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Abstract—In many applied settings, the statistical goal is to
estimate underlying functions or signals from discrete observa-
tions contaminated with noise. The task is often prone to issues
during data collection resulting in incomplete measurements (e.g.,
signals observed on a sparse set of time points, or with entire
segments of the signal missing). To address this problem, we
develop a Bayesian model that allows joint estimation of the
amplitude (y-axis) and phase (z-axis) components of unknown
signals. The major advantages of our method are the ability
to (1) separately model these two sources of variability, (2) use
smooth, complete data to incorporate prior knowledge about the
underlying structure in a principled way, and (3) compute and
quantify uncertainty of estimated signals. We build our model
using a convenient square-root velocity function representation of
signals, which allows for metric-based separation and statistical
analysis of amplitude and phase. We validate the proposed frame-
work using two simulation studies, and a real data application
to estimation of fractional anisotropy profiles based on diffusion
tensor imaging measurements on patients with multiple sclerosis.

Index Terms—function estimation, Bayesian model, amplitude,
phase, fractional anisotropy

I. INTRODUCTION

Signals or functions arise as primary data objects in a
wide variety of scientific fields including biometrics, medical
imaging, biology, environmental sciences, and many more [4].
In statistical signal processing, the data generating mechanism
that produces the signals is a stochastic processes. When the
process is univariate, one can apply statistical methods from
the field of functional data analysis. The goals of functional
data analysis are the same as in standard settings that involve
univariate or multivariate data, and include summarization,
modeling of variability, various types of inference, classi-
fication, clustering, etc. However, in poor data conditions,
the observed signals may be corrupted by noise or simply
incomplete, i.e., observed at a sparse set of time points, or
with entire segments of the signal missing. In such cases, the
primary statistical goal is to estimate the underlying signal and
quantify uncertainty in this estimate.

A. Motivation

Function estimation and smoothing address a data quality
problem in signal processing wherein only noisy, discrete
observations of the signal are available. The problem is
often exacerbated by issues during data collection resulting
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Fig. 1: Fractional anisotropy signals for subjects with complete
observations (left) and partial observations (right).

in signals observed only on a sparse set of time points or with
entire segments of the signal missing. In this paper, we con-
sider a specific signal estimation problem with the following
characteristics. Let f; represent the signal underlying the ith
observation y;(t;) = fi(ti) + €(t;), ¢ = 1,...,n, contami-
nated with pointwise, iid error ¢;(t;). The first n.. functions are
observed on dense grids t; = (¢1,,...,tk,), t1, < - - <tk
that represent the input domain well. The remaining n — n.
functions are observed on grids that are sparse with random
or systematic missingness such that values for entire regions
of the domain are not observed. The overall goal is to use the
fully observed functions to build an empirical statistical model
that can then be employed to estimate the noisy, sparsely
observed functions. We take a Bayesian approach, which
allows natural assessment of uncertainty in the estimated
functions via the posterior distribution.

An important motivating data example that follows the
aforementioned setup occurs in the case of fractional
anisotropy (FA) functions along right corticospinal tract lo-
cations measured using diffusion tensor imaging (DTI) for
patients with multiple sclerosis (MS). This application, and
the corresponding dataset, are described in detail in [2]. FA
measurements track disease progression in each patient and
can be used to predict disability outcomes using a functional
regression model with a scalar response. A major advantage
of DTI is that it is non-invasive. However, FA measurements
based on DTTI are often subject to spurious or missing values.
In this dataset, of the subset of 100 patients that were diag-
nosed with MS, 34 patients had missing values within the first
five tract locations due to technical issues with the measuring
device, while all 55 tract locations were observed for the
remaining 66 patients. If one were to conduct a complete



case analysis for these data by discarding the incomplete
observations, the resulting inference will result in greater
uncertainty and may miss common population characteristics.
Figure 1 displays the entire dataset used in our study. The left
panel shows the 66 complete FA signals while the right panel
displays the 34 incomplete FA signals.

B. Previous Methods

A common model in function estimation represents each
signal f;, which generates the ith observed function, via a basis
expansion f;(t) = Zle cipUp(t), where {c;p}p=1,.. B are
unknown coefficients and {Up(t)}p=1,.. p is an application-
dependant basis system [4]. A B-spline basis is a common
choice for nonparametric function estimation, and has been
recently adapted in [9] to enforce shape restrictions by spec-
ifying an upper bound on the number of local extrema. In
general, estimation is carried out using the least squares or
penalized least squares methods, which perform well when the
signal-to-noise ratio of the data is relatively high. On the other
hand, this approach is less reliable when the data is missing
along large portions of the input domain; in those cases, a
local basis is often used and can diminish population level
features in the pursuit of local fit. Noting these shortcomings,
others have used mixed-effects and hierarchical models first
discussed in [5]. Through this set up, functions are modeled
using population and subject-specific components such that
all observations inform population features. In particular, this
allows one to use completely observed functions to inform
structural features in locations on the input domain where the
incomplete functions are not observed. An alternative approach
is to consider the plug-in estimator f;(t) = ﬂ+25:1 iU (1),
where [t and U, are the sample mean signal, and principal
components, respectively, based on the sample yi,...,Yyn
and ¢;; are function-specific coefficients. These estimated
quantities are obtained via a two-stage procedure consisting
of functional principal component analysis (fPCA) and the
Karhunen-Loeve expansion. This method is called principal
analysis through conditional expectation (PACE) [10]. Since
all complete signals can be used to estimate the mean and
principal components, the features of the partially observed
signals are informed by these summaries.

C. Contributions and Paper Organization

We develop a new, empirical model for signal estimation
based on a natural decomposition of signals into their phase
and amplitude variabilities. As demonstrated in [6], failing to
account for these two components results in biased inference
when considerable phase variability is present. We define a
hierarchical Bayesian model over the unknown signals, and
naturally introduce information about phase and amplitude of
missing observations or segments through prior distributions
estimated from complete data. The Bayesian paradigm then
allows structured uncertainty quantification for the two com-
ponents of variability through the posterior distribution.

The rest of this paper is organized as follows. In Section II,
we discuss metric-based phase and amplitude separation and

modeling for completely observed signals. We also formalize
a statistical model that incorporates phase and amplitude
separation and can be used for prediction of partially observed
signals, discussing how the model is fitted in practice. In
Section III, we demonstrate the effectiveness of our model
through two simulated examples, and return to the problem of
estimating FA signals from DTI described earlier. Finally, in
Section IV, we give a brief summary.

II. PROPOSED METHOD

We consider absolutely continuous signals fi,..., fn,
[0,1] — R that belong to a function space F. We model these
signals as realizations of a random process on the input domain
[0, 1]. Since they describe the same phenomenon, one expects
them to share common features such as the number of local
extrema. However, random observations exhibit variability
in the heights of the extreme values and the locations at
which they occur. These two notions of variability are referred
to as amplitude and phase respectively and are formalized
in [4], [6], where it is illustrated that failure to explicitly
consider these two components in statistical models can lead
to inferential bias. Thus, our model considers amplitude and
phase separately. The amplitude component is informed using
complete signals generated from the same random process,
constraining the estimation problem to a space that better
approximates JF. While the phase component could also be
informed from analysis of the complete signals, this is often
difficult in practice. Instead, we choose to incorporate very
little prior information about this source of variability in our
model to maintain flexibility in the estimation of phase. We
begin by describing the necessary statistical tools to analyze
the amplitude component of a sample of functions, followed
by the elicitation of a statistical model that captures both forms
of variability.

A. Phase and Amplitude Separation

The procedure of separating phase and amplitude variability
in functional data is referred to as registration. Specifically,
it consists of finding “registered” functions fl,..., fnc :
[0,1] — R and phase functions ~1,...,vn, : [0,1] — [0, 1]
that satisfy fl = fiov;, 1 =1,...,n; the registered functions
fi exhibit no phase variability, i.e., their features are optimally
aligned (we formalize this optimality later in this section).
Figure 2 shows the separation of phase and amplitude for a
simulated dataset. The left panel displays the original sample
of signals, which all have two peaks and one valley and mainly
differ in the heights of the peaks and valley on [0, 1]. The
middle panel displays the amplitude component, or registered
functions, whose major features are aligned. The right panel
shows the phase component, or functions that achieve this
registration.

An important choice in phase-amplitude separation and
modeling is an appropriate metric. While computationally
convenient, [6] show that the standard L2 metric is not
appropriate for this problem due to its lack of invariance to
phase variability. Thus, we instead use the Fisher-Rao (FR)
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Fig. 2: Registration of signals using the FR metric. Left: observed signals. Middle: Amplitude component (registered functions).

Right: Phase component.

Riemmanian metric, as proposed in [7]. An advantage of this
metric is that the group of diffeomorphisms, a flexible class
of phase functions denoted I', from [0,1] to itself acts on
F by isometries. This ensures that the metric is invariant
to phase variability. Computation under this metric is greatly
simplified through the square-root velocity function (SRVF)

representation of signals given by Q(f);= g = sign(f)4/| f

)

where f is the time derivative of f. The SRVFs are square-
integrable, making their representation space Q equivalent to
1.2 Using this transformation, the Fisher-Rao metric on F
simplifies to the IL? metric on the space of SRVFs. The FR
distance can then be easily computed using dpg(fi, f2) =
llg1 — g2||- Because of this simplification, and the fact that
the SRVF representation is invertible up to a translation,
F(6) = Q71 (q, F(0)(t) = F(0) + [ a(s)la(s)lds. the space
of SRVFs is advantageous for defining statistics of interest.
Under the FR framework, [7] formally defines the amplitude
of a function as follows: for any function f € F, its amplitude

is the orbit [¢] = {(g,7)|y € I'}, where (q,7) = (¢07)y/(7)
is the group action of I' on Q. The collection of all distinct

orbits constitutes the amplitude space Q/T".
For f1,..., fn.. and corresponding SRVFs gy, ...
registration procedure involves finding a mean orbit

ydnes the

n n
[f1g) = argmin » d([g], [¢;]) = argmin » minllq — (¢;,7)]|*.
T eor ; i ; ver

Since one cannot model the entire mean orbit, a represen-
tative element, i, € [fi,], is chosen such that the average
phase in the sample is the identity function ~;4(t) = t.
The solution to the above optimization problem can be
found via a gradient-descent algorithm, and produces the
phase components, 71, ...,%n,, and amplitude components,
(q1,%1)5- -+, (Gn,,¥n,) (or equivalently f1091,..., fn. ©9n.),
for this sample of functions. This procedure also provides an
estimate of the mean amplitude of the process, fi,, that we
use to impose structure in our model.

In [8], generative models for phase and amplitude within
this framework are defined via fPCA. This principal com-
ponent model will be adopted to define a prior distribu-
tion over the amplitude component. The sample Cﬂaiance
function over the registered SRVFs is given by K(s,t) =

1 Ne

o1 Qi (@ 93) (8) = f1g(8)) (44, %) (8) — fiq(t)). The fPCA
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Fig. 3: The mean (solid), and +1 (dgshed) and i? (dotted)
standard deviations in the directions U; (left) and Us (right).

—

basis is obtained through its eigendecomposition K(s,t) =
Soey MU (s)Us (), where each eigenfunction Uy, is a func-
tional principal component and each eigenvalue A specifies
the amount of variance in the direction ﬁb. The set of all
eigenfunctions forms an efficient orthonormal basis for the
amplitude space. One can visualize the bth dominant mode
of variability using the functions 5 = fig + k\/yb[?b for
k e {-2,-1,0,1,2}. Figure 3 displays the first two dominant
directions of variability for the simulated dataset in Figure 2.
The first mode of variability, shown in the left panel, captures
the different heights of the valley and the right peak. The sec-
ond mode of variability, shown in the right panel, captures the
different heights of the left peak. Together, these two modes
explain most of the amplitude variability in the dataset, achiev-
ing significant dimension reduction, i.e., we can efficiently
represent functions of this type using only two basis elements.
This choice of basis can induce a parsimonious model on the
amplitude component of functions generated from the same
underlying random process. In fact, [8] demonstrate that this
procedure induces a significantly more parsimonious model
than fPCA of the unregistered functions.

By truncating the fPCA basis to B elements, we obtain

a finite (low-dimensional) representation of the amplitude
A N B . 7 N

component: (g;,¥;) ~ fiqg + > .p_q CipUp, Where &5, =
fol((ql-,'%)(s) — [14(s))Us(s)ds. The prior in our Bayesian
model will be elicited based on the SRVF mean /i, the principal
component basis {Up}y=1,... g, and the principal coefficients
€1,...,¢y, for each SRVE
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Fig. 4: Posterior draws (transparent gray) and pointwise mean (solid black) for the phase component (left), amplitude component
(middle) and overall signal (right). Top: Left peak missing. Bottom: Sparse ECG PQRST signal.

B. Statistical Model

We re-express the additive noise model to incorporate terms
for phase, amplitude and translation as,

y = f(t) +e(t) =T+ (Q"(g,0) o v(t)) + e(t),

where T' € R is a translation term, + is the phase component,
and the amplitude g = fiq —|—Zb 1Ch Uy is represented by a ba-
sis expansion and an additive population mean fi,. We choose
the basis system to be the empirical PCA basis, the amplitude
of the underlying function is informed by all of the completely
observed data. In addition to providing a parsimonious repre-
sentation of amplitude, the fPCA basis ensures identifiability
of all model parameters, since for different coefficient vec-
tors ¢}, cb, the corresponding SRVFs ji, + 7 c’l,bUb and
fig + 30 c’27bf]b are guaranteed to belong to different orbits
in Q/T. We assume that € is a conditionally independent
zero-mean Gaussian process €(t)|2~MV Nk (0k, X k) with
3 = 021k Then, the likelihood of the data is,

Q7O) o V(t))aale)'

Based on the mean and fPCA basis, estimated from completely
observed signals, we form an empirical prior distribution
for the basis coefficients for the amplitude component: ¢ ~
MVN B(O,ic), where f]c is the estimated covariance using
the principal coefficients, ¢4,...,¢&,,_ (the mean of the prin-
cipal coefficients is always zero). For translation, we choose
a simple conjugate prior distribution: 7'~ N (fir, 62.), where
fir and 6% denote the empirical mean and variance of the
initial points f1(0),..., fn, (0). We also specify a conjugate,
diffuse Inverse-Gamma(cy,,3,) prior for the noise level o2.
Specifying a prior distribution for the phase component is
more involved as I' is a complicated geometric space [3].
Bharath and Kurtek [1] propose a computationally convenient
prior model on the space of phase functions with desirable
statistical properties. The prior is based on a Dirichlet model

Y|ca 75 T7 02NMVNK(T + (Qil(

on the increments of a random partition sampled from the
uniform distribution on [0, 1]. This ensures that the distribution
is centered around the identity phase function. The result-
ing distribution contains a hyperparameter 6, which controls
spread. We use a small value of #, which results in a diffuse
prior. Since the posterior distribution is not tractable, we base
posterior inference on Markov chain Monte Carlo (MCMC)
samples obtained via a Metropolis-within-Gibbs algorithm. We
omit implementation details for brevity.

III. EXPERIMENTAL DATA AND RESULTS

To illustrate the performance of the model, we present two
simulation scenarios: (1) with a major portion of the signal
is missing, and (2) with the signal observed on a very sparse
set of time points. Our approach is then used to estimate FA
signals from incomplete observations.

Simulation 1: We consider the case where a large portion,
i.e., the entire left peak, of the observed signal is missing. The
entire noisy dataset is shown in the left panel of Figure 5. A
smoothed version of the same data, obtained using smoothing
splines through generalized cross validation, is shown in the
middle panel; this is the data that we use to estimate the
amplitude prior for our model. The missing data scenario is
shown in the right panel. The top panel of Figure 4 shows
posterior samples of the phase (left) and amplitude (middle)
components, as well as their composition (right). The posterior
samples are visualized via transparent gray lines, while the
pointwise posterior mean is shown in black, and the observed
data is shown as black points. Due to the prior amplitude
structure based on the fPCA model, all posterior draws have
two peaks and one valley. As expected, the uncertainty is much
greater in locations where no data is observed. The model
appears to fit the observed data points well.

Simulation 2: For the next simulation, we sparsify an ECG
PQRST complex as shown in the right panel of Figure 6; we
will estimate the full signal from only ten evenly spaced points.
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Fig. 5: Noisy (left) and smoothed (middle) observed data. Signal with missing peak (left).
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Fig. 6: Smoothed ECG PQRST signals (left), and a sparsely
observed signal (right).
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Fig. 7: Two examples of posterior draws and posterior mean
where only one or two time points are missing (top), and where
10% of the initial time points are missing (bottom).

We build our amplitude prior using a smoothed dataset shown
in the left panel of Figure 6. The results are provided in the
bottom row of Figure 4. Although the large middle peak is not
observed at all, our model is able to fit a valid PQRST signal
to the data. As expected, the uncertainty in the height of the
middle peak is large relative to the rest of the function.

Estimation of FA Signals: Finally, we return to the DTI
dataset that helped motivate our model. First, we estimate
the prior amplitude model using fPCA of smoothed, complete
FA signals. While we do not display the modes of variability
here, the first mode seems to capture the different slope of
the FA signals around the initial point, and the subsequent

modes capture differences in the heights of the various peaks
and valleys of the signals. We selected B = 19 in the fPCA
model, which accounts for about 95% of the overall variability
in the complete data. In the incomplete data, there were two
common scenarios: (1) only the first one or two observations
are missing or (2) first 10% of the observations are missing.
In Figure 7, we visualize posterior draws and mean signals
for these two common scenarios. The first scenario (top)
demonstrates that the model fits the two examples very well,
regardless of the difference in phase and amplitude of the two
functions. The second scenario (bottom) demonstrates that the
model provides structured uncertainty for the posterior mean
function; the amount of uncertainty greatly depends on the
number of available data points.

IV. CONCLUSIONS

In this paper, we defined a model-based function estimation
approach that explicitly accounts for the two forms of vari-
ability inherent in functional data. Our model uses empirical
prior information to put relevant structure on the amplitude
space, and allows uncertainty assessment and visualization for
the estimated amplitude and phase functions.
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