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Abstract

Let s and t be positive integers. We use P; to denote the path with ¢ vertices and K; s to
denote the complete bipartite graph with parts of size 1 and s respectively. The one-subdivision
of K, is obtained by replacing every edge {u,v} of K; 5 by two edges {u, w} and {v,w} with
a new vertex w. In this paper, we give a polynomial-time algorithm for the list-three-coloring
problem restricted to the class of P;-free graph with no induced 1-subdivision of K ;.

1 Introduction

All graphs in this paper are finite and simple. We use [k]| to denote the set {1,...,k}. Let G be
a graph. A k-coloring of G is a function f : V(G) — [k] such that for every edge uwv € E(G),
flu) # f(v), and G is k-colorable if G has a k-coloring. The k-COLORING PROBLEM is the problem
of deciding, given a graph G, if G is k-colorable. This problem is well-known to be N P-hard for
all k > 3.

A function L : V(G) — 2] that assigns a subset of [k] to each vertex of a graph G is a k-list
assignment for G. For a k-list assignment L, a function f : V(G) — [k] is a coloring of (G, L) if f
is a k-coloring of G and f(v) € L(v) for all v € V(G). We say that a graph G is L-colorable, and
that the pair (G, L) is colorable, if (G, L) has a coloring. The LIST-k COLORING PROBLEM is the
problem of deciding, given a graph G and a k-list assignment L, if (G, L) is colorable. Since this
generalizes the k-coloring problem, it is also N P-hard for all k£ > 3.

We denote by P; the path with ¢ vertices and we use Ki s to denote the complete bipartite
graph with parts of size 1 and s respectively. The one-subdivision of K , is obtained by replacing
every edge {u,v} of Ky, by two edges {u,w} and {v,w} with a new vertex w. For a set H of
graphs, a graph G is H-free if no element of H is an induced subgraph of G. If H = {H}, we
say that G is H-free. In this paper, we use the terms “polynomial time” and “polynomial size” to
mean “polynomial in [V(G)|”, where G is the input graph. Since the k-COLORING PROBLEM and
the LIST-k COLORING PROBLEM are N P-hard for k£ > 3, their restrictions to H-free graphs, for
various H, have been extensively studied. In particular, the following is known:
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Theorem 1 ([6]). Let H be a (fixed) graph, and let k > 2. If the k-COLORING PROBLEM can
be solved in polynomial time when restricted to the class of H-free graphs, then every connected
component of H is a path.

Thus if we assume that H is connected, then the question of determining the complexity of k-
coloring H-free graph is reduced to studying the complexity of coloring graphs with certain induced
paths excluded, and a significant body of work has been produced on this topic. Below we list a
few such results.

Theorem 2 ([1]). The 3-COLORING PROBLEM can be solved in polynomial time for the class of
Pr-free graphs.

Theorem 3 ([2]). The 4-COLORING PROBLEM can be solved in polynomial time for the class of
Ps-free graphs.

Theorem 4 ([4]). The k-COLORING PROBLEM can be solved in polynomial time for the class of
P5-free graphs.

Theorem 5 ([5]). The 4-COLORING PROBLEM is N P-complete for the class of Pr-free graphs.

Theorem 6 ([5]). For allk > 5, the k-COLORING PROBLEM is N P-complete for the class of Ps-free
graphs.

The only case for which the complexity of k-coloring P;-free graphs is not known k = 3, ¢ > 8.
In this paper, we consider the LIST-3 COLORING PROBLEM for P;-free graphs with no induced 1-
subdivision of Kj . We use SDK; to denote the one-subdivision of Kj ;. The main result is the
following:

Theorem 7. For all positive integers s and t, the LIST-3 COLORING PROBLEM can be solved in
polynomial time for the class of (P, SDKs)-free graphs.

2 Preliminaries

We need two theorems: the first one is the famous Ramsey Theorem [7], and the second is a result
of Edwards [3]:

Theorem 8 ([7]). For each pair of positive integers k and l, there exists an integer R(k,l) such that
every graph with at least R(k,1) vertices contains a clique with at least k vertices or an independent
set with at least | vertices.

Theorem 9 ([3]). Let G be a graph, and let L be a list assignment for G such that |L(v)| <2 for
all v € V(G). Then a coloring of (G, L), or a determination that none exists, can be obtained in
time O(|V(G)| + |E(G)]).

Let G be a graph with list assignment L. For X C V(G) we denote by G|X the subgraph
induced by G on X, by G\ X the graph G|(V(G) \ X) and by (G|X, L) the list coloring problem
where we restrict the domain of the list assignment L to X. For v € V(G) we write Ng(v) (or N(v)
when there is no danger of confusion) to mean the set of vertices of G that are adjacent to v. For
X C V(G) we write Ng(X) (or N(X) when there is no danger of confusion) to mean (J, . x N(v).
We say that D C V(G) is a dominating set of G if for every vertex v € G\ D, N(v) N D # (). By
Theorem 9, the following corollary immediately follows.



Corollary 10. Let G be a graph, L be a 3-list assignment for G and let D be a dominating set of
G. Then a coloring of (G, L), or a determination that (G, L) is not colorable, can be obtained in
time O(3IPI(|V(G)| + |E(G)])).

Proof. For every coloring ¢ of (G|D, L), in time O(|E(G)|) we can define a list assignment L. of G
as follows: if v € D we set L.(v) = {c(v)} and if v ¢ D we can pick u € N(v) N D by the definition
of a dominating set and set L.(v) = L(v) \ ¢(u). Let £ ={L. : ¢ is a coloring of (G|D, L)}, then
clearly |£| < 3Pl and (G, L) is colorable if and only if there exists a L. € £ such that (G, L) is
colorable. For every L. € L, by construction |L.(v)| < 2 for every v € G and hence by Theorem 9, a
coloring of (G, L), or a determination that none exists, can be obtained in time O(|V(G)|+|E(G)|).
Therefore a coloring of (G, L), or a determination that (G, L) is not colorable, can be obtained in
time OBPI(V(G)| + |E(G)).

O

3 The Algorithm

Let s and ¢ be positive integers, and let G = (V, E) be a connected (P, SDK, K4)-free graph. Pick
an arbitrary vertex a € V' and let S; = {a}. For v € V, let d(v) be the distance from v to a. For
1=1,2,...,t — 2, we define the set S;;1 as follows:

e Let B, = N(SZ),WZ = V\ (Bz U Sz)

e Write S; = {v1,v2,...,v5,} and define

j—1
BZ? = {v = <Bi \ U Bf) : v is adjacent to vj}
k=1

Si

forj=1,2,... |Sz‘ Then B; = UL:‘l BZJ

e For j = 1,2,...,]5, let le C Bg be a minimal vertex set such that for every w € W, if

N(w) N B! #0, then N(w) N X] # 0. Let X; = U¥ X7.

o Let Si—i—l = Sz UXZ'.

It is clear that we can compute S;_; in O(t|V|?) time. Next, we prove some properties of this
construction.

Lemma 11. Fori=1,2,...,t — 2, |S;iy1| < |Si|[(1 + R(4, R(4,5s))).

Proof. Tt is sufficient to show that for each j = 1,2,...,]S;], |XZ]| < R(4,R(4,s)). Suppose not,
|Xf| = K > R(4, R(4,s)) forsome £ € {1,2...,|S;|}. Let X! = {z1,29,...,2x}. By the minimality
of X!, for j = 1,2,..., K, there exists y; € W; such that N(y;) N X! = {z;}. Since G is K-
free, by Theorem 8, there exists a stable set X’ C Xf of size R(4,s). We may assume X' =
{@1,22,. .., 2R4s} Let Y ={y1,42,...,Yrus)}- Again by Theorem 8, there exists a stable set
Y” C Y’ of size s. We may assume Y” = {y1,92,...,ys} and let X" = {x1,29,...,25}. Then
G[{ve} U X" UY"] is isomorphic to SDKj, a contradiction. O

Lemma 12. Fori=0,1,2,...,t—2, Bix1\(B;US;) ={v:d(v) =i+1} (where So = 0, By = {a}
and Btfl = N(Stfl)).



Proof. We use induction to prove this lemma. It is clear that for i = 0, By = N(a) = {v : d(v) = 1}.
Now suppose this lemma holds for ¢ < k, where k € {1,2...,t — 2}. First we show that for
every v € Byi1 \ (Br U Sk), d(v) = k + 1. By construction v € Wy, hence d(v) > k by induction.
Since v € By \ Bk, v has a neighbor w in Sii1 \ Sp C Bg; and thus d(v) < d(w)+1 <k + 1.
Now let v € V with d(v) = k + 1. It follows that v & (B U Sg), and v € B U Wy, and
v has a neighbor w € V with d(w) = k. By induction, it follows that v € W), and w € By. Let
J € N such that w € BJ. Since v € Wy, and N(w) N Bj, # 0, it follows that v has a neighbor in

X,Z C Xj C Sk11, and therefore v € Bg1, as required. This finishes the proof of Lemma 12. ]
By applying Lemma 11 and Lemma 12, we deduce several properties of S;_1.

Lemma 13. 1. There ezists a constant Mgy which only depends on s and t such that |Si—1| <
M.

2. W1 = V\ (St—l U N(St_l)) = 0.

Proof. Since we start with |Si| = 1, by applying Lemma 11 ¢ — 2 times, it follows that |[S;_1| <
(14 R(4, R(4,5)))"72. Let My = (1 + R(4,R(4,s)))!2, then the first claim holds.

Suppose the second claim does not hold. From Lemma 12, it follows that {v : d(v) <t —1} C
Si—1 UN(Si—1). But if w € V satisfies d(w) >t — 1, then a shortest w-a-path is an induced path
of length at least ¢, a contradiction. Thus the second claim holds. O

We are now ready to prove our main result, which we rephrase here:
Theorem 14. Let Ms; = (1 + R(4,R(4,s)))!"2. There exists an algorithm with running time
O(IV(G)|* + t|V(Q)|? + 3Mst(V(G) + E(Q))) with the following specification.
Input: A (P, SDK)-free graph G and a 3-list assignment L for G.

Output: A coloring of (G, L), or a determination that (G, L) is not colorable.

Proof. We may assume that G is connected, since otherwise we can run the algorithm for each
component of G independently. In time O(|V(G)[*) we can determine that either (G, L) is not
colorable, or G is Ky-free. If G is K4-free, we can construct S;_; in O(tn?) time as stated above.
Then by Lemma 13, S;—; is a dominating set of G and |S;—1| < M,;. Now the theorem follows
from Corollary 10. O
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