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Abstract—We propose a risk-sensitive security constrained eco-
nomic dispatch (R-SCED) problem that allows a system operator
to systematically tradeoff between the cost of power procurement
and the reliability of power delivery in the event of a contingency.
Our formulation includes a parameterized conditional value at
risk (CVaR) of the cost across contingencies and allows for re-
dispatch of generators and load shedding. Finally, we propose the
critical region exploration (CRE) algorithm to solve R-SCED, and
discuss its performance on the IEEE 30-bus test system.

I. INTRODUCTION

System operators (SOs) routinely solve a security-
constrained economic dispatch (SCED) problem to compute
dispatch decisions to meet demand requirements over a trans-
mission network. SOs often seek a dispatch that is robust to all
single potential outages of transmission lines, transformers, or
generators, to maintain the so-called N − 1 security criterion
for an N -component power system.

SCED tries to balance between the SO’s two conflicting
goals – minimizing power procurement costs and maintaining
reliability of power delivery under a collection of counterfac-
tual scenarios called contingencies. Most formulations in the
literature sacrifice cost considerations to prioritize reliability.
In this work, we propose a risk-sensitive SCED (R-SCED)
problem that provides the SO a tunable parameter to tradeoff
between cost and reliability. We also provide a computational
procedure to solve R-SCED under linearized power flow
models.

SCED formulations abound in the literature; the first of
which is preventive-SCED (P-SCED). This formulation en-
forces that the nominal dispatch remains feasible within exist-
ing limits for all operational components in every contingency
[1]. P-SCED does not consider potential recourse actions
following a contingency and the resulting dispatch is overly
conservative. Corrective-SCED (C-SCED) expands upon P-
SCED by allowing active network components to respond to
a contingency, e.g., see [2]. It allows re-dispatch of generators
with fast-ramping capabilities and some even allow partial
load-shedding, e.g., see [3]–[5]. Most C-SCED formulations
ignore costs associated with recourse actions. Such costs can
be high, especially for potential load shedding modeled via
value of lost load. To remedy that, authors in [6] associate
probabilities to contingencies and advocate to minimize the
expected dispatch costs across contingencies. In contrast, our
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R-SCED formulation in Section II proposes to minimize the
conditional value at risk (CVaR) of said costs. CVaRα of
a random variable measures the expected loss in the 1 − α
fraction of the worst outcomes. In Section III, we explore the
properties of R-SCED and illustrate through a two-bus network
example, how the SO can express its preference in trading off
cost versus reliability through its choice of α in R-SCED.

The R-SCED problem has a much larger problem descrip-
tion compared to a nominal economic dispatch problem owing
to the number of contingencies, which leads to computational
difficulties that are shared by other C-SCED formulations. To
deal with this challenge, many have suggested to pre-filter
contingencies; see [7] for a survey. In this work, we consider
a decomposition approach to divide the R-SCED problem into
smaller subproblems that can potentially be solved in parallel.
We propose a critical region exploration (CRE) algorithm in
Section IV to solve the R-SCED problem. CRE leverages
properties of multiparametric linear programming and has
proven effective in the tie-line scheduling problem for multi-
area power systems in [8]. We demonstrate the efficacy of our
algorithm on the IEEE 30-bus test system in Section V.

II. RISK-SENSITIVE SCED PROBLEM

We formulate the risk-sensitive SCED (R-SCED) problem
with the linear DC power flow model and discuss how it gen-
eralizes prior formulations. R-SCED can easily be extended to
more detailed nonlinear AC power flow equations. In practice,
however, SOs often solve a sequence of SCED problems with
successive linearizations of power flow equations to handle
nonlinearity [9].

A. Network model
We begin by describing our model for the power network.

Consider a grid on n buses, labeled 1, . . . , n, with m trans-
mission lines. Let each bus be equipped with a dispatch-
able generator and a nominal load, whose vector values are
denoted ggg ∈ R

n and ddd ∈ R
n, respectively. We adopt a

linear power flow model via DC approximations, where the
(directed) power flows over the transmission lines are linear
maps of the vector of nodal power injections xxx, given by HHHxxx.
Here, HHH ∈ R

2m×n denotes the injection shift-factor matrix
that depends on the topology of the power network and the
admittances of the transmission lines. Let the limits on the
(directed) power flows be denoted by fff ∈ R2m. The set of
allowable nodal power injections then becomes

P := {xxx ∈ Rn | HHHxxx ≤ fff, 1
ᵀ
xxx = 0}, (1)

where 1 ∈ Rn is a vector of all ones. The equality 1
ᵀxxx = 0

captures the balance of demand and supply of power across
the network. The DC approximations deem the voltage mag-
nitudes to be at their nominal values, ignore transmission line



losses, and assume that voltage phase angle differences across
neighboring buses are small.1 Assume that a linear dispatch
cost cccᵀggg to produce ggg from the dispatchable generators can
vary their outputs within G = [GGG,GGG]. The lack of a generator
at bus i can be modeled by letting Gi = Gi = 0.

B. Modeling contingencies
Consider a collection of scenarios, denoted by 1, . . . ,K,

each of which corresponds to a single transmission line
failure. In the event of a contingency, we allow the operator
to take recourse actions; they may alter generator output
within ramping capabilities and shed load. Let δgggk denote
the deviation of supply from the generators in contingency
k from the nominal case, constrained by ramping limitations
modeled as |δgggk| ≤ ΔΔΔg . Denote the amount of load shed by

δdddk ∈ [0, ddd− ddd] := ΔΔΔd in contingency k.
A line outage alters the network topology, and hence, results

in a different injection shift factor matrix HHHk that in turn de-
fines a different feasible injection region Pk. Transfer capabili-
ties of transmission lines are primarily determined by thermal
considerations, and can exceed their rated power capacities
for short durations. Following [11] and prior formulations [3],
[5], [12], we adopt dynamic line ratings under contingencies.
The drastic action limits are adopted immediately following
a contingency, but before recourse actions are taken, and the
short-term emergency limits are adopted 5 minutes after the
SO takes the recourse actions. Let the corresponding sets of
feasible injections be denoted PkDA and PkSE respectively, where

P
k ⊂ PkSE ⊂ PkDA.

C. Formulating the risk-sensitive SCED (R-SCED) problem
Our formulation relies on the use of conditional value at

risk of a random variable. We begin by describing this risk
measure and then present R-SCED in (2).
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Fig. 1. The probability distribution of random cost with the shaded region
denoting the tail of the distribution with probability 0.05.

If x describes a random cost with a continuous distribution,
CVaRα[x ] computes the expected cost of x in the (1 − α)
fraction of worst-case outcomes, or

CVaRα[x ] := E
[
x |x ≥ F−1(α)

]
,

where F is the cumulative distribution function of x and E
denotes the expectation computed over that distribution. Figure
1 visualizes the definition for some probability distribution of
random cost x . CVaR0.95[x ] is the average value of x over the
distribution of shaded tail where the tail has probability 0.05.

1We can alternatively utilize linearization of the power flow equations
around the current operating point, possibly using real-time measurements
to estimate HHH , e.g., in [10].

As α ↓ 0, CVaRα[x ] reduces to the expected value of x . For
α close to 1, the tail shrinks to only include the maximum
value of x and CVaRα[x ] yields that maximum.2

To present R-SCED formally, associate probabilities ppp ∈
R

K to the contingencies and let p0 := 1 − 1
ᵀppp as the

probability of the nominal state. We arrive at the following
optimization problem of the risk-sensitive SCED problem.

minimize CVaRα

[
ccc
ᵀ
ggg + C(δggg, δddd)

]
, (2a)

subject to ggg ∈ G, ggg − ddd ∈ P, ggg − ddd ∈ PkDA, (2b)

ggg + δgggk ∈ G, ggg + δgkgkgk − ddd+ δdddk ∈ PkSE, (2c)

|δgggk| ≤ΔΔΔg, δdddk ∈ΔΔΔd, (2d)

for each k = 1, . . . ,K

over ggg, δggg, δddd. Here, δggg, δddd denote the collection of the
respective variables across all contingencies. Additionally,
C(δggg, δddd) is the random recourse cost, assuming a contingency
occurs, that takes the value

Ck(δgggk, δdddk) := ccc
ᵀ
δgggk + vvv

ᵀ
δdddk

in contingency k.3 Here, vvv measures the vector of nodal values
of lost load (VoLL ).

In R-SCED , the dispatch cost depends on two factors —
the dispatch decisions and the realized contingency. Fixing
the decisions, the cost is a random variable over the set of
contingencies. Minimizing the expected value of this random
variable yields the formulation in [6]. Taking the CVaR of
this variable generalizes this to encode an SO’s tolerance to
higher costs through the parameter α. Choosing α equal to
zero, R-SCED treats all contingencies equally and minimizes
expected cost as in [6]. As α increases, R-SCED weighs
contigencies where the cost is higher more heavily.

For convenience, we denote the dispatch associated with
nominal operation, ggg, as nominal dispatch and the associated
cost, cccᵀggg, as nominal dispatch cost.

D. Comparison to existing SCED formulations
Before delineating the properties of the R-SCED problem

in the next section, we briefly discuss its relationship to prior
formulations of the SCED problem in the literature. We refer
the reader to [5] for a comprehensive survey.

• Preventive SCED (P-SCED) stipulates that the nominal
dispatch be feasible after any single line failure, and does
not model recourse actions or dynamic line ratings. R-SCED
with Δg = Δd = 0 and PkDA = P

k
SE = P

k reduces to P-
SCED.

• Corrective SCED (C-SCED) often does not model recourse
costs or load shedding. When they are, e.g., in [6], expected
costs are minimized—the case of R-SCED with α = 0.

III. PROPERTIES OF THE R-SCED PROBLEM

In this section, we first characterize a property of R-SCED
in our first result. The proof of this property proves useful
in devising an algorithm to solve it in Section IV. Second,

2For the definition of CVaRα[x ] for x with general distributions, see [13].
3The cost structure can be altered to distinguish between different costs

for regulation up and down, i.e., by replacing cccᵀδgggk in the recourse cost by
cccᵀ+[δgggk]+ + cccᵀ−[−δgggk]+ without adding conceptual difficulties.



we discuss the outcome of R-SCED on a two-bus network
example and compare it to that of C-SCED and P-SCED.

Proposition 1. R-SCED can be formulated as a linear pro-
gram, linearly parameterized in α. Additionally, the optimal
cost of R-SCED in (2) is piecewise affine in α′ := (1− α)−1
over any closed interval in R+, and the optimal nominal
dispatch ggg∗ remains constant over sub-intervals where the
optimal cost is affine.

Proof. Following Rockafellar and Uryasev in [13], CVaR of
a random variable x is given by

CVaRα(x ) := min
z

{
z +

1

1− α
E[x − z]+

}
, (3)

where [·]+ yields the positive part of its argument. Observe that
cccTggg+C(δggg, δddd) takes values in a discrete set with probabilities
ppp. Letting C0 = 0, the objective function of (2) using (3)
becomes

min
z

{
z + α′

K∑
k=0

pk
[
cccTggg + Ck(δgggk, δdddk)− z

]+}
. (4)

Using the epigraph form, (2) then reduces to solving

minimize
z,yyy,ggg,δggg,δddd

z + α′
K∑

k=0

pkyk,

subject to yk ≥ 0,

yk ≥ ccc
ᵀ
ggg + Ck(δgggk, δdddk)− z,

(2b)− (2d),

for each k = 1, . . . ,K,

(5)

where yyy := (y0, . . . , yK)ᵀ. More compactly, define

xxx0 :=
(
z, y0, gggᵀ

)ᵀ
, xxxk :=

(
yk, [δgggk]ᵀ, [δdddk]ᵀ

)ᵀ
,

and rewrite (5) as

minimize
xxx0,xxx1,...,xxxK

[ccc0]
ᵀ
xxx0 + α′

K∑
k=1

[
ccck

]ᵀ
xxxk,

subject to AAAxxx0 ≤ bbb,

AAAkxxx0 +EEEkxxxk ≤ bbbk,

k = 1, . . . ,K,

(6)

for suitably defined AAA,bbb,AAAk,EEEk, bbbk, ccc0, ccck. This is a paramet-
ric linear program linearly parameterized by α′. The proof
then follows from [14, Theorem 7.2].

The above proof demonstrates that R-SCED can be cast as
a linear program (6) with a decomposable structure, a property
we leverage to design our algorithm in Section IV.

A. R-SCED on a two-bus network example
To gain insights into the properties of R-SCED, we present

a simple yet illustrative two-bus network example and contrast
the results of R-SCED with that of P-SCED and C-SCED.

Consider the network in Figure 2a with Δg1 = 0.25
MW/min, Δg2 = 0.2 MW/min, and v1 = v2 = $30/MW.
Assume line failures occur with probabilities p1 = p2 = 0.01

and dynamic line ratings of fffDA = 1.75fff and fffSE = 1.25fff .
The following table captures the nominal dispatch cost under
various formulations of economic dispatch, where the nominal
case is denoted ED.

Method g∗1 (MW/hr) g∗2 (MW/hr) Nominal Cost ($/hr)

ED 20.0 0.0 20.0
P-SCED 15.0 5.0 25.0
C-SCED 17.25 2.75 22.75
C-SCEDaug 18.75 1.25 21.25
R-SCED (0.1) 18.75 1.25 21.25
R-SCED (0.9) 17.25 2.75 22.75

TABLE I. Comparison of various ED formulations.

C-SCEDaug in Table I is C-SCED augmented with load
shedding, where an SO aims to minimize expected cost with
recourse. When α is small (α ≈ 0), the R-SCED solution
equals that in the augmented C-SCED solution. Additionally
for large α, i.e., α ≈ 1, R-SCED reduces to expected cost
minimization without load shed. For general power networks,
the R-SCED solution with α ≈ 1 is not equal to the C-
SCED solution; it minimizes the maximum recourse cost
across contingencies balancing the cost associated with load
shedding and generator re-dispatch.

Figure I demonstrates that nominal cost and total load shed
are piecewise constant in α. Additionally, as α increases,
the cost of nominal dispatch increases while load shedding
decreases. This illustrates how SO can utilize α to trade-off
between between cost and reliability.

We draw attention to the case when the dispatch cost of
the expensive generator at bus 2 is reduced from $2/MW
to $1.5/MW. For a range of α (approximately 0.6-0.7), the
nominal dispatch cost with the reduced c2 is higher than that
with the larger c2. Reduction in c2 makes the VoLL relatively
larger compared to ramping costs. As a result, R-SCED favors
lesser load shedding at lower α’s, leading to the behavior
depicted in Figure 2b and 2c.

IV. SOLVING R-SCED VIA CRITICAL REGION

EXPLORATION

The R-SCED problem in (2) can be cast as a linear
program (LP). For practical power networks, that LP can
be prohibitively large, a property shared by prior C-SCED
formulations. We exploit the structure in its reformulation (6)
and propose the critical region exploration algorithm to solve
R-SCED. Our algorithm decomposes the problem into a master
problem and a collection of subproblems that can be solved
in parallel, and leverages properties of multi-parametric linear
programming [8]. To describe the algorithm, begin by noticing
that (6) can be written as

minimize
xxx0

[
ccc0

]ᵀ
xxx0 + α′

K∑
k=1

Jk
∗
(
xxx0

)
,

subject to AAAxxx0 ≤ bbb,

(7)

where

Jk
∗
(
xxx0

)
:= minimize

xxxk

[
ccck

]ᵀ
xxxk,

subject to AAAkxxx0 +EEEkxxxk ≤ bbbk.
(8)
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Fig. 2. Nominal cost and total load shedding from either contingency for 2-bus example in (a) is depicted for various parameter choices. Here, ( )
denotes the nominal case, and the remaining lines denote the nominal case augmented with ( ) dispatch cost at bus 2 reduced to c2 = 1.5, ( ) with
VoLL increased to v = 40$/MW , ( ) for the case with generation ramping limits reduced to Δg1 = 0.2MW,Δg2 = 0.15MW , ( ) reduces the
drastic action limits to fffDA = 1.5fff , and ( ) corresponds to the line flow limit of the higher capacity line reduced to f2 = 6MW .

Properties of Jk
∗ are crucial to describe our algorithm. We

need additional notation to describe them. Define

X
0 := {xxx | AAAxxx ≤ bbb} .

Assume throughout that (8) is feasible for any xxx0 ∈ X
0.

We say a collection of polyhedral sets S1, . . . , SL define a
polyhedral partition of S, if these L sets are polyhedral,
their union spans S, and any intersections are only at their
boundaries. Given this definition, we record a vital property
of Jk

∗ in the following lemma.

Lemma 1. Jk
∗
(
xxx0

)
is piecewise affine over X0 and the sets

over which it is affine describe a polyhedral partition of X0.

Problem (8) is a multi-parametric linear program, linearly
parameterized by xxx0. As a consequence, its proof follows
directly from [14, Theorem 7.2]. Hereafter, call the sets in the
polyhedral partition as critical regions. For a given xxx0 ∈ X0,
one can compute the critical region Ck that contains xxx0 ∈ X0

and the affine description of the optimal cost Jk
∗ over Ck for

each k = 1, . . . ,K.4 More precisely, let the affine description

of Jk
∗ be given by

[
ρρρk

]ᵀ
xxx0 + ηk over Ck. With the affine

descriptions of J1
∗ , . . . , J

K
∗ , we can then solve

minimize
xxx0

[
ccc0

]ᵀ
xxx0 + α′

K∑
k=1

[
ρρρk

]ᵀ
xxx0 + α′ηk,

subject to AAAxxx0 ≤ bbb, xxx0 ∈ ∩K
k=1Ck,

(9)

i.e., (7) with the additional constraint xxx0 ∈ ∩K
k=1Ck, over

which the affine description of Jk
∗ holds. The above problem

can be solved as an LP. We assume that one can determine the
lexicographically smallest minimizer of (9). This provides a
tie-breaking rule in the case the minimizer is not unique. The
final consideration is a necessary and sufficient condition for
xxx0,∗ to be a minimizer of (7). To that end, xxx0,∗ is a minimizer
for (7) if and only if

0 ∈ δJ∗
(
xxx0,∗

)
+NX0

(
xxx0,∗

)
, (10)

where δJ∗(·) denotes the sub-differential set of the objective
function of (7) and NX0 is the normal cone of X0. Algorithm 1
presents the CRE algorithm to solve (6). The crucial property
of our algorithm is summarized next.

4We omit the details of the procedure to determine the critical regions and
the associated affine cost description due to space limitations.

Proposition 2. Algorithm 1 converges to an optimizer of (6)
in finitely many iterations.

The proof is largely similar to that of [8, Theorem 1], and
is omitted for brevity. The proof requires boundedness of all
variables in (7) and (8). Variable z in (5) can be unbounded
in general. Taking advantage of the definition of CVaR , we
bound it by the minimum and the maximum value of recourse
costs across contingencies.

Algorithm 1 CRE algorithm to solve R-SCED.

1: Initialize:
xxx0 ∈ X0, J∗ ←∞,D← empty set, ε←
small positive number

2: do
3: Given xxx0, compute ρρρk, ηk,Ck for k = 1, . . . ,K.
4: Solve (9)

5:
[
xxx0

]opt ← lexicographically smallest minimizer of step
4.

6: Jopt ← optimal cost of step 4
7: if Jopt < J∗ then
8:

[
xxx0

]∗ ← [
xxx0

]opt
, J∗ ← Jopt,D← {ccc}

9: else
10: D← D ∪ {ccc0 + α′

∑K
k=1 ρρρ

k}
11: end if
12: vvv∗ ← argminvvv∈conv(D)+N

X0 ([xxx
0]∗) ‖vvv‖2

13: xxx0 ← [
xxx0

]opt − εvvv∗
14: while v∗ 
= 0

V. EXPERIMENTS ON THE IEEE 30-BUS TEST SYSTEM

We have implemented CRE for R-SCED on various IEEE
test networks. We only report the results on the highly-
loaded IEEE 30-bus system from PGLIB v17.08 [15] for space
constraints. In our experiments, we assumed drastic action and
short-term emergency limits to be 70% and 10% higher than
the nominal limits, respectively. Ramping costs were set equal
to nominal dispatch costs and ramp limits were uniformly
set to 0.2 MW per minute. The system was augmented with
generation capacities of 3MW at buses 13, 22, 23, and 27, and
costs were set to $1.4, 1.8, 1.6, 1.7 per MWh, respectively.
Line limits were modified according to Table II.
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Fig. 3. R-SCED solutions as a function of α for the IEEE 30-bus test network with VoLL uniformly (a) $90/MWh and (b) $126/MWh, where plots (a) and
(b) show the ( ) nominal dispatch cost, ( ) total load shed, and ( ) maximum load shed. Plot (c) shows runtime for VoLL of ( ) $90/MWh and
( ) $126/MWh.

Bus 1 Bus 2 Line Limit
12 16 0.33
14 15 0.396
16 17 0.36
15 18 0.319
10 20 0.312

TABLE II. Augmented line limits for IEEE 30-bus example.

Slack variables were added to each subproblem constraint
to ensure feasibility, emulating [12]. The algorithm was initial-
ized with the solution of the ED problem with drastic action
limits. We formulated the problems in Python, but the CRE
algorithm runs on C++. All LPs were solved using Gurobi
8.0. The reported running times are from solutions on a 2015
MacBook Pro with 2.7 GHz Core i5 processor and 8 GB RAM.

As one expects from Proposition 1, Figure 3a illustrates that
both nominal dispatch cost and load shedding are piecewise
constant. While nominal dispatch cost generally increases with
risk-aversion, and maximum load shed generally decreases,
this does not occur monotonically. This results from the
balance of cost associated with load shedding and regulation.
When the relative weight of load shedding is increased in
Figure 3b, R-SCED is less willing to shed load and shows
fewer increases in load shed as risk aversion increases.

Additionally, notice the large increase in total load shed
despite the maximum load shed not increasing significantly in
Figure 3a. CVaR considers the tail cost of most expensive con-
tingencies and ignores contingencies whose cost is below the
cutoff, allowing for a low level of load-shedding throughout
each of the contingencies.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we defined an alternative formulation of
SCED that allows a system operator (SO) to tradeoff between
minimization of dispatch cost and reliability of power delivery,
and explored its salient properties. Finally, we proposed the
critical region exploration (CRE) algorithm to solve it. In
future studies, we aim to compare CRE with the popular
Bender’s decomposition technique on larger power networks
for R-SCED, as proposed in [12], [16]–[19]. We also aim to
extend our formulation and algorithm to model uncertainty in
renewable power production.
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