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Abstract— The problem of achieving the fast-timescale state
estimation for a power system with limited deployment of pha-
sor measurement units is considered. A deep neural-network
architecture that integrates bad-data detection, data cleansing,
and the minimum mean squared error state estimation is
developed. It includes a universal bad-data detection and a
Bayesian state estimation subnetworks. A novel universal bad-
data detection technique is proposed that requires no knowledge
about data distributions under regular and irregular operating
conditions. The subnetwork for universal bad-data detection
consists of an inverse generative model and a coincidence
test. It is implemented through the training of a generative
adversary network and an auto-encoder using slow-timescale
historical data. The Bayesian state estimation subnetwork is
trained through a generative adversary network with embedded
physical models of the power system. Comparing with the con-
ventional weighted least squares approach to state estimation,
the proposed minimum mean-squared error state estimator
does not require observability. Simulations demonstrate orders
of magnitude improvement in estimation accuracy and online
computation costs of/ver the state-of-the-art solutions.

Index Terms— Deep learning, neural networks, regression
learning, state estimation, phasor measurement unit (PMU),
generative adversary networks, anomaly detection, bad-data
detection, and Bayesian inference.

I. INTRODUCTION

We consider the problem of state estimation for a power
system that has limited phasor measurement units (PMUs).
PMUs provide synchronized measurements of the system
state at a rate two orders of magnitude faster than that of the
traditional supervisory control and data acquisition (SCADA)
system. PMU technology offers the potential of wide-area
situational awareness, (near) real-time control, fast timescale
security monitoring, and enhanced network resilience.

Unfortunately, despite over billion-dollar investments by
governments and industries worldwide, the cumulative de-
ployment of PMU remains limited, sufficient only for some
high voltage networks and vastly inadequate for most trans-
mission systems. The state-of-the-art is that most power sys-
tems are not PMU-observable, i.e., PMU measurements alone
are insufficient for state estimation at the PMU timescale.

There have been attempts to combine traditional SCADA
and PMU measurements to achieve PMU-timescale state
estimation. Such attempts have not been successful in pro-
viding accurate fast-timescale monitoring because there is a
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significant model mismatch for data from the slow and fast
timescales.

A long-standing challenge in state estimation is the abil-
ity to handle bad and malicious data; the latter can be
constructed to avoid detection [1]. Existing techniques are
ineffective in two critical aspects. First is the ability of
state estimation techniques to deal with multiple (possibly
interacting) bad. Because bad data do not necessarily follow
a specific probability distribution consistently, and few (if
any) samples of bad data that can be used to characterize the
behavior of data anomaly, one faces a seemingly intractable
statistical inference problem. Second is the computation cost
of bad data detection. Conventional approaches often iterate
between state estimation using computationally expensive
weighted least squares (WLS) techniques. The cost of such
iterative schemes can be prohibitive for large systems.

A. Summary of Results and Contributions

We present a deep learning approach to high-fidelity and
high-resolution state estimation for power systems that are
PMU-unobservable. By high-resolution state estimation, we
mean that the states are estimated at the PMU-timescale.
To this end, we adopt a Bayesian inference approach that
overcomes the unobservability barrier faced by conventional
WLS methods, enabling the use of limited PMUs for system-
wide state estimation at the fast timescale. By high-fidelity
state estimation, on the other hand, we mean the ability for
the state estimation algorithm to mitigate bad and malicious
data.

The main contribution of this work is threefold. First, we
propose an integrated deep neural-network architecture for
joint bad-data detection, bad-data cleansing, and state esti-
mation. Second, we develop a generative adversary network
(GAN) learning framework for Bayesian state estimation
and bad data detection. Finally, we propose a novel deep
learning approach to universal bad-data detection (UBD).
By universal bad-data detection, we mean specifically that
the data distributions in either regular or abnormal conditions
are unknown. We assume some historical data are available
under the regular operating condition, and no abnormal data
samples are available.

B. Related Work

For PMU-unobservable systems, a standard approach to
state estimation is to combine PMU and SCADA mea-
surements to form an augmented WLS problem [2]–[4].
There is, however, a model mismatch between the two
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types of measurements at different timescales [4]–[6]. The
mismatched modeling error can be quite significant when
the system states change rapidly. Indeed, even when both
types of measurements are noiseless, the augmented WLS
estimator cannot capture the fast varying system states.

Another line of approaches is to generate PMU pseudo
measurements. One of the earliest such techniques is based
on SCADA injection measurements [7]. From an estimation
theoretic perspective, generating pseudo measurements can
be viewed as predicting missing PMU measurements. Thus
the pseudo-measurement techniques are part of the so-called
forecasting-aided state estimation [8]. To this end, machine
learning techniques in load forecasting can be tailored to
produce pseudo measurements [9]. The issue of model
mismatch remains for these techniques.

There is also a third long and active line of approaches
based on dynamic state estimation proposed in the late
’60s by Deb and Larson [10] under a state-space model of
power systems. Although obtaining a dynamic model may be
complicated, the fact that one well-placed sensor can make
a linear system observable makes dynamic state estimation
particularly attractive [11]. This is an extensive and still
growing literature on this topic [12].

Bayesian approaches to state estimation are far less ex-
plored even though the idea was already proposed in the
seminal work of Schweppe [13]. Bayesian state estima-
tion generally requires the computation of the conditional
statistics of the state variables. One approach to calculate
conditional statistics is based on a graphical model of the
distribution system from which belief propagation techniques
are used to generate state estimates [14]. Such techniques
require a dependency graph of the system states and explicit
forms of probability distributions. Another approach is based
on a linear approximation of the AC power flow [15].

Bad-data detection and identification has been studied
extensively [16]. Conventional methods are post-estimation
techniques by first disregarding the presence of bad data. The
resulting state estimate is then used to compute the residue
error between actual measurements and ones predicted by
the state estimates. The presence of bad data is declared
if the residue error exceeds a certain threshold. For such
techniques, system observability is a prerequisite. The effects
of bad data in the initial state estimate cannot be ignored,
however, which often leads to misidentification of bad data
and the removal of good data.

In contrast to post-estimation bad-data detection, the
method proposed in this paper belongs to the less well-known
class of pre-estimation detection and filtering techniques.
Several such techniques [17]–[19] are based on exploiting
a dynamic model to predict the current measurement using
past measurements, from which the prediction error becomes
test statistics for bad-data detection.

There is an expanding literature on the use of deep learning
for anomaly detection [20]. Among existing approaches in
the literature, the work in [21] has an architectural connec-
tion with our approach; both involving GAN learning and
auto-encoder. The main difference between the technique

proposed here and that in [21] is the test used for detection:
a coincidence test used in this work, the mismatch between
the input and output of the auto-encoder is used in [21]. Our
detector is consistent in the sense that the detection error
probability approaches to zero; the detector used in [21], in
contrast, does not provide such a guarantee.

The proposed technique in this paper builds on to our
work on deep learning approach to state estimation for
unobservable distribution systems [22]. Main differences
between the technique proposed in this work and that in
[22] are the learning of generative model and the bad-data
detection techniques.

II. SYSTEM MODEL AND BAYESIAN STATE ESTIMATION

The power system state xt at time t is a column vector
consisting of real and imaginary parts of the voltage phasors.
A PMU at a particular bus measures directly the voltage and
current phasors on the bus. Therefore, the PMU measurement
vector zt and the system state xt satisfy a linear model

zt = Hxt + wt, (1)

where H is the observation matrix defined by the network
topology, the location of PMUs, and network parameters
such as the network admittance matrix, and wt the mea-
surement noise.

The frequentist approach to state estimation is to model
xt as deterministic. A standard state estimation technique
is the weighted least squares (WLS), which minimizes the
difference between the observed measurements and the pre-
dicted measurement by the system state. Under the PMU
measurement model, the WLS state estimator is given by

x̂WLS
t = argmin

x
||zt −Hx||.

When there are not enough PMUs installed, or some
PMUs are faulty, matrix H becomes column-rank deficient
and the system PMU-unobservable, or unobservable for
short. For such a system, even if the model prediction error
Ezt = zt−Hxt is small, the estimation error Ext

= x̂t− xt
can be arbitrarily large. Thus, the WLS approach applies to
systems that are observable, or additional constraints on the
state (such as sparsity) are necessary.

We adopt the Bayesian approach that assumes the system
state xt is a random vector, jointly distributed with the obser-
vation zt. Instead of minimizing the prediction error used by
WLS, the Bayesian approach minimizes the estimation error
directly. Using the l2-norm* to measure the size of error, the
Bayesian estimator minimizes the mean-squared error. The
minimum mean-squared error (MMSE) estimator is given by
the deceptively simple solution in the form of the conditional
mean:

min
x̂(·)

E(||x− x̂(zt)||22)→ x̂MMSE
t = E(xt|zt) (2)

A major advantage of the Bayesian formulation is that
system observability is no longer required. The difficulty

*Other norms such that l1− norm or the probabilty of error can also be
used.
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of implementing the MMSE estimator, however, is that the
underlying joint probability distribution governing xt and zt
is often unknown. Even when such a functional form of the
joint distribution is known, the computation of conditional
mean may be intractable.

III. BAYESIAN STATE ESTIMATION VIA DEEP LEARNING

A. Deep learning architecture for Bayesian state estimation

The architecture of the proposed deep learning solution to
Bayesian state estimation with anomaly data detection and
data cleansing is shown in Fig. 1.
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Fig. 1: A deep learning architecture.

For online state estimation, PMU and (possibly SCADA)
measurements zt are input of a deep neural network, denoted
by K(·, w) , that produces the state estimate x̂t = K(zt, w),
where w is the weight matrix of the deep neural network.
When the neural network is sufficiently large and its weights
properly trained, the neural network K(·, w) can approximate
arbitrarily well the MMSE estimator.

The lower layers of the network is a data pre-processing
subnetwork that implements a universal bad-data detec-
tion (UBD) and data cleansing. The upper layers is the
Bayesian state estimation subnetwork (BSE) that implements
the MMSE state estimator. The two subnetworks are trained
separately.

The deep neural network used for online state estimation
is trained offline. A generative model of power injections
is learned using historical SCADA data via a generative
adversary network (GAN). The learned generative model
can then be used to generate a set of training samples
S = {(xt, zt)}. Two separate deep neural networks are
trained using S: one is an auto-encoder for UBD, the other
a regression network for BSE.

The training of a deep neural network for BSE is standard.
An empirical risk minimization is used on the training set
S, as in [22]. We find it useful to set the input layer as the
linear MMSE estimator as a way to precondition the input.

The auto-encoder for UBD consists of a bank of scaler
auto-encoders, one for each measurement variable. The auto-
encoder is a cascade of an encoder and a decoder; the
encoder maps the input to a uniformly distributed latent
variable, and the decoder that maps the latent variable back
to the input. The decoder plays the role of a generative
model G that maps a uniformly distributed random variable
to the distribution of the measurement. The encoder is the
inverse generative model G−1 that maps the distribution of
the measurement to the uniformly distributed latent variable.

In training the auto-encoder, the decoder is trained using
the zt-samples of S using the GAN technique. The encoder
is trained using the samples generated by the decoder via an
empirical risk minimization.

The use of uniform distribution for the latent variable is
essential, as discussed in the next section.

B. Universal bad data detection and data cleansing

WWe present a novel technique for UBD—the universal
bad-data detection—under a binary hypothesis testing frame-
work. Once bad data are detected, they are replaced by the
(unconditional) mean values.

For simplicity, consider a scaler measurement z under the
null hypothesis H0 for regular operating conditions and the
alternative H1 for anomaly:

H0 : z ∼ f0 vs. H1 : z ∼ f1 ∈ Fε
Fε := {f, ||f − f0|| ≥ ε}

(3)

where f0 and f1 are probability distributions under the two
hypotheses, and Fε is the set of probability distributions that
are ε distance (divergence) away from f0. The null hypothesis
H0 is a simple and and the alternative H1 composite.

We assume that neither f0 nor f1 is known. Under H0,
however, we have some training samples distributed in f0.
No training samples for the abnormal data under H1.

1) Coincidence test: UBD is inspired by the coincidence
test [23] that tests the (discrete) uniform distribution with
alphabet size M under H0 against an arbitrary non-uniform
(discrete) distribution of the same alphabet size, ε distance
away from the uniform.

Suppose that a vector ũ of N i.i.d. samples are collected.
By coincidence it means that, among N samples in z̃, there
are at least two have the same value. The obvious connection
is the birthday coincidence when there are two people
among N having the same birthday. When the birthdays are
uniformly distributed and N = 23, there is a roughly 50-
50 chance that there are two people have the same birthday.
When the birthday distribution is not uniform, the chance
of the birthday coincidence is higher [24]. It is this extreme
property of the uniform distribution that serves the basis of
testing uniform against non-uniform distributions.

Paninski proposed in [23] a consistent test based on the
the number of samples that do not have coincidence, i.e., the
number of samples that have unique values. Let K1(ũ) be
such a number in an N sample realization ũ = (ũ1, · · · , ũN ).
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It is shown that the threshold test on K1(ũ)

K1(ũ)
H0

≷
H1

Tε :=
N2ε2

2M
−N(1− 1

M
)N−1

achieves consistency, i.e., detection error goes to zero so long
as N2ε4/M →∞.

2) From uniform to general distribution: Key steps that
allow us to adapt the coincidence test to achieve UBD is
shown in Fig 2. The first step is to transform the observation
random variable zt with general distribution f0 under H0 to
a uniformly distributed random variable u ∼ U(0, 1). This is
accomplished by the inverse generative model G−1 obtained
through the training of the auto-encoder described in Sec III-
A where G is the function that maps a uniform distributed
random variable u to f0 distributed z.

The second step is the analog-to-digital (A/D) conversion
that transforms the uniformly distributed continuous random
variable u to a uniformly distributed discrete random variable
ũ ∼ U(M) with M alphabets. In other words, putting the N
variables into M equally sized bins. The rest of steps follow
the coincidence test.

Fig. 2: Universal bad data detection.

For practical implementations, M and N are parameters.
If we assume that the bad/malicious data do not change
distribution within one tenth of a second, we collect say,
N ≈ 10 samples and putting them in M ≈ 100 bins, and
compute K1(ũ)—the number of bins with a single sample.
Satisfactory performance was achieved in our simulations.
The threshold parameter Tε is another parameter that trades
off the false-alarm and miss-detection probabilities.

IV. SIMULATIONS RESULTS AND DISCUSSIONS

A. Simulation Settings
a) Systems simulated: The simulations were performed

on the IEEE-118 Bus Power Flow Test Case [25]. The PMU
timescale load distribution of the buses in the EPFL Smart
Grid Project dataset [26] was used as the load distribution
for the buses. In the simulated system, the load distribution
of each bus was scaled by a different mean and a variance to
make each bus has a unique load distribution. We limited our
data set using a specific time interval, from 5 pm to 6 pm for
the days in May 2018. There should be separate networks
trained for other hours and seasons.

Using the load distributions, we generated 10,000 training
samples and 10,000 test samples. The power flow equations

are solved using MATPOWER toolbox [27] to obtain the
states and the measurements from the power injections for
the training and the test sets.

Two types of measurement devices were assumed: (i)
PMUs were assumed to be on some of the buses to measure
the complex voltage at the bus and the currents on branches
to the neighbor buses. (ii) SCADA meters were assumed
to be at all buses to measure complex power to/from the
transmission grid. The additive measurement noise without
bad data was assumed to be independent and identically
distributed Gaussian with zero mean and variance set at 1%
of the average net consumption value.

b) Performance measure: The performance of the
tested algorithms was measured by the per-node average
squared error (ASE) defined by,

ASE =
1

MN

∑
k

||x̂[k]− x[k]||2, (4)

where M is the number of Monte Carlo runs, k the index of
the Monte Carlo run, N the number of nodes, x̂[k] and x[k]
the estimated and the state vectors, respectively.

c) Distribution Learning via generative deep learning:
We used a generative network with 2 hidden layers and 100
neurons at each layer. Batch normalization and dropout with
rate 0.2 were used in hidden layers. Leaky-Rectified Linear
Units (ReLU) at hidden layers and a linear activation function
at the final layer were used as the activation functions.
For the discriminative network, we used two hidden layers
with 30 neurons. Leaky-ReLU at hidden layers and a linear
activation function at the final layer are used as the activation
functions. Adam optimization [28] algorithm with mini-
batches was used as the optimizer. Wasserstein GAN with
clipping parameter [−0.01, 0.01] [29] was implemented with
uniform noise.

We standardized all the power injection measurements
at different buses by subtracting the sample mean and
dividing by the sample standard variation. We trained the
generative model to learn the power injection distribution
from SCADA measurements. After the training, we used
Dvoretzky–Kiefer–Wolfowitz (DKW) inequality with 95 %
confidence interval. We plotted the cumulative distribution
function (CDF) of the samples generated by the generator
and the confidence interval we obtained from DKW. Fig. 4
shows the generator’s output is in the confidence interval.

After training the generator, we generated power injection
samples using it and renormalized them for each bus. We
solved the power flow equations to obtain the PMU mea-
surements and the states for each case. We separated the
100,000 training samples we obtained into 70,000 samples
to train the deep learning network and 30,000 samples as the
validation set.

d) Neural network specification and training: We
trained a deep neural network using the PMU measurements
as input and the state values as output. ReLU activation
function was used for neurons in the hidden layers and linear
activation functions in the output layer. The Adam algorithm
was used to train the neural network with mini-batches of
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Fig. 3: The output of the generator (black), empirical
CDF (blue) and the confidence interval given by
the DKW inequality.

60 samples. Early stopping was applied by monitoring the
error on the validation set. To have a better regularization,
batch normalization and dropout with 0.3 dropping rate are
used at all layers. The training algorithm was implemented
in Python 3.7.3 using Keras v2.2.4 with Tensorflow v 1.14
as the backend [30].

e) Comparison of Performances: For this network, 32
optimally placed PMUs make the system observable. We
repeated the experiment with 8, 14, 20 and 26 PMUs which
are guaranteed to be unobservable. We tuned the parameters
of the neural network separately for each case. We observed
using 3 to 5 hidden layers and 100-200 neurons per layer
after the LMMSE layer gives the best performance.

The Fig. 4 shows ASE comparison for the 118-bus system
among the augmented WLS, interpolated WLS [7] and the
Bayesian neural network solutions. It is demonstrated that
for highly unobservable systems, our method performed
significantly better than conventional WLS methods.

8 14 20 26

Number of PMU Meters

10-5

10-4

10-3

A
S

E

Bayesian NN
Interpolated WLS
Augmented WLS

Fig. 4: The comparison of algorithms on 4 test cases.

f) Bad Data Detection and Data Cleansing: We tested
bad data detection methods in two scenarios. In the first one,
we used a Gaussian noise on some of the measurements with
a much bigger variance, Fig. 5 (a). In the second one, we
used a Gaussian noise on some of the measurements with a
big non-zero mean, Fig. 5 (b). On both scenarios, we used
8 PMUs in the system. We compared the performance of
universal bad data detection (UBD) algorithm with, J(x)

test and reconstruction error of the autoencoder test (RET).
Since WLS−J(x), requires observability to work, we used
the augmented WLS solution to achieve observability using
unsynchronized SCADA measurements.

We used N = 50 samples to detect bad data. We used the
universal bad data detection method with m=2500 bins. We
calculated the false positive rate (FPR) and the true positive
rate (TPR) by varying the thresholds of each algorithm.
In Fig. 5 (c) and (d) we plotted the receiver operating
characteristic (ROC) curves for scenario 1 and 2 respectively.

Fig. 5: (a),(b): Histograms of regular and bad data for
scenario 1 and 2, RD: Regular Data, BD: Bad
Data. (c),(d): ROC curves of bad data detection
methods on scenario 1 and 2 respectively.

In power system applications it is often desired a small
FPR. In the next simulation, we fixed the FPR at 0.05. We
increased the noise level for both scenarios and calculated the
TPR of three algorithms. Fig. 6 shows UBD has consistently
better performance under different levels of noise than the
other algorithms.
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Fig. 6: False positive rates of bad data detection
methods.(a): Scenario 1, (b): Scenario 2

Finally, we simulated the complete algorithm combining
the universal bad data detection and the state estimation on
the first bad data scenario. We simulated three cases: (i)
Clean data (with only measurement noise): We did not use
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any bad data on the measurements, (ii) Bad data are present:
We used bad data on the measurements with 0.3 probability,
but we did not clear any of them and (iii) With bad data and
bad data cleansing: We detected the bad data using UBD
and cleared it. Fig. 7 shows the performance with bad data
detection and clearance improves the performance of state
estimation when bad data occurs. Moreover, even with the
bad data, the Bayesian neural network estimation has a better
performance than the Augmented WLS solution.

2 3 4

Noise level

10-4

10-3

M
S

E

NN - Clean Data
NN - Bad Data are Present
NN - Bad Data and Cleansing
WLS - Clean Data

Fig. 7: The performance of Bayesian neural network +
universal bad data detection.

V. CONCLUSION

This paper presents a machine learning approach to fast
timescale state estimation with limited PMU deployments.
We develop a deep learning architecture that integrates bad
data detection, data cleansing, and Bayesian state estimation.
A major contribution of this work is a universal bad-data
detection algorithm for unknown distributions under regular
and abnormal operating conditions. Numerical tests show
considerable gain over the state-of-the-art benchmark solu-
tions.
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