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Abstract. In the shape analysis approach to computer vision problems, one treats shapes as points in an
infinite-dimensional Riemannian manifold, thereby facilitating algorithms for statistical calculations
such as geodesic distance between shapes and averaging of a collection of shapes. The performance
of these algorithms depends heavily on the choice of the Riemannian metric. In the setting of
plane curve shapes, attention has largely been focused on a two-parameter family of first order
Sobolev metrics, referred to as elastic metrics. They are particularly useful due to the existence
of simplifying coordinate transformations for particular parameter values, such as the well-known
square-root velocity transform. In this paper, we extend the transformations appearing in the existing
literature to a family of isometries, which take any elastic metric to the flat L? metric. We also extend
the transforms to treat piecewise linear curves and demonstrate the existence of optimal matchings
over the diffecomorphism group in this setting. We conclude the paper with multiple examples of
shape geodesics for open and closed curves. We also show the benefits of our approach in a simple
classification experiment.
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1. Introduction. Shape is a fundamental physical property of objects and plays an impor-
tant role in various imaging tasks, including identification and tracking. As a result, statistical
analysis of shape plays a crucial role in many image-rich application domains such as com-
puter vision, medical imaging, biology, bioinformatics, geology, and biometrics. In statistical
shape analysis, shape is viewed as a random object, and one is concerned with developing
methods to perform common statistical tasks, including registration, comparison, averaging,
summarization of variability, hypothesis testing, regression, and other inferential procedures.
Any statistical shape analysis approach requires an appropriate shape representation and an
associated metric that enables quantification of shape differences. Evidently, the quality of
statistical analyses of shape data is heavily dependent on these choices.

There is a rich literature on statistical analysis of shape, with the most prominent shape
representation being landmark-based. Landmarks constitute a finite collection of points that
are chosen either by the application expert (anatomical landmarks) or according to some
mathematical rule such as high absolute curvature (mathematical landmarks). Once the points
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are selected, the remaining information regarding the object’s outline is discarded. Under this
representation, Kendall [25] defined shape as a property of an object that is invariant to its
rigid motions and global scaling; this approach is commonly referred to as similarity shape
analysis. Since then, there has been continuous development of statistical tools to analyze
similarity shapes represented by landmarks; see [17, 43] for a comprehensive set of methods.
These approaches combine ideas from differential geometry, algebra, and multivariate statistics
to establish rigorous estimation and inferential procedures on the landmark shape space. The
main benefit of these approaches is that the resulting shape space is finite-dimensional, making
statistical analysis “easier.” However, the obvious drawback is that the finite collection of
landmarks used to represent shapes of interest results in significant loss of information.

Recently, there has been more emphasis on using a function-based representation of shape,
i.e., objects are represented via their boundaries as parameterized curves. Thus, in this case,
one must account for possible parameterization variability in addition to rigid motion and
global scaling. One set of methods removes this variability by normalizing all parameteriza-
tions to arclength [26, 56]. However, such an approach is suboptimal in many real scientific
problems due to a lack of appropriate registration. A better approach is to remove such
variability in a pairwise manner using an appropriate metric. This is the idea behind elastic
shape analysis, where a family of elastic metrics is used for joint registration and comparison.
The resulting shape spaces are more complicated than their landmark counterparts, but the
benefits of such approaches are clear: (1) there is no need to select landmarks, which can be
a tedious and expensive process; (2) the curve representation is able to encode all relevant
shape information; and (3) the elastic metric quantifies intuitive shape deformations. Elastic
shape analysis is the focus of the current paper, and we provide a formal mathematical setup
for this approach in the following section.

1.1. Elastic shape analysis. A fundamental ingredient in a theory of shape similarity
for plane curves is a distance metric on the space of curves S which is invariant under rigid
transformations of the curves. For a pair of plane curves C; and Cs, we therefore wish to
assign a distance d(C1, C2) such that d(§1 x Ch, &+ C) = d(C1, C2) for any elements ; of the
Euclidean isometry group R? x SO(2), acting in the natural way.

Under the elastic shape analysis paradigm, the distance function described above arises
from a Riemannian metric. This extra structure has obvious benefits over treating S only as a
metric space; for example, it allows the potential to compute geodesic curve deformations and
to locally linearize via the logarithm map in order to do statistics in a tangent space. The met-
ric on the space of (unparameterized) curves S is obtained by treating it as a quotient space,
described as follows. Let I C R denote some fixed interval, Imm(I, R?) C C*°(I,R?) the open
submanifold of smooth immersions, and Diff *(I) the Lie group of orientation-preserving dif-
feomorphisms of I. This group acts on Imm(7, R?) by reparameterizations. We then represent
the space of curves as S ~ Imm(I,R?)/Diff* (I); in other words, the space of unparameterized
curves is realized as the space of parameterized curves identified up to reparameterizations.
A choice g of Diff ¥ (I)-invariant Riemannian metric on the relatively simple space Imm(I, R?)
descends to a well-defined metric on §. If the Riemannian metric is also invariant under
Euclidean similarities, then the geodesic distance with respect to this metric induces our
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desired distance function d via the formula

d(Cl,C'g) = inf distg(al*cl,ag*CQ).
a1,02€DIff T (I) x (R2xSO(2))

In this formula, the ¢; are arbitrary choices of parameterizations of Cj, dist, denotes geodesic
distance in Imm(7, R?) with respect to g, and x denotes the action of the group Diff*(I) x
(R? x SO(2)) of shape-preserving transformations on Imm(7, R?), defined as follows. A triple
o= (y,v,A) € Diff (1) x (R? x SO(2)) acts on a curve ¢ by reparameterizing by ~, rotating
c about ¢(0) by A, and translating the image of ¢ by v.

The simplest choice of Riemannian metric is the reparameterization-invariant L? metric

defined for ¢ € Imm(7, R?) and h, k € T.Imm(I,R?) ~ C°°(I,R?) by the formula

T = s.
6L (k) —/I<h,k:> a

The notation ¢ is used to distinguish this metric from the standard (non-reparameterization-
invariant) L? metric which will appear later in the paper. The nonlinearity of this metric lies
in the measure with respect to arclength ds = |c’(t)| dt, which provides the desired Diff ™ (I)-
invariance. It is a surprising fact that geodesic distance on the shape space vanishes with
respect to §L2 [34], and one must therefore consider more complicated metrics on the space
of immersions. Examples in the literature of such metrics include almost-local (weighted L?)
metrics [7, 8, 35] and higher order Sobolev-type metrics [6, 15, 35, 46]. An element of the
latter class of metrics is a natural generalization of the reparameterization-invariant L? metric,

defined by

e (h, k) = / ag (h, k) + ai (Dsh, Dgk) + - - + az; (Dyh, Dk) ds,
I

where @ = (ag,a1,...,a,) is a vector of weights on the terms, and we use Dy = %% for
derivative with respect to arclength. The higher order Sobolev metrics no longer suffer the
vanishing geodesic phenomenon and are, in fact, geodesically complete when ag,a,, > 0 for
n > 2 [12].

A particularly well-studied subfamily of first order (i.e., n = 1 in the above notation)
Sobolev metrics are the elastic metrics introduced in [37]. These form a two-parameter family
of metrics g*? defined by setting ag = 0 and further decomposing the first order term into
tangential and normal components. That is, for ¢ € Imm(I,R?), let (T, N) denote the standard
moving frame consisting of the unit tangent and unit normal to ¢, respectively. For a,b # 0
and h, k € T.Imm(I, R?), we define

(1.1) g% (h, k) = /a2 (Dsh, N) (Dgk, N) + b* (Dsh, T) (Dsk, T) ds.
T

This metric is invariant under reparameterizations and rigid motions, and so descends to a

well-defined metric on the shape space §. While these metrics do not enjoy the geodesic

completeness of their higher order counterparts, we will see below that they have a number of

useful theoretical properties and, in particular, that geodesic distance is nonvanishing. This

paper will focus exclusively on this family of elastic metrics.
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1.2. Previous work on elastic metrics. In order to compute the distance between curves
in S, our procedure requires the computation of geodesic distance with respect to the chosen
metric. Early approaches to this task accomplished this by explicitly solving the associated
variational problems [47, 48, 53]. Focusing on the elastic metric g"1/2, a common technique
is to apply the square-root velocity function (SRVF) transform, given by

Imm(I,R?) — C*°(I,R?),
C/

(s W
The theoretical power of the SRVF is the remarkable fact that the pullback of the standard
L? metric on the target space is the elastic metric g*'/2 [24], whence geodesics with respect to
ghl/2 in Imm(7,R?) can be computed explicitly by pushing forward to the flat target space,
computing geodesics there, then pulling the result back. Due to this convenient property, the
SRVF transform has been studied extensively from a theoretical perspective [11, 31, 44, 49]
and has seen a wide variety of applications, including classification of plant leaf shapes [30],
statistical analysis of protein structures [45], and biomedical imaging of anatomical features in
the brain [2]. A similarly simple transform is introduced in [55], where a plane curve c is taken
to the curve v/¢/, with the square root taken pointwise by considering ¢ to be a path in the
complex plane; in this case, the map pulls back the L? metric to ¢*/%/2. A more complicated
family of transforms R, is defined in [5] for 20 > a > 0, and it is shown that the pullback
by Rgp of the L? metric on its target is g»°. A different framework for understanding general
elastic metrics, with a more explicit focus on the various Lie group actions, is provided in
[54]. There has also been substantial effort put toward numerical computations for geodesics
in spaces of curves with respect to these metrics (and more general Sobolev-type metrics);
see, e.g., [4, 3].

In this paper, we define a two-parameter family of transforms F,, : Imm(/,R?) —
C>(I,R?) which is valid for all choices of a,b > 0. Our main result (Theorem 2.3) is that
F, 1, pulls back the L? metric to the elastic metric g>*. Moreover, we show that F, , subsumes
the SRVF transform, the complex square-root transform, and the R, j-transforms.

1.3. Other formalisms in shape analysis. Before moving on to our study of elastic met-
rics, we briefly remark on some other approaches to shape analysis which are similar in spirit
in that they define metrics on various shape spaces. The shape analysis literature is quite
extensive and varied, and we make no claims that our description is exhaustive.

As was pointed out above, the choice of metric on shape space depends on the shape repre-
sentation. A natural way to represent a shape (an embedded curve, surface or otherwise) is as
a set of points, either abstractly as a continuous object or computationally as an unstructured
point cloud of samples (in line with landmark shape analysis already described above). Under
this representation, there are several metrics which can be used to compare shapes. Classical
metrics which are still in use are the Hausdorff distance (between compact subsets of a metric
space) and Fréchet distance (specifically between plane curves). One could consider an em-
bedded shape as a metric space in its own right (using the restriction of the ambient metric) so
that Gromov—Hausdorff distance applies as a shape metric [10]. Choosing a probability mea-
sure on a shape (e.g., the empirical measure on a finite sampling of the shape) further turns
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the shape into a metric measure space, so that Gromov—Wasserstein distance provides another
shape metric [33]. The Gromov-Hausdorff and Gromov-Wasserstein distances are naturally
invariant under rigid motions but are computationally expensive. Unstructured point cloud
shape representations can also be compared using techniques from topological data analysis,
which enjoy stability with respect to Gromov—Hausdorff distance [16]. These methods are all
flexible enough to handle very general classes of shapes, but when shapes come from a fixed
class (such as plane curves) they forget that extra structure and only see metric information.

Another shape analysis formalism which is particularly popular in computational anatomy
is the Large Deformation Diffeomorphic Metric Mapping framework (see, e.g., [19, 14]), which
compares shapes (embedded submanifolds) by looking for an optimal diffeomorphism of the
entire ambient space taking one shape to another. This method comes with its own challenges
of rigid motion shape registration and higher computational complexity, but it is intuitively
appealing and flexible enough to handle a variety of different shape representations. For
example, these ideas can be used to directly compare images without the need to segment
shapes [36]. Similarly, ideas from optimal transport can be used to compare images by treating
them as probability distributions [21]. Optimal transport methods have also proven useful for
comparing anatomical surfaces as embedded submanifolds [9].

The rest of the paper will focus exclusively on an elastic shape analysis framework which
is specifically designed for comparing plane curves (although we note that this framework
has itself been generalized to treat many other classes of shapes, such as embedded surfaces
[23] and neuronal trees [18]). The best choice of framework for shape analysis is largely
application-specific, depending on requirements for computational efficiency or robustness to
noise and on the particular structure of the available shape data.

1.4. Outline of the paper. In section 2, we define the transform F, ; and prove our main
result. We also consider the important submanifold of closed plane curves, and more precisely
compare our transform to those described in the previous subsection. Section 3 describes
how various shape-preserving group actions behave in Fj j-coordinates. In section 4, we
describe the explicit geodesics in the curve spaces. Numerical implementation is formally
treated in section 5, where the transform is extended to treat piecewise linear (PL) curves. In
particular, we show that optimal registrations over the diffeomorphism group are realized by
PL reparameterizations in this setting. Finally, we provide numerical examples' in section 6
and suggest future directions in section 7.

2. The F, p-transform.

2.1. Shape spaces of open curves. The space of plane curve shapes is obtained via a
quotient construction, starting with the space of immersions

Imm(I,R?) = {c € C®(I,R?) | |d(t)| #0V t € I},

where, without loss of generality, I = [0, 1] is fixed. To simplify calculations, we make the
identification Imm (7, R?) ~ Imm(Z,C). We note here that our choice of C™ regularity is

'!Our code is available for download from the GitHub repository https://github.com/trneedham/
Planar-Elastic-Metrics.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://github.com/trneedham/Planar-Elastic-Metrics
https://github.com/trneedham/Planar-Elastic-Metrics

Downloaded 08/10/20 to 140.254.87.149. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

450 TOM NEEDHAM AND SEBASTIAN KURTEK

primarily a matter of convenience and that our results hold essentially without modification
for C! curves. Decreasing regularity below C! does cause some theoretical issues, and these are
treated in section 5. Throughout the paper, we use the Whitney-C* topology on C*(I,R?),
which turns the space into a tame Fréchet space. With this topology, Imm(/,C) is an open
submanifold of the vector space C*°(I,R?). For details about topology and calculus in the
tame Fréchet category, see the standard references [22, 27].

There are various shape-preserving Lie group actions which we will quotient by R? acting
by translations, R~ acting by scaling, SO(2) acting by rotations, and Diff *(I) acting by
reparameterizations. The easiest action to deal with is translations, as there is an obvious
isomorphism with the space of curves based at zero,

Imm(7,C)/R? = Imm(I,C)/Tra = {c € C®(I,C) | ¢(t) 0V t € I, ¢(0) = 0}.

We take this identification as a convention in order to simplify notation. Most of our explicit
calculations will take place in this space, which we refer to as the preshape space of curves.

Our goal is to understand the following quotient space with the full set of shape similarities
modded out:

Imm(I,C)/(R? x Rsg x SO(2) x Diff*(I)) = Imm(Z,C)/{Tra, Sca, Rot, Rep}.

We refer to this quotient space as the shape space of curves and denote it by S. Intermediate
spaces such as Imm(/, C)/{Tra, Rot} will appear frequently, and we will treat them separately
as they arise.

2.2. The F,-transform on preshape space. For any a,b > 0, we define the Fj -
transform by the formula

F,p : Imm(I,C)/Tra — C>(1,C"),

/N 2
¢ 20| |12 <|Cl|> .
c

We use the notation C* = C\{0}. In the formula, all arithmetic operations are taken pointwise
on complex numbers. One should immediately notice that, due to the presence of complex
exponentiation, F,; is not well-defined in general. Indeed, writing ¢’ in polar coordinates
rexp(if), the continuous argument function # is only unique up to a global addition of an
integer multiple of 2. The values of Fy; are then given by

S3

2br'/2 exp (z(@ + 2]{:71')2%)) — 2br'/% exp (i@%) - exp (i%k‘ﬂ')

for k € Z. Therefore F is technically defined as a multivalued function with image set
(2.1) Fay(c) = {q - exp (z%kw) ke z} :

where g = 2br'/2 exp(ifla/2b) for some arbitrary choice of smooth polar coordinate represen-
tation ¢’ = rexp(if). In this form, it is easy to see that I, is a bijection if and only if 55 = 1.
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If 5 is an integer not equal to one, then F,; is well-defined but many-to-one. If 5 is not an
integer, then Fj; is multivalued, taking finitely many values if and only if g is rational.

For the sake of concreteness, we can locally define [, ; more precisely as follows. Let ¢y €
Imm(7, C)/Tra and choose a polar coordinate representation of its derivative ¢ = roexp(ify)
so that g is continuous on I. The magnitude function 7o is unique and such a choice of 6 is
unique up to addition of an integer multiple of 2. Moreover, any parameterized curve ¢ which
is sufficiently C'*°-close to ¢y has a polar representation ¢ = rexp(if) so that 6y and 0 are
C>-close (with respect to any metric generating the Whitney topology). The F, j-transform
is then defined locally near ¢y by

(2.2) Fap(c) = 2br'/2 exp (w%) .

The polar coordinate representation (2.2) shows that F,; can be represented locally as
a well-defined continuous map of Fréchet spaces. In fact, the map is locally smooth. Recall
that a map on open subsets of Fréchet spaces U — V is called smooth if its composition
with any smooth path R — U results in a smooth map R — V (the usual definition of the
derivative of a path still makes sense in the Fréchet category) [22]. One can easily check that
this property holds for the local representation of Iy ;. We note that this allows us to take
directional derivatives of Fy; in the usual way. Finally, we observe that the transform F,,  is
locally bijective with inverse given by the locally smooth map

(2.3) FmJ@(f):sz/o ‘q<”'2<|gér§|> an

which we can make locally well-defined by once again passing to a polar representation. It
follows that F, ; is a local diffeomorphism of Fréchet spaces.

Remark 2.1. Formula (2.2) involves a choice of image of F,, ;. Fortunately, all other choices
of image differ from this one by a rotation, and we will see in Theorem 3.2 that this implies
that F, ; descends to a well-defined map on quotient spaces of curves modulo rotation.

Remark 2.2. One issue that can arise in the elastic shape analysis approach to shape
matching is that curves which are close in Hausdorff distance can be far apart in geodesic
distance (see Figure 1). This may be undesirable, depending on the application. One can
overcome this issue by restricting analysis to simple curves or by using ad hoc methods to
account for such differences.

2.3. Pullback metric. Let gL2 denote the standard L? metric on the space C*(I,C),
defined at basepoint ¢ € C*°(I,C) on variations w,z € T,C*(I,C) =~ C*(I,C) by the
formula

quz(w,z) = Re/wz dt.
I

This is a flat (i.e., sectional curvatures are identically zero) metric on the vector space C*°(I,C)
which restricts to a flat metric on the open submanifold C*°(I,C*).

Theorem 2.3. The L? metric gL2 on C®(I,C*) pulls back to the elastic metric g*° on
Imm(I, C) under the transform Fgy.
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Figure 1. Left: A pair of curves which are close in Hausdorff distance. Right: The continuous polar angle
functions of the curves are quite different, resulting in images under Fop which are far apart in Hausdorff
distance.

Proof. Let ¢ € Imm(I, C) and let h be a tangent vector to c. We first note that, expressing
the unit normal N to ¢ as iDgc and the Euclidean inner product as the real part of (z, w) — 2w,
the elastic metric g% can be written as

& (h, k) = / a2 (Dyh, N (Dsk, N + 02 (Dsh, T) (Dsk, T) ds
I
- -
= [ (a®Re (h’ i ) (k’ il >
/< | ! | | |C’|
1 C’ 7
+b2Re< ) Re ( >> c|dt
) Bt ) 1

(2.4) - /I ’03‘3 (T (¢77) Im (¢F7) + 0*Re (¢77) Re (¢F)) dt.

Next we compute a directional derivative of F,; at c. Here we use the idea that F,; is a
well-defined map in a small C*° neighborhood of ¢ to do the computation without having to
deal with the map being potentially multiple-valued. Using the formula

W
— |+ eh!| = %,)7
de | |c/|
we have
d ¢+ eh! \ 2
DF,4(c)(h) = — 2b’ en|'? ( —
b(c)(h) de|. e+ eh] | + el]
2i 19 Re(¢H) ][R = dRe(dW)/|¢]
_ b 1/2 Reen) r1/2121
<|c’|> < || Ed +alc] c ||
v -
(|c’|) (bRe (W) —ialm (1)),
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where our formula for the directional derivative at ¢ € Imm(7, C) is justified because the space
of immersions is an open submanifold of the vector space C*°(I,C). Then the pullback metric
is given by

(Fi00™), (k) = [ Re DFusfe)() - DE(e(R)
= / || "*Re (bRe (¢'I') —ialm ('I')) - (bRe (k) + ialm (<'K')) dt,
I

which easily simplifies to (2.4). [ |

We will show in section 2.5 that this theorem is a direct generalization of results appearing in
[5, 24, 55].

2.4. The preshape space of closed curves. We now consider the preshape space of closed
loops Imm(S!, C)/Tra (i.e., the space of “object outlines”). By identifying S* with the quo-
tient [0,1]/(0 ~ 1), we can consider the preshape space of closed curves to be a submanifold
of the preshape space of open curves of infinite codimension. Under this identification, the
F, p-transform can be restricted to Imm(S!, C)/Tra and the image of the restricted map will
lie in C°°(1,C*). We wish to characterize the image of the restricted Fj ;-transform. Using
the polar form (2.2) of F, 3, we see that for any closed curve ¢ with ¢ = rexp(if),

Fap(c)(1) = 2b3/r(1) exp (z’%au))
— 251/7(0) exp (i%(@((}) +0(1) — 9(0)))

= Fop(©)(0) - exp (i5mind(0)) |

where ind(c) is the Whitney rotation index of the immersed curve ¢ [50]. Observe that this
computation does not depend on our choice of polar representation of c; indeed, if 0 = 0+ 2k,
then 6(1) — 6(0) = 6(1) — 0(0). It follows that a necessary condition for a complex curve
q € C(I,C*) to be the image of a closed curve under F,; is that there exists some integer ¢
such that

(2.5) ¢ (1) = ¢®(0) - exp (i%ﬂﬁ)

for all integers k € Z>o. We denote by V, ;(¢) the codimension-co vector subspace of C*°(1, C)
containing curves ¢ with property (2.5). Let V¥, (¢) = V,,(¢) N C*°(I,C*), let V,; denote the
union of all V,4(¢), and let V", denote the union of all Vo (€). If we restrict our attention to
simple closed curves (i.e., those curves with no self-intersections), then we are only interested
in the vector space V; (1) and the open submanifold V", (1).

The discussion above captures the higher order C* closure conditions for ¢, but not the
two-dimensional C? closure condition ¢(0) = ¢(1). In fact, the image of F,; is locally a
codimension-2 submanifold of V, ;. In order to perform calculations for closed curves, it will
be useful to characterize the two-dimensional normal space to this submanifold. Consider the
function fqp : Va’jb — C defined by

(2. fusl) = F 0 = g [l (L) e
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The image of Imm(S!,C)/Tra in Vo is exactly the set £74(0). We wish to calculate the
gradient to f,(g) for ¢ in this submanifold.
The derivative of f,; at ¢ in the direction of a variation p is given by

D) = g [ (L) (Retap) -~ Lmiap))

The normal space to the submanifold of closed curves is spanned by the gradients of the real
and imaginary parts of f,;. The real component of D f,(q)(p) is given by

2b/a b 2b/a
ReD fou(q)(p) = % /IRe ((é) ) Re(gp) + ~Im ((é) ) Im(gp) dt
B 1 q 2b/a b q 2b/a B
and it follows that

(2.7) grad (Re(fa,)), = 2% (Re ((E)M) - iglm <<|Z|>2b/a>> 7.

Similarly,

1 g\ b g\
(2.8) grad (Im(fap)), = 553 (Im <<m> ) i Re ((M\) )) &

An important tool for shape analysis of closed curves is the projection from the preshape
space of open curves into the preshape space of closed curves. One cannot compute this
projection analytically, but the above characterization of the submanifold of closed curves
under the Fj ,-transform allows us to use a gradient descent algorithm for this purpose—see
Figure 2 for a few examples. The algorithm itself is similar in spirit to the one described in [44]
for the SRVF transform; we provide an outline of the algorithm without focusing on details
for brevity. The algorithm for projecting an open curve ¢ into the preshape space of closed
curves follows four steps: (1) compute the Jacobian matrix J; ; = &; ; +3 [, g1 qiqzdt, 4,5 =1,2,
where 7, j denote the first and second coordinates of ¢; (2) compute the residual using (2.6)
and solve JfB = —fq4(q); (3) update ¢ =g+ ¢ 2?21 Bibi, where € > 0 is a small (emperically
chosen) step size and the basis functions by, bs are given in (2.7) and (2.8); and (4) rescale
g such that its norm is 2b. We repeat steps (1)—(4) until the residual computed in step (2)
becomes small.

2.5. Relation to previous work. The family of maps Fj; includes transforms which have

already appeared in the literature. Indeed,

/ /
e ¢
(C) |C| |C/| |C/|1/27

so that F| 1 yields the SRVF transform introduced in [24]. We also have
2

ry

1
2

/

<@=&W<C)W=¢a

F _
1 |

11
2°2

and we see that F1 1 is the complex square-root transform studied in [55].

11
2°2
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Figure 2. Projections of an open curve into the preshape space of closed curves under different F, -
transforms.

The SRVF was already shown to be a special case of a general family of transforms in [5].
There, the authors define a two-parameter family of transforms R, ; for 2b > a > 0 by

Rap : Imm(I,R?)/Tra — C°°(I,R?),

Cb—>\cl\1/2<<€>+ 4b2—a2<(1)>>,

where T' = D,c. The image of the R, ;-transform is an open subset of a cone given by
Cop = {(z,y,2) € R® | (4b* — a?)(2? + ¢?) = a?2?, z > 0}.

The limiting cone C| 1 can clearly be identified with R%, and then R, 1(c) gives the SRVF
b 72

transform of c. It is shown in [5] that the R, ;-transform pulls back the L? metric on C*°(I,R?)
to the elastic metric g*°.

We claim that the R, j-transforms correspond to F, j-transforms when 2b > a, so that our
main result generalizes [5] to work for all parameter choices. Indeed, writing R? ~ C x R,
there is a projection map C* — C,; defined for each parameter choice with 2b > a > 0 in
polar coordinates by

a 2b a 2b 4b% — a?
9. Bl = Zrsin [ 22 vy =
(2.9) (r,0) — <2brcos ( . 9> ) 5y SIn ( , 9) , 5 r> ,

which extends to a local isometry p,p : C°(I,C*) — C*°(I,C, ;) with respect to the corre-
sponding L? metrics. Expressing the map (2.9) in the form

w s alw| (w BlaJ1p2 — 2 ]
20\ |w ’ 2b ’

it is easy to see that R, p = pap o Fop.
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In fact, this idea can be extended to all parameter values. The cones C,; can be under-
stood in terms of Regge cones; these are building blocks of the Regge calculus used to approx-
imate Riemannian manifolds in theoretical physics [39]. One constructs a two-dimensional
Regge cone from polar coordinates (r,0) € RZ, with standard metric dr? + r?d6? by identify-
ing points according to the relation (r,601) ~ (r,62) < |01 — 02| = 27 — 6y for some choice of
deficit angle 6y (allowed to be positive or negative). The map (2.9) is an isometric embedding
of the Regge cone with deficit angle 6y = 1 — 5 onto a flat cone in Euclidean space. For
parameters with 4b? < a2, replacing the trigonometric functions with their hyperbolic coun-
terparts and the coefficient in the third coordinate with 7””22?“’2 yields an isometric map of
the Regge cone with (negative) deficit angle 6y onto a flat cone in Lorentz space (see [20]).

3. Shape preserving group actions.

3.1. Rotation actions and fibers of F|, ;. We now treat the fact that Fj, ; is multivalued
for certain parameter choices and noninjective for others. The fibers of Fj, ; are closely related
to the actions of the rotation group SO(2) on Imm(/,C)/Tra and C*°(I,C*). Using the
natural identification of SO(2) with S!, we can represent the rotation actions as complex
multiplication. That is, we express rotations in the respective spaces as exp(i1))c and exp(it))q,
where exp(iy)) € S'. As usual, multiplication in these formulas is performed pointwise as
complex numbers. We have the following correspondence between the actions, which follows
by an elementary computation.

Lemma 3.1. Let ¢ € Imm(I, C)/Tra and exp(iy)) € SO(2). Then for all a,b > 0,

. .a
Fup(exp(iv)e) = exp (w2 ) Fup(o)
Theorem 3.2. The F, y-transform induces a well-defined isometry
Imm(/,C)/{Tra,Rot} — C*°(I,C*)/Rot

with respect to the metrics induced by g** and gLZ, respectively.

We abuse notation and continue to denote the induced isometry by F,;. The induced
map is defined by

(3.1) Fap(le]) = [Fap()],

where we use brackets to denote the SO(2)-orbit of a parameterized plane curve. The right side
denotes the equivalence class of any branch of Fj ,(c) in the case that the map is multivalued.

Proof. We first note that all F,,-images of a curve c in the list (2.1) are related by
rotations, so that [Fj;(c)] is a well-defined element of C*°(I,C*)/Rot. Lemma 3.1 then
implies that the induced map is well-defined. Similar arguments hold for the obvious map
induced by the local inverse F i bl, giving a well-defined inverse map

Fa_bl : C*°(1,C*)/Rot — Imm(7I,C)/{Tra, Rot},

so the induced map Fj,j is a bijection. Finally, it is easy to see that g™ and gL2 are invariant
under the action of SO(2). Therefore, the local isometry of Theorem 2.3 descends to a global
isometry on the quotient spaces. |
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We have the following immediate corollary.

Corollary 3.3. The Fy p-transform induces a well-defined isometric embedding
Imm(S*, C)/{Tra, Rot} — Vap/Rot,

where V*, is the space of curves defined in section 2.4.

3.2. The scaling action. The group of positive real numbers R~ acts on a parameterized
curve by uniform scaling. An easy calculation shows that the scaling action interacts with the
F, p-transform as follows: for A € Ry and ¢ € Imm(7, C)/Tra,

Fup(Ae) = A2F,(c).
It will be convenient to represent the quotient of the preshape space by this scaling action as
(3.2) Imm(/,C)/{Tra,Sca} ~ {c¢ € Imm(I,C) | ¢(0) = 0, length(c) = 1}.
For ¥ =TI or S' and a,b > 0, define the Hilbert sphere of radius r to be the space

W, (r) = {geC>(I,C) | [lg* dt =r?*}, B =1,
{0€Vap | Jslal® dt =12}, $ =5

Proposition 3.4. The Fy-transform sends Imm(X, C)/{Tra,Sca} into the Hilbert sphere
H>,(2b). It induces an isometry between Imm(3, C)/{Tra, Sca, Rot} and its image in H>,(2b)/
Rot.

Proof. Let ¢ € Imm(X, C)/Tra have length one. Using (2.2), we have

2
/IFa,b(c)\thz/ (2b16’\1/2) dt:4b2/ || dt = 4b%.
b b b

The second statement follows by noting that #Z,(2b) is invariant under the rotation action
of SO(2) so that we can restrict the isometries of Theorem 3.2 and Corollary 3.3. [ |

3.3. The reparameterization action. The final shape-preserving group action to consider
is the action of Diff "(I) on Imm(I,C) by orientation-preserving reparameterizations. An
element v € Diff*(I) of the diffeomorphism group also acts on ¢ € C*°(I,C*) by the formula

(3.3) yxq:=11(go).

Proposition 3.5. The map F,; is equivariant with respect to the Diff " (I)-actions on
Imm(7,C) and C>*(I,C*) defined above.
Proof. Let ¢ € Imm(X,C) and « € Diff 7(X). Then
12 [ Aoy
Fap(con) =261/ (¢ o)|"? | gt

C/ o 2b
— 1220 oot (520 ) = W Fuslc) o o
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We likewise wish to consider the action of Diff ¥ (S!) on Imm(S*', C) and the corresponding
action in transform space. To understand the reparameterization action in transform space
for closed curves, it is convenient to identify V ,(¢) with the vector space

Vasll) = {g € C¥(R,CY) | qlt +1) = q(t) - exp (i3 70) }

Under this identification, the Diff " (S!)-action on transform space is once again given by (3.3)
in the sense that a similar equivariance result holds in this setting.

4. Geodesics between curves.

4.1. Geodesics for open curves. For open curves, Theorem 3.2 provides an isometry of
Riemannian manifolds

Fop: (Imm([, C)/{Tra, Rot},g“’b) — (COO(I, C*)/Rot,gLQ) .

We can therefore compute geodesics between curves in the former space by translating the
problem to the simpler target space, C*°(I, C), where geodesic paths are simply straight lines.
Passing to the open subset C*°(I,C*), we lose geodesic completeness as the geodesic joining
q0,q1 € C®(I,C*) given by ¢, = (1 — u)qo + uq1, u € [0, 1], may pass through a curve with
qu(t) = 0 for some t. Nonetheless, geodesic distance in the larger space still induces a metric
on the restricted space, and curves which are sufficiently close will be joined by a well-defined
geodesic (see [13, section 3.4] for a discussion of this phenomenon in the SRVF framework).
The geodesic distance between a pair of curves in the geodesic completion of the image space is

1/2
2
d* (qo.q1) = llgo — a1l 2 = (/1 lgo — q1)? dt) .

Geodesics in the quotient Imm(Z, C)/{Tra,Rot} ~ C°°(I,C*)/Rot are realized as geodesics
between curves in the total space C*°(I,C) after a preprocessing step whereby the curves
are aligned over SO(2) using a standard algorithm called Procrustes analysis (essentially
a singular value decomposition problem). Furthermore, we calculate explicit geodesics in
Imm(7,C)/{Tra,Sca, Rot} by using Proposition 3.4 to transfer the problem to the Hilbert
sphere. The geodesic joining a pair of curves qg, q1 € Hé,b(%) is given by spherical interpola-
tion,

1
sin(D)

Qu = (sin((1 —w)D)qo + sin(uD)q1) ,
where D = arccos (<q0, )2/ 4b2) is the geodesic distance in the Hilbert sphere. Geodesics in
the quotient ’Hib(%) /Rot are treated by the same optimization procedure as in the flat case.

4.2. Geodesics for closed curves. Geodesics in Imm(S!, C)/{Tra, Rot} can be treated
in a similar manner to the open case; that is, we transfer the problem to the simpler space
Vap/{Rot}. Each vector space V,p(¢) is flat, so its geodesics are straight lines. However,
the fact that the image of the isometry induced by [y is codimension-2 in V;; makes the
procedure more complicated.
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We first note that the problem has a remarkable simplification in the case that a = b, where
the closure condition f,5(q) = 0 (see (2.6)) reduces to L2-orthogonality of the coordinate
functions of ¢. This was exploited by Younes et al. in [55] to give explicit geodesics for closed
curves by relating the space of closed curves to an infinite-dimensional Stiefel manifold.

Apparently, such a simplification is unique to the case a = b, and the space of closed
curves is not isometric (at least, not in any obvious way) to a classical manifold otherwise.
Fortunately, the low codimension of the space of closed curves in the flat space V,; allows
us to approximate geodesics in the submanifold numerically. There are several algorithms in
the literature which are easily adapted to our setting, such as parallel transport-based path-
straightening [44] and other gradient descent-based [5, 52] methods. In the examples provided
in section 6, we use a simplistic projection-based algorithm to approximate geodesics, de-
scribed as follows. Given two closed curves, qg,q1 € ”Hf’lb(%), we first construct a geodesic
in the preshape space of open curves using spherical interpolation as described in section 4.1.
Then we perform a pointwise projection of the open preshape space geodesic into the pre-
shape space of closed curves using the numerical algorithm outlined at the end of section 2.4.
We leave the development of more sophisticated algorithms for computing geodesics in the
preshape space of closed curves for future work.

4.3. Optimized geodesics in the shape spaces. To compute geodesics in the shape space
of unparameterized curves with respect to the metric induced by ¢%°, we pass to the quo-
tient of the parameterized curve space by the action of the diffeomorphism group Diff ™ (1)
(Diff*(S') in the case of closed curves). The geodesic between Diff ™ (I)-orbits [c1] and [ca] of
parameterized curves c; is realized in practice as the geodesic between c; and ¢ in the total
space Imm(/, C), where ¢3 = ¢ oy and

(4.1) v = arginf {dist e (c1, c2(7)) | v € Diff (1)} .

Here dist s denotes geodesic distance with respect to g™, In general, the reparameterization
realizing this infimum may fail to be smooth (see [55, section 4.2]), whence the geodesic is
actually realized in the larger space of L? curves. Precise characterizations of the regularity
of solutions to the optimization problem for SRVF parameters ¢''/2 have been the subject of
several recent articles, and it has been shown that for C'! input curves, the optimal reparame-
terization +y is achieved and is differentiable almost everywhere [11]. For applications, the real-
istic setting considers piecewise linear (PL) curves (defined precisely in the following section),
and it is known that in that case, the optimal reparameterization is realized and is also PL [31].
We adapt the methods of [31] to the PL setting for general elastic metrics g in section 5.

A major benefit of our results is that under the Fy, j-transform, the optimal reparameter-
ization problem (4.1) becomes equivalent to the optimization problem which appears under
the SRVF formalism. We are therefore able to utilize existing, highly efficient numerical ap-
proaches to approximate solutions of (4.1) (for example, the dynamic programming approach
[40]). Once an approximate solution < is obtained, we are able to easily compute geodesics
in the shape space using the techniques of section 4.1 applied to ¢; and the reparameterized
curve ca.

The approach described above can be adapted to provide geodesics in the space of curves
of fixed length (using the Hilbert sphere geodesics of section 4.1, together with the simple
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relationship between Euclidean and spherical distance) and geodesics in the space of closed
curves (by numerically optimizing over Diff *(I) x S, where the S! factor corresponds to a
search for optimal seed points between the two curves).

5. Extending to piecewise linear shapes.

5.1. Problem setup. A natural question of both theoretical and practical interest is
whether the previous results can be extended to spaces of curves of lower regularity. In-
deed, the methods above can be used, essentially without modification, to show that the map
F, 1 can be extended to give an isometry

(I’ (1, €)/{Tra, Rot}, g*") — (C°(1,€%),¢*")

where Imm! denotes the space of C'' immersions and ¢*? is the appropriately extended elastic
metric.

It is common in the literature on the SRVF transform to consider the space AC(I,RY) of
absolutely continuous curves in Euclidean space (absolutely continuous curves can be charac-
terized as those curves which are continuous everywhere and differentiable almost everywhere
[41]). Recall that the transform F) 1 recovers the SRVF transform for smooth, immersed

2
plane curves. This map extends to a well-defined map,

Fy1:AC(I,C) — L*(I,C),

C/(t) / . .
c (t) exists and is nonzero,
c(t) — (6] ®)

0 otherwise,

which is a homeomorphism that pulls back gL2 to gl’% at smooth points. Theoretical details
of this construction are examined in [31, 11].

One would like to similarly extend the remaining F, j-transforms to spaces of curves of
low regularity, but this causes immediate issues. For a/2b # 1, one of F,; or its inverse is
multivalued pointwise, since the map involves complex exponentiation. In previous sections,
we relied on the smoothness of our curves (or at least continuity of derivatives) to choose

complex roots coherently in order to ensure F,; was well-defined up to rotations.

5.2. Extended F, ;-transform. Inspired by our results for smooth curves, we can extend
our work to one of the most important spaces of curves from a practical standpoint: piecewise
linear curves. Let PL(I,C) denote the space of PL planar curves; that is, each ¢ € PL(I,C)
is a continuous curve such that there is a decomposition

I=LHULU---Ul, = [to :O,tl] U [tl,tg] J---u [tk—latk = 1]
with ¢/(t) = v; € C for all t € (tj_1,t;), j = 1,...,k. We call the points c(t;) vertices of ¢
and the t; are called vertex parameters. A PL curve c is called a piecewise linear immersion

if |/(t)| # 0, where ¢/(t) is defined. Let PL(I,C)/Tra denote the space of PL curves modulo
translations, which we identify with the set of curves based at the origin.
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We define the extended F, j-transform to be the map

ab

Fop(c) = 2brt/? i
»(c) /% exp <z 2b> ,

where r is the piecewise constant function

| Jui]  fort e [0,t4],
(5.1) r(t) = { lvj|  fort € (tj—1,t5], 7 =2,...,k,

and 6 is the piecewise constant function defined recursively by

Re(v1)

o Im(v1)
(5.2) ot) 0; = arctan for t € [0,t1], '
9]'714-8]"5%‘ fOl"tE(tjfl,tj],]ZZ,...,k‘.

The term §60; € [0, 7] is the jth exterior angle between the (j — 1)th and jth edges of ¢ and is
given by

(5.3) 06; = arccos Re <vj_1v]> .
|vj-17]

To simplify notation later on, we set 061 = 6;. The coefficient s; € {—1,1} describes the
orientation of the jth exterior angle and is given by

(5.4) s; = sign (Im (v;_177))
where we define the sign function for any real number a according to the convention

. 1 ifa>0,
sign(a) =13 i, <0.

We set s1 = 1.

Lemma 5.1. Let ¢ be a smooth immersion with a fized representation of ¢’ in polar coor-

dinates, ¢ = re®, so that 6(0) = arctan gzgggggg and 0 is continuous. Let {c"} be a sequence

of PL immersions with vertices sampled from c (i.e., each " is a secant approximation of
c). Assume that the sequence {c"} converges uniformly to ¢ in C1, and let (r™,0™) be polar
coordinates for ¢, obtained by formulas (5.1) and (5.2). Then r™ — r and 0™ — 0 uniformly.

Proof. The assumption of uniform convergence (¢")'(t) — ¢ (t) immediately implies 7™ (t) —
r(t) uniformly, and one only needs to check convergence of the angle functions. Let vj denote
the derivative vectors of ¢", and let @” denote the derivative vectors of ¢ sampled at vertex
parameters of ¢*. Moreover, let 0}"” denote samples of the function # at the vertex parameters
of c".

Fix a small € > 0, and in particular assume that ¢ < . Our assumption that (¢")" — ¢
uniformly implies that there exists IV such that for all n > N we may choose a collection of
angles {07} satisfying v = r7 exp(i07) and |07 — 07| < ¢ for all j. Increasing N if necessary,
we may also assume that the following estimates hold for all j:

o |07 — 07 || <m (by the definition of §"), and
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i @1 — 5?_1\ < € (by continuity of ¢).
We claim that gjn = ¢7 for all j. By the definition of 67, the contrary would imply that for
some j we have
07 — 07

T < +

J

on o an
07 - j—l‘ <

0, —@—1’ + ’5?—5?—1’ <m,

and we have arrived at a contradiction. Thus |07 — é\ﬂ < e for all j, and this completes the
proof. |

Remark 5.2. Sequences of approximating PL curves as described in Lemma 5.1 arise by
linear spline approximation. For a smooth ¢ : [0,1] — R? we pick a mesh tg < t; < --- < t,
and define a linear spline ¢, interpolating between the c(¢;). As the mesh is refined, the
resulting sequence of PL curves converges uniformly to ¢ (see, e.g., Theorems 6.1 and 6.15 of
[42]).

Lemma 5.1 immediately implies the following convergence result.

Proposition 5.3. Let ¢ be a smooth immersed plane curve, and let {c"} be a sequence of PL
immersions as in Lemma 5.1. Then Fyp(c™) — Fyp(c) in L?.

Remark 5.4. This shows that if a PL curve approximates a smooth curve, then taking
sufficiently many samples produces a transformed curve, which is close to the transformed
smooth curve. On the other hand, if the PL curve is truly meant to contain jagged angles,
then the discrete Iy, ; is still well-defined but may not be a faithful representation of the curve in
transform space. In this scenario, ad hoc methods are necessary to extend the transformation.

5.3. Injectivity. Theorem 3.2 says that F; induces a bijection
Imm(7,C)/{Tra,Rot} <> C*°(1,C*)/Rot.
Unfortunately, the same property is not enjoyed by the extended Fj, j-transform, as shown by
the following example.
Ezample 5.5. Let ¢; and ¢z be the PL curves given by ¢} (t) = 1 and

{ 1, tel0,1/2],

/ = .
) =1 o tel1/2,1],

for some fixed choice of § € (0,7]. Then F,(c1)(t) = 2b and

B 2, te[1/2,1],
Fap(c2)(t) = { 2b exp (@9%) , te(l/2,1].

Taking parameters a and b satisfying & = 27 yields F, (c1) = F,(c2), while it is clear that
c1 and ¢y do not differ by a rigid rotation.

This potentially causes a major problem when computing distances between PL curves:
two PL curves which do not differ by a rotation can receive zero geodesic distance in Fj, j-
transform space. Luckily, the next proposition shows that this situation is highly nongeneric
and that it does not arise in most applications.
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Proposition 5.6. Let ¢1 and co be PL immersions with k segments whose derivatives are
represented in polar coordinates by the functions (r',0') and (r2,0%), respectively, as defined
by formulas (5.1) and (5.2). The images of the curves under the extended F,,-transform are
the same if and only if 1(t) = r%(t) for all t and there exist integers {; such that

4b
3}69]1- = 8?59]2 + ;Ejﬂ'
forallj=1,... k.
Proof. Assume that F,(c1) = F,p(c2). Then [Fyp(c1)(t)] = |Fap(c2)(t)| holds for all ¢,
and it follows that 71(t) = r2(¢) for all t. Since r7(t) # 0, we have that exp (%) = exp (%).
This equality holds if and only if

aG} a@? Y
o " T
for all j =1,...,k for some integers ¢;. Therefore
4b
5.5 0 = 07 + —¢;m.
(5.5) f i+ a 3T

Setting j = 1 and recalling that we are using the convention 661 = 61 and s; = 1 provides our
first condition on the f-functions. The j = 2 instance of (5.5) reads

4b 4b
03 = 03 + —lom & 07 + 55005 = 0% + 53503 + —lom
4b

& 55005 = 53605 + —(l2 = ).

The claim then follows in the j = 2 case after relabeling the integer coefficient of %W. The
general claim follows similarly by induction. |

It follows that F, j is generically injective on PL(1, C)/{Tra, Rot} in the sense that if ¢; and
co are PL curves with Fj, p(c1) = F,p(c2), then there exists an arbitrarily small perturbation
(in the C' sense) ¢y of cy such that the SO(2)-orbit of F,;(¢2) is different from that of
Fop(c1). We also have the following corollary, which provides injectivity of F,; on PL curves
with bounded exterior angles.

Corollary 5.7. The extended map Fy is injective when restricted to the set of PL immer-
stons with exterior angles uniformly bounded by %bﬂ'.

In particular, note that Fy; is always injective on PL curves when 5 < 1.

Proof. Let ¢; and co be PL immersions such that 59},593- < %bﬂ' for all j. If Fp(c1) =
Fyp(c2), then Proposition 5.6 implies that there exist integers ¢; such that

4b
1¢pnl 2¢n2

50 — s2602| = | —;
‘SJ J SJ J‘ ‘a jﬂ-

for all j. We have

4b
1epl 2¢n2 1 2 -
501 — $2502] < 661 + 562 ,
‘SJJ Sj Jl it J<a7T

so that each ¢; = 0. Therefore 0' = 62 and it follows that ¢; = cs. [ |
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For PL curves obtained by sampling a smooth curve, dense enough sampling ensures that
exterior angles can be bounded by an arbitrarily small number. It follows that F|,; can be
guaranteed to be injective. To quantify this, consider the simple case of a secant approximation
of a smooth curve ¢ by an equilateral PL curve with edgelength s. At a vertex of the PL curve,
let 66 denote the exterior angle, and let x denote the curvature of ¢ at that point. Then we
have the Taylor approximation (see [1])

660 = sk + O(s°).

Assuming that the PL curve has N vertices, that ¢ is normalized to have length 1, and that
s is therefore roughly equal to 1/N, it follows that there is an asymptotic bound

166] < ”’;;”f +O(1/N?),

where Kjee is the maximum curvature of ¢. We therefore obtain the desired bound on the
turning angle as soon as

@ 2
N > b (K/ma:p‘{‘O(l/N )) .

5.4. Exact matching. The algorithm for computing geodesic distances in the shape space
Imm(7,C)/Diff *(I) outlined in section 4.3 calls for a solution of the optimization problem
(4.1). We now wish to demonstrate the existence of solutions to the corresponding problem in
the PL setting. In order to achieve a solution, we replace the smooth diffeomorphism group
Diff* () with the semigroup

T={yeAC,I)|~v(0)=0,v(1) =1, ~'(t) > 0 when +/(t) exists }.
The PL optimization problem seeks the optimal reparameterization « for PL curves ¢; and co
satisfying
(5.6) v = arginf{distg..s(c1,c2(v)) | v € T}

Because the F, j-transform induces the same optimization problem for general elastic metrics
g®" as the one studied in the SRVF setting g*1/2, we are able to directly appeal to the recent
work of Lahiri, Robinson, and Klassen [31].

Proposition 5.8. The optimal reparameterization between two PL curves [c1] and [c2] with
respect to g*° is realized by a PL function in T.

Proof. The images of the PL curve ¢; under Fj; are piecewise constant maps ¢; into
C ~ R2. The reparameterization action of the semigroup I' on c¢; transforms into an action
on the image curves by the formula

veg =\ g0,

defined pointwise almost everywhere. The optimization problem (5.6) becomes
inf [lqr — v * ¢2]| 2.
yel’

It follows from [31, Theorem 5] that this new optimization problem is solved by a PL element
of T. |
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It is observed in [31] that an optimal matching v € T between PL curves c¢; and c may
contain flat or vertical portions (i.e., the derivative may vanish or there may be discontinuities).
Observe that in this case we could find reparameterizations v; of both curves ¢; so that each
7; only contains flat portions and no discontinuities. The reparameterized curves ¢;(vy;) no
longer lie in the space of PL curves, but rather in some slightly more general space where the
parameterization can stop at vertices for positive time. In any case, we still obtain geodesics
between these mildly singular curves, and the resulting geodesic distance is still a sensible
metric on the subspace of PL curves. This behavior is thoroughly explored in [31] for the
SRVF setting, and it will be interesting to study it in detail for our general setting in future
work.

6. Numerical experiments.

6.1. Implementation issue. In the case when gy > 1, the inverse mapping from the F,, ;-
transform space to the space of curves is not guaranteed to produce valid angle functions
when the curves are expressed in polar coordinates. This is due to large local differences
between the angle functions for the shapes being compared. In these cases, we use a path-
straightening algorithm to find the appropriate angle functions along the geodesic path. We
omit the details of this algorithm for brevity, but the basic idea is as follows. Plane curves
to be compared are first mapped via Iy by converting to polar coordinates, as discussed
above. Optimal alignment and reparameterization is performed on the transform side. For
rotational alignment, we use the standard version of Procrustes analysis (a singular value
decomposition problem). To find optimal reparameterizations of open curves, we use the
dynamic programming algorithm of [40]. To find optimal reparameterizations of closed curves,
we also use dynamic programming, but with an additional search for an optimal starting point
on each curve (seed search). After optimal rotational alignment and reparameterization, we
calculate the polar coordinate r-function along the geodesic explicitly. However, inverting
the full Fy p-transform along the geodesic, and specifically inverting the polar coordinate 6-
function, proves numerically difficult. We thus compute the polar coordinate #-functions along
the geodesic using a gradient descent algorithm based on an objective function given by the
elastic metric-based energy of the path in the space of curves. Since the r-functions along
the geodesic path can be easily computed, the overall problem simplifies slightly to one where
only the first term in (1.1) plays a role in the optimization problem; this results in a simple
and computationally efficient path-straightening algorithm that iteratively updates the path
according to the gradient of the path energy [44, 29]. We note that the Fj p-transform still
provides a significant numerical simplification in this case as it allows us to search for optimal
rotations and reparameterizations in the transform space under the L? metric.

6.2. Examples. We show several examples of geodesic paths and associated geodesic dis-
tances between shapes of open (Figures 3-5) and closed (Figures 6 and 7) curves for different
parameter values in the elastic metric, computed via the methods described in sections 4 and
6.1. Each figure shows the curve evolution and the optimal reparameterization in blue with
the identity in red for comparison. While the example in Figure 3 considers two simulated
open curves, the examples in Figures 4-7 use curves from the well-known MPEG-7 computer
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Figure 3. Geodesic path and distance between shapes of two artificial open curves.
vision database.”? Comparing within each figure shows the qualitative effect of parameter
values on the curve evolutions, while comparing distances within shape classes across figures
gives a sense of the range and distinguishing powers of the geodesic distance metrics. One can
immediately make some qualitative observations. First, note that in each example the optimal
reparameterizations for the g5 = 0.5 and 0.17 parameter choices are quite close to the identity.
This was experimentally observed to be typical and makes sense heuristically: as the value of
55 is decreased, the penalty for stretching deformations in the elastic metric dominates, and
bending deformations along the geodesic becomes less costly than reparameterizing to avoid
them. Studying this behavior more quantitatively will be the subject of future work. Second,
observe that distances increase as the ratio 5; is decreased. This is explained both by the
higher penalty on reparameterizations (hence on matching similar features in the curves), as
well as the fact that the (length normalized) curves lie on the Hilbert sphere H>,(2b) after
applying F,; (see Proposition 3.4). The figures were produced by fixing a = 1 and varying
b, so that decreasing g; corresponds to increasing the radius of the sphere containing their
transformed images.

We also provide a short classification experiment that shows the benefits of using general
weights for the stretching and bending terms in the context of differentiating forgeries from
genuine signatures. The data used here consists of 40 different signatures, which are a sub-
set of the SVC 2004 dataset [51]. Each signature class contains 20 genuine signatures and
20 skilled forgeries. We classified each signature as genuine or a forgery using leave-one-out
nearest neighbor with respect to the geodesic distance under the ¢g® metric for various pa-

rameter choices (a,b). As baselines, signatures were classified by two classical metric-based

2http://www.dabi.temple.edu/~shape/ MPEC?7/dataset.html
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Figure 4. Geodesic path and distance between two structurally different bone shapes.

methods: L? distance between arclength parameterized curves, Hausdorff distance between
the (discrete) arclength parameterized curves considered as unstructured point clouds, and
Fréchet distance between the curves. Table 1 reports the overall classification rate (across all
40 signature classes) for each metric, as well as the number of signature classes where classifi-
cation was perfect. The first group of three results contains parameter values covered by the
Rq p-transform of [5], with 5 = 1 corresponding to the SRVF and g = % corresponding to the
complex square-root transform. The last three results are for parameter values obtained using
our new transform. Classification is more successful for the parameter values given by our
new results, with 5y = 2 matching the performance of the SRVF. Figure 8 shows the classifi-
cation rates for 5; = 1 and 5; = 2 across the 40 individual signature classes. Although these
parameter values have the same overall performance, we see that their performances differ
drastically by signature class. This suggests that certain parameter values may be more sen-
sitive to features appearing in particular signature classes, and that it is in general beneficial
to vary the choice of parameters to suit a given task.
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Figure 5. Geodesic path and distance between two very different shapes.

6.3. Complexity and runtime. The computational complexity for computing distances
between curves in shape space with any of the elastic metrics lies in the reparameterization
step. The particular algorithm we are using, outlined in [40], enforces artificial constraints on
the slope of each segment in the discrete reparameterization in order to improve speed. To
match curves with n samples, the complexity of our algorithm is O(n?) (without the slope
constraints, the complexity is O(n*)—see [40]). The runtime to compute geodesic distance
between unparameterized open curves with n = 100 samples is on the order of hundredths
of a second. For closed curves, the exhaustive seed search scales the runtime by a factor of
n, but this can be improved for practical computations; e.g., one can compute L? distance
between parameterized curves for all seed choices, then keep some smaller collection of best
seeds to search over with dynamic programming. For 5 < 1, computing geodesics between
registered curves is essentially instantaneous due to their explicit form for open curves under
the F, j-transform and the fast projection algorithm for closed curves. When 5 > 1, the
gradient-descent-based algorithm described in section 6.1 is employed to compute geodesics,
and its runtime is highly dependent on parameter choices, which we have not optimized.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/10/20 to 140.254.87.149. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIMPLIFYING TRANSFORMS FOR ELASTIC METRICS

469

S
|
—_
o
S

S
I
—_
o
o

S
Il
o
o
S

e
I
©
—
\]

SN

ARG

AU

RS EE

|
08 08 08 0.8
06 06 0.6 0.6
04 04 0.4 0.4
0.2 02 02 02
0 0.5 0 0.5 0 05 0 05
dist=0.6016 dist=0.6792 dist=0.9109 dist=1.0344

Figure 6. Geodesic path and distance between two very different shapes.

7. Future directions. Our first direction for future work is to develop various statistical
tools under this framework. These will include computation of summary statistics such as
the average and covariance of a set of shapes, exploration of variability in various shape
classes through PCA, building generative shape models, inference via hypothesis testing and
confidence intervals, and finally regression analysis. Given the simplification of the metric
under the proposed Fj p-transform, and the simple geometry of the preshape space, we will
be able to build upon existing work in this area based on the SRVF transform (i.e., 5 = 1).
We have seen in the presented examples that different choices of a and b produce different
geodesic paths, thus resulting in different statistical analyses.

Second, we will build statistical models that allow the data to choose appropriate values
of a and b for the given application and task. For example, in the context of classification,
one can learn optimal weights on training data and then apply the proposed framework on
a held-out set. Furthermore, one can build hierarchical Bayesian models for registration,
comparison, and averaging of shapes of planar curves that include priors on the values of a
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Figure 7. Geodesic path and distance between two shapes of flowers with a different number of petals.

and b. Such models can be developed in a similar manner to the functional data approaches
in [28, 32]. In those works, the authors simply work with fixed values of a and b. We propose
to extend those methods by additionally including the weights for stretching and bending in
the posterior distribution.

In previous work, one of the authors extended the results of Younes et al. [55] to give a
metric with explicit geodesics on the space of closed loops in R? [38]. This is accomplished
by replacing the complex squaring map with the Hopf map S® — S2. Using quaternionic
arithmetic, we expect that the results of this paper can be extended to provide transforms
which simplify metrics on space curves as well.
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Table 1
Overall classification rates and number of perfect classifications for the signature experiment.

Method Classification rate  Perfect matches

Arclength 86.44 1
Hausdorff 90.81 3
Fréchet 91.75 3
L =2 86.50 0
=1 93.81 6
& =1 97.50 19
55 = 2 97.50 19
55 =3 96.69 16
5 =4 97.00 16

0.86 L L L L L

Figure 8. Classification rates across 40 individual signature classes using the geodesic distance for param-

eters 5z =1 (in blue) and 55 =2 (in red).
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