifting for differential privacy was introduced by [18]. This can
be seen as an application of the general construction of graded
relational lifting [21, Section 5] to the Giry monad, using
the technique of codensity lifting [31, Section 3.3] instead of
T T-lifting. The witness-free relational lifting by [18] sends
a binary relation R between measurable spaces X,Y to the
following one between GX,GY:

RTT(0) — ﬂ
(k,l): R=5S(<'58")

where 579 = { (z,y) €G1xGl|a < e y+0 }

(kﬁ ~ lﬁ)fls(s+s’,6+6’)

where G is the sub-Giry monad, k¥ and ! denote the Kleisli
extensions of k and [ respectively, — denotes a relation-
preserving map, and T T is used to denote the codensity lifting
and to distinguish it from our 2-witness lifting. Here, the
intersection is taken over all measurable functions k£ : X —
G1,1:Y — G1 mapping pairs related by R to those related by
S("%) We note that the binary relation S (.9 is a parameter
of this witness-free lifting, and by changing it, we can derive
other graded relational liftings of G.

The main difficulty with the witness-free liftings is checking
whether two given distributions are related by RTT(5:9):

we have to test the pair (z,y) against every pair (k,l) of
measurable functions such that (k,1): R-+S%). Fortunately,
since the divergence APP(®) is defined by a linear inequality
of measures, the witness-free lifting RTT(9) C gX x gY
can be equivalently defined in a simpler form:

RTTED = £(dy,dy) | VYA C Bx. di(A) < e“da(R(A)) +6}.

While we would like to generalize this lifting construction to
handle more general divergences for RDP, zCDP, and tCDP,
there are at least two obstacles. First, it is not clear how to
find a parameter S to derive the suitable graded relational
lifting for a given general divergence; this issue is currently
under consideration. Second, even if we can find a suitable
parameter S, it is awkward to work with the lifting unless
we can simplify the large intersection into a more convenient
form. In contrast, 2-witness liftings seem more concrete and
easier to work with: it suffices to give witness distributions to
check the membership of lifted relations.

In the discrete case, witness-free liftings are equivalent to
the witness-/span-based liftings by [32]. Recent work also
considers liftings with more fine-grained parameters that can
vary over different pairs of samples [2].

c) Other techniques for verifying privacy: Rényi and
zero-concentrated differential privacy were recently proposed
in the differential privacy literature; to the best of our knowl-
edge, we are the first to verify these properties. In contrast,
there are now numerous systems targeting differential privacy
using a wide range of techniques beyond program logics,
including dynamic analyses [6], linear [7], [5], [33] and
dependent [3] type systems, product programs [34], partial
evaluation [8], and constraint-solving [9], [2]; see the recent
survey [10] for more details.

IX. CONCLUSION AND FUTURE WORK

We have developed a framework for reasoning about three
relaxations of differential privacy: Rényi differential privacy,
zero concentrated differential privacy, and truncated concen-
trated differential privacy. We extended the notion of diver-
gences to a more general class, and to support subprobability
measures. Additionally, we have introduced a novel notion
of approximate span-lifting supporting these divergences and
continuous distributions.

One promising direction for future work is to study the
moment-accountant composition method [35]. This composi-
tion method tracks the moments of the privacy loss random
variable, although it does not directly correspond to composi-
tion for RDP or zCDP. Another interesting direction would be
to analyze recently-proposed RDP mechanisms for posterior
sampling [36], and the GAP-Max tCDP algorithm [13].
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