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ABSTRACT ARTICLE HISTORY

In the field of shape analysis, landmarks are defined as a low-dimen- Received 19 April 2019
sional, representative set of important features of an object’s shape Accepted 17 September 2019
that can be used to identify regions of interest along its outline. An
important problem is to infer the number and arrangement of land-
marks, given a set of shapes drawp fror_n a pc_)pulation. One pro- tempering; landmarks;
posed approach defines a posterior distribution over landmark Markov chain Monte Carlo:
locations by associating each landmark configuration with a linear elastic metric
reconstruction of the shape. In practice, sampling from the resulting

posterior density is challenging using standard Markov chain Monte

Carlo (MCMC) methods because multiple configurations of landmarks

can describe a complex shape similarly well, manifesting in a multi-

modal posterior with well-separated modes. Standard MCMC meth-

ods traverse multi-modal posteriors poorly and, even when multiple

modes are identified, the relative amount of time spent in each one

can be misleading. We apply new advances in the parallel tempering

literature to the problem of landmark detection, providing guidance

on implementation generalized to other applications within shape

analysis. Proposal adaptation is used during burn-in to ensure effi-

cient traversal of the parameter space while maintaining computa-

tional efficiency. We demonstrate this algorithm on simulated data

and common shapes obtained from computer vision scenes.

KEYWORDS
shape analysis; parallel

1. Introduction

A challenging problem in shape analysis is the automatic identification of important
shape features (known as landmarks). This is motivated by applications in medical
imaging: doctors often use expertise to mark (or annotate) anatomically-relevant points
on shapes extracted from magnetic resonance image (MRI) scans, for instance. With a
large number of patients, this process is cumbersome and error-prone. Previous work
has focused on landmark inference either for pre-specified images (e.g., X-rays in Chen
et al. (2014)) or shape classes (e.g., human faces in Tie and Guan 2013; Segundo et al.
2010; Gilani, Shafait, and Mian 2015). The methods proposed by these authors are
deterministic, and do not readily quantify uncertainty in the obtained estimates. Some
work has attempted to generalize this problem to arbitrary shape classes (Domijan and

CONTACT Justin Strait ) jds49205@uga.edu ) 310 Herty Dr., University of Georgia, Athens, GA 30602.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/Issp.

@ Supplemental data for this article can be accessed here.
© 2019 Taylor & Francis Group, LLC


http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2019.1670843&domain=pdf&date_stamp=2019-09-28
http://www.tandfonline.com/lssp
https://doi.org/10.1080/03610918.2019.1670843
http://www.tandfonline.com

2 @ J. STRAIT ET AL.

Wilson 2005; Strait, Chkrebtii, and Kurtek 2018). The former takes an image analysis
perspective, inferring landmarks on images using a hierarchical model. The latter also
takes a Bayesian approach, but focuses on curve-level data (rather than images). A gen-
eral issue with the model proposed in Strait, Chkrebtii, and Kurtek (2018) is the diffi-
culty of obtaining reliable posterior estimates for landmarks. There are two reasons for
this. First, shape data is typically quite high-dimensional, resulting in a model likelihood
which is highly-peaked. Second, landmark posteriors can be multi-modal in some cases,
i.e., there may exist several sets of landmarks which can be deemed “important.”
Traditional Markov chain Monte Carlo samplers often get trapped in local modes,
resulting in biased estimates of shape landmarks.

In this paper, we discuss modern strategies for improved sampling from the posterior
distribution specified in Strait, Chkrebtii, and Kurtek (2018), allowing for multi-modal-
ities to be efficiently explored. We should note that while the main motivation for this
work is inference for the landmark detection model, we believe that the discussed sam-
pler is relevant to numerous other problems which rely on infinite-dimensional models.
While infinite-dimensional models do not have tractable normalizing constants, finite-
dimensional approximations of this model are less restrictive than their counterparts
which introduce dimension-reduction at an early stage. For instance, a hierarchical
model for estimating the registration function in the functional data setting was
explored by Cheng, Dryden, and Huang (2016) under a similar Gaussian process model
to Strait, Chkrebtii, and Kurtek (2018), which is reliant on a squared-distance term in
the likelihood - in fact, the authors of this paper discuss a simulated tempering algo-
rithm to handle posterior multi-modality. Other problems in shape analysis where
multi-modalities may be present include model-based image segmentation under an
elastic shape prior (Joshi and Srivastava 2009; Bryner, Srivastava, and Huynh 2013),
imputation of missing segments for functions and planar shapes (He, Yucel, and
Raghunathan 2011), estimation of landmark-constrained registration functions (Strait
et al. 2017), among others. Consequently, we have tried to keep the actual sampler dis-
cussions as general as possible. The improved sampler is based on work by Lacki and
Miasojedow (2016); Miasojedow, Moulines, and Vihola (2013), which has generally been
applied to low-dimensional models. Our work applies their adaptive procedure to the
high-dimensional data setting (e.g., shapes), and we discuss complications which may
arise under its implementation.

The rest of this paper is organized as follows. Section 2 provides a brief overview of elas-
tic shape analysis; the model proposed in Strait, Chkrebtii, and Kurtek (2018) is summar-
ized in Sec. 3, along with the sampling method used. Section 4 describes an adaptive
parallel tempering sampler (in the spirit of Miasojedow, Moulines, and Vihola 2013; Lacki
and Miasojedow 2016), which improves on the existing sampling procedure. Finally, we
conclude with results and closing remarks. A supplementary materials document is avail-
able online - this includes supporting plots that were not included within the main text.

2, Statistical shape analysis

Kendall (1984) defined shape as a property that remains after certain shape-preserving
transformations (rigid motion and scaling) are filtered out from an object. Early work
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in shape analysis used a finite-dimensional set of important points, known as landmarks
(Kendall 1984; Good 1994; Dryden and Mardia 2016), to represent shape. While numer-
ous statistical tools have been developed using landmark-based representations, these
require the researcher to manually specify appropriate landmark locations - a difficult
task in itself, especially for large datasets. In addition, these landmarks must be selected
to be in correspondence across the shape population, so that they represent the same
feature on each individual shape. For instance, if the researcher selects the first land-
mark at the tip of the ring finger on the contour of a human hand, then the first land-
mark should be selected at the tip of the ring finger on all other human hand shapes
being analyzed. Thus, landmark selection is quite tedious and subject to human error. A
more modern approach, called elastic shape analysis, is motivated by treating shape as
an infinite-dimensional object. Elastic methods allow one to be landmark-free in a
sense, by reducing the dependence of statistical analyses on the pre-specified landmarks.
A benefit of using elastic representations is that the optimal correspondence of points is
the solution to a minimization problem, ensuring that prominent features are matched
appropriately. Recently, Strait et al. (2017) combined the elastic framework with land-
marks, allowing for prior knowledge to be introduced into the solution for optimally
registering shapes. In this section, we present a summary of necessary topics from elas-
tic shape analysis. For further discussion, consult Srivastava et al. (2011), Kurtek et al.
(2012), and Srivastava and Klassen (2016).

2.1. The square-root velocity function

Assume 8 : D — R? is an absolutely continuous, planar curve defining the contour of an

object. The curve domain D is assumed to be [0, 1] for open curves, and S' for closed

curves (where there is no well-defined start or end point). The object which underlies elas-
Bt

VIBOL

where 8 is the time-derivative of 8, | - | is the Euclidean norm, and q(t) := 0 at points

tic shape analysis is the square root velocity function (SRVF), defined as q(t) =

where [5 vanishes or is non-differentiable. The SRVF has numerous benefits. First, it enco-
des the instantaneous velocity of 5. In addition, the original curve function f§ can be recov-
ered from g via f(t) = $(0) + fot q(s)|g(s)|ds. These two points show that use of SRVF
results in no loss of information about the original curve, while also being automatically
invariant to translation of curves (a shape-preserving transformation): if f, = 8, +¢,
then the corresponding SRVFs are equal, i.e., q; = ¢,. The next section describes the
advantages of using an elastic approach in the context of shape analysis.

2.2. Elastic metric

The greatest benefit of the SRVF pertains to the choice of an appropriate shape metric.
It has been shown (Joshi et al. 2007; Srivastava et al. 2011) that the L2 metric between
two curves ff; and f3, depends on the parameterization function y € T, ie., ||f;—f,|| #
||[Byoy—PB, 07|, where ||-|| denotes the L* function norm, and I'={y:D —
D|y is an orientation—preserving difftomorphism} is the group of re-parameterization
functions. This property is not desirable; ultimately, we want to remove variation
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associated with shape-preserving transformations. When a curve is represented by a
function, shape should also be invariant to any re-parameterization of the function. The
parameterization y controls the rate at which an individual curve is traversed. In the
context of a pair of curves, parameterizations dictate the correspondence of points
between them. Simultaneous re-parameterization of f; and f, by the same y does not
change the pointwise correspondence, and thus, the distance between the two shapes
should also remain the same - the L? metric between 8, and S, does not satisfy
this property.

However, the L? distance between the SRVFs ¢1 and ¢, corresponding to f5; and f3,
is preserved under re-parameterization. Furthermore, a key result states that the I.? dis-
tance between SRVFs is equivalent to an elastic metric between the original curve func-
tions ff; and f5, (see Srivastava et al. (2011) for its explicit form). The elastic metric is a
Riemannian metric which quantifies the amount of bending and stretching necessary to
deform f, into f3,. Use of this Riemannian metric can be computationally demanding
for methods which rely on repeated metric calculation. However, Joshi et al. (2007)
mention that by converting ff; and f, to SRVFs g; and ¢,, the elastic metric simplifies
to the > metric. Thus, we can use the relationship between f and g to compute
SRVFs, use the I.? metric with SRVFs, and map back to the original curve function for
visualization. We state the simplified form of the elastic metric under the SRVF trans-
formation below:

ditastic(B1> B2) = [li—qal| = \/JD|Q1(t)—Q2(t)|2dt- (1)

This metric also plays an important role in solving the registration problem, where
the goal is to find the optimal correspondence of points between two curves. This is
one of the strengths of elastic shape analysis — simply using landmarks automatically
imposes a correspondence which may potentially be sub-optimal. The registration prob-
lem is detailed extensively in Srivastava and Klassen (2016), but is not of primary con-
cern here.

3. Landmark detection model

We now return to the original problem at hand: model-based inference of landmark
locations on a collection of shapes. Two models are proposed in Strait, Chkrebtii, and
Kurtek (2018): the first assumes the number of landmarks is known (and fixed), which
is then extended to a second model, where the number of landmarks is allowed to vary.
Our focus is on landmark location inference under the first model, i.e., when the num-
ber of landmarks is assumed to be fixed. We will also assume that the population of
shapes is homogeneous, meaning shapes are already registered to each other. In prac-
tice, this means that an arc-length parameterization is sufficient for all curves.

Formally, let ,,....0y : D — R? be a sample of curve outlines from a homogeneous
shape population. The goal is to infer k landmark locations 0 = (01, ..., 0;) € D*, sub-
ject to the constraint 0; <... <0, (ensuring landmarks are ordered appropriately with
respect to curve parameterizations). With the assumption that curve registration is not
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necessary, only variability associated with translation and scale is to be removed.
Translation-invariance is achieved through transformation of curves to their SRVFs,
denoted gg,, ..., qp,,- Scale is removed by pre-processing curves to be of unit length, pre-
venting shapes with larger size from dominating inference. In practice, the previously
mentioned functions must be discretized. The issue of discretization is discussed exten-
sively in Strait, Chkrebtii, and Kurtek (2018), and as such, we will assume all curves are
sampled to N points, where N reflects the resolution of the data. The discretization of a
function f to N points is denoted f™).

3.1. Evaluation of landmark configurations

In order to infer landmarks based on a statistical model, a discrepancy between the
model and the data must be defined through the likelihood function. This is equivalent
to evaluating landmark arrangements over the sample of shapes to reflect the two
important goals of landmark selection: reconstruction and low-dimensional representa-
tion. Strait, Chkrebtii, and Kurtek (2018) base the likelihood on the linear reconstruc-
tion error as follows. Let 6 be a candidate landmark configuration for the curve f,,
with SRVF gg . Consider construction of the linearization of f8,,, with knot points at
B,.(0) (i.e., the curve landmark locations); call this function L,,(¢; ). This piecewise-lin-
ear curve is formed simply by joining straight lines between landmarks - i.e., the seg-
ment of L, connecting the points f3,,(0;) and f3,(0+1) for i=1,...,k—1 is given by
Ly(t;0) = (1— H}:%}_) B, (0;) + <0i:fiei>ﬂm(0,-+1), for 0; <t<0g1. We suppress the ¢
argument for the remainder of the paper, thus referencing this curve by L,,(6). For
open curves, the starting point is additionally connected to the first landmark, and the
last landmark is connected to the ending point. For closed curves, the first and final
landmarks are connected so that the resulting piecewise-linear function is a closed curve
as well.

It is clear that the degree to which the linear reconstruction L, (@) resembles the ori-
ginal curve f,, will depend on the landmark configuration. For instance, Figure 1 shows
three landmark configurations (under the assumption of k=4 landmarks): the one on
the left yields a worse linear reconstruction than the two on the right. At the same
time, the two figures on the right that are more desirable in terms of linear reconstruc-
tion error appear to select features that are more important to the understanding of the
shape of interest. The discrepancy between L,,(6) and f5,, can be measured using the
elastic metric given by Eq. (1). This is referred to as the reconstruction error associated
with a landmark set 6. After discretization to N points, this quantity is given by:

==
== &
—x )
=

(1) [ (0.20,0.40,0.60,0.80) | (0.17,0.25,0.51,0.76) | (0.25,0.51,0.76,0.84)
2) 0.713 0.402 0.399

=

b
<
<

Figure 1. Linear reconstructions (green) of curve f (blue) through three different landmark configura-
tions (red). (1) Landmark values 0 and (2) d2_. (8", L™ (0)) are listed below.

Elastic
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Elastic (ﬁg\])’ Lg)(O)) = > (2)

vee(ds. a1l

where the vectorization operator vec(-) converts the input, a 2 x N-dimensional curve,
into a 2 N-dimensional vector by vertical concatenation of the 2 rows. A landmark con-
figuration 0 yielding a low value of Eq. (2) “approximates” the full shape well (and thus
represents a desirable set of landmarks), while a high value indicates landmarks which
do not capture important features of the original shape well. This is reflected in the val-
ues computed for the configurations of Figure 1: the squared reconstruction error is
much larger for the landmark placements on the left, while smaller (and virtually the
same) for the right two.

3.2. Model

A model for the curves which allows for inference on a landmark configuration 0 can
be specified conditionally using the linear reconstructions described in the previous sec-
tion as:

N)__(N) N)__(N)
vec (‘lm 4 <o>)’ e VEC (q/fM _qLMw))

where k is a precision parameter. For a given landmark configuration, this discretized
Gaussian process model proposed in Strait, Chkrebtii, and Kurtek (2018) compares the
SRVFs of all M curves in the sample with their linear reconstruction. The resulting like-
lihood function,

M
‘C(O’ K) = TE?NMKNM exp <_K Z dl%jlastic (ﬁi(i\])’ LErIlV) (0))> > (4)
m=1

is inversely proportional to the cumulative reconstruction error, defined by Eq. (2). This
likelihood rewards landmark sets which yield a low reconstruction error cumulatively
over all curves, as desired by the argument presented in Sec. 3.1.

The Bayesian paradigm is well-suited to the problem of inference on 0 in this setting,
due to the ease of representing highly structured uncertainty, the availability of prior
information about the number of landmarks present, and the ease of updating the pos-
terior as new data becomes available. By updating prior models on @ and x given the
data, uncertainty estimates for these quantities can be obtained from approximate pos-
terior samples. Prior probability models on these parameters should be chosen to reflect
the analyst’s belief about a particular group of shapes before the data is collected. In
Strait, Chkrebtii, and Kurtek (2018), prior models which generalize well to a variety of
applications are provided, and are therefore less informative. A natural prior for the
precision parameter k is a Gamma(a,b) distribution. Using this, one can obtain the
marginal likelihood £(6) by integrating with respect to the prior measure for «, i.e.,
L(0) = [ L(0,x)n(x)dr. Selecting hyperparameters a = 1,b = 0.01 results in a diffuse
prior, which is appropriate when little is known about this parameter a-priori. The prior
on 0 is specified indirectly on the consecutive differences, s, between its components —
the precise expression for components of s is given in Strait, Chkrebtii, and Kurtek
(2018). A common prior in this situation is a Dirichlet distribution, i.e., s~ Dir(al).

iid 1
0,1 ~ <02N; z—sz), (3)
K
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This construction ensures that the ordering constraint of @ is satisfied. For example, in
each panel of Figure 1, this ensures that the reconstructions correspond to a single land-
mark arrangement by preventing permutation of the labels of 0 that leave the values of
its elements unchanged. In a general setting, selecting o =1 adds little subjective infor-
mation about the spacing between elements of 6.

3.3. Posterior sampling

Let £(0) be the marginal likelihood described in the previous section, and 7(0) be the
prior density for 0 induced by the Dirichlet prior on component-wise landmark differ-
ences s from Sec. 3.2. As is often the case in practice, summaries of interest for the pos-
terior,

—(a+NM)
7[(0|ﬂ( (b + Z dElastlc( m )(0)>> TE(O)’ (5)

are not available in closed form. Indeed, the posterior is only known up to a normaliz-
ing constant, as integration is intractable. Posterior summaries are instead typically esti-
mated from a Monte Carlo sample (Robert and Casella 1999). A general random walk

Metropolis sampler (Metropolis et al. 1953) is as follows. First, draw initial value 6!
from 7(0). Then, form a Markov chain, where at step ¢, proposal 0 is drawn from a
symmetric kernel G with density g(0*|0~!). For a random walk algorithm, the kernel
is centered at 0!, with covariance K. Many choices of G are suitable; most standard
is to let g(0°]0"Y) be a A (0", K) density, which is our assumption for the remain-
der of this paper. The proposal 6" is accepted with probability min{1, ol (07,011},

w1th1n
where,

L(0°)n(0")
(oY) (g1)’

is the Metropolis acceptance ratio. This construction results in a Markov chain whose

w1th1n (0* O[till) = (6)

stationary distribution is the target posterior m(8]f™)). In other words, under some
mild assumptions (Robert and Casella 1999), there exists ¢ such that the sequence

{019,011, } is a sample from the target posterior 7(0|™)). In practice, ¢ is unknown
and convergence diagnosis is based on heuristics, such as visual analysis of trace plots
and autocorrelation plots. Once convergence is suspected, the actual sample used to

approximate posterior summaries is {0[2],0[E+1],... iRl } where R is the size of the
MCMC sample, and all samples before ¢, the user-specified burn-in period, are dis-
carded. If it is suspected that ¢ <c¢, the sample produced may also be thinned to reduce
autocorrelation in the sequence of draws. For smooth and unimodal posteriors, the
choice of ¢ may well be reliable. However, when multiple posterior modes are present,
and especially if they are separated by large regions of low posterior probability, one
can typically be sure that ¢ would be extremely large (Geyer 1991). Indeed, the Markov
chain described above, is known to become trapped in local modes in the sense that the
time spent in that mode is not proportional to the mode’s relative probability mass,
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unless an extremely long chain is considered, which may well be beyond the user’s com-
putational resources.

3.4. Algorithm discussion

There are several points of discussion regarding this MCMC algorithm in the context of
model-based landmark selection. First, it should be noted that Strait, Chkrebtii, and
Kurtek (2018) use an even simpler proposal kernel G: instead of a multivariate normal
random walk proposal, they simply select one of the kK components of 0"~ at random
to update using a univariate random walk, keeping the other k - 1 components fixed.
While updates are slightly faster, this scheme mixes very slowly. In addition, this slow
mixing can lead to misleading conclusions due to improper diagnosis of convergence.
Components of 6 can get trapped in certain regions of the state space due to the poster-
ior dependence between components. The multivariate proposal scheme described in
Sec. 3.3 partially resolves this issue. A related important choice is that of the proposal
covariance matrix K. There is a tradeoff between the dispersion of the proposal kernel
and the acceptance rate of the MCMC algorithm. Balancing this tradeoff becomes espe-
cially difficult in the presence of constraints on the parameter space (Golchi and
Campbell 2016). Chosen optimally, K would match the posterior covariance. However,
without knowing this, we can make it as close as possible via adaptation. Indeed, a
chain-dependent adaptation during burn-in of the proposal to target an expected
acceptance rate has been shown to be effective in its selection (for example, Roberts,
Gelman, and Gilks (1997), Roberts and Rosenthal (2001) 0.234 is optimal for random
walk algorithms under certain assumptions).

Another challenge arises with the presence of posterior multi-modality. For certain
shapes, there may be several landmark configurations which are similarly important, as
defined by the reconstruction error criterion of Sec. 3.1. This is evident in the right two
panels of Figure 1 where both choices of @ yield a relatively similar value of

2
dElastic
likelihood only through this reconstruction error, several values of @ could map to the

same or similar likelihood values, ie., the mapping 6 — dﬁlamc(ﬂg),ﬂf)(())) is not

(ﬁffl‘”,L%V )(0)). Since the quality of landmark locations is incorporated into the

injective. This is especially likely for complex shapes, where it is unclear how many
landmarks should be selected, like the fork of Figure 1. Random walk Metropolis algo-
rithms are notoriously poor at efficient exploration of multi-modal densities, as they
have a tendency to get trapped in local modes. This makes single-chain MCMC
inappropriate for models where parameters are only incorporated in the likelihood
through non-injective functions (e.g., distances).

4 Adaptive parallel tempering MCMC
4.1. Motivation

In this section, we outline a strategy for sampling posterior landmark arrangements in
the presence of multi-modality. Recall that the posterior of interest is 7(0|g")), as
specified in Eq. (5), with state space X = {0 € D¥: 0, <0, <...<0}. As described in
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(1) 1 (0.17,0.25,0.51,0.76) | (0.13,0.25,0.51, 0.76)

(2) 0.402 0.471

(3) 1.91 x 10 2.64 x 10

Figure 2. Linear reconstructions (green) of curve f§ (blue) through two different landmark configura-
tions (red). Perturbed landmark 1 is marked in black. (1) Landmark values 8, (2) d_...(8",L™(9)),
and (3) unnormalized posterior density values are listed below.

Sec. 3.3, applying a standard random walk Metropolis-Hastings algorithm means pro-
posing 0" from a symmetric proposal kernel G, which is centered at the previous value,

0", and accepting it with probability given by the ratio of unnormalized posterior
densities, as seen in Eq. (6). However, even when adapting the proposal covariance
matrix, proposals that are much larger than the local posterior variance are very
unlikely. In our motivating application, posterior modes over landmark arrangements
tend to be well-separated and highly-peaked, as a result of the posterior’s exponential
dependence on the number of discretization points N (which is typically between 50
and 200).

As a simple illustration, again consider the fork in Figure 2, which has been discre-
tized to 101 points (N=101, M=1), and set «=1 for the Dirichlet prior on s. This
implies 7(0) < I(0; <...<0k), where I(-) is the indicator function. For a weakly
informative choice of @ = 1,b = 0.01 on the « prior, the posterior 7(0|f™)) is approxi-
mately proportional to (d2, . (BN, L™ (0)))™™. Consider 0! = (0.17,0.25,0.51,
0.76) (left panel), and proposal 0" = (0.13,0.25,0.51,0.76) (right panel) which only per-
turbs the first component - this acts to move the red point between the upper two
prongs of the fork closer to the tip of the third prong. This small move in the state
space X results in a squared reconstruction error increase of 0.069, resulting in a con-
figuration which is on the order of 107 less likely. For a perturbation of all compo-
nents, this type of proposal occurs quite often, reflecting the large negative curvature of
the posterior modes.

4.2. Parallel tempering

One way to traverse the low-density region between highly-peaked modes of a target
distribution is to temper its density, which has the effect of “flattening” out the posterior
of interest. Given a specified temperature T > 1, the tempered target posterior is given
by mr(0]p™)) o< (£(0)7(0))"". The acceptance probability in Eq. (6) for a Markov
chain targeting a tempered posterior is therefore larger compared to that of the corre-
sponding non-tempered case. This allows for faster traversal of lower-probability regions
between modes. Of course, the goal is ultimately to construct a Markov chain that tar-
gets the actual posterior, while exploiting the flexibility of tempering. This can be
achieved by running a number z>1 of MCMC chains in parallel, one targeting the true
posterior and the rest targeting progressively more highly tempered posteriors, accord-
ing to a temperature schedule T} = 1< T, <... < T, chosen by the user. Between-chain
swaps are proposed with a fixed probability, and can be accepted or rejected, which
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allows for the exchange of information between chains. Crucially, the single non-tem-
pered chain targets the desired posterior density 7(8]f™)) = 1, (0]™)). This technique
belongs to the class of population MCMC methods, and is known as parallel tempering
(as earliest introduced in Swendsen and Wang 1986; Geyer 1991).

At time t, let G[It], ...,HLt] be the current states of the z chains, corresponding to tem-
pered posteriors 7y, (0|f™), ..., mr (0|N)), respectively. Once the within-chain pro-
posal step is completed, a swapping of the current states between chains can be
proposed. Any two chains 4,,i # j can be swapped. However, in practice, most restrict
to swaps of adjacent chains - i.e., randomly select i € {1,...,z—1} and then propose
swap between chains i and i+1. This swap is accepted with probability

min{1,a_ (01,0 ))}, where,

swap, i

m) ( m) e
0 (0001) = £(6")= (0 )

swap,i\ i >Vi+l ) T 1 1 ’

L10:4, )7\ 0:4,

is the Metropolis acceptance ratio for between-chain swaps. This ratio takes a similar
form to the within-chain proposal because one can view swap proposals as switching
adjacent components of one product Markov chain, where the state space is the product
space A?. Once convergence is suspected for all of the chains (diagnosis is done for
each chain individually), inference is performed based on the sample generated from

the non-tempered chain, i.e., the one corresponding to the target posterior 7r, (0| p).

4.3. Adapting parallel tempering

Paralle] tempering MCMC can be challenging to implement, due to the many user-
specified settings. Choosing the temperature scale efficiently allows for some of the
chains to easily propose values of 0 corresponding to the various local modes, while the
total number of the parallel chains controls how quickly any between-mode moves will
make their way to the target chain via swaps. Temperature gaps between adjacent chains
that are too large may result in a low number of swap moves. Moreover, running
numerous chains is computationally burdensome, especially for high-dimensional par-
ameter spaces, as parallelization is only partial (since communication between chains is
critical). We attempt to address these issues in the spirit of Lacki and
Miasojedow (2016).

The basic idea is to let the temperatures be updated at each step of a sweep through

all z chains (i.e., the temperature of chain i, T,-m, is now time-dependent), with TF] =1
for all t. Swaps are proposed and accepted using the Metropolis ratio in Eq. (7). Once
all proposal steps have beem completed, temperatures are adapted so that swap accept-
ance probabilities target a theoretically optimal value of 0.234 (suggested by Atchade,
Roberts, and Rosenthal 2011; Kone and Kofke 2005), ensuring that the gap between
adjacent temperatures is not too large. The number of chains is also adapted at each
step, i.e., zI! is a function of time t. Chains are eliminated if a function of the variance
scaling factor exceeds the optimal proposal covariance for that particular chain. Since it
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may take time to properly tune individual chains, we only begin to prune chains after
enough full sweeps through all chains have been performed. The full adaptive parallel
tempering MCMC algorithm is shown below.

Algorithm 1. Adaptive PT

L.

IL.

I1I.

Iv.

Initialization

1. Determine number of landmarks k to infer.

2. Set number of chains z%, and temperatures 1 = T[ ) TZ[OJ <.< TL%]]. Also,
set Ny to be the desired iteration before chains can be in consideration
for deletion.

3. Compute p” = log(Ti[i]l—Ti[O]) fori=1,..,2z -

4. For chainsi=1,...,z :

a. Initialize landmarks 01[0] and set ”1[0]

b. Set 21[0] = I (running covariance).

c.  Set (]5,[0] =0 (scale factor), and let K,-[O] = exp (qﬁl[o])El[o] (pro-
posal covariance).

Within-chain adaptive random walk: at time f, for chains i = 1,...,2z

1. Update chain i:

a. Sample O*NN(O[t 1 [ 1. -
b. Compute “L;]nhm (07, O[t 1]) (o E\,]lthm(()* B[t 1]))1/ T (latter is Equation 6
ad]usted by temperature of chain ).
c. Set 0 = 0 w.p. min{1, ocgmhm (07, 0; )}, else, set -
2. Adapt proposal covariance of chain i:

a. Compute r[lt] = min{0.9, k(¢ + 1)_0'6},‘c£t] = (t+1)7%°
b. Update ,um = (1- M)y[f*l] + [t]é[t]_

Update ZH = (1— r[l])Zl[H] []<0 ”l[z 1])(él[t]_”[t—1])‘r‘
d. Update (15,[] = ¢[ ! +TM (min{1,o ] (07,0 )} —0.234), and

i ‘within, i

set Kim = exp (d)p)Zlm.
Between-chain adaptive state swap: at time t,

= 01[-0] (running mean).

[t_l] :

o[t—l].

1 1

1. Randomly select 1 € {1 -1}

2. Compute aL‘Jvap,ﬂ(a,[;], " +1) (via Equation 7).
3. Set 0,%1:[),[;] and (9,[;]:6’,[;]Jrl W.p. mln{l,Ofggvap,n(él[;],é,[,’tLl)}; else, set

0%1 = é}[ﬁrl and 0,[;] = (;,[;]

set 0,[4 = égt].
Adapt temperature scheme: at time t,

1. Set TV =1.Fori=1,..,z0"1-1;

For all other chains i#ni#n+1,

a. Compute ag]vap ,(Om 0{;1) (via Equatlon 7).
b. Update p,t] = [ ]—H:H(mm{l o H[t OEil)} 0.234).

c.  Set Tl[ﬂl = exp(p [ﬂ) + T[t 1].

swap i (
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2. If t>Np, set zI1 = min{je {1,..,2I" 1} : exp ((b]m) > %}, else, set zlf) =

ZI=1 Delete all chains indexed after z!'l.

4.4. Algorithm discussion

There are several additional parameters in this algorithm, which should be briefly dis-
cussed. First, in order to adapt the within-chain proposal scheme to ensure proper mix-
ing, Lacki and Miasojedow (2016) use a combination of two adaptive procedures
described in the following papers: Haario, Saksman, and Tamminen (2001), Andrieu
and Thoms (2008), Roberts and Rosenthal (2009), and Atchade and Fort (2010). For a

given chain i, a running estimate of the covariance matrix for 6; is computed (Zl[t]),
which requires a running estimate of the mean (Mlm) as well. This covariance is then

adjusted by a scale factor, exp (q’)l[-t]), which is also updated iteratively. Step sizes for all

of these updates are r[lt] and rg], which decrease as the number of chain iterations

increases; this results in smaller updates as the chain progresses in time (with the hope

that the target stationary distributions have been reached). The quantities t[lt] =

min{0.9,k(t +1) ¢} and rg] = (t+1)7*° are chosen by Miasojedow, Moulines, and
Vihola (2013) (denoted y, and y;, respectively, in their work) for multiple reasons: they
satisfy required ergodicity conditions for this adaptive parallel tempering algorithm, and
agree with common choices in the iterative stochastic algorithm literature.

It should also be pointed out that temperatures evolve over time through updates of
a vector comprised of log temperature-differences between adjacent components.
Miasojedow, Moulines, and Vihola (2013) prove the existence and uniqueness of a
choice for this vector which achieves a targeted swap acceptance rate (0.234 has been
shown to be optimal in both the physics and statistics literature for swap moves by
Kone and Kofke 2005; Atchade, Roberts, and Rosenthal 2011). This rate is also used to
decouple the choice of temperatures with the number of temperature levels. A simplifi-
cation to this update can be made by assuming geometric spacing between tempera-
tures, meaning only one parameter for the log temperature-difference is updated at each
iteration; however, with our particular implementation, we found that this was not
necessary, as we still maintain computational efficiency with the original update. Lastly,
the final step in an iteration of this algorithm selects the lowest-temperature chain
which exceeds the optimal proposal covariance for that particular chain, and prunes the
remaining higher-temperature chains. Elimination of chains should only be considered
once each chain’s proposal covariance has stabilized. Thus, N, should be selected large
enough to ensure this has been satisfied. In our implementation, Ny = 40,000 seems to
work empirically.

5 Results
5.1 Simulated curve

First, we illustrate the advantages of adaptive parallel tempering from Sec. 4.3 for a sim-

ple simulated curve, defined by f(t) = (t,|sin (2nt)|)', ¢ € [0,1]. Suppose one wants to
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Figure 3. Posterior inference by way of the adaptive random walk Metropolis algorithm for the simu-
lated curve using initializations (1) and (2), in blue and red, respectively. Left: Trace plots for 6.
Middle: Computed posterior for 6, with the true posterior in black. Right: Posterior samples superim-
posed on curve f.

estimate k=1 landmark 0 on this curve. In this simplified setting, we can numerically
evaluate the posterior in Eq. (5) over a grid (selecting 200 equally-spaced values of 0) as
a baseline to compare the performance of different sampling schemes. For this curve
(blue in the right plot of Figure 3), each peak appears to represent an equally important
feature of the shape due to symmetry. Thus, we would expect the posterior of 0 to be
bimodal, with each mode concentrated around one of the peaks of f.

We begin by implementing the adaptive random walk Metropolis algorithm of Sec.
3.3 and Strait, Chkrebtii, and Kurtek (2018). Two independent chains are initialized at

(1) 0 = 0.4 and (2) 01 = 0.6. Each chain is run for 10° iterations. To form the final
posterior sample, the first ten percent of iterations are discarded as samples prior to
burn-in, and the remaining sample is thinned by every 100 steps to reduce chain auto-
correlation. The results are shown in Figure 3 for initializations (1) and (2), in blue and
red, respectively. We first note the trace plots in the left panel appear to suggest that
each chain has converged. However, initializing the chain at two different values shows
convergence to two different regions of the parameter space! This is well illustrated in
the middle panel, which shows the approximated posterior based on random walk
Metropolis samples for these two initializations (in red and blue); (1) concentrates
around 0.25, while (2) concentrates around 0.75. The true posterior (as evaluated on a
grid) is shown as the black dashed line; since the algorithm only remains in one of the
modes, it overestimates the true density at the corresponding values of 0. The posterior
samples can be superimposed on the original shape, as shown in the right panel; as
expected, each one targets a separate peak on the curve, but neither chain is able to
move to the opposite peak, due to the low-density region of the posterior which sepa-
rates the two modes. We note that acceptance rates for (1) and (2) are 0.2340 and
0.2338, respectively, which are near the 0.234 target in the adaptive random
walk algorithm.

In order to explore both modes, we now implement the adaptive parallel tempering
algorithm described in Sec. 4.3. For the initialization step, we set the initial number of
chains z[% = 10, and set initial temperatures Ti[o] =i for i=1,..,10. The algorithm is
run for 10° sweeps; we resort to pruning of chains after Ny = 40, 000 iterations, in order
to ensure that proposal covariances have stabilized for each chain. After the sampling
algorithm is completed, the posterior is approximated from the samples of the first
(non-tempered) chain, and is post-processed to remove burn-in and autocorrelations in
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Figure 4. Posterior inference by way of the adaptive parallel tempering sampler for the simulated
curve. From left to right: computed posterior for 0, with the true posterior in black.; posterior samples
superimposed on curve f5; number of active chains as a function of number of iterations; temperature
evolution of the final two active chains under 25 different initializations (black line represents the
temperature course corresponding to the second chain for the original initialization).

the same way as above. The left-most plot of Figure 4 shows the resulting posterior
density, which is bimodal and very similar to the true posterior. When superimposed
on the curve f (second panel), it is clear that this adaptive method is able to traverse
between the two modes efficiently, unlike the random walk Metropolis algorithm. The
third plot of Figure 4 shows a plot of the number of active chains, as a function of each
chain’s time step (using the original settings). As specified above, we begin with ten
chains; however, right after iteration number Ny = 40,000, the algorithm immediately
prunes the number of active chains to two, and remains at two for the duration of the
algorithm. The temperature evolution of the two active chains is plotted on the far
right: note that the first chain stays fixed at one (since this is the target posterior).
Within-chain acceptance rates for the first and second chains were 0.2336 and 0.2337,
respectively, while the swap acceptance rate between the two chains overall was 0.2263
(including iterations where all ten initial chains were included); this rate increases to
the targeted acceptance rate of 0.2347 when only focusing on iterations after the prun-
ing of chains.

Diagnosis of convergence via trace plots is more challenging for multi-modal targets,
due to the large number of jumps between modes; see Figure 1 of the supplementary
materials online. We can check a few different items to assess convergence. First, one

can confirm that the final posterior density is independent of initialization 0,[-0] for each
chain i=1,...,10; this is true for this example. In addition, the pruning of chains
should also be independent of the initialization. To test this, we repeat the adaptive par-
allel tempering algorithm 25 independent times, with random initialization of the land-
mark vector. We specify five active chains for each run to start, since our initial run
suggested only two chains will be kept. In all 25 runs, five chains are immediately
pruned to two after iteration N, illustrating independence to initialization. Finally, we
would like the temperatures to adapt to roughly the same value for each independent
run of the algorithm. In the right panel of Figure 4, temperature evolution for the two
active chains are shown. Note that the first chain is fixed at one (as this is the target
posterior). For the second chain, the plot shows all 25 temperature courses simultan-
eously, approximately forming a band which seems to stabilize around a temperature of
20. As a check, we have also superimposed the temperature profile of the original run
of the algorithm, which also falls within this band. We also note that for the 25 differ-
ent initializations, both the within-chain and between-chain swap acceptance rates are
near the targeted 0.234.
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Lastly, we compare computation time for the different samplers. It is clear that paral-
lel tempering is more expensive, due to the necessity for running multiple chains simul-
taneously; however, we have found all algorithm times to be within reason for the
applications studied throughout this paper. For the simulated curve, our implementation
of adaptive random walk Metropolis required 989.3 and 949.5 seconds for the two initi-
alizations, respectively; compare this to our original adaptive parallel tempering scheme
with ten initial chains, which required 1614.9seconds. If we only initialized with five
chains (which was acceptable since all 25 replicates of the sampler converged to two
active chains), this requires a similar 1590.7 seconds: this is understandable, as all but
two of the chains are pruned fairly early during the course of the algorithm.

5.2. MPEG-7 shapes

Parallel tempering is almost necessary for shapes with complex features, including the
ones in the MPEG-7 shape dataset (http://www.dabi.temple.edu/~shape/MPEG7/dataset.
html). This is a collection of shapes extracted from images which are popularly used in
computer vision research. The curves representing the outlines of objects in these
images are closed, and thus we will resort to posterior inference on the curve domain
D = S'. Many of these shapes present modeling challenges, as the number of landmarks
k is not easily specified. Consider the fork from Figure 2, with the goal of inferring the
k=4-dimensional landmark vector 0. Here, the curve S is sampled using N =101
points. To compare performance of the adaptive parallel tempering algorithm, we first
proceed by running 10° iterations of random walk Metropolis with adaptive covariance.
Due to the complexity of the shapes, we remove the first thirty percent of the chain,
and further thin the sample by 100 to reduce autocorrelations. Figure 5 shows the mar-
ginal posterior densities for each component 0; for i =1,2,3,4, as plotted on D; the
obtained marginals all appear unimodal. However, when the posterior samples are
superimposed on the curve in the right panel, the fourth landmark (in yellow) only cap-
tures a region between the first two prongs. Since the fork is relatively symmetric, there

Marginal posterior density on 51

Figure 5. Posterior inference by way of the adaptive random walk Metropolis algorithm for the simu-
lated curve. Left: Marginal posterior densities for components of 6, plotted on the curve domain S'
(in black, where the horizontal grid line on the right half denotes the zero radian line, and angles are
traversed counterclockwise around the circle). Right: Posterior samples superimposed on curve f.
Colors denote the four landmarks: 6; = blue, 0, = red, 03 = green, 0, = yellow.
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Figure 6. Posterior inference by way of the adaptive parallel tempering sampler for the fork shape.
From left to right: marginal posterior densities for @, plotted on S' (in black); posterior samples
superimposed on fork f5; number of active chains as a function of number of iterations; temperature
evolution of the final three active chains. Colors denote the four landmarks: 6, = blue, 0, = red,
03 = green, 0, = yellow.

may be a second mode for this particular landmark occurring between the last two
prongs (similar to the middle panel of Figure 1); however, random walk Metropolis is
not able to explore this region of the parameter space in 10° iterations.

Since we suspect there is a second mode for one of the landmarks (due to the relative
symmetry of the fork), adaptive parallel tempering is implemented. As in the simulated
curve of Sec. 5.1, we begin with zI = 10 chains and consider pruning chains after
Ny = 40,000 iterations. The initial temperature of chain i is set to i for i = 1,...,10. The
final posterior sample is generated exactly as above, using values from the first chain.
The left plot in Figure 6 shows the marginal posterior densities once again; this time,
the portion corresponding to regions between prongs displays two equal-sized modes.
Note that the colors change compared to the plot in Figure 5; this is the result of a
label-switching on components of @ compared to the random walk Metropolis output.
Post-processing is done to remove the identifiability issue associated with ordering of
these components (as detailed in Strait, Chkrebtii, and Kurtek (2018)). This means that
in this particular figure, landmark labels get shifted by one (i.e., the first landmark here
represents the same feature as the fourth landmark in Figure 5). This can be more
clearly seen when viewing the posterior samples superimposed on the shape: 0; now
represents the bimodal feature that was missing from 0, under the adaptive random
walk method. For this particular shape, three chains were selected to be active after Ny,
and temperatures stabilized throughout the duration of the algorithm (see right two
panels of Figure 6). We note that the temperature of the third chain actually spikes
toward a value of 600, before eventually settling down - this instability seems to occur
often during our implementation of the adaptive parallel tempering sampler.
Acceptance rates within the three chains were 0.2267, 0.2308, and 0.2240, with swap
rates around 0.1137 and 0.1128 for the two possible moves (chain 1 to/from 2, chain 2
to/from 3). We also have verified that these results are independent of chain initializa-
tion. A comparison of marginal posterior densities under the random walk sampler and
adaptive parallel tempering is included as Figure 2 of the supplementary materi-
als online.

With this example, the bimodal posterior for the landmark corresponding to the
between-prong region could suggest that this particular feature is less important in aid-
ing the linear reconstruction of . This could also potentially indicate a misspecification
of the number of landmarks, if the ultimate goal is to approximate the curve using just
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Figure 7. Posterior inference by way of the adaptive parallel tempering sampler for the sample of
three forks. Top (from left to right): Marginal posterior densities for 0, plotted on S' (in black); pos-
terior samples superimposed on forks f3;, f5,, f;. Colors denote the four landmarks: 6; = blue, 6, =
red, 03 = green, 0, = yellow. Bottom (from left to right): Evolution of number of active chains. The
right two plots show the temperature evolutions: one for all five chains, and the other for just the
first four chains. Note the fifth chain’s temperature continues to increase without bound.

the set of inferred landmarks. However, if one solely wants to learn the four most
important features, this procedure allows us to see that this landmark can be placed in
two different locations with equal value towards the linear reconstruction. Computing
time for the random walk algorithm is 1829.7 seconds, while adaptive parallel tempering
required 6018.1 seconds — longer as a result of the number of landmarks and number of
active chains, but certainly not prohibitively expensive.

The parallel tempering procedure can also be applied to the model when inference is
desired for multiple homogeneous shapes simultaneously. Consider M =3 similarly-
shaped forks, with the goal of still estimating k=4 landmarks. In order to ensure a
proper correspondence between the three shapes, we perform simple pairwise registra-
tions between 5, and f3; to a baseline f3; (this ensures that, for instance, the fork prongs
occur at the same time as each of the three curves are traversed simultaneously). We
implement adaptive parallel tempering under the same settings as the one fork sample;
marginal posterior densities for components of 6, as well as posterior samples superim-
posed on f,, ,, f; are shown in Figure 7. Note the somewhat similar locations of the
posterior densities to Figure 6, along with less variability in the regions associated with
01,03, 04. However, the marginal posterior density plot for 0; appears unimodal, while
the posterior samples superimposed on the forks preserve the bi-modality. The combin-
ation of asymmetry over the sample of three forks leads the sampler to prefer the upper
prong region to the lower one, since this has smaller reconstruction error.

This example is also noteworthy due to an observation about the adaptive parallel
tempering algorithm. Lacki and Miasojedow (2016) choose to prune any chain after the
one which begins to exceed the optimal proposal covariance. For the three forks sample,
this means selection of five active chains after the Ny = 40, 000™ iteration - more than
the three necessary for just one fork. Intuitively, this makes sense, as the posterior will
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become even more highly-peaked with more data, and thus require more active chains
in order to properly temper the target density while ensuring the desired swap rate.
However, from the bottom, middle plot of Figure 7, it appears that the fifth chain’s
temperature increases without bound; the right plot shows that the other four chains do
converge to a particular set of temperatures. This suggests that this final chain is not
useful to the tempering procedure, and raises a potential question about computational
cost with regards to the discussed criteria. Lacki and Miasojedow (2016) errs on the
side of caution, preferring to keep chains which are not useful in order to ensure cor-
rect sampling, particularly in an example they discuss with a Gaussian mixture model,
where 50 chains can be initialized with relative ease. However, for the shape data used
here, an additional chain can add a costly amount of time to inference. For our pur-
poses, we prefer to keep this chain, as not all examples exhibit this same temperature
instability for the final active chain. For other high-dimensional applications, this phe-
nomenon may be worth studying further.

Finally, we return to analysis of M =1 shape and compare results from random walk
Metropolis to the proposed adaptive parallel tempering method for two other shapes in
MPEG-7. For the butterfly, the goal is to identify k=5 landmarks; the same is true for
the camel. The supplementary materials contain plots for the number of active chains
and temperature evolution for both of these examples. The left box of Figure 8 show
posterior samples superimposed on a butterfly (left) and camel (right) from the trad-
itional sampler using two different initializations (with identical settings to previous
examples in this section). Posterior samples obtained via parallel tempering are dis-
played in the right box. Once again, we observe that the original sampler converges to
two different posteriors depending on the initialization, whereas adaptive parallel tem-
pering is able to detect multi-modalities. Specifically, the butterfly exhibits bi-modality

Ve % &

b
s.':i-!
Figure 8. Posterior samples superimposed on two different shapes, obtained via (left box) random
walk Metropolis for two different initializations, and (right box) adaptive parallel tempering. The bot-
tom right shows the marginal posterior densities under the parallel tempering sampler. Colors denote
labeled landmarks: 0; = blue, 0, = red, 05 = green, 0, = yellow, 05 = black. Note that relabeling of
landmarks is due to post-processing of the posterior sample, as in the fork example.

Marginal postarior density on 51
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Figure 9. Linear reconstructions (green) of curve f (blue) through frequently-occurring (left) and
infrequently-occurring (right) posterior landmark configurations (red). (1) Landmark values 6, (2)

B (B™,L™(0)), and (3) unnormalized posterior density values are listed below.

around the antennae as well as the butterfly’s base, while the camel’s rear two legs form
a bimodal landmark for its posterior.

In particular, the butterfly example is interesting, as numerous landmarks are multi-
modal: the two which are immediately obvious capture either the left or right antenna
(due to the symmetry), corresponding to 0; and 0,. The region around the base of the
butterfly, 05, appears bimodal in order to capture one of the two parts of this region. It
also looks like 0s, which concentrates around the left wing and the bottom left part of
the base, is bimodal; however, its marginal posterior does not even seem to indicate this
second mode. Since individual posterior samples are plotted as circles, the vast majority
of the black landmarks are actually on the upper left wing, with very few on the base.
This distribution is in fact bimodal, but the second mode is extremely small: in particu-
lar, we picked out a “usual” posterior sample and compared it to one corresponding to
this “unusual” mode. For each one, Figure 9 shows the resulting linearization of the
butterfly f, along with the corresponding squared reconstruction error. Notice that
these values are somewhat similar, but due to the high-dimensionality of the curve
being studied, the ratio of unnormalized posterior densities at these two values indicates
that the “usual” mode is 182 times more likely than the “unusual” mode. Furthermore,
almost all of the “unusual” modes corresponded to a similar landmark vector. This is
another benefit of parallel tempering: discovery of multiple modes for landmarks that
may necessarily be known to exist a priori.

6. Summary

We have proposed an automated parallel tempering scheme for exploring multi-modal
posterior distributions arising from landmark detection models in shape analysis. Our
approach has the benefit of both identifying multiple landmark configurations which
are deemed equally “important” according to the model-based criterion specified (i.e.,
reconstruction error), which represents an improvement over single-chain alternatives.
The scheme we use is adaptive in three ways: (1) modification of proposal covariances
within-chain to ensure proper mixing; (2) time-dependent temperature settings for each
parallel chain; and (3) adaptation of the number of parallel chains run. Item (3) ensures
that this procedure for posterior sampling is also as computationally efficient as pos-
sible, given the high-dimensionality of the data. Benefits of implementation have been
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demonstrated on a simulated curve, as well as shapes from the MPEG-7 dataset. This
sampler is able to detect multi-modal landmark posteriors for many complex shapes,
particularly when the number of landmarks k is not easy to specify prior to inference.
As discussed in Sec. 1, we feel that the aforementioned adaptive parallel tempering sam-
pler is well-suited to other inferential problems in elastic shape and functional data ana-
lysis. Code will be made available on the lead author’s webpage, as well as on other
repositories.
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