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Abstract— The problem of distribution system state estima-
tion using smart meters and limited SCADA (Supervisory Con-
trol and Data Acquisition) measurement units is considered. To
overcome the lack of measurements, a Bayesian state estimator
using deep learning is proposed. The proposed method consists
of two steps. First, a deep generative adversary network is
trained to learn the distribution of net power injections at
the loads. Then, a deep regression network is trained using
the samples generated from the generative network to obtain
minimum mean-squared error (MMSE) estimate of the system
state. Our simulation results show the accuracy and the online
computation cost of the proposed method are superior to the
conventional methods.

Index Terms— Distribution system state estimation, deep
learning, generative adversary networks, deep regression net-
work, SCADA, smart meter, and Bayesian inference.

I. INTRODUCTION

The problem of state estimation is considered for dis-
tribution systems. A major obstacle to state estimation in
distribution systems is that such systems are nominally
unobservable [1], [2]. By unobservable it means that there
is a manifold of uncountably many states that correspond to
the same measurement. System unobservability arises when
the number of sensors is not sufficiently large—typical in
distribution systems—or sensors are not well placed in the
network. An observable system may become unobservable
when sensors are at fault, sensor data missing, or data
tampered by malicious agents [3].

The popular weighted least-squares (WLS) estimator and
its variants can no longer be used when the system is
unobservable because a small WLS error in model fitting
does not imply a small error in estimation; a large estimation
error may persist even in the absence of noise. A standard
remedy of unobservability is to use the so-called pseudo
measurements based on interpolated observations or forecasts
from historical data. Indeed, the use of pseudo measurements
has been a dominant theme for distribution system state
estimation. These techniques, however, are ad hoc and do
not assure the quality of estimates.

The advent of smart meters and advanced metering in-
frastructure provide new sources of measurements. Attempts
have been made to incorporate smart meter data for state
estimation [4]–[6]. Not intended for state estimation, smart
meters measure accumulative consumptions. They often ar-
rive at a much slower timescale, e.g., in 15-minute to
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hourly intervals, that is incompatible with the more rapid
changes of DER. Unfortunately, existing techniques rarely
address the mismatch of measurement resolution among the
slow timescale smart meter data, the fast timescale real-
time measurements (e.g., current magnitudes at feeders and
substations), and the need for fast timescale state estimation.

State estimation for unobservable systems must incorpo-
rate additional properties beyond the measurement model
defined by the power flow equations. To this end, we
pursue a Bayesian inference approach where the system
states (voltage phasors) and measurements are modeled as
random variables endowed with (unknown) joint probability
distributions. Given the highly stochastic nature of the re-
newable injections, such a Bayesian model is both natural
and appropriate.

The most important benefit of Bayesian inference is that
observability is no longer required. A Bayesian estimator
exploits probabilistic dependencies of the measurement vari-
ables on the system states; it improves the prior distribution
of the states using available measurements, even if there are
only a few such measurements. Unlike the least squares tech-
niques that minimize modeling error, a Bayesian estimator
minimizes directly the estimation error.

The advantage of Bayesian inference, however, comes
with significant implementation issues. First, the underlying
joint distribution of the system states and measurements is
unknown, and some type of learning is necessary. Second,
even if the relevant probability distribution is known or can
be estimated, computing the actual state estimate is often
intractable analytically and prohibitive computationally.

A. Summary of Results and Contributions

The main contribution of this work is an application
of deep learning technology for distribution system state
estimation when the system is unobservable by the deployed
SCADAs. To this end, we develop a data-driven generative
model coupled with a deep neural network that provides
SCADA timescale state estimates. As a major departure
of the predominantly pseudo-measurement approaches to
state estimation when the power system is unobservable, the
proposed solution to state estimation for the unobservable
systems takes a Bayesian inference perspective, assuming
the system states as random quantities. Consequently, the
proposed approach is not bound by the observability assump-
tion as required by the traditional weighted least-squares
solutions.

The Bayesian inference that minimizes the mean squared
error (MSE) of the state estimate is given by the conditional
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mean of the system state. Simple as it may appear, the
conditional mean can be difficult to compute. Fundamen-
tally, the underlying joint probability distribution of the
measurement and the system state is required. Even when
such a probability distribution is given in closed-form, the
computation of the conditional mean is intractable in general.
Furthermore, the lack of measurement-state samples makes
it impossible to learn the joint distribution directly.

The proposed deep learning approach consists of unsu-
pervised learning of the generative model of the network
injection and supervised learning of the conditional mean of
the system states. Specifically, given direct or indirect mea-
surements of the net-injection, we consider several machine
learning techniques for the underlying generative models of
network injections. For distribution systems with smart meter
measurements, such models can be learned from smart meter
measurements or estimates of network injections using para-
metric or nonparametric techniques, including deep learning
techniques such as the generative adversary network (GAN)
method.

The unsupervised learning of injection generative model is
followed by supervised learning of the conditional mean of
the network state. To this end, we exploit the physical model
of the power system by embedding the power flow equation
in generating training samples. A deep neural network with
prewhitening first layer is proposed. We show that the pro-
posed state estimator achieves several orders of magnitude
improvement in accuracy and online computation costs over
the classical weighted least-squares (WLS) estimates.

B. Related Work

State estimation based on deterministic state models has
been extensively studied. See [1], [2] and references therein.
We henceforth highlight only a subset of the literature with
techniques suitable for distribution systems.

In some of the earliest contributions [7]–[10], it was well
recognized that a critical challenge for distribution system
state estimation is the lack of observability. Different from
the Bayesian solution considered in this paper, most exist-
ing approaches are two-step solutions that produce pseudo
measurements to make the system observable followed by
applying WLS and other well-established techniques.

From an estimation theoretic perspective, generating
pseudo measurements can be viewed as one of forecasting
the real-time measurements based on historical data. Thus
the pseudo-measurement techniques are part of the so-called
forecasting-aided state estimation [11], [12]. To this end,
machine learning techniques that have played significant
roles in load forecasting can be tailored to produce pseudo
measurements. See, e.g., [13]–[18].

Bayesian approaches to state estimation are far less ex-
plored even though the idea was already proposed in the
seminal work of Schweppe [19]. Bayesian state estima-
tion generally requires the computation of the conditional
statistics of the state variables. An early contribution that
modeled explicitly states as random was made in [20] where
load distributions were used to compute moments of states,

although real-time measurements were used as optimization
constraints rather than as conditioning variables in Bayesian
inference. One approach to calculating conditional statistics
is based on a graphical model of the distribution system from
which belief propagation techniques are used to generate
state estimates [21]. These techniques require a dependency
graph of the system states and explicit forms of probability
distributions. Another approach is based on a linear approx-
imation of the AC power flow [22].

The approach presented in this paper belongs to the class
of Monte Carlo techniques in which samples are generated
and empirical conditional means computed. In our approach,
instead of using Monte Carlo sampling to calculating the con-
ditional mean directly as in [23], [24], Monte Carlo sampling
is used to train a neural network that, in real-time, computes
the MMSE estimate directly from the measurements.

The proposed technique builds on to our work on dis-
tribution system state estimation [25] with several notable
differences. First, the techniques of learning of generative
models are different. In the referred research it was assumed
that the power injections follow a Gaussian mixture distri-
bution. Here we propose a more comprehensive technique
using generative adversarial networks (GANs). The GANs
are not only a more generic method to learn distributions
without having strong assumptions, it also allows us to learn
a distribution when the samples are not directly observable,
but observable under an operation. We proposed to change
the objective function of the GANs to train it to learn
the distribution of power injections using the aggregated
smart meter measurements. The state estimation algorithm
using regression learning is improved with a prewhitening
technique and more regularization techniques.

II. SYSTEM MODEL AND BAYESIAN STATE ESTIMATION

The system state vector of the power grid at time t is
defined by xi

t = V i
t ∠θit where V t

i is the voltage magnitude
and ∠θit is the phase angle for the state variable of bus
i. The overall system state xt = [x1

t , · · · , xN
t ]ᵀ is the

column vector consisting of voltage phasors at all buses.
A SCADA measures active/reactive power injections, power
flows measurements and voltage magnitude. The SCADA
measurement vector yt and system state xt are related by

yt = h(xt) + wt, t = 1, 2, . . . (1)

where t is the time index at the SCADA timescale
(millisecond), h(·) is the measurement function, wt the
measurement noise.

A. Weighted Least Squares Solutions and Observability:

The WLS estimator is optimal for observable systems in
the absence of measurement:

x̂WLS(yt) = argmin
xt

||yt − h(xt)||2, (2)

The goal of least squares is to minimize the modeling
error. When there are not enough SCADAs installed, or some
SCADAs are faulty, the system becomes unobservable. WLS
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methods need pseudo measurements or extra constraints to
estimate states when the system is unobservable.

B. Smart Meters in State Estimation:

Smart meter measurements that, say, T times slower than
the SCADA measurements. Then the smart meter measure-
ment vector z[n] is aggregated every T time:

z[n] =

nT−1∑

i=nT−T

g(xi) + v[n] (3)

where g(·) is the power injection function and v[n] the
measurement noise.

SCADAs are not widely deployed such that most distri-
bution systems are unobservable. The common practice is to
calculate pseudo-measurements using smart meters and solve
(2).

C. SCADA and Smart Meter Based Bayesian State Estima-
tion

We present an alternative way to exploit smart meter
measurements. As a significant departure from the WLS-
based techniques, we take a Bayesian viewpoint in which
system state xt is random and jointly distributed with the
measurement yt. Given that the power system is driven by
increasingly stochastic renewable generations and demands,
this assumption seems both natural and appropriate. By
modeling xt as a random variable, we are able to make use
of its prior distribution f(xt) and the discriminative model
through the conditional distribution f(yt|xt).

Let yt be the SCADA measurement vector and xt the
system state as defined in (1). Unlike the WLS techniques
that minimize the difference between the actual measurement
yt and predicted measurement Hxt, a Bayesian state estima-
tion method places the optimization objective directly on the
actual state xt and its estimate x̂t. Using the Euclidean norm
* as the measure of error, the Bayesian estimator is referred to
as the minimum mean-squared error (MMSE) state estimator
given by a deceptively simple solution in the form of the
conditional mean:

min
x̂t(·)

E(||xt − x̂(yt)||22) → x̂MMSE
t = E(xt|yt) (4)

A major advantage of the Bayesian formulation is that
system observability is no longer required, and the Bayesian
estimator gives the lowest possible mean squared error
among all estimators including all existing WLS based
estimators regardless whether the system is observable.

III. BAYESIAN STATE ESTIMATION VIA DEEP LEARNING

The Bayesian estimator comes with several nontrivial
implementation challenges. First, the Bayesian formulation
requires knowledge on the generative model - the joint distri-
bution f(xt, yt) - of xt and yt. Without access to samples of

*Other norms such that l1− norm or the probability of error measure are
also of interest

(xt, yt), it is difficult even to estimate the generative model.
Second, even if we have f(xt, yt), computing the conditional
mean are often intractable. Several early attempts [21],
[26] employed belief propagations on a graphical model to
compute the solution efficiently. These methods still require
the underlying graphical model; they deserve a new look
through the lenses of modern machine learning.

The advent of powerful deep learning tools and compu-
tation resources such as GPU and cloud computing make
it possible to overcomes the above challenges of Bayesian
state estimation. The key idea of our approach is to embed
the underlying physical law in the neural network learning
process.

Fig. 1: Flowchart of the algorithm.

Shown in Fig. 1 is a schematic that highlights the building
blocks of the proposed deep learning approach to Bayesian
state estimation. The proposed scheme includes the online
state estimation in the upper right and the offline learning
in the rest of the figure. The online state estimation is
through a deep neural network that approximates the MMSE
estimator defined in with SCADA measurements yt and
discrete network state Jt (such as breaker state) as its input,
and the state estimate x̂t the output. The computation cost of
producing state estimate in real-time is orders of magnitude
lower than the WLS-based solutions and can be further
reduced with special hardware implementations [27].

The offline learning includes distribution and regres-
sion learning modules. Taking samples from smart meters,
weather, and other external data, distribution learning pro-
duces an estimate of the probability distribution of the (fast
timescale) power injection. For each net injection sample
st drawn from F̂s, the solution of the power flow equation
gives the system state xt that gives a measurement sample
yt. We now have a training sample (xt, yt). A collection of
these training samples are used to set the neural network
parameter w via an empirical risk minimization.

A. State Estimation via Deep Neural Networks:
Using the samples of states and measurements, we trained

a multilayer feedforward neural network to approximate the
optimal MMSE estimator. The neural network, Fig 2 consists
of multiple layers of neurons. Neurons at each layer produce
a vector output for the next layer using a (parameterized)
nonlinear function of the output from the previous layer.

The universal approximation theorem (see, e.g., [28]) has
established that a neural network with a single hidden layer
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Fig. 2: Multilayer Feedforward Neural Network.

is sufficient to approximate an arbitrary continuous function.
This means that with a sufficiently large neural network and
appropriately chosen parameters, a neural network can well
approximate the MMSE state estimator.

Given the set of training samples

S = {(xt, yt) | k = 1, · · · , |S|}
generated, the weight matrix w is chosen to minimize the
empirical risk defined by

L(w; S) =
1

|S|
∑

k:(xt,yt)∈S

||xt −K(yt;w)||2,

w∗ = argmin
w

L(w; S).

The empirical risk minimization problem above is well stud-
ied for deep learning problems, and an extensive literature
exists. See, e.g., [29].

For the state estimation problem at hand, the class of
stochastic gradient descent algorithms is considered. The
Adam algorithm [30] designed for non-stationary objectives
and noisy measurements is particularly suitable.

A characteristic of deep learning is over-fitting, which
means that the number of neural network parameters tends
to be large relative to the training data set. To overcome
over-fitting regularization techniques should be used that
constraint in some way the search process in neural network
training. In training, we used dropout and batch normaliza-
tion. We used a constant prewhitening layer as the first layer
to preprocess the inputs.

B. Learning from Smart Meters via Generative Deep Learn-
ing :

A barrier to train a machine learning model for state esti-
mation is the lack of training samples. Distribution learning
can be parametric or non-parametric [31], [32]. Although
parametrical methods are practical and easy to use, they
have biasses and their learning capacities are often limited.
We propose to use aggregated historical power injection data
from Smart Meters to learn the distributions using a gener-
ative machine learning model called Generative Adversarial
Networks (GAN) described in [33].

As shown in Fig. 3 GAN consists of a Generative and a
Discriminative networks which are simultaneously trained.
While the generative network learns to generate samples
similar to the data, the discrimination network learns how

Fig. 3: Generative Adversarial Network.

to detect it. After training, the generative network implicitly
learns the probability distribution of the data. The objective
function of GANs as described in [33] is a two-player
minimax game,

min
Wg

max
WD

Ey∼fdata
[log(D(y,WD))]+

Eu∼U [log(1−D(G(u,WG),WD))],
(5)

where D is the Discriminative network, G the Generative
network, Wg and Wd are the parameters to learn, U the
uniform distribution and fdata the distribution of data.

To be able to learn the fast-timescale power injection
distribution using the smart meter measurements, we changed
the algorithm and objective function. Instead of generating
a sample from the generator, we generated T samples and
aggregated them to imitate the smart meter measurements in
each step. The objective function is replaced by,

min
Wg

max
WD

Ey∼fdata
[log(D(y,WD))]+

Eu∼U [log(1−D(
T∑

i=1

G(ui,WG),WD))].
(6)

IV. SIMULATIONS RESULTS AND DISCUSSIONS

A. Simulation Settings

a) Systems simulated: IEEE 118-Bus Test System is
used in the simulations [34]. It is assumed the 99 of the
busses have both load and generation. To solve the power
flow equations MATPOWER toolbox [35] is used.

It is assumed there are two kind of meters in the system. (i)
Smart meters measures aggregated power injection at loads
every 15 minutes. They are placed at all nodes. (ii) SCADA
meters are assumed to measure the active and reactive power
injection and power flow. It is assumed that the number
of SCADA measurements are not enough to make the
system observable. It is assumed there is an independent and
identically distributed additive Gaussian measurement noise
with zero mean and variance set at 1% of the average net
consumption value.

b) Performance measure: The average squared er-
ror(ASE) per-node defined by,

ASE =
1

MN

∑

k

||x̂[k]− x[k]||2, (7)

is used as a performance measure, where M is the number
of Monte Carlo runs, k the index of the Monte Carlo run,
N the number of nodes, x̂[k] and x[k] the estimated and the
state vectors, respectively. The objective function in the deep
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learning model is chosen as minimize mean-squared error to
approximate the optimal estimator.

c) Distribution Learning via generative deep learning:
We used aggregated power injection data from the Pecan
Street collection† for distribution learning. It is beneficial to
select the training samples of deep learning model using the
historical data with similar features such as the season, hour
of the day, weather, etc. We collected the net power injection
data for each bus fixing the hour of the day at 5 pm from
the 1st of May to the 31st of August in 2018.

We assumed that the power injection distribution at each
bus is a linear transformation of one distribution, they differ
only by mean and variance. We normalized all measurements
to obtain the samples of that distribution. Then, we used
these samples to train the GAN. As the data samples are
from smart meters, we modified the objective function of
training as described in (6).

We trained the generative network with 2 hidden layers
and 100 neurons at each layer. Batch normalization and
dropout with rate 0.2 are used in layers. Adam optimization
[30] algorithm with mini-batches is used as the optimizer.
Leaky-ReLU at hidden layers and a linear activation function
at the final layer are used as the activation functions. For
the discriminative network, we used two hidden layers with
30 neurons. Leaky-ReLU at hidden layers and a sigmoid
activation function at the final layer are used as the activation
functions.

After training the GAN and we generated many power
injection vectors using the generator network. To verify
the results, we aggregated the generated samples to imitate
the smart meter measurements and plotted the cumulative
distribution function (CDF) of it and empirical CDF of
the raw data in Fig. 4. The figure shows empirical CDF
obtained by the samples and CDF obtained from the learned
distribution are similar. It verifies the training was successful.
We also observed the discriminative function’s output is
converged to a constant value of 0.5 as expected, described
in [33].

Fig. 4: The comparison of the CDFs. The red curve is the
empirical CDF of the data, the blue curve is CDF
of the imitated measurements from the learned
distribution.

d) Neural network specification and training: We sep-
arated the power injection vectors generated by the generator

†http://www.pecanstreet.org/

into training (12000 samples), validation(4000 samples) and
test(4000 samples) sets. For each one, we solved the power
flow equations by MATPOWER to obtain the power flow
values and states. For this network, 32 optimally placed
SCADA meters make the system observable. We repeated
the experiment with 8, 14, 20 and 26 SCADAs which are
guaranteed to be unobservable. For each case, measurements
are imitated by adding measurements noise and states. The
noisy measurements of the SCADA meters are chosen as
the input of the network. Prewhitening is used on the inputs.
The states are chosen as the output. Then we trained a deep
neural network with 5 to 10 hidden layers to estimate states
on the test set.

The ReLU (Rectified Linear Units) activation function was
used for neurons in the hidden layers and linear activation
functions in the output layer. The Adam algorithm was used
to train the neural network with mini-batches of 60 samples.
Early stopping was applied by monitoring validation errors.
To select an initial point for the optimization, He’s normal
method [36] was used. To have a better regularization, batch
normalization and dropout with 0.3 dropping rate are used
at hidden layers.

e) Comparison of Performances: We implemented the
proposed deep learning approach to Bayesian state estimation
on the IEEE 118-bus. We compared the proposed Bayesian
state estimation with deep neural network (herein abbreviated
as Bayesian NN) with two WLS-based methods in the
literature:

1) WLS with pseudo measurements: referred to as Regu-
larized WLS generates injection pseudo measurements
by normalizing the smart meter measurement over the
interval.

2) Augmented WLS: uses only SCADA measurements to
estimate states. An extra constraint is added on the (2).

Fig. 5 presents the performance of three algorithms on
five scenarios. It is demonstrated that for highly unob-
servable systems, Bayesian methods are advantageous over
conventional WLS methods. Note that the MSE floor of the
augmented WLS method due to the SCADA - Smart Meter
mismatch.

Fig. 5: The comparison of algorithms on 5 test cases.
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V. CONCLUSION

This paper presents a comprehensive Bayesian state es-
timation algorithm for unobservable distribution systems
using SCADA and smart meters under a stochastic demand
model with generation. The proposed approach employs
two machine learning techniques: distribution learning of
power injection using generative adversary networks and
regression learning of MMSE estimator using deep learning.
The performance of traditional methods are not fulfilling
when the system is unobservable, where Bayesian alterna-
tives are still viable options. The objective function of GANs
is modified to learn the distribution of power injections
from the historical smart meter measurements. The use of
deep neural network also plays a crucial role in overcoming
computation complexity in Bayesian estimation, making the
online computation significantly lower than the traditional
WLS solutions. Simulation results demonstrate the potential
of the Bayesian state estimation for cases that are otherwise
intractable for conventional WLS-based techniques.
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