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Simplifying Transforms for General Elastic Metrics on the Space of Plane Curves\ast 

Tom Needham\dagger and Sebastian Kurtek\ddagger 

Abstract. In the shape analysis approach to computer vision problems, one treats shapes as points in an
infinite-dimensional Riemannian manifold, thereby facilitating algorithms for statistical calculations
such as geodesic distance between shapes and averaging of a collection of shapes. The performance
of these algorithms depends heavily on the choice of the Riemannian metric. In the setting of
plane curve shapes, attention has largely been focused on a two-parameter family of first order
Sobolev metrics, referred to as elastic metrics. They are particularly useful due to the existence
of simplifying coordinate transformations for particular parameter values, such as the well-known
square-root velocity transform. In this paper, we extend the transformations appearing in the existing
literature to a family of isometries, which take any elastic metric to the flat L2 metric. We also extend
the transforms to treat piecewise linear curves and demonstrate the existence of optimal matchings
over the diffeomorphism group in this setting. We conclude the paper with multiple examples of
shape geodesics for open and closed curves. We also show the benefits of our approach in a simple
classification experiment.

Key words. elastic shape analysis, statistical shape analysis, infinite-dimensional geometry, Sobolev metrics,
curve matching
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1. Introduction. Shape is a fundamental physical property of objects and plays an impor-
tant role in various imaging tasks, including identification and tracking. As a result, statistical
analysis of shape plays a crucial role in many image-rich application domains such as com-
puter vision, medical imaging, biology, bioinformatics, geology, and biometrics. In statistical
shape analysis, shape is viewed as a random object, and one is concerned with developing
methods to perform common statistical tasks, including registration, comparison, averaging,
summarization of variability, hypothesis testing, regression, and other inferential procedures.
Any statistical shape analysis approach requires an appropriate shape representation and an
associated metric that enables quantification of shape differences. Evidently, the quality of
statistical analyses of shape data is heavily dependent on these choices.

There is a rich literature on statistical analysis of shape, with the most prominent shape
representation being landmark-based. Landmarks constitute a finite collection of points that
are chosen either by the application expert (anatomical landmarks) or according to some
mathematical rule such as high absolute curvature (mathematical landmarks). Once the points
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446 TOM NEEDHAM AND SEBASTIAN KURTEK

are selected, the remaining information regarding the object's outline is discarded. Under this
representation, Kendall [25] defined shape as a property of an object that is invariant to its
rigid motions and global scaling; this approach is commonly referred to as similarity shape
analysis. Since then, there has been continuous development of statistical tools to analyze
similarity shapes represented by landmarks; see [17, 43] for a comprehensive set of methods.
These approaches combine ideas from differential geometry, algebra, and multivariate statistics
to establish rigorous estimation and inferential procedures on the landmark shape space. The
main benefit of these approaches is that the resulting shape space is finite-dimensional, making
statistical analysis ``easier."" However, the obvious drawback is that the finite collection of
landmarks used to represent shapes of interest results in significant loss of information.

Recently, there has been more emphasis on using a function-based representation of shape,
i.e., objects are represented via their boundaries as parameterized curves. Thus, in this case,
one must account for possible parameterization variability in addition to rigid motion and
global scaling. One set of methods removes this variability by normalizing all parameteriza-
tions to arclength [26, 56]. However, such an approach is suboptimal in many real scientific
problems due to a lack of appropriate registration. A better approach is to remove such
variability in a pairwise manner using an appropriate metric. This is the idea behind elastic
shape analysis, where a family of elastic metrics is used for joint registration and comparison.
The resulting shape spaces are more complicated than their landmark counterparts, but the
benefits of such approaches are clear: (1) there is no need to select landmarks, which can be
a tedious and expensive process; (2) the curve representation is able to encode all relevant
shape information; and (3) the elastic metric quantifies intuitive shape deformations. Elastic
shape analysis is the focus of the current paper, and we provide a formal mathematical setup
for this approach in the following section.

1.1. Elastic shape analysis. A fundamental ingredient in a theory of shape similarity
for plane curves is a distance metric on the space of curves \scrS which is invariant under rigid
transformations of the curves. For a pair of plane curves C1 and C2, we therefore wish to
assign a distance d(C1, C2) such that d(\xi 1  \star C1, \xi 2  \star C2) = d(C1, C2) for any elements \xi j of the
Euclidean isometry group R2 n SO(2), acting in the natural way.

Under the elastic shape analysis paradigm, the distance function described above arises
from a Riemannian metric. This extra structure has obvious benefits over treating \scrS only as a
metric space; for example, it allows the potential to compute geodesic curve deformations and
to locally linearize via the logarithm map in order to do statistics in a tangent space. The met-
ric on the space of (unparameterized) curves \scrS is obtained by treating it as a quotient space,
described as follows. Let I \subset R denote some fixed interval, Imm(I,R2) \subset C\infty (I,R2) the open
submanifold of smooth immersions, and Diff+(I) the Lie group of orientation-preserving dif-
feomorphisms of I. This group acts on Imm(I,R2) by reparameterizations. We then represent
the space of curves as \scrS \approx Imm(I,R2)/Diff+(I); in other words, the space of unparameterized
curves is realized as the space of parameterized curves identified up to reparameterizations.
A choice g of Diff+(I)-invariant Riemannian metric on the relatively simple space Imm(I,R2)
descends to a well-defined metric on \scrS . If the Riemannian metric is also invariant under
Euclidean similarities, then the geodesic distance with respect to this metric induces our
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desired distance function d via the formula

d(C1, C2) = inf
\sigma 1,\sigma 2\in \mathrm{D}\mathrm{i}ff+(I)\times (R2n\mathrm{S}\mathrm{O}(2))

distg(\sigma 1  \star c1, \sigma 2  \star c2).

In this formula, the cj are arbitrary choices of parameterizations of Cj , distg denotes geodesic
distance in Imm(I,R2) with respect to g, and  \star denotes the action of the group Diff+(I) \times 
(R2 n SO(2)) of shape-preserving transformations on Imm(I,R2), defined as follows. A triple
\sigma = (\gamma , v, A) \in Diff+(I)\times (R2 n SO(2)) acts on a curve c by reparameterizing by \gamma , rotating
c about c(0) by A, and translating the image of c by v.

The simplest choice of Riemannian metric is the reparameterization-invariant L2 metric
defined for c \in Imm(I,R2) and h, k \in TcImm(I,R2) \approx C\infty (I,R2) by the formula

\^gL
2

c (h, k) =

\int 
I
\langle h, k\rangle ds.

The notation \^g is used to distinguish this metric from the standard (non-reparameterization-
invariant) L2 metric which will appear later in the paper. The nonlinearity of this metric lies
in the measure with respect to arclength ds = | c\prime (t)| dt, which provides the desired Diff+(I)-
invariance. It is a surprising fact that geodesic distance on the shape space vanishes with
respect to \^gL

2
[34], and one must therefore consider more complicated metrics on the space

of immersions. Examples in the literature of such metrics include almost-local (weighted L2)
metrics [7, 8, 35] and higher order Sobolev-type metrics [6, 15, 35, 46]. An element of the
latter class of metrics is a natural generalization of the reparameterization-invariant L2 metric,
defined by

g\vec{}ac (h, k) =

\int 
I
a20 \langle h, k\rangle + a21 \langle Dsh,Dsk\rangle + \cdot \cdot \cdot + a2n \langle Dn

s h,D
n
s k\rangle ds,

where \vec{}a = (a0, a1, . . . , an) is a vector of weights on the terms, and we use Ds = 1
| c\prime (t)| 

d
dt for

derivative with respect to arclength. The higher order Sobolev metrics no longer suffer the
vanishing geodesic phenomenon and are, in fact, geodesically complete when a0, an > 0 for
n \geqslant 2 [12].

A particularly well-studied subfamily of first order (i.e., n = 1 in the above notation)
Sobolev metrics are the elastic metrics introduced in [37]. These form a two-parameter family
of metrics ga,b defined by setting a0 = 0 and further decomposing the first order term into
tangential and normal components. That is, for c \in Imm(I,R2), let (T,N) denote the standard
moving frame consisting of the unit tangent and unit normal to c, respectively. For a, b \not = 0
and h, k \in TcImm(I,R2), we define

(1.1) ga,bc (h, k) =

\int 
I
a2 \langle Dsh,N\rangle \langle Dsk,N\rangle + b2 \langle Dsh, T \rangle \langle Dsk, T \rangle ds.

This metric is invariant under reparameterizations and rigid motions, and so descends to a
well-defined metric on the shape space \scrS . While these metrics do not enjoy the geodesic
completeness of their higher order counterparts, we will see below that they have a number of
useful theoretical properties and, in particular, that geodesic distance is nonvanishing. This
paper will focus exclusively on this family of elastic metrics.
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1.2. Previous work on elastic metrics. In order to compute the distance between curves
in \scrS , our procedure requires the computation of geodesic distance with respect to the chosen
metric. Early approaches to this task accomplished this by explicitly solving the associated
variational problems [47, 48, 53]. Focusing on the elastic metric g1,1/2, a common technique
is to apply the square-root velocity function (SRVF) transform, given by

Imm(I,R2) \rightarrow C\infty (I,R2),

c \mapsto \rightarrow c\prime 

| c\prime | 1/2
.

The theoretical power of the SRVF is the remarkable fact that the pullback of the standard
L2 metric on the target space is the elastic metric g1,1/2 [24], whence geodesics with respect to
g1,1/2 in Imm(I,R2) can be computed explicitly by pushing forward to the flat target space,
computing geodesics there, then pulling the result back. Due to this convenient property, the
SRVF transform has been studied extensively from a theoretical perspective [11, 31, 44, 49]
and has seen a wide variety of applications, including classification of plant leaf shapes [30],
statistical analysis of protein structures [45], and biomedical imaging of anatomical features in
the brain [2]. A similarly simple transform is introduced in [55], where a plane curve c is taken
to the curve

\surd 
c\prime , with the square root taken pointwise by considering c\prime to be a path in the

complex plane; in this case, the map pulls back the L2 metric to g1/2,1/2. A more complicated
family of transforms Ra,b is defined in [5] for 2b \geqslant a > 0, and it is shown that the pullback
by Ra,b of the L

2 metric on its target is ga,b. A different framework for understanding general
elastic metrics, with a more explicit focus on the various Lie group actions, is provided in
[54]. There has also been substantial effort put toward numerical computations for geodesics
in spaces of curves with respect to these metrics (and more general Sobolev-type metrics);
see, e.g., [4, 3].

In this paper, we define a two-parameter family of transforms Fa,b : Imm(I,R2) \rightarrow 
C\infty (I,R2) which is valid for all choices of a, b > 0. Our main result (Theorem 2.3) is that
Fa,b pulls back the L2 metric to the elastic metric ga,b. Moreover, we show that Fa,b subsumes
the SRVF transform, the complex square-root transform, and the Ra,b-transforms.

1.3. Other formalisms in shape analysis. Before moving on to our study of elastic met-
rics, we briefly remark on some other approaches to shape analysis which are similar in spirit
in that they define metrics on various shape spaces. The shape analysis literature is quite
extensive and varied, and we make no claims that our description is exhaustive.

As was pointed out above, the choice of metric on shape space depends on the shape repre-
sentation. A natural way to represent a shape (an embedded curve, surface or otherwise) is as
a set of points, either abstractly as a continuous object or computationally as an unstructured
point cloud of samples (in line with landmark shape analysis already described above). Under
this representation, there are several metrics which can be used to compare shapes. Classical
metrics which are still in use are the Hausdorff distance (between compact subsets of a metric
space) and Fr\'echet distance (specifically between plane curves). One could consider an em-
bedded shape as a metric space in its own right (using the restriction of the ambient metric) so
that Gromov--Hausdorff distance applies as a shape metric [10]. Choosing a probability mea-
sure on a shape (e.g., the empirical measure on a finite sampling of the shape) further turns
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the shape into a metric measure space, so that Gromov--Wasserstein distance provides another
shape metric [33]. The Gromov--Hausdorff and Gromov--Wasserstein distances are naturally
invariant under rigid motions but are computationally expensive. Unstructured point cloud
shape representations can also be compared using techniques from topological data analysis,
which enjoy stability with respect to Gromov--Hausdorff distance [16]. These methods are all
flexible enough to handle very general classes of shapes, but when shapes come from a fixed
class (such as plane curves) they forget that extra structure and only see metric information.

Another shape analysis formalism which is particularly popular in computational anatomy
is the Large Deformation Diffeomorphic Metric Mapping framework (see, e.g., [19, 14]), which
compares shapes (embedded submanifolds) by looking for an optimal diffeomorphism of the
entire ambient space taking one shape to another. This method comes with its own challenges
of rigid motion shape registration and higher computational complexity, but it is intuitively
appealing and flexible enough to handle a variety of different shape representations. For
example, these ideas can be used to directly compare images without the need to segment
shapes [36]. Similarly, ideas from optimal transport can be used to compare images by treating
them as probability distributions [21]. Optimal transport methods have also proven useful for
comparing anatomical surfaces as embedded submanifolds [9].

The rest of the paper will focus exclusively on an elastic shape analysis framework which
is specifically designed for comparing plane curves (although we note that this framework
has itself been generalized to treat many other classes of shapes, such as embedded surfaces
[23] and neuronal trees [18]). The best choice of framework for shape analysis is largely
application-specific, depending on requirements for computational efficiency or robustness to
noise and on the particular structure of the available shape data.

1.4. Outline of the paper. In section 2, we define the transform Fa,b and prove our main
result. We also consider the important submanifold of closed plane curves, and more precisely
compare our transform to those described in the previous subsection. Section 3 describes
how various shape-preserving group actions behave in Fa,b-coordinates. In section 4, we
describe the explicit geodesics in the curve spaces. Numerical implementation is formally
treated in section 5, where the transform is extended to treat piecewise linear (PL) curves. In
particular, we show that optimal registrations over the diffeomorphism group are realized by
PL reparameterizations in this setting. Finally, we provide numerical examples1 in section 6
and suggest future directions in section 7.

2. The \bfitF \bfita ,\bfitb -transform.

2.1. Shape spaces of open curves. The space of plane curve shapes is obtained via a
quotient construction, starting with the space of immersions

Imm(I,R2) = \{ c \in C\infty (I,R2) | | c\prime (t)| \not = 0 \forall t \in I\} ,

where, without loss of generality, I = [0, 1] is fixed. To simplify calculations, we make the
identification Imm(I,R2) \approx Imm(I,C). We note here that our choice of C\infty regularity is

1Our code is available for download from the GitHub repository https://github.com/trneedham/
Planar-Elastic-Metrics.
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primarily a matter of convenience and that our results hold essentially without modification
for C1 curves. Decreasing regularity below C1 does cause some theoretical issues, and these are
treated in section 5. Throughout the paper, we use the Whitney-C\infty topology on C\infty (I,R2),
which turns the space into a tame Fr\'echet space. With this topology, Imm(I,C) is an open
submanifold of the vector space C\infty (I,R2). For details about topology and calculus in the
tame Fr\'echet category, see the standard references [22, 27].

There are various shape-preserving Lie group actions which we will quotient by R2 acting
by translations, R>0 acting by scaling, SO(2) acting by rotations, and Diff+(I) acting by
reparameterizations. The easiest action to deal with is translations, as there is an obvious
isomorphism with the space of curves based at zero,

Imm(I,C)/R2 = Imm(I,C)/Tra \approx \{ c \in C\infty (I,C) | c\prime (t) \not = 0 \forall t \in I, c(0) = 0\} .

We take this identification as a convention in order to simplify notation. Most of our explicit
calculations will take place in this space, which we refer to as the preshape space of curves.

Our goal is to understand the following quotient space with the full set of shape similarities
modded out:

Imm(I,C)/(R2 nR\geqslant 0 \times SO(2)\times Diff+(I)) = Imm(I,C)/\{ Tra, Sca, Rot, Rep\} .

We refer to this quotient space as the shape space of curves and denote it by \scrS . Intermediate
spaces such as Imm(I,C)/\{ Tra,Rot\} will appear frequently, and we will treat them separately
as they arise.

2.2. The \bfitF \bfita ,\bfitb -transform on preshape space. For any a, b > 0, we define the Fa,b-
transform by the formula

Fa,b : Imm(I,C)/Tra \rightarrow C\infty (I,C\ast ),

c \mapsto \rightarrow 2b| c\prime | 1/2
\biggl( 
c\prime 

| c\prime | 

\biggr) a
2b

.

We use the notation C\ast = C\setminus \{ 0\} . In the formula, all arithmetic operations are taken pointwise
on complex numbers. One should immediately notice that, due to the presence of complex
exponentiation, Fa,b is not well-defined in general. Indeed, writing c\prime in polar coordinates
r exp(i\theta ), the continuous argument function \theta is only unique up to a global addition of an
integer multiple of 2\pi . The values of Fa,b are then given by

2br1/2 exp
\Bigl( 
i(\theta + 2k\pi )

a

2b

\Bigr) 
= 2br1/2 exp

\Bigl( 
i\theta 
a

2b

\Bigr) 
\cdot exp

\Bigl( 
i
a

b
k\pi 
\Bigr) 

for k \in Z. Therefore Fa,b is technically defined as a multivalued function with image set

(2.1) Fa,b(c) =
\Bigl\{ 
q \cdot exp

\Bigl( 
i
a

b
k\pi 
\Bigr) 
| k \in Z

\Bigr\} 
,

where q = 2br1/2 exp(i\theta a/2b) for some arbitrary choice of smooth polar coordinate represen-
tation c\prime = r exp(i\theta ). In this form, it is easy to see that Fa,b is a bijection if and only if a

2b = 1.
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If a
2b is an integer not equal to one, then Fa,b is well-defined but many-to-one. If a

2b is not an
integer, then Fa,b is multivalued, taking finitely many values if and only if a

2b is rational.
For the sake of concreteness, we can locally define Fa,b more precisely as follows. Let c0 \in 

Imm(I,C)/Tra and choose a polar coordinate representation of its derivative c\prime 0 = r0 exp(i\theta 0)
so that \theta 0 is continuous on I. The magnitude function r0 is unique and such a choice of \theta 0 is
unique up to addition of an integer multiple of 2\pi . Moreover, any parameterized curve c which
is sufficiently C\infty -close to c0 has a polar representation c\prime = r exp(i\theta ) so that \theta 0 and \theta are
C\infty -close (with respect to any metric generating the Whitney topology). The Fa,b-transform
is then defined locally near c0 by

(2.2) Fa,b(c) = 2br1/2 exp
\Bigl( 
i\theta 
a

2b

\Bigr) 
.

The polar coordinate representation (2.2) shows that Fa,b can be represented locally as
a well-defined continuous map of Fr\'echet spaces. In fact, the map is locally smooth. Recall
that a map on open subsets of Fr\'echet spaces \scrU \rightarrow \scrV is called smooth if its composition
with any smooth path R \rightarrow \scrU results in a smooth map R \rightarrow \scrV (the usual definition of the
derivative of a path still makes sense in the Fr\'echet category) [22]. One can easily check that
this property holds for the local representation of Fa,b. We note that this allows us to take
directional derivatives of Fa,b in the usual way. Finally, we observe that the transform Fa,b is
locally bijective with inverse given by the locally smooth map

F - 1
a,b (q)(t) =

1

4b2

\int t

0
| q(\tau )| 2

\biggl( 
q(\tau )

| q(\tau )| 

\biggr) 2b
a

d\tau ,(2.3)

which we can make locally well-defined by once again passing to a polar representation. It
follows that Fa,b is a local diffeomorphism of Fr\'echet spaces.

Remark 2.1. Formula (2.2) involves a choice of image of Fa,b. Fortunately, all other choices
of image differ from this one by a rotation, and we will see in Theorem 3.2 that this implies
that Fa,b descends to a well-defined map on quotient spaces of curves modulo rotation.

Remark 2.2. One issue that can arise in the elastic shape analysis approach to shape
matching is that curves which are close in Hausdorff distance can be far apart in geodesic
distance (see Figure 1). This may be undesirable, depending on the application. One can
overcome this issue by restricting analysis to simple curves or by using ad hoc methods to
account for such differences.

2.3. Pullback metric. Let gL
2
denote the standard L2 metric on the space C\infty (I,C),

defined at basepoint q \in C\infty (I,C) on variations w, z \in TqC
\infty (I,C) \approx C\infty (I,C) by the

formula

gL
2

q (w, z) = Re

\int 
I
wz dt.

This is a flat (i.e., sectional curvatures are identically zero) metric on the vector space C\infty (I,C)
which restricts to a flat metric on the open submanifold C\infty (I,C\ast ).

Theorem 2.3. The L2 metric gL
2
on C\infty (I,C\ast ) pulls back to the elastic metric ga,b on

Imm(I,C) under the transform Fa,b.D
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452 TOM NEEDHAM AND SEBASTIAN KURTEK

Figure 1. Left: A pair of curves which are close in Hausdorff distance. Right: The continuous polar angle
functions of the curves are quite different, resulting in images under Fa,b which are far apart in Hausdorff
distance.

Proof. Let c \in Imm(I,C) and let h be a tangent vector to c. We first note that, expressing
the unit normal N to c as iDsc and the Euclidean inner product as the real part of (z, w) \mapsto \rightarrow zw,
the elastic metric ga,b can be written as

ga,bc (h, k) =

\int 
I
a2 \langle Dsh,N\rangle \langle Dsk,N\rangle + b2 \langle Dsh, T \rangle \langle Dsk, T \rangle ds

=

\int 
I

\biggl( 
a2Re

\biggl( 
1

| c\prime | 
h\prime \cdot  - i c

\prime 

| c\prime | 

\biggr) 
Re

\biggl( 
1

| c\prime | 
k\prime \cdot  - i c

\prime 

| c\prime | 

\biggr) 
+ b2Re

\biggl( 
1

| c\prime | 
h\prime \cdot c

\prime 

| c\prime | 

\biggr) 
Re

\biggl( 
1

| c\prime | 
k\prime \cdot c

\prime 

| c\prime | 

\biggr) \biggr) 
| c\prime | dt

=

\int 
I

1

| c\prime | 3
\bigl( 
a2Im

\bigl( 
c\prime h\prime 
\bigr) 
Im
\bigl( 
c\prime k\prime 
\bigr) 
+ b2Re

\bigl( 
c\prime h\prime 
\bigr) 
Re
\bigl( 
c\prime k\prime 
\bigr) \bigr) 

dt.(2.4)

Next we compute a directional derivative of Fa,b at c. Here we use the idea that Fa,b is a
well-defined map in a small C\infty neighborhood of c to do the computation without having to
deal with the map being potentially multiple-valued. Using the formula

d

d\epsilon 

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

| c\prime + \epsilon h\prime | = Re(c\prime h\prime )

| c\prime | 
,

we have

DFa,b(c)(h) =
d

d\epsilon 

\bigm| \bigm| \bigm| \bigm| 
\epsilon =0

2b| c\prime + \epsilon h\prime | 1/2
\biggl( 
c\prime + \epsilon h\prime 

| c\prime + \epsilon h\prime | 

\biggr) a
2b

=

\biggl( 
c\prime 

| c\prime | 

\biggr) a
2b
\biggl( 
b| c\prime |  - 1/2Re(c

\prime h\prime )

| c\prime | 
+ a| c\prime | 1/2 | c

\prime | 
c\prime 

| c\prime | h\prime  - c\prime Re(c\prime h\prime )/| c\prime | 
| c\prime | 2

\biggr) 
=

\biggl( 
c\prime 

| c\prime | 

\biggr) a
2b

| c\prime |  - 
3
2
\bigl( 
bRe

\bigl( 
c\prime h\prime 
\bigr) 
 - iaIm

\bigl( 
c\prime h\prime 
\bigr) \bigr) 
,
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where our formula for the directional derivative at c \in Imm(I,C) is justified because the space
of immersions is an open submanifold of the vector space C\infty (I,C). Then the pullback metric
is given by\Bigl( 

F \ast 
a,bg

L2
\Bigr) 
c
(h, k) =

\int 
I
Re DFa,b(c)(h) \cdot DFa,b(c)(k) dt

=

\int 
I
| c\prime |  - 3Re

\bigl( 
bRe

\bigl( 
c\prime h\prime 
\bigr) 
 - iaIm

\bigl( 
c\prime h\prime 
\bigr) \bigr) 

\cdot 
\bigl( 
bRe

\bigl( 
c\prime k\prime 
\bigr) 
+ iaIm

\bigl( 
c\prime k\prime 
\bigr) \bigr) 

dt,

which easily simplifies to (2.4).

We will show in section 2.5 that this theorem is a direct generalization of results appearing in
[5, 24, 55].

2.4. The preshape space of closed curves. We now consider the preshape space of closed
loops Imm(S1,C)/Tra (i.e., the space of ``object outlines""). By identifying S1 with the quo-
tient [0, 1]/(0 \sim 1), we can consider the preshape space of closed curves to be a submanifold
of the preshape space of open curves of infinite codimension. Under this identification, the
Fa,b-transform can be restricted to Imm(S1,C)/Tra and the image of the restricted map will
lie in C\infty (I,C\ast ). We wish to characterize the image of the restricted Fa,b-transform. Using
the polar form (2.2) of Fa,b, we see that for any closed curve c with c\prime = r exp(i\theta ),

Fa,b(c)(1) = 2b
\sqrt{} 
r(1) exp

\Bigl( 
i
a

2b
\theta (1)

\Bigr) 
= 2b

\sqrt{} 
r(0) exp

\Bigl( 
i
a

2b
(\theta (0) + \theta (1) - \theta (0))

\Bigr) 
= Fa,b(c)(0) \cdot exp

\Bigl( 
i
a

b
\pi ind(c)

\Bigr) 
,

where ind(c) is the Whitney rotation index of the immersed curve c [50]. Observe that this
computation does not depend on our choice of polar representation of c\prime ; indeed, if \widetilde \theta = \theta +2k\pi ,
then \widetilde \theta (1)  - \widetilde \theta (0) = \theta (1)  - \theta (0). It follows that a necessary condition for a complex curve
q \in C\infty (I,C\ast ) to be the image of a closed curve under Fa,b is that there exists some integer \ell 
such that

(2.5) q(k)(1) = q(k)(0) \cdot exp
\Bigl( 
i
a

b
\pi \ell 
\Bigr) 

for all integers k \in Z\geqslant 0. We denote by Va,b(\ell ) the codimension-\infty vector subspace of C\infty (I,C)
containing curves q with property (2.5). Let V \ast 

a,b(\ell ) = Va,b(\ell )\cap C\infty (I,C\ast ), let Va,b denote the
union of all Va,b(\ell ), and let V \ast 

a,b denote the union of all V \ast 
a,b(\ell ). If we restrict our attention to

simple closed curves (i.e., those curves with no self-intersections), then we are only interested
in the vector space Va,b(1) and the open submanifold V \ast 

a,b(1).

The discussion above captures the higher order Ck closure conditions for c, but not the
two-dimensional C0 closure condition c(0) = c(1). In fact, the image of Fa,b is locally a
codimension-2 submanifold of Va,b. In order to perform calculations for closed curves, it will
be useful to characterize the two-dimensional normal space to this submanifold. Consider the
function fa,b : V

\ast 
a,b \rightarrow C defined by

(2.6) fa,b(q) := F - 1
a,b (q)(1) =

1

4b2

\int 
I
| q| 2

\biggl( 
q

| q| 

\biggr) 2b
a

dt.
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The image of Imm(S1,C)/Tra in V \ast 
a,b is exactly the set f - 1

a,b (0). We wish to calculate the
gradient to fa,b(q) for q in this submanifold.

The derivative of fa,b at q in the direction of a variation p is given by

Dfa,b(q)(p) =
1

2b2

\int 
I

\biggl( 
q

| q| 

\biggr) 2b/a\biggl( 
Re(qp) - i

b

a
Im(qp)

\biggr) 
dt.

The normal space to the submanifold of closed curves is spanned by the gradients of the real
and imaginary parts of fa,b. The real component of Dfa,b(q)(p) is given by

ReDfa,b(q)(p) =
1

2b2

\int 
I
Re

\Biggl( \biggl( 
q

| q| 

\biggr) 2b/a
\Biggr) 
Re(qp) +

b

a
Im

\Biggl( \biggl( 
q

| q| 

\biggr) 2b/a
\Biggr) 
Im(qp) dt

=

\int 
I
Re

\Biggl[ 
1

2b2

\Biggl( 
Re

\Biggl( \biggl( 
q

| q| 

\biggr) 2b/a
\Biggr) 

 - i
b

a
Im

\Biggl( \biggl( 
q

| q| 

\biggr) 2b/a
\Biggr) \Biggr) 

qp

\Biggr] 
dt,

and it follows that

(2.7) grad (Re(fa,b))q =
1

2b2

\Biggl( 
Re

\Biggl( \biggl( 
q

| q| 

\biggr) 2b/a
\Biggr) 

 - i
b

a
Im

\Biggl( \biggl( 
q

| q| 

\biggr) 2b/a
\Biggr) \Biggr) 

q.

Similarly,

(2.8) grad (Im(fa,b))q =
1

2b2

\Biggl( 
Im

\Biggl( \biggl( 
q

| q| 

\biggr) 2b/a
\Biggr) 

+ i
b

a
Re

\Biggl( \biggl( 
q

| q| 

\biggr) 2b/a
\Biggr) \Biggr) 

q.

An important tool for shape analysis of closed curves is the projection from the preshape
space of open curves into the preshape space of closed curves. One cannot compute this
projection analytically, but the above characterization of the submanifold of closed curves
under the Fa,b-transform allows us to use a gradient descent algorithm for this purpose---see
Figure 2 for a few examples. The algorithm itself is similar in spirit to the one described in [44]
for the SRVF transform; we provide an outline of the algorithm without focusing on details
for brevity. The algorithm for projecting an open curve q into the preshape space of closed
curves follows four steps: (1) compute the Jacobian matrix Ji,j = \delta i,j+3

\int 
S1 qiqjdt, i, j = 1, 2,

where i, j denote the first and second coordinates of q; (2) compute the residual using (2.6)
and solve J\beta =  - fa,b(q); (3) update q = q + \epsilon 

\sum 2
i=1 \beta ibi, where \epsilon > 0 is a small (emperically

chosen) step size and the basis functions b1, b2 are given in (2.7) and (2.8); and (4) rescale
q such that its norm is 2b. We repeat steps (1)--(4) until the residual computed in step (2)
becomes small.

2.5. Relation to previous work. The family of maps Fa,b includes transforms which have
already appeared in the literature. Indeed,

F1, 1
2
(c) = | c\prime | 1/2 c

\prime 

| c\prime | 
=

c\prime 

| c\prime | 1/2
,

so that F1, 1
2
yields the SRVF transform introduced in [24]. We also have

F 1
2
, 1
2
(c) = | c\prime | 1/2

\biggl( 
c\prime 

| c\prime | 

\biggr) 1/2

=
\surd 
c\prime ,

and we see that F 1
2
, 1
2
is the complex square-root transform studied in [55].D
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a
2b 1.25 1.00 0.50 0.17

Figure 2. Projections of an open curve into the preshape space of closed curves under different Fa,b-
transforms.

The SRVF was already shown to be a special case of a general family of transforms in [5].
There, the authors define a two-parameter family of transforms Ra,b for 2b \geqslant a > 0 by

Ra,b : Imm(I,R2)/Tra \rightarrow C\infty (I,R3),

c \mapsto \rightarrow | c\prime | 1/2
\biggl( \biggl( 

T
0

\biggr) 
+
\sqrt{} 
4b2  - a2

\biggl( 
0
1

\biggr) \biggr) 
,

where T = Dsc. The image of the Ra,b-transform is an open subset of a cone given by

Ca,b = \{ (x, y, z) \in R3 | (4b2  - a2)(x2 + y2) = a2z2, z > 0\} .

The limiting cone C1, 1
2
can clearly be identified with R2, and then R1, 1

2
(c) gives the SRVF

transform of c. It is shown in [5] that the Ra,b-transform pulls back the L2 metric on C\infty (I,R3)
to the elastic metric ga,b.

We claim that the Ra,b-transforms correspond to Fa,b-transforms when 2b \geqslant a, so that our
main result generalizes [5] to work for all parameter choices. Indeed, writing R3 \approx C \times R,
there is a projection map C\ast \rightarrow Ca,b defined for each parameter choice with 2b \geqslant a > 0 in
polar coordinates by

(2.9) (r, \theta ) \mapsto \rightarrow 

\Biggl( 
a

2b
r cos

\biggl( 
2b

a
\theta 

\biggr) 
,
a

2b
r sin

\biggl( 
2b

a
\theta 

\biggr) 
,

\surd 
4b2  - a2

2b
r

\Biggr) 
,

which extends to a local isometry pa,b : C
\infty (I,C\ast ) \rightarrow C\infty (I, Ca,b) with respect to the corre-

sponding L2 metrics. Expressing the map (2.9) in the form

w \mapsto \rightarrow 

\Biggl( 
a| w| 
2b

\biggl( 
w

| w| 

\biggr) 2b/a

,

\surd 
4b2  - a2

2b
| w| 

\Biggr) 
,

it is easy to see that Ra,b = pa,b \circ Fa,b.D
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In fact, this idea can be extended to all parameter values. The cones Ca,b can be under-
stood in terms of Regge cones ; these are building blocks of the Regge calculus used to approx-
imate Riemannian manifolds in theoretical physics [39]. One constructs a two-dimensional
Regge cone from polar coordinates (r, \theta ) \in R2

\geqslant 0 with standard metric dr2 + r2d\theta 2 by identify-
ing points according to the relation (r, \theta 1) \sim (r, \theta 2) \leftrightarrow | \theta 1  - \theta 2| = 2\pi  - \theta 0 for some choice of
deficit angle \theta 0 (allowed to be positive or negative). The map (2.9) is an isometric embedding
of the Regge cone with deficit angle \theta 0 = 1  - a

2b onto a flat cone in Euclidean space. For
parameters with 4b2 < a2, replacing the trigonometric functions with their hyperbolic coun-

terparts and the coefficient in the third coordinate with
\surd 
a2 - 4b2

2b yields an isometric map of
the Regge cone with (negative) deficit angle \theta 0 onto a flat cone in Lorentz space (see [20]).

3. Shape preserving group actions.

3.1. Rotation actions and fibers of \bfitF \bfita ,\bfitb . We now treat the fact that Fa,b is multivalued
for certain parameter choices and noninjective for others. The fibers of Fa,b are closely related
to the actions of the rotation group SO(2) on Imm(I,C)/Tra and C\infty (I,C\ast ). Using the
natural identification of SO(2) with S1, we can represent the rotation actions as complex
multiplication. That is, we express rotations in the respective spaces as exp(i\psi )c and exp(i\psi )q,
where exp(i\psi ) \in S1. As usual, multiplication in these formulas is performed pointwise as
complex numbers. We have the following correspondence between the actions, which follows
by an elementary computation.

Lemma 3.1. Let c \in Imm(I,C)/Tra and exp(i\psi ) \in SO(2). Then for all a, b > 0,

Fa,b(exp(i\psi )c) = exp
\Bigl( 
i\psi 

a

2b

\Bigr) 
Fa,b(c).

Theorem 3.2. The Fa,b-transform induces a well-defined isometry

Imm(I,C)/\{ Tra,Rot\} \rightarrow C\infty (I,C\ast )/Rot

with respect to the metrics induced by ga,b and gL
2
, respectively.

We abuse notation and continue to denote the induced isometry by Fa,b. The induced
map is defined by

(3.1) Fa,b([c]) = [Fa,b(c)] ,

where we use brackets to denote the SO(2)-orbit of a parameterized plane curve. The right side
denotes the equivalence class of any branch of Fa,b(c) in the case that the map is multivalued.

Proof. We first note that all Fa,b-images of a curve c in the list (2.1) are related by
rotations, so that [Fa,b(c)] is a well-defined element of C\infty (I,C\ast )/Rot. Lemma 3.1 then
implies that the induced map is well-defined. Similar arguments hold for the obvious map
induced by the local inverse F - 1

a,b , giving a well-defined inverse map

F - 1
a,b : C\infty (I,C\ast )/Rot \rightarrow Imm(I,C)/\{ Tra,Rot\} ,

so the induced map Fa,b is a bijection. Finally, it is easy to see that ga,b and gL
2
are invariant

under the action of SO(2). Therefore, the local isometry of Theorem 2.3 descends to a global
isometry on the quotient spaces.
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We have the following immediate corollary.

Corollary 3.3. The Fa,b-transform induces a well-defined isometric embedding

Imm(S1,C)/\{ Tra,Rot\} \lhook \rightarrow V \ast 
a,b/Rot,

where V \ast 
a,b is the space of curves defined in section 2.4.

3.2. The scaling action. The group of positive real numbers R>0 acts on a parameterized
curve by uniform scaling. An easy calculation shows that the scaling action interacts with the
Fa,b-transform as follows: for \lambda \in R>0 and c \in Imm(I,C)/Tra,

Fa,b(\lambda c) = \lambda 1/2Fa,b(c).

It will be convenient to represent the quotient of the preshape space by this scaling action as

(3.2) Imm(I,C)/\{ Tra, Sca\} \approx \{ c \in Imm(I,C) | c(0) = 0, length(c) = 1\} .

For \Sigma = I or S1 and a, b > 0, define the Hilbert sphere of radius r to be the space

\scrH \Sigma 
a,b(r) =

\biggl\{ \bigl\{ 
q \in C\infty (I,C) | 

\int 
\Sigma | q| 2 dt = r2

\bigr\} 
, \Sigma = I,\bigl\{ 

q \in Va,b | 
\int 
\Sigma | q| 2 dt = r2

\bigr\} 
, \Sigma = S1.

Proposition 3.4. The Fa,b-transform sends Imm(\Sigma ,C)/\{ Tra, Sca\} into the Hilbert sphere
\scrH \Sigma 

a,b(2b). It induces an isometry between Imm(\Sigma ,C)/\{ Tra, Sca,Rot\} and its image in \scrH \Sigma 
a,b(2b)/

Rot.

Proof. Let c \in Imm(\Sigma ,C)/Tra have length one. Using (2.2), we have\int 
\Sigma 
| Fa,b(c)| 2 dt =

\int 
\Sigma 

\Bigl( 
2b| c\prime | 1/2

\Bigr) 2
dt = 4b2

\int 
\Sigma 
| c\prime | dt = 4b2.

The second statement follows by noting that \scrH \Sigma 
a,b(2b) is invariant under the rotation action

of SO(2) so that we can restrict the isometries of Theorem 3.2 and Corollary 3.3.

3.3. The reparameterization action. The final shape-preserving group action to consider
is the action of Diff+(I) on Imm(I,C) by orientation-preserving reparameterizations. An
element \gamma \in Diff+(I) of the diffeomorphism group also acts on q \in C\infty (I,C\ast ) by the formula

(3.3) \gamma \ast q :=
\sqrt{} 
| \gamma \prime | (q \circ \gamma ).

Proposition 3.5. The map Fa,b is equivariant with respect to the Diff+(I)-actions on
Imm(I,C) and C\infty (I,C\ast ) defined above.

Proof. Let c \in Imm(\Sigma ,C) and \gamma \in Diff+(\Sigma ). Then

Fa,b(c \circ \gamma ) = 2b| \gamma \prime (c\prime \circ \gamma )| 1/2
\biggl( 
\gamma \prime (c\prime \circ \gamma )
| \gamma \prime (c\prime \circ \gamma )| 

\biggr) a
2b

= | \gamma \prime | 1/22b| c\prime \circ \gamma | 1/2
\biggl( 
c\prime \circ \gamma 
| c\prime \circ \gamma | 

\biggr) a
2b

= | \gamma \prime | 1/2Fa,b(c) \circ \gamma .
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We likewise wish to consider the action of Diff+(S1) on Imm(S1,C) and the corresponding
action in transform space. To understand the reparameterization action in transform space
for closed curves, it is convenient to identify Va,b(\ell ) with the vector space

\widetilde Va,b(\ell ) = \Bigl\{ q \in C\infty (R,C\ast ) | q(t+ 1) = q(t) \cdot exp
\Bigl( 
i
a

b
\pi \ell 
\Bigr) \Bigr\} 

.

Under this identification, the Diff+(S1)-action on transform space is once again given by (3.3)
in the sense that a similar equivariance result holds in this setting.

4. Geodesics between curves.

4.1. Geodesics for open curves. For open curves, Theorem 3.2 provides an isometry of
Riemannian manifolds

Fa,b :
\Bigl( 
Imm(I,C)/\{ Tra,Rot\} , ga,b

\Bigr) 
\rightarrow 
\Bigl( 
C\infty (I,C\ast )/Rot, gL

2
\Bigr) 
.

We can therefore compute geodesics between curves in the former space by translating the
problem to the simpler target space, C\infty (I,C), where geodesic paths are simply straight lines.
Passing to the open subset C\infty (I,C\ast ), we lose geodesic completeness as the geodesic joining
q0, q1 \in C\infty (I,C\ast ) given by qu = (1  - u)q0 + uq1, u \in [0, 1], may pass through a curve with
qu(t) = 0 for some t. Nonetheless, geodesic distance in the larger space still induces a metric
on the restricted space, and curves which are sufficiently close will be joined by a well-defined
geodesic (see [13, section 3.4] for a discussion of this phenomenon in the SRVF framework).
The geodesic distance between a pair of curves in the geodesic completion of the image space is

dL
2
(q0, q1) = \| q0  - q1\| L2 =

\biggl( \int 
I
| q0  - q1| 2 dt

\biggr) 1/2

.

Geodesics in the quotient Imm(I,C)/\{ Tra,Rot\} \approx C\infty (I,C\ast )/Rot are realized as geodesics
between curves in the total space C\infty (I,C) after a preprocessing step whereby the curves
are aligned over SO(2) using a standard algorithm called Procrustes analysis (essentially
a singular value decomposition problem). Furthermore, we calculate explicit geodesics in
Imm(I,C)/\{ Tra, Sca,Rot\} by using Proposition 3.4 to transfer the problem to the Hilbert
sphere. The geodesic joining a pair of curves q0, q1 \in \scrH I

a,b(2b) is given by spherical interpola-
tion,

qu =
1

sin(D)
(sin((1 - u)D)q0 + sin(uD)q1) ,

where D = arccos
\bigl( 
\langle q0, q1\rangle L2 /4b2

\bigr) 
is the geodesic distance in the Hilbert sphere. Geodesics in

the quotient \scrH I
a,b(2b)/Rot are treated by the same optimization procedure as in the flat case.

4.2. Geodesics for closed curves. Geodesics in Imm(S1,C)/\{ Tra,Rot\} can be treated
in a similar manner to the open case; that is, we transfer the problem to the simpler space
Va,b/\{ Rot\} . Each vector space Va,b(\ell ) is flat, so its geodesics are straight lines. However,
the fact that the image of the isometry induced by Fa,b is codimension-2 in Va,b makes the
procedure more complicated.
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We first note that the problem has a remarkable simplification in the case that a = b, where
the closure condition fa,b(q) = 0 (see (2.6)) reduces to L2-orthogonality of the coordinate
functions of q. This was exploited by Younes et al. in [55] to give explicit geodesics for closed
curves by relating the space of closed curves to an infinite-dimensional Stiefel manifold.

Apparently, such a simplification is unique to the case a = b, and the space of closed
curves is not isometric (at least, not in any obvious way) to a classical manifold otherwise.
Fortunately, the low codimension of the space of closed curves in the flat space Va,b allows
us to approximate geodesics in the submanifold numerically. There are several algorithms in
the literature which are easily adapted to our setting, such as parallel transport-based path-
straightening [44] and other gradient descent-based [5, 52] methods. In the examples provided
in section 6, we use a simplistic projection-based algorithm to approximate geodesics, de-
scribed as follows. Given two closed curves, q0, q1 \in \scrH S1

a,b(2b), we first construct a geodesic
in the preshape space of open curves using spherical interpolation as described in section 4.1.
Then we perform a pointwise projection of the open preshape space geodesic into the pre-
shape space of closed curves using the numerical algorithm outlined at the end of section 2.4.
We leave the development of more sophisticated algorithms for computing geodesics in the
preshape space of closed curves for future work.

4.3. Optimized geodesics in the shape spaces. To compute geodesics in the shape space
of unparameterized curves with respect to the metric induced by ga,b, we pass to the quo-
tient of the parameterized curve space by the action of the diffeomorphism group Diff+(I)
(Diff+(S1) in the case of closed curves). The geodesic between Diff+(I)-orbits [c1] and [c2] of
parameterized curves cj is realized in practice as the geodesic between c1 and \widetilde c2 in the total
space Imm(I,C), where \widetilde c2 = c2 \circ \gamma and

(4.1) \gamma = arginf
\bigl\{ 
distga,b(c1, c2(\gamma )) | \gamma \in Diff+(I)

\bigr\} 
.

Here distga,b denotes geodesic distance with respect to ga,b. In general, the reparameterization
realizing this infimum may fail to be smooth (see [55, section 4.2]), whence the geodesic is
actually realized in the larger space of L2 curves. Precise characterizations of the regularity
of solutions to the optimization problem for SRVF parameters g1,1/2 have been the subject of
several recent articles, and it has been shown that for C1 input curves, the optimal reparame-
terization \gamma is achieved and is differentiable almost everywhere [11]. For applications, the real-
istic setting considers piecewise linear (PL) curves (defined precisely in the following section),
and it is known that in that case, the optimal reparameterization is realized and is also PL [31].
We adapt the methods of [31] to the PL setting for general elastic metrics ga,b in section 5.

A major benefit of our results is that under the Fa,b-transform, the optimal reparameter-
ization problem (4.1) becomes equivalent to the optimization problem which appears under
the SRVF formalism. We are therefore able to utilize existing, highly efficient numerical ap-
proaches to approximate solutions of (4.1) (for example, the dynamic programming approach
[40]). Once an approximate solution \gamma is obtained, we are able to easily compute geodesics
in the shape space using the techniques of section 4.1 applied to c1 and the reparameterized
curve \widetilde c2.

The approach described above can be adapted to provide geodesics in the space of curves
of fixed length (using the Hilbert sphere geodesics of section 4.1, together with the simple
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460 TOM NEEDHAM AND SEBASTIAN KURTEK

relationship between Euclidean and spherical distance) and geodesics in the space of closed
curves (by numerically optimizing over Diff+(I) \times S1, where the S1 factor corresponds to a
search for optimal seed points between the two curves).

5. Extending to piecewise linear shapes.

5.1. Problem setup. A natural question of both theoretical and practical interest is
whether the previous results can be extended to spaces of curves of lower regularity. In-
deed, the methods above can be used, essentially without modification, to show that the map
Fa,b can be extended to give an isometry\Bigl( 

Imm1(I,C)/\{ Tra,Rot\} , ga,b
\Bigr) 
\rightarrow 
\Bigl( 
C0(I,C\ast ), gL

2
\Bigr) 
,

where Imm1 denotes the space of C1 immersions and ga,b is the appropriately extended elastic
metric.

It is common in the literature on the SRVF transform to consider the space AC(I,RN ) of
absolutely continuous curves in Euclidean space (absolutely continuous curves can be charac-
terized as those curves which are continuous everywhere and differentiable almost everywhere
[41]). Recall that the transform F1, 1

2
recovers the SRVF transform for smooth, immersed

plane curves. This map extends to a well-defined map,

F1, 1
2
: AC(I,C) \rightarrow L2(I,C),

c(t) \mapsto \rightarrow 

\Biggl\{ 
c\prime (t)\surd 
| c\prime (t)| 

, c\prime (t) exists and is nonzero,

0 otherwise,

which is a homeomorphism that pulls back gL
2
to g1,

1
2 at smooth points. Theoretical details

of this construction are examined in [31, 11].
One would like to similarly extend the remaining Fa,b-transforms to spaces of curves of

low regularity, but this causes immediate issues. For a/2b \not = 1, one of Fa,b or its inverse is
multivalued pointwise, since the map involves complex exponentiation. In previous sections,
we relied on the smoothness of our curves (or at least continuity of derivatives) to choose
complex roots coherently in order to ensure Fa,b was well-defined up to rotations.

5.2. Extended \bfitF \bfita ,\bfitb -transform. Inspired by our results for smooth curves, we can extend
our work to one of the most important spaces of curves from a practical standpoint: piecewise
linear curves. Let PL(I,C) denote the space of PL planar curves; that is, each c \in PL(I,C)
is a continuous curve such that there is a decomposition

I = I1 \cup I2 \cup \cdot \cdot \cdot \cup Ik = [t0 = 0, t1] \cup [t1, t2] \cup \cdot \cdot \cdot \cup [tk - 1, tk = 1]

with c\prime (t) = vj \in C for all t \in (tj - 1, tj), j = 1, . . . , k. We call the points c(tj) vertices of c
and the tj are called vertex parameters. A PL curve c is called a piecewise linear immersion
if | c\prime (t)| \not = 0, where c\prime (t) is defined. Let PL(I,C)/Tra denote the space of PL curves modulo
translations, which we identify with the set of curves based at the origin.
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We define the extended Fa,b-transform to be the map

Fa,b(c) = 2br1/2 exp

\biggl( 
i
a\theta 

2b

\biggr) 
,

where r is the piecewise constant function

(5.1) r(t) =

\biggl\{ 
| v1| for t \in [0, t1],
| vj | for t \in (tj - 1, tj ], j = 2, . . . , k,

and \theta is the piecewise constant function defined recursively by

(5.2) \theta (t) =

\Biggl\{ 
\theta 1 = arctan \mathrm{I}\mathrm{m}(v1)

\mathrm{R}\mathrm{e}(v1)
for t \in [0, t1],

\theta j - 1 + sj \cdot \delta \theta j for t \in (tj - 1, tj ], j = 2, . . . , k.

The term \delta \theta j \in [0, \pi ] is the jth exterior angle between the (j  - 1)th and jth edges of c and is
given by

(5.3) \delta \theta j = arccos Re

\biggl( 
vj - 1vj
| vj - 1vj | 

\biggr) 
.

To simplify notation later on, we set \delta \theta 1 = \theta 1. The coefficient sj \in \{  - 1, 1\} describes the
orientation of the jth exterior angle and is given by

(5.4) sj = sign (Im (vj - 1vj)) ,

where we define the sign function for any real number a according to the convention

sign(a) :=

\biggl\{ 
1 if a > 0,
 - 1 if a \leqslant 0.

We set s1 = 1.

Lemma 5.1. Let c be a smooth immersion with a fixed representation of c\prime in polar coor-

dinates, c\prime = rei\theta , so that \theta (0) = arctan \mathrm{I}\mathrm{m}(c\prime (0))
\mathrm{R}\mathrm{e}(c\prime (0)) and \theta is continuous. Let \{ cn\} be a sequence

of PL immersions with vertices sampled from c (i.e., each cn is a secant approximation of
c). Assume that the sequence \{ cn\} converges uniformly to c in C1, and let (rn, \theta n) be polar
coordinates for cn, obtained by formulas (5.1) and (5.2). Then rn \rightarrow r and \theta n \rightarrow \theta uniformly.

Proof. The assumption of uniform convergence (cn)\prime (t)\rightarrow c\prime (t) immediately implies rn(t) \rightarrow 
r(t) uniformly, and one only needs to check convergence of the angle functions. Let vnj denote
the derivative vectors of cn, and let \widehat vnj denote the derivative vectors of c sampled at vertex
parameters of cn. Moreover, let \widehat \theta nj denote samples of the function \theta at the vertex parameters
of cn.

Fix a small \epsilon > 0, and in particular assume that \epsilon < \pi 
3 . Our assumption that (cn)\prime \rightarrow c\prime 

uniformly implies that there exists N such that for all n > N we may choose a collection of
angles \{ \widetilde \theta nj \} satisfying vnj = rnj exp(i

\widetilde \theta nj ) and | \widetilde \theta nj  - \widehat \theta nj | < \epsilon for all j. Increasing N if necessary,
we may also assume that the following estimates hold for all j:

\bullet | \theta nj  - \theta nj - 1| < \pi (by the definition of \theta n), andD
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\bullet | \widehat \theta nj  - \widehat \theta nj - 1| < \epsilon (by continuity of c).

We claim that \widetilde \theta nj = \theta nj for all j. By the definition of \theta nj , the contrary would imply that for
some j we have

\pi <
\bigm| \bigm| \bigm| \widetilde \theta nj  - \widetilde \theta nj - 1

\bigm| \bigm| \bigm| \leqslant \bigm| \bigm| \bigm| \widetilde \theta nj  - \widehat \theta nj \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \widetilde \theta nj - 1  - \widehat \theta nj - 1

\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \widehat \theta nj  - \widehat \theta nj - 1

\bigm| \bigm| \bigm| < \pi ,

and we have arrived at a contradiction. Thus | \theta nj  - \widehat \theta nj | < \epsilon for all j, and this completes the
proof.

Remark 5.2. Sequences of approximating PL curves as described in Lemma 5.1 arise by
linear spline approximation. For a smooth c : [0, 1] \rightarrow R2, we pick a mesh t0 < t1 < \cdot \cdot \cdot < tn
and define a linear spline cn interpolating between the c(tj). As the mesh is refined, the
resulting sequence of PL curves converges uniformly to c (see, e.g., Theorems 6.1 and 6.15 of
[42]).

Lemma 5.1 immediately implies the following convergence result.

Proposition 5.3. Let c be a smooth immersed plane curve, and let \{ cn\} be a sequence of PL
immersions as in Lemma 5.1. Then Fa,b(c

n) \rightarrow Fa,b(c) in L
2.

Remark 5.4. This shows that if a PL curve approximates a smooth curve, then taking
sufficiently many samples produces a transformed curve, which is close to the transformed
smooth curve. On the other hand, if the PL curve is truly meant to contain jagged angles,
then the discrete Fa,b is still well-defined but may not be a faithful representation of the curve in
transform space. In this scenario, ad hoc methods are necessary to extend the transformation.

5.3. Injectivity. Theorem 3.2 says that Fa,b induces a bijection

Imm(I,C)/\{ Tra,Rot\} \updownarrow C\infty (I,C\ast )/Rot.

Unfortunately, the same property is not enjoyed by the extended Fa,b-transform, as shown by
the following example.

Example 5.5. Let c1 and c2 be the PL curves given by c\prime 1(t) = 1 and

c\prime 2(t) =

\biggl\{ 
1, t \in [0, 1/2],
ei\theta , t \in [1/2, 1],

for some fixed choice of \theta \in (0, \pi ]. Then Fa,b(c1)(t) = 2b and

Fa,b(c2)(t) =

\biggl\{ 
2b, t \in [1/2, 1],

2b exp
\bigl( 
i\theta a

2b

\bigr) 
, t \in [1/2, 1].

Taking parameters a and b satisfying a
2b = 2\pi 

\theta yields Fa,b(c1) = Fa,b(c2), while it is clear that
c1 and c2 do not differ by a rigid rotation.

This potentially causes a major problem when computing distances between PL curves:
two PL curves which do not differ by a rotation can receive zero geodesic distance in Fa,b-
transform space. Luckily, the next proposition shows that this situation is highly nongeneric
and that it does not arise in most applications.
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Proposition 5.6. Let c1 and c2 be PL immersions with k segments whose derivatives are
represented in polar coordinates by the functions (r1, \theta 1) and (r2, \theta 2), respectively, as defined
by formulas (5.1) and (5.2). The images of the curves under the extended Fa,b-transform are
the same if and only if r1(t) = r2(t) for all t and there exist integers \ell j such that

s1j\delta \theta 
1
j = s2j\delta \theta 

2
j +

4b

a
\ell j\pi 

for all j = 1, . . . , k.

Proof. Assume that Fa,b(c1) = Fa,b(c2). Then | Fa,b(c1)(t)| = | Fa,b(c2)(t)| holds for all t,

and it follows that r1(t) = r2(t) for all t. Since rj(t) \not = 0, we have that exp
\bigl( 
a\theta 1

2b

\bigr) 
= exp

\bigl( 
a\theta 2

2b

\bigr) 
.

This equality holds if and only if
a\theta 1j
2b

=
a\theta 2j
2b

+ 2\ell j\pi 

for all j = 1, . . . , k for some integers \ell j . Therefore

(5.5) \theta 1j = \theta 2j +
4b

a
\ell j\pi .

Setting j = 1 and recalling that we are using the convention \delta \theta 1 = \theta 1 and s1 = 1 provides our
first condition on the \theta -functions. The j = 2 instance of (5.5) reads

\theta 12 = \theta 22 +
4b

a
\ell 2\pi \leftrightarrow \theta 11 + s12\delta \theta 

1
2 = \theta 21 + s22\delta \theta 

2
2 +

4b

a
\ell 2\pi 

\leftrightarrow s12\delta \theta 
1
2 = s22\delta \theta 

2
2 +

4b

a
(\ell 2  - \ell 1)\pi .

The claim then follows in the j = 2 case after relabeling the integer coefficient of 4b
a \pi . The

general claim follows similarly by induction.

It follows that Fa,b is generically injective on PL(I,C)/\{ Tra,Rot\} in the sense that if c1 and
c2 are PL curves with Fa,b(c1) = Fa,b(c2), then there exists an arbitrarily small perturbation
(in the C1 sense) \widetilde c2 of c2 such that the SO(2)-orbit of Fa,b (\widetilde c2) is different from that of
Fa,b(c1). We also have the following corollary, which provides injectivity of Fa,b on PL curves
with bounded exterior angles.

Corollary 5.7. The extended map Fa,b is injective when restricted to the set of PL immer-
sions with exterior angles uniformly bounded by 2b

a \pi .

In particular, note that Fa,b is always injective on PL curves when a
2b \leqslant 1.

Proof. Let c1 and c2 be PL immersions such that \delta \theta 1j , \delta \theta 
2
j <

2b
a \pi for all j. If Fa,b(c1) =

Fa,b(c2), then Proposition 5.6 implies that there exist integers \ell j such that\bigm| \bigm| s1j\delta \theta 1j  - s2j\delta \theta 
2
j

\bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| 4ba \ell j\pi 
\bigm| \bigm| \bigm| \bigm| 

for all j. We have \bigm| \bigm| s1j\delta \theta 1j  - s2j\delta \theta 
2
j

\bigm| \bigm| \leqslant \delta \theta 1j + \delta \theta 2j <
4b

a
\pi ,

so that each \ell j = 0. Therefore \theta 1 = \theta 2 and it follows that c1 = c2.D
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For PL curves obtained by sampling a smooth curve, dense enough sampling ensures that
exterior angles can be bounded by an arbitrarily small number. It follows that Fa,b can be
guaranteed to be injective. To quantify this, consider the simple case of a secant approximation
of a smooth curve c by an equilateral PL curve with edgelength s. At a vertex of the PL curve,
let \delta \theta denote the exterior angle, and let \kappa denote the curvature of c at that point. Then we
have the Taylor approximation (see [1])

\delta \theta = s\kappa +O(s3).

Assuming that the PL curve has N vertices, that c is normalized to have length 1, and that
s is therefore roughly equal to 1/N , it follows that there is an asymptotic bound

| \delta \theta | \leqslant \kappa max

N
+O(1/N3),

where \kappa max is the maximum curvature of c. We therefore obtain the desired bound on the
turning angle as soon as

N >
a

2b\pi 

\bigl( 
\kappa max +O(1/N2)

\bigr) 
.

5.4. Exact matching. The algorithm for computing geodesic distances in the shape space
Imm(I,C)/Diff+(I) outlined in section 4.3 calls for a solution of the optimization problem
(4.1). We now wish to demonstrate the existence of solutions to the corresponding problem in
the PL setting. In order to achieve a solution, we replace the smooth diffeomorphism group
Diff+(I) with the semigroup

\Gamma = \{ \gamma \in AC(I, I) | \gamma (0) = 0, \gamma (1) = 1, \gamma \prime (t) \geqslant 0 when \gamma \prime (t) exists \} .

The PL optimization problem seeks the optimal reparameterization \gamma for PL curves c1 and c2
satisfying

(5.6) \gamma = arginf\{ distga,b(c1, c2(\gamma )) | \gamma \in \Gamma \} .

Because the Fa,b-transform induces the same optimization problem for general elastic metrics
ga,b as the one studied in the SRVF setting g1,1/2, we are able to directly appeal to the recent
work of Lahiri, Robinson, and Klassen [31].

Proposition 5.8. The optimal reparameterization between two PL curves [c1] and [c2] with
respect to ga,b is realized by a PL function in \Gamma .

Proof. The images of the PL curve cj under Fa,b are piecewise constant maps qj into
C \approx R2. The reparameterization action of the semigroup \Gamma on cj transforms into an action
on the image curves by the formula

\gamma \ast qj =
\sqrt{} 
\gamma \prime \cdot qj \circ \gamma ,

defined pointwise almost everywhere. The optimization problem (5.6) becomes

inf
\gamma \in \Gamma 

\| q1  - \gamma \ast q2\| L2 .

It follows from [31, Theorem 5] that this new optimization problem is solved by a PL element
of \Gamma .
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It is observed in [31] that an optimal matching \gamma \in \Gamma between PL curves c1 and c2 may
contain flat or vertical portions (i.e., the derivative may vanish or there may be discontinuities).
Observe that in this case we could find reparameterizations \gamma j of both curves cj so that each
\gamma j only contains flat portions and no discontinuities. The reparameterized curves cj(\gamma j) no
longer lie in the space of PL curves, but rather in some slightly more general space where the
parameterization can stop at vertices for positive time. In any case, we still obtain geodesics
between these mildly singular curves, and the resulting geodesic distance is still a sensible
metric on the subspace of PL curves. This behavior is thoroughly explored in [31] for the
SRVF setting, and it will be interesting to study it in detail for our general setting in future
work.

6. Numerical experiments.

6.1. Implementation issue. In the case when a
2b > 1, the inverse mapping from the Fa,b-

transform space to the space of curves is not guaranteed to produce valid angle functions
when the curves are expressed in polar coordinates. This is due to large local differences
between the angle functions for the shapes being compared. In these cases, we use a path-
straightening algorithm to find the appropriate angle functions along the geodesic path. We
omit the details of this algorithm for brevity, but the basic idea is as follows. Plane curves
to be compared are first mapped via Fa,b by converting to polar coordinates, as discussed
above. Optimal alignment and reparameterization is performed on the transform side. For
rotational alignment, we use the standard version of Procrustes analysis (a singular value
decomposition problem). To find optimal reparameterizations of open curves, we use the
dynamic programming algorithm of [40]. To find optimal reparameterizations of closed curves,
we also use dynamic programming, but with an additional search for an optimal starting point
on each curve (seed search). After optimal rotational alignment and reparameterization, we
calculate the polar coordinate r-function along the geodesic explicitly. However, inverting
the full Fa,b-transform along the geodesic, and specifically inverting the polar coordinate \theta -
function, proves numerically difficult. We thus compute the polar coordinate \theta -functions along
the geodesic using a gradient descent algorithm based on an objective function given by the
elastic metric-based energy of the path in the space of curves. Since the r-functions along
the geodesic path can be easily computed, the overall problem simplifies slightly to one where
only the first term in (1.1) plays a role in the optimization problem; this results in a simple
and computationally efficient path-straightening algorithm that iteratively updates the path
according to the gradient of the path energy [44, 29]. We note that the Fa,b-transform still
provides a significant numerical simplification in this case as it allows us to search for optimal
rotations and reparameterizations in the transform space under the L2 metric.

6.2. Examples. We show several examples of geodesic paths and associated geodesic dis-
tances between shapes of open (Figures 3--5) and closed (Figures 6 and 7) curves for different
parameter values in the elastic metric, computed via the methods described in sections 4 and
6.1. Each figure shows the curve evolution and the optimal reparameterization in blue with
the identity in red for comparison. While the example in Figure 3 considers two simulated
open curves, the examples in Figures 4--7 use curves from the well-known MPEG-7 computer
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Figure 3. Geodesic path and distance between shapes of two artificial open curves.

vision database.2 Comparing within each figure shows the qualitative effect of parameter
values on the curve evolutions, while comparing distances within shape classes across figures
gives a sense of the range and distinguishing powers of the geodesic distance metrics. One can
immediately make some qualitative observations. First, note that in each example the optimal
reparameterizations for the a

2b = 0.5 and 0.17 parameter choices are quite close to the identity.
This was experimentally observed to be typical and makes sense heuristically: as the value of
a
2b is decreased, the penalty for stretching deformations in the elastic metric dominates, and
bending deformations along the geodesic becomes less costly than reparameterizing to avoid
them. Studying this behavior more quantitatively will be the subject of future work. Second,
observe that distances increase as the ratio a

2b is decreased. This is explained both by the
higher penalty on reparameterizations (hence on matching similar features in the curves), as
well as the fact that the (length normalized) curves lie on the Hilbert sphere H\Sigma 

a,b(2b) after
applying Fa,b (see Proposition 3.4). The figures were produced by fixing a = 1 and varying
b, so that decreasing a

2b corresponds to increasing the radius of the sphere containing their
transformed images.

We also provide a short classification experiment that shows the benefits of using general
weights for the stretching and bending terms in the context of differentiating forgeries from
genuine signatures. The data used here consists of 40 different signatures, which are a sub-
set of the SVC 2004 dataset [51]. Each signature class contains 20 genuine signatures and
20 skilled forgeries. We classified each signature as genuine or a forgery using leave-one-out
nearest neighbor with respect to the geodesic distance under the ga,b metric for various pa-
rameter choices (a, b). As baselines, signatures were classified by two classical metric-based

2http://www.dabi.temple.edu/\sim shape/MPEG7/dataset.html
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Figure 4. Geodesic path and distance between two structurally different bone shapes.

methods: L2 distance between arclength parameterized curves, Hausdorff distance between
the (discrete) arclength parameterized curves considered as unstructured point clouds, and
Fr\'echet distance between the curves. Table 1 reports the overall classification rate (across all
40 signature classes) for each metric, as well as the number of signature classes where classifi-
cation was perfect. The first group of three results contains parameter values covered by the
Ra,b-transform of [5], with a

2b = 1 corresponding to the SRVF and a
2b = 1

2 corresponding to the
complex square-root transform. The last three results are for parameter values obtained using
our new transform. Classification is more successful for the parameter values given by our
new results, with a

2b = 2 matching the performance of the SRVF. Figure 8 shows the classifi-
cation rates for a

2b = 1 and a
2b = 2 across the 40 individual signature classes. Although these

parameter values have the same overall performance, we see that their performances differ
drastically by signature class. This suggests that certain parameter values may be more sen-
sitive to features appearing in particular signature classes, and that it is in general beneficial
to vary the choice of parameters to suit a given task.
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Figure 5. Geodesic path and distance between two very different shapes.

6.3. Complexity and runtime. The computational complexity for computing distances
between curves in shape space with any of the elastic metrics lies in the reparameterization
step. The particular algorithm we are using, outlined in [40], enforces artificial constraints on
the slope of each segment in the discrete reparameterization in order to improve speed. To
match curves with n samples, the complexity of our algorithm is O(n2) (without the slope
constraints, the complexity is O(n4)---see [40]). The runtime to compute geodesic distance
between unparameterized open curves with n = 100 samples is on the order of hundredths
of a second. For closed curves, the exhaustive seed search scales the runtime by a factor of
n, but this can be improved for practical computations; e.g., one can compute L2 distance
between parameterized curves for all seed choices, then keep some smaller collection of best
seeds to search over with dynamic programming. For a

2b \leqslant 1, computing geodesics between
registered curves is essentially instantaneous due to their explicit form for open curves under
the Fa,b-transform and the fast projection algorithm for closed curves. When a

2b > 1, the
gradient-descent-based algorithm described in section 6.1 is employed to compute geodesics,
and its runtime is highly dependent on parameter choices, which we have not optimized.
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Figure 6. Geodesic path and distance between two very different shapes.

7. Future directions. Our first direction for future work is to develop various statistical
tools under this framework. These will include computation of summary statistics such as
the average and covariance of a set of shapes, exploration of variability in various shape
classes through PCA, building generative shape models, inference via hypothesis testing and
confidence intervals, and finally regression analysis. Given the simplification of the metric
under the proposed Fa,b-transform, and the simple geometry of the preshape space, we will
be able to build upon existing work in this area based on the SRVF transform (i.e., a

2b = 1).
We have seen in the presented examples that different choices of a and b produce different
geodesic paths, thus resulting in different statistical analyses.

Second, we will build statistical models that allow the data to choose appropriate values
of a and b for the given application and task. For example, in the context of classification,
one can learn optimal weights on training data and then apply the proposed framework on
a held-out set. Furthermore, one can build hierarchical Bayesian models for registration,
comparison, and averaging of shapes of planar curves that include priors on the values of a
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Figure 7. Geodesic path and distance between two shapes of flowers with a different number of petals.

and b. Such models can be developed in a similar manner to the functional data approaches
in [28, 32]. In those works, the authors simply work with fixed values of a and b. We propose
to extend those methods by additionally including the weights for stretching and bending in
the posterior distribution.

In previous work, one of the authors extended the results of Younes et al. [55] to give a
metric with explicit geodesics on the space of closed loops in R3 [38]. This is accomplished
by replacing the complex squaring map with the Hopf map S3 \rightarrow S2. Using quaternionic
arithmetic, we expect that the results of this paper can be extended to provide transforms
which simplify metrics on space curves as well.
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Table 1
Overall classification rates and number of perfect classifications for the signature experiment.

Method Classification rate Perfect matches

Arclength 86.44 1

Hausdorff 90.81 3

Fr\'echet 91.75 3

a
2b

= 1
4

86.50 0
a
2b

= 1
2

93.81 6
a
2b

= 1 97.50 19

a
2b

= 2 97.50 19
a
2b

= 3 96.69 16
a
2b

= 4 97.00 16

Figure 8. Classification rates across 40 individual signature classes using the geodesic distance for param-
eters a

2b
= 1 (in blue) and a

2b
= 2 (in red).
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