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Abstract—We propose a risk-sensitive security constrained eco-
nomic dispatch (R-SCED) problem that allows a system operator
to systematically tradeoff between the cost of power procurement
and the reliability of power delivery in the event of a contingency.
Our formulation includes a parameterized conditional value at
risk (CVaR) of the cost across contingencies and allows for re-
dispatch of generators and load shedding. Finally, we propose the
critical region exploration (CRE) algorithm to solve R-SCED, and
discuss its performance on the IEEE 30-bus test system.

I. INTRODUCTION

System operators (SOs) routinely solve a security-
constrained economic dispatch (SCED) problem to compute
dispatch decisions to meet demand requirements over a trans-
mission network. SOs often seek a dispatch that is robust to all
single potential outages of transmission lines, transformers, or
generators, to maintain the so-called N — 1 security criterion
for an N-component power system.

SCED tries to balance between the SO’s two conflicting
goals — minimizing power procurement costs and maintaining
reliability of power delivery under a collection of counterfac-
tual scenarios called contingencies. Most formulations in the
literature sacrifice cost considerations to prioritize reliability.
In this work, we propose a risk-sensitive SCED (R-SCED)
problem that provides the SO a tunable parameter to tradeoff
between cost and reliability. We also provide a computational
procedure to solve R-SCED under linearized power flow
models.

SCED formulations abound in the literature; the first of
which is preventive-SCED (P-SCED). This formulation en-
forces that the nominal dispatch remains feasible within exist-
ing limits for all operational components in every contingency
[1]. P-SCED does not consider potential recourse actions
following a contingency and the resulting dispatch is overly
conservative. Corrective-SCED (C-SCED) expands upon P-
SCED by allowing active network components to respond to
a contingency, e.g., see [2]. It allows re-dispatch of generators
with fast-ramping capabilities and some even allow partial
load-shedding, e.g., see [3]-[5]. Most C-SCED formulations
ignore costs associated with recourse actions. Such costs can
be high, especially for potential load shedding modeled via
value of lost load. To remedy that, authors in [6] associate
probabilities to contingencies and advocate to minimize the
expected dispatch costs across contingencies. In contrast, our
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R-SCED formulation in Section II proposes to minimize the
conditional value at risk (CVaR) of said costs. CVaR, of
a random variable measures the expected loss in the 1 — «
fraction of the worst outcomes. In Section III, we explore the
properties of R-SCED and illustrate through a two-bus network
example, how the SO can express its preference in trading off
cost versus reliability through its choice of o in R-SCED.
The R-SCED problem has a much larger problem descrip-
tion compared to a nominal economic dispatch problem owing
to the number of contingencies, which leads to computational
difficulties that are shared by other C-SCED formulations. To
deal with this challenge, many have suggested to pre-filter
contingencies; see [7] for a survey. In this work, we consider
a decomposition approach to divide the R-SCED problem into
smaller subproblems that can potentially be solved in parallel.
We propose a critical region exploration (CRE) algorithm in
Section IV to solve the R-SCED problem. CRE leverages
properties of multiparametric linear programming and has
proven effective in the tie-line scheduling problem for multi-
area power systems in [8]. We demonstrate the efficacy of our
algorithm on the IEEE 30-bus test system in Section V.

II. RISK-SENSITIVE SCED PROBLEM

We formulate the risk-sensitive SCED (R-SCED) problem
with the linear DC power flow model and discuss how it gen-
eralizes prior formulations. R-SCED can easily be extended to
more detailed nonlinear AC power flow equations. In practice,
however, SOs often solve a sequence of SCED problems with
successive linearizations of power flow equations to handle
nonlinearity [9].

A. Network model

We begin by describing our model for the power network.
Consider a grid on n buses, labeled 1,...,n, with m trans-
mission lines. Let each bus be equipped with a dispatch-
able generator and a nominal load, whose vector values are
denoted g € R™ and d € R", respectively. We adopt a
linear power flow model via DC approximations, where the
(directed) power flows over the transmission lines are linear
maps of the vector of nodal power injections , given by Hzx.
Here, H € R?™*" denotes the injection shift-factor matrix
that depends on the topology of the power network and the
admittances of the transmission lines. Let the limits on the
(directed) power flows be denoted by f € R?™. The set of
allowable nodal power injections then becomes

P:={zeR" | Hz < f, 172 =0}, (1)

where 1 € R"™ is a vector of all ones. The equality 17z = 0
captures the balance of demand and supply of power across
the network. The DC approximations deem the voltage mag-
nitudes to be at their nominal values, ignore transmission line
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losses, and assume that voltage phase angle differences across
neighboring buses are small.! Assume that a linear dispatch
cost ¢'g to produce g from the dispatchable generators can
vary their outputs within G = [G, G]. The lack of a generator
at bus i can be modeled by letting G; = G; = 0.

B. Modeling contingencies

Consider a collection of scenarios, denoted by 1,..., K,
each of which corresponds to a single transmission line
failure. In the event of a contingency, we allow the operator
to take recourse actions; they may alter generator output
within ramping capabilities and shed load. Let dg* denote
the deviation of supply from the generators in contingency
k from the nominal case, constrained by ramping limitations
modeled as [dg¥| < A,. Denote the amount of load shed by
6d" € [0,d — d] := A, in contingency k.

A line outage alters the network topology, and hence, results
in a different injection shift factor matrix H" that in turn de-
fines a different feasible injection region P*. Transfer capabili-
ties of transmission lines are primarily determined by thermal
considerations, and can exceed their rated power capacities
for short durations. Following [11] and prior formulations [3],
[5], [12], we adopt dynamic line ratings under contingencies.
The drastic action limits are adopted immediately following
a contingency, but before recourse actions are taken, and the
short-term emergency limits are adopted 5 minutes after the
SO takes the recourse actions. Let the corresponding sets of
feasible injections be denoted IP”B A and IP”S“E respectively, where

P* C P& C PE,.
C. Formulating the risk-sensitive SCED (R-SCED) problem

Our formulation relies on the use of conditional value at
risk of a random variable. We begin by describing this risk
measure and then present R-SCED in (2).

2 {F1(0.95)

{1 CVaRy g5

Cost

Fig. 1. The probability distribution of random cost with the shaded region
denoting the tail of the distribution with probability 0.05.

If x describes a random cost with a continuous distribution,
CVaR,[x] computes the expected cost of x in the (1 — «)
fraction of worst-case outcomes, or

CVaR,[x] =E [x|x > F~ ()],

where [ is the cumulative distribution function of x and E
denotes the expectation computed over that distribution. Figure
1 visualizes the definition for some probability distribution of
random cost x. CVaRg g5[x] is the average value of x over the
distribution of shaded tail where the tail has probability 0.05.

'We can alternatively utilize linearization of the power flow equations
around the current operating point, possibly using real-time measurements
to estimate H, e.g., in [10].

As a ] 0, CVaR,[x] reduces to the expected value of x. For
« close to 1, the tail shrinks to only include the maximum
value of x and CVaR,[x] yields that maximum.’

To present R-SCED formally, associate probabilities p €
RX to the contingencies and let py := 1 — 17p as the
probability of the nominal state. We arrive at the following
optimization problem of the risk-sensitive SCED problem.

minimize CVaR, [¢'g + C(dg,dd)], (2a)
subject to g€ G, g—d € P,g—d € PE,, (2b)
g+0g" € G, g+ gk —d+6d" e Pk, (20)
0g"| < A,, §d* € A, (2d)

foreach k=1,..., K

over g, 6g, od. Here, 0g, dd denote the collection of the
respective variables across all contingencies. Additionally,
C(dg, 6d) is the random recourse cost, assuming a contingency
occurs, that takes the value

C*(6g",6d") := cTog" +vTod"

in contingency k.* Here, v measures the vector of nodal values
of lost load (VoLL ).

In R-SCED , the dispatch cost depends on two factors —
the dispatch decisions and the realized contingency. Fixing
the decisions, the cost is a random variable over the set of
contingencies. Minimizing the expected value of this random
variable yields the formulation in [6]. Taking the CVaR of
this variable generalizes this to encode an SO’s tolerance to
higher costs through the parameter . Choosing « equal to
zero, R-SCED treats all contingencies equally and minimizes
expected cost as in [6]. As « increases, R-SCED weighs
contigencies where the cost is higher more heavily.

For convenience, we denote the dispatch associated with
nominal operation, g, as nominal dispatch and the associated
cost, €'g, as nominal dispatch cost.

D. Comparison to existing SCED formulations

Before delineating the properties of the R-SCED problem
in the next section, we briefly discuss its relationship to prior
formulations of the SCED problem in the literature. We refer
the reader to [5] for a comprehensive survey.

o Preventive SCED (P-SCED) stipulates that the nominal
dispatch be feasible after any single line failure, and does
not model recourse actions or dynamic line ratings. R-SCED
with Ay, = Ay = 0 and ]P”BA = ]P”gE = P* reduces to P-
SCED.

o Corrective SCED (C-SCED) often does not model recourse
costs or load shedding. When they are, e.g., in [6], expected
costs are minimized—the case of R-SCED with a = 0.

III. PROPERTIES OF THE R-SCED PROBLEM

In this section, we first characterize a property of R-SCED
in our first result. The proof of this property proves useful
in devising an algorithm to solve it in Section IV. Second,

2For the definition of CVaRg [x] for x with general distributions, see [13].

3The cost structure can be altered to distinguish between different costs
for regulation up and down, i.e., by replacing ¢'dg" in the recourse cost by
cl [6g"]T + T [~6g¥]+ without adding conceptual difficulties.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 10,2020 at 14:18:23 UTC from IEEE Xplore. Restrictions apply.



we discuss the outcome of R-SCED on a two-bus network
example and compare it to that of C-SCED and P-SCED.

Proposition 1. R-SCED can be formulated as a linear pro-
gram, linearly parameterized in o. Additionally, the optimal
cost of R-SCED in (2) is piecewise affine in o/ = (1 —a)~!
over any closed interval in Ry, and the optimal nominal
dispatch g* remains constant over sub-intervals where the
optimal cost is affine.

Proof. Following Rockafellar and Uryasev in [13], CVaR of
a random variable x is given by

—

CVaR,(x) = min{z+ 1 L Elx — Z]+}7 (3)

where []+ yields the positive part of its argument. Observe that
cTg+C(dg, 6d) takes values in a discrete set with probabilities
p. Letting C° = 0, the objective function of (2) using (3)

becomes
+
NG

Using the epigraph form, (2) then reduces to solving

K
z+a > phyt,
k=0

K
min {z +a Zpk' {ch + C*(5g%, 6d") — z}
k=0

minimize
2,9,9,09,0d
subject to yk >0, (5)
y* > cTg+ C* (g%, 6d") — 2,
(2b) — (2d),
foreach k=1,..., K,
where ¥ := (yo,...,yx ). More compactly, define
T T
2’ = (2y%9") " o= (oF10gh]T 00T
and rewrite (5) as
S T
.. 01T ...0 / k k
zr(r)lznllmlazc% c’]'z” + « kz [c*]" =",
ey —
subject to Ax® <b, (6)
AFg® + EFgh <P,
k=1,...,K,

for suitably defined A, b, A" EF, bk, c?,c*. This is a paramet-
ric linear program linearly parameterized by «’. The proof
then follows from [14, Theorem 7.2]. O

The above proof demonstrates that R-SCED can be cast as
a linear program (6) with a decomposable structure, a property
we leverage to design our algorithm in Section IV.

A. R-SCED on a two-bus network example

To gain insights into the properties of R-SCED, we present
a simple yet illustrative two-bus network example and contrast
the results of R-SCED with that of P-SCED and C-SCED.

Consider the network in Figure 2a with A, = 0.25
MW/min, Ay, = 0.2 MW/min, and vy = v2 = $30/MW.
Assume line failures occur with probabilities p; = ps = 0.01

and dynamic line ratings of f,, = 1.75f and fqp = 1.25f.
The following table captures the nominal dispatch cost under
various formulations of economic dispatch, where the nominal
case is denoted ED.

Method g7 MW/hr) g5 (MW/hr)  Nominal Cost ($/hr)
ED 20.0 0.0 20.0
P-SCED 15.0 5.0 25.0
C-SCED 17.25 2.75 22.75
C-SCEDyuug 18.75 1.25 21.25
R-SCED (0.1) 18.75 1.25 21.25
R-SCED (0.9) 17.25 2.75 22.75

TABLE I. Comparison of various ED formulations.

C-SCED,, in Table I is C-SCED augmented with load
shedding, where an SO aims to minimize expected cost with
recourse. When « is small (o« ~ 0), the R-SCED solution
equals that in the augmented C-SCED solution. Additionally
for large «, i.e., a =~ 1, R-SCED reduces to expected cost
minimization without load shed. For general power networks,
the R-SCED solution with v ~ 1 is not equal to the C-
SCED solution; it minimizes the maximum recourse cost
across contingencies balancing the cost associated with load
shedding and generator re-dispatch.

Figure I demonstrates that nominal cost and total load shed
are piecewise constant in «. Additionally, as « increases,
the cost of nominal dispatch increases while load shedding
decreases. This illustrates how SO can utilize « to trade-off
between between cost and reliability.

We draw attention to the case when the dispatch cost of
the expensive generator at bus 2 is reduced from $2/MW
to $1.5/MW. For a range of « (approximately 0.6-0.7), the
nominal dispatch cost with the reduced cy is higher than that
with the larger co. Reduction in ¢; makes the VoLL relatively
larger compared to ramping costs. As a result, R-SCED favors
lesser load shedding at lower «’s, leading to the behavior
depicted in Figure 2b and 2c.

IV. SOLVING R-SCED VIA CRITICAL REGION
EXPLORATION

The R-SCED problem in (2) can be cast as a linear
program (LP). For practical power networks, that LP can
be prohibitively large, a property shared by prior C-SCED
formulations. We exploit the structure in its reformulation (6)
and propose the critical region exploration algorithm to solve
R-SCED. Our algorithm decomposes the problem into a master
problem and a collection of subproblems that can be solved
in parallel, and leverages properties of multi-parametric linear
programming [8]. To describe the algorithm, begin by noticing
that (6) can be written as

K
[cO]T:tO +a Z JE (2°),
k=1

minimize
z0 (N
subject to Az’ <b,
where
J¥ (2°) := minimize "] Tk,
xt ®)
subject to  AFz® + EFzl < b

Authorized licensed use limited to: Cornell University Library. Downloaded on August 10,2020 at 14:18:23 UTC from IEEE Xplore. Restrictions apply.



91 H 2 g2 23.0
f1=5MW 4® ﬁ\:s 22,51 m————
el = 1MW ey =S2MW 5 229
fo =TMW ERIN
\; S 210
dy = 10MW dy = 10MW | mm=m—mee
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(a) A two-bus network

(b) Optimal dispatch cost

(c) Total load shedding

Fig. 2. Nominal cost and total load shedding from either contingency for 2-bus example in (a) is depicted for various parameter choices. Here, (=)
denotes the nominal case, and the remaining lines denote the nominal case augmented with (= = =) dispatch cost at bus 2 reduced to cg = 1.5, (= = =) with

VoLL increased to v = 403/MW, (= = =) for the case with generation ramping limits reduced to Ay, = 0.2MW, Ay, = 0.156MW, (

) reduces the

drastic action limits to f, 4 = 1.5f, and (= = =) corresponds to the line flow limit of the higher capacity line reduced to fo = 6 MW.

Properties of J¥ are crucial to describe our algorithm. We
need additional notation to describe them. Define

X0 = {x | Az <b}.

Assume throughout that (8) is feasible for any z° € XO.
We say a collection of polyhedral sets Si,...,S; define a
polyhedral partition of S, if these L sets are polyhedral,
their union spans S, and any intersections are only at their
boundaries. Given this definition, we record a vital property
of J¥ in the following lemma.

Lemma 1. JF (:1:0) is piecewise affine over X" and the sets
over which it is affine describe a polyhedral partition of X°.

Problem (8) is a multi-parametric linear program, linearly
parameterized by xz°. As a consequence, its proof follows
directly from [14, Theorem 7.2]. Hereafter, call the sets in the
polyhedral partition as critical regions. For a given 2" € XY,
one can compute the critical region C* that contains z° € X°
and the affine description of the optimal cost J* over C* for
each k = 1,..., K.* More precisely, let the affine description
of J¥ be given by [pk}Ta:O + n¥ over CF. With the affine
descriptions of J!, ..., JX, we can then solve

minimize
EO

K
[CO]T:L'O +a/2 [pk}Txo +O/77k,
k=1

Az’ <b, 2° € Nk Cy,

€))
subject to

i.e., (7) with the additional constraint z¥ € Oszl(Ck, over
which the affine description of .J¥ holds. The above problem
can be solved as an LP. We assume that one can determine the
lexicographically smallest minimizer of (9). This provides a
tie-breaking rule in the case the minimizer is not unique. The
final consideration is a necessary and sufficient condition for
0% to be a minimizer of (7). To that end, z* is a minimizer
for (7) if and only if

0€6J* (%) + Nyo (2°7),

where 0.J%(+) denotes the sub-differential set of the objective
function of (7) and Nxo is the normal cone of X°. Algorithm 1
presents the CRE algorithm to solve (6). The crucial property
of our algorithm is summarized next.

(10)

4We omit the details of the procedure to determine the critical regions and
the associated affine cost description due to space limitations.

Proposition 2. Algorithm 1 converges to an optimizer of (6)
in finitely many iterations.

The proof is largely similar to that of [8, Theorem 1], and
is omitted for brevity. The proof requires boundedness of all
variables in (7) and (8). Variable z in (5) can be unbounded
in general. Taking advantage of the definition of CVaR , we
bound it by the minimum and the maximum value of recourse
costs across contingencies.

Algorithm 1 CRE algorithm to solve R-SCED.
1: Initialize:
20 € X0, J* + 00, D < empty set, € <
small positive number

2: do

3: Given z, compute p¥, n* CF for k=1,..., K.

4: Solve (9)

5: [20]" + lexicographically smallest minimizer of step
4,

6: JOP' +— optimal cost of step 4

7: if JoP' < J* then

8: [2°]" « [20]™, J* « J®D « {¢}

9: else

10: D+ DU{+a' i, p*}

11: end if

12: vt aJrgnlinv6conv(]D>)+NX0([:1:0]*) ||UH2

13 20 [20]" — e

14: while v* # 0

V. EXPERIMENTS ON THE IEEE 30-BUS TEST SYSTEM

We have implemented CRE for R-SCED on various IEEE
test networks. We only report the results on the highly-
loaded IEEE 30-bus system from PGLIB v17.08 [15] for space
constraints. In our experiments, we assumed drastic action and
short-term emergency limits to be 70% and 10% higher than
the nominal limits, respectively. Ramping costs were set equal
to nominal dispatch costs and ramp limits were uniformly
set to 0.2 MW per minute. The system was augmented with
generation capacities of 3MW at buses 13, 22, 23, and 27, and
costs were set to $1.4, 1.8, 1.6, 1.7 per MWh, respectively.
Line limits were modified according to Table II.
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Fig. 3. R-SCED solutions as a function of « for the IEEE 30-bus test network with VoLL uniformly (a) $90/MWh and (b) $126/MWh, where plots (a) and
(b) show the (—) nominal dispatch cost, (—) total load shed, and (- = ) maximum load shed. Plot (c) shows runtime for VoLL of (—) $90/MWh and

1072

(—) $126/MWh.

Bus1 Bus2 Line Limit
12 16 0.33
14 15 0.396
16 17 0.36
15 18 0.319
10 20 0.312

TABLE II. Augmented line limits for IEEE 30-bus example.

Slack variables were added to each subproblem constraint
to ensure feasibility, emulating [12]. The algorithm was initial-
ized with the solution of the ED problem with drastic action
limits. We formulated the problems in Python, but the CRE
algorithm runs on C++. All LPs were solved using Gurobi
8.0. The reported running times are from solutions on a 2015
MacBook Pro with 2.7 GHz Core i5 processor and 8§ GB RAM.

As one expects from Proposition 1, Figure 3a illustrates that
both nominal dispatch cost and load shedding are piecewise
constant. While nominal dispatch cost generally increases with
risk-aversion, and maximum load shed generally decreases,
this does not occur monotonically. This results from the
balance of cost associated with load shedding and regulation.
When the relative weight of load shedding is increased in
Figure 3b, R-SCED is less willing to shed load and shows
fewer increases in load shed as risk aversion increases.

Additionally, notice the large increase in total load shed
despite the maximum load shed not increasing significantly in
Figure 3a. CVaR considers the tail cost of most expensive con-
tingencies and ignores contingencies whose cost is below the
cutoff, allowing for a low level of load-shedding throughout
each of the contingencies.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we defined an alternative formulation of
SCED that allows a system operator (SO) to tradeoff between
minimization of dispatch cost and reliability of power delivery,
and explored its salient properties. Finally, we proposed the
critical region exploration (CRE) algorithm to solve it. In
future studies, we aim to compare CRE with the popular
Bender’s decomposition technique on larger power networks
for R-SCED, as proposed in [12], [16]-[19]. We also aim to
extend our formulation and algorithm to model uncertainty in
renewable power production.
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