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SHARPENING THE TRIANGLE INEQUALITY:
ENVELOPES BETWEEN L? AND L? SPACES

PAATA IVANISVILI AND CONNOR MOONEY

Motivated by the inequality || f + gll5 < || £II3 + 2l fgll1 + llgll5, Carbery (2009) raised the question
of what is the “right” analogue of this estimate in L?” for p # 2. Carlen, Frank, Ivanisvili and Lieb
(2018) recently obtained an L” version of this inequality by providing upper bounds for || f + g||5 in
terms of the quantities || f|5, llgll> and ||fg||£ﬁ when p € (0, 11U [2, 00), and lower bounds when
p € (—o00,0) U (1, 2), thereby proving (and improving) the suggested possible inequalities of Carbery.
We continue investigation in this direction by refining the estimates of Carlen, Frank, Ivanisvili and
Lieb. We obtain upper bounds for || f + g||5 also when p € (—o0, 0) U (1, 2) and lower bounds when
p € (0,1]U[2, 00). For p € [1, 2] we extend our upper bounds to any finite number of functions. In

addition, we show that all our upper and lower bounds of || f + g/, for p € R, p # 0, are the best possible

in terms of the quantities || £ |5, [l and || f gllﬁg, and we characterize the equality cases.

1. Introduction

For any real-valued functions f, g € L? on an arbitrary measure space, and any p > 1, one has the
inequality

1f +gllL <277 (LFIL + g D). (1)

The estimate (1) follows from the fact that the map x +— |x|? is convex. If f = g in (1) then the constant
2P~ is sharp and the inequality becomes equality. On the other hand, if f and g have disjoint supports
then the constant 27! is not needed. We remark that the estimate (1) reflects the convexity of the unit ball
in L?, which is equivalent to the usual L? triangle (Minkowski) inequality; see, e.g., [Carlen et al. 2020a].

Carbery [2009] asked under what conditions on the sequence of functions { f;} C L” the inequality
S UIfill5 < oo would imply Y f; € LP. If we try to adapt the inequality (1) to say n functions
f1, f2, ..., fn instead of two, then the constant 27 ~1 should be replaced by n? —1 which grows with n. To
remove dependence on n, Carbery suggested several extensions of inequality (1) which were motivated
by the estimate || f + gII% < ||f||§ +2| felli + ||g||%. All of them involve the extra parameter ||fg||5g,
which measures the “overlap” between the functions, and the strongest one in the case of two functions
he could prove only for indicator functions of sets. Recently a sharpened form of the triangle inequality
was obtained [Carlen et al. 2020a], which implied the proposed estimates of Carbery. Namely, take any
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p € R\ {0}, and put

i 21l/gl17)2

/2
Il fllp:= </ Iflpdu) and [, = — > P/=
P Uk N TN

Then
If 42l < A+TPPHFI1E + llglls) 2)

holds true if p € (0, 1]U[2, c0), and the inequality reverses if p € (—oo, 0) U (1, 2), where in the latter
case we assume that f, g are positive almost everywhere. Since by Cauchy—Schwarz I';, € [0, 1] for all
p € R\ {0}, we see that (2) improves on the trivial bound (1).

In this paper we continue investigation in this direction and we address the following questions:

Question 1. Can one further sharpen the right-hand side of the estimate (2) if we are allowed to use only
the quantities || f 1l 5, gl p. 1 f&1l p/2?

Question 2. What is the optimal upper bound on || f +g||% in terms of the quantities || £l », [Igl p» | f& |l p/25
also when p € (—o0, 0) U (1, 2)? Additionally we consider the same question about lower bounds on
Il f + g5, also when p € (0, 1]1U[2, 00).

Question 3. Can one extend these estimates to more than two functions?

We will give complete answers to Questions 1 and 2, and we will provide an answer to Question 3
. . 2
when p > 0. In particular we show that, for p € [1,2],if ) || f; |5, < oo and i lfif ||‘Z§2 < 00, then
> fieL?

2. Main results

Let (X, A, ) be an arbitrary measure space. In what follows we consider functions f, g on X that are
measurable and nonnegative. Given p € R\ {0} we will always assume that || f ||§, | g||§ < 00. When
p <0 we allow f, g to take the value +o00, where we understand f7, g =0.

Theorem 2.1. For any p € (0, 1]U[2, 00), and any nonnegative f, g on any measure space we have

1+vV/1-T2\Y? 1 -V1-T2\/7\?
||f+g||§s(<+—2ﬂ> +<—2E> )<||f||g+||g||§>. (3)

The inequality reverses if p € (—oo, 0)U[1, 2]. Equality holds if (fg)?/* = k(f? 4 gP) for some constant
kelo, 3]

Remark 2.2. The right-hand side of (3) is the best possible in the following sense: consider the measure
space ([0, 1], B, dx). Pick any nonnegative numbers x, y and z such that 0 < z < ,/xy. Then, for any
p € (0, 1]U[2, 0o) the supremum of the left-hand side of (3) over all nonnegative f, g with fixed || f ||§ =X,
lgllh =y, | fg||§§§ = 7z coincides with the right-hand side of (3). Similarly, for any p € (—oo, 0) U[1, 2]
the infimum of the left-hand side of (3) over all such f, g coincides with the right-hand side of (3). We

justify this remark in Section 3.
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Remark 2.2 implies in particular that Theorem 2.1 refines the estimate (2). As a consequence we have
the following peculiar estimate:

Corollary 2.3. Forany p € (0, 11U[2, 00) and any number T" € [0, 1], we have

/1 _12\!/p _J1_T12\Upr\P
((%) +(%) ) 5(]_,_[*2/17)17—1_ 4)

The inequality reverses if p € (—oo, 0) U[1, 2].
If we set I" :=2(ab)?/?/(a? + bP) for nonnegative a, b, then after a short computation inequality (4)

(a+b)? (ab)P/2 NP\
L §<1+<2ap+bp) ) . s)

becomes

This estimate was previously obtained in [Carlen et al. 2020a] (where it was also shown to be equivalent
to the inequality (2)), and the arguments are quite involved.

Remark 2.4. If we let ¢ := 1/p and x = +/1 —T2, then inequality (4) can also be written as the
two-point-type inequality

(6)

A+ + A =x) _ 1+ (1—x2)a\'™
2 _( 2 )

for all g € (—oo, 3] U[1, 00), x € [0, 1], and the inequality reverses if ¢ € [$, 1). This inequality is
reminiscent of Bonami’s two-point inequality

<|y+u P —D/G— D +y—u (p—l)/(q—1>|q)1/q<<|y+u|P+|y—u|p)up o

2 2
which holds true for all y,u e Rand 1 < p < g < o0; see [Bonami 1970]. Indeed, if we take y =1,
p=2,and u = x/q — 1 then we get
[T+ x| 4|1 —x|4
2

The right sides of inequalities (6) and (8) are not comparable. For example, when x = 1 the estimate (6)

< (1+(g—DHxH?2 ®)

gives better upper bounds for g > 2, while near x = 0 it gives worse upper bounds.

Next, let p € R\ {0}, and set!

) 2
o min{| £115, lgll5, Ilfgllﬁfz}

P p/2
”fg”p/z
Theorem 2.5. For any p € (1, 2) and any nonnegative f, g on any measure space we have
_ _ 2
ILf+gllh < IFI5+ gl + (C, P+ ChmyP — = Cp)li g1l ©)

i ||fg||%§ =0thenweset Cp=1.
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The inequality reverses if p € (0, 11U [2, 0o0). Equality holds in (9) if one of the following three conditions
holds: f =gon{fg >0}, g=Af on{f > 0} for some . > 1,o0r f =Arg on{g > 0} for some A > 1.
For p € (—o0, 0) we have
If +glh < (€7 +C/PP I fally)s. (10)
Equality holds in (10) if one of the following three conditions holds: f = g on {fg < oo}, g =Af on
{f < o0} for some A <1,0r f = Xrg on {g < 0o} for some A < 1.

Exactly the same remark as before applies to Theorem 2.5; that is, the right-hand sides of (9) and (10)
are the best possible. Together, Theorems 2.1 and 2.5, along with the remarks about optimality, answer
Questions 1 and 2.

Finally, we state a partial answer to Question 3 in the case p > 0.

Corollary 2.6. For any p € [1, 2], and any sequence of nonnegative functions { f;}j>1 we have

Zf] Z||f,||"+<2" 2> A SIS

i<j

If p € (0,11U[2, c0) the inequallty reverses. Equality holds if and only if

(Z f,) Zf” +Q2P =) (fifN"?
J

i<j

almost everywhere.
In particular, when p € [1, 2] we have Z fj € L? provided Z Il fill’, < oo and qu I fi fi ||p/2 < 00.

Remark 2.7. After we finished writing this paper we received the preprint [Carlen et al. 2020b], in which
the authors obtain an upper bound for the L” norm of a sum of N functions in the case p > 2, in terms of a
certain analogue for N functions of the quantity I',. Their estimate complements our result Corollary 2.6,
which holds for p € (1, 2), and is obtained using different techniques.

The rest of the paper is organized as follows. In Section 3 we reduce the proofs of Theorems 2.1
and 2.5, as well as the remarks about their optimality, to computing the concave and convex envelopes of a
certain function defined on the boundary of a convex cone in R>. In Section 4 we compute these envelopes.
Finally, in Section 5 we prove Corollary 2.6 using an observation about the proof of Theorem 2.5.

3. Reductions

In this section we reduce Theorems 2.1 and 2.5 to computing explicitly the convex and concave envelopes
of a certain function defined on the boundary of a convex cone in R Let

Q:={x,y>0,0<z<.xy}

be the convex cone in R? whose vertical cross-sections QN {x +y = ¢ > 0} are half-ellipses. For p € R\ {0}
define ¢, on 9$2 by

x+y, p=>0,

Op(, ¥, X)) = P4y Xy >0, @p(x,y,0)=
0, p <O0.
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Let f and g be nonnegative functions on an arbitrary measure space (X, A, n) with || f ||§, [| g||5 < 00.
Note that the triple (|| f1I7, llgll5, Il.f gllﬁﬁ) is in Q by the Cauchy—Schwarz inequality. By the equality
case, if the triple is in <2 we have || f + gl = @, (1 £115. ligll5. | £gll%)3). Our approach is based on the
following lemma:

Lemma 3.1. Let p € R\{0}, and assume that H € C(2) is a concave, one-homogeneous function on 2
with H|yq = ¢,. Then

2
L +815 < HALFIZ, 15 1 £ 15/2).

If H is convex, the inequality reverses.

Proof. By the boundary conditions, we have

1:H( f7 8" (fg)”/2>

(f+97 (f+9)7 (f+8)P
on the set X' = {f + g > 0} when p > 0, or {f + g < 0o} when p < 0. Integrating this identity with
respect to the probability measure (f + g)? du/|l f + gl on X’ and applying Jensen’s inequality gives

p/2
<H( I1£11 Iglp ||f8||p/z)
T oNNfAelp I gln I gl
when H is concave, and the other inequality for H convex. The result follows from the one-homogeneity
of H. U

Lemma 3.1 reduces our problem to computing the concave and convex envelopes of ¢, on . By
concave envelope we mean the infimum of linear functions on €2 that are greater than ¢, on 9€2, and by
convex envelope we mean the supremum of linear functions on €2 that are smaller than ¢, on 9<2. Let
H p» denote the concave envelope, and H, the convex envelope. For (x, y, z) € €2, define

2 X
w(x,y,z):= ﬁ, v(x,y,2) = min{z, %, 1},

where we take w = 0 at the origin and v =1 on Q N {z = 0}. Define the one-homogeneous functions F,,

G, on Q by
x+
Fp(x,y,2) == Ty((l FVT— w4 (1= /1= w?)/P)P, (11)

x+y+ (VP +v7 Py —(w+v7)z, p>0,

12
WP v~ l/PyP 7, p <0. (12)

Gp(x,y,2):= {
Proposition 3.2. The concave and convex envelopes H p» Hp of ¢ in Q are in C(2) and are given
explicitly by the formulae
ﬁ _ Fpa pe(o’ I]U[29OO)9
P76, pe(—o0,00U(1,2)
and

I

_{F,,, p € (—00,0)U(l,2),
P76, pe(,11U[2, 00).
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We delay the proof of Proposition 3.2 to Section 4, and immediately note that Theorems 2.1 and 2.5
follow quickly:

Proof of Theorems 2.1 and 2.5. To prove the inequalities, just apply Lemma 3.1 to the functions H »
and H,. To check the equality cases, observe that in the proof of Lemma 3.1, we have equality in Jensen
provided {(f?, g”, (fg)?/?)} lie in a set where H is linear.

Since F), is linear when restricted to the hyperplanes {z = k(x + y)} N €2, which are nontrivial when
ke [0, %] we obtain the equality case in Theorem 2.1.

We note that G, is linear on the triangular cone {z < min{x, y}}N<2, and on the hyperplanes {z =y x}N$2
and {z = yy} N for each y > 1. The first condition gives (fg)?/?> <min{f?, g”},so f =g on {fg > 0}
in the case p > 0 and on { fg < oo} in the case p < 0. The second condition gives (fg)?/> =y f”, and
the third (fg)?/?> = ygP. When p > 0, the second condition gives that g = Af on { f > 0} for some A > 1,
and the third gives that f = Ag on {g > 0} for some A > 1; when p < 0 the second condition gives g = A f
on {f < oo} for some A < 1, and the third gives that f = Ag on {g < oo} for some A < 1. O

To conclude the section we address the optimality of Theorems 2.1 and 2.5 in the measure space
(X, A, w) = ([0, 1], B, dx). We define

2

By(x.y.2) =sup{llf +gll2: (IFIL. IglI5. I f8l2) = (x. v, ),
. 2

By(x.y.2) =inf{|| f +gllZ - (I £ gh. 1 £glI7)3) = (x. v, ).

It is easy to see that Ep, B, are defined on a cone 2, C €2, are locally bounded by the inequalities

(f +g)P <2P71(fP 4 gP) for p € (—o0,0) U[l,00) and (f + g)? < fP + gP for p € (0, 1], are

one-homogeneous, and equal ¢, on 32 (by the equality case of Cauchy—Schwarz). Furthermore, by
Lemma 3.1 we have

H,<B,<B,<H,

on the common domain of definition.

Lemma 3.3. If B » (B)) is defined on all of Q2 and is concave (convex), then
H,=B, (By=H)).

Proof. Local boundedness and concavity of B » implies continuity in the interior of €2, and since B »
is trapped between envelopes that attain the data continuously, we have Ep € C(RQ). Since H p is the
smallest such concave function, we conclude that Ep > H p- The argument is similar for B),. O

Thus, it just remains to show that when (X, A, u) = ([0, 1], B, dx), the domain of definition for Ep
and B, is all of €2, and that Ep is concave and B, is convex.

Lemma 3.4. For (X, A, n) = ([0, 11, B, dx) we have 2, = 2 for all p # 0, that l_?p is concave in 2, and
that B, is convex in Q2.

The optimality of the inequalities in Theorems 2.1 and 2.5 follows:
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Proof of optimality statements. For either inequality, given

2
@y, 2 = (LF15. lgh. 1£8l155).

the functions Ep (x,y,z) and B,(x, y, z) are by definition the best we can do. These are equal to the
envelopes H p» Hp by Lemmas 3.3 and 3.4. U

Remark 3.5. For given (x, y, z) € 2 and p € R\{0}, the supremum (infimum) in the definition of E,,
(B)) is in fact attained.

For equality in (3) consider pairs of the form (f, g) = (a, b) xj0,c] + (b, @) x|c,17 for a, b, ¢ chosen
appropriately.

For equality in (9), consider pairs of the form

(f, 8) =(a,a)xp,1/21+ (b, 0) x11/2,3/41 + (0, ©) x[3/4.1]

for a, b, ¢ appropriately chosen when z < min{x, y}, and (f, g) = (a, b) xj0,1/21 + (¢, d) x{1,2,11 Wwhen
z > min{x, y} for appropriate a, b, ¢, d, with one of c, d equal to 0.
For equality in (10), consider pairs of the form

(f, &) = (a,a)xo,1/21 + (b, 00) X(1/2,3/41 + (00, €) X[3/4,1]

for a, b, ¢ appropriately chosen when z < min{x, y}, and (f, g) = (a, b) xj0,1/2) + (¢, d) x{1,2,11 when
z > min{x, y} for appropriate a, b, c, d, with one of ¢, d equal to co.

Proof of Lemma 3.4. For the first part, if p > 0 take f; = (2x)!/P (s 11/2) for s € [0, 1] and let

g= (2y)1/1’)([1/2,1]. Then || f; ||§ =x and ||g||§ =y. Furthermore, we have h(s) := ||fsg||%§ is continuous,
increasing, and 2(0) =0, h(%) = /xy. When p < 0, use the same example but set f;, g = oo where
they were previously zero.

For the second part, let (x;, y;, z;) € Q with i =1, 2, and for € > 0 choose f;, g; such that (x;, y;, z;) =

2
A0 il 1 figill%)3) and

I fi +gillh = By(xi, yi, zi) —€, i=1,2.
Extend f;, g; to be zero outside of [0, 1], and define the rescalings

fi) =27 f125),  &1(5)=2"7g1(25),  fa(s)=2"" 25— 1), Za(s) =2"Pgy(25 - 1),
so that f;, g are supported in [0, 1] for i = 1 and in [, 1] for i =2. We then have
1(Bp(x1, y1, 20) + Bp(x2, y2, 22)) —€ < 5(Ifi + @117 0012y + 12+ 821 o 1 /2.1)
=3l i+a+H+al
fi+fHh ai+a|’

21/p + 21/p

= Ep(%(xl +x2, y1+y2,21 +zz)).
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For the last inequality, we used that for fy := 2_1/P(f1 + fz), go :=2"Y7(g, + &) we have

2
1oy =40 +x2),  ligollh =301 +2), 1 fogoll2)3 = 321 +22).
Taking € — 0, we conclude that E,, is concave. The convex direction is similar. (I

Remark 3.6. Lemma 3.4 holds for any measure space with translation and scaling properties similar to
([0, 11, B, dx), e.g., (By C R", B, dx).

Remark 3.7. The fact that B » 1s concave also follows from Theorem 1 in [Ivanisvili 2018]. Since the
argument is simple, we decided to include it for the reader’s convenience.

4. Envelopes

In this section we prove Proposition 3.2. We begin with some simple observations.
First, to check concavity (convexity) in €2 and continuity up to 92 of H » (Hp), by one-homogeneity it
suffices to check these properties on the half-ellipse

D:=Qn{x+y=2}.

More generally, any one-homogeneous function B in a convex cone in R” (say contained in {x, > 0}) is
concave (convex) if it is concave (convex) when restricted to a cross-section of the cone (say {x, = 1}).
Indeed, by one-homogeneity we have

B xX+y :xn—i—ynB Ai+(1—x)l
2 2 Xn Y

where A = x,/(x, 4+ y»), and the statement follows by applying concavity/convexity of B on the cross-
section and then using one-homogeneity once more.

Second, to prove that H » (H)) is the concave (convex) envelope of ¢, it suffices to check that each
point in the interior of D lies on a segment that connects boundary points of D, on which H p (Hp)
is linear. Indeed, then any linear function larger (smaller) than ¢, on 32 will then be larger than H »
(smaller than H,) in the interior of €2.

Proof of Proposition 3.2. We first examine F),, and then G,,.

The function F,: On D we can write F,(1 +s, 1 —s,1) = u(t), where

u(t) =[1+vV1-)"7 1 —-V1-)VP1P relo,1].

It is clear that F), is continuous up to d D for each p € R\{0}, and u(0) = ¢, (thatis, 2 if p > 0 and O if
p < 0) on the bottom of D and

Fy(1=s5,145,vV1=s) =1+ + 1 -5)/")P =9,

on the top of D. Since F), is constant along the horizontal segments in D, it suffices to check that u is
concave when p € (0, 1]U[2, c0), and convex otherwise. To that end, we let t = sin(x), with x € [0, %]
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Then
u(sin(x)) = [(1 +cos(x))"/? + (1 — cos(x)) /717

Let us rewrite the last equality as
Tu(sin(2s)) = [sin*? (s) + cos* 7 (s)17,

where s = 5 € [O, %] Differentiating both sides of the equality in s, we obtain

u' (sin(2s)) cos(2s) = p[sin®?(s) + cos>/ P (s)]"~! %(sinz/P—‘ (s) cos(s) — cos> P~ (s) sin(s))

2 cos?/P(s)

= p[sin?? (s) + cos*/P (5)]" ! (tan* P~ (s) — tan(s)).

Taking the derivative a second time we obtain

2u" (sin(2s)) cos?(2s)—2u’ (sin(2s)) sin(2s)

2cos?/P(s)

2
= p(p—D)[sin*? (s)+cos* P (s)]"~2 [ (tan*/ P! (s)—tan(s))] +plsin®? (s)+cos?/ P (5)]P !

2/ 2/
x (—4008 ,,;;) an(S) an2/p-1 (s)—tan(s))+2c%f’(s) ((%— 1) tan?/?~2(s)— 1) (1 +tan2(s))).

Therefore

2u” (sin(2s)) cos?(2s)

= [sin?/? (s)+cos>/? (s)]p*2i cos*/P (s)
X [(p—l)[(tan”ﬁ“ (s)—tan(s))]?
+[1+tan?’?(s)] <— tan(s)(tan®’?~ ! (s)—tan(s))+ ((1 _§> tanz/”_z(s)—§> (1+tan2(s))>

+ ptan(2s)[1+tan®? (s)](tan> P! (s)—tan(s))].

Since tan(2s) = 2 tan(s)/(1 — tan?(s)), after setting tan(s) = w € [0, 1] we obtain

2u" (sin(2s)) cos(2s) 4p—=D, 51 0
= (w p —U))
[sin®/? (s)+cos?/P (s)]P~2 cos¥/P (s) p
+4(1+w2/p) (_wZ/p+w2+<(1_E)wz/l’—z_B)(1_|_w2)>
p 2 2

8
+ (4w Py (P )
1—w?

252
=2 (w2 (21 Jur 2 muty ).
p

1—w?
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(The last equality is a tedious computation, but can be checked by hand). Since

2(1 +w?)?
2 TT 7 o,
1 —w?
we see after defining x := w? € [0, 1] that sgn(x”) = sgn(v(x)), where
2
v(x) =x¥P71 4 (— — 1>x1/”_1(1 —x)—1, xe€[0,1].
p

Let us study the sign of v(x). Without loss of generality assume that p # 1, 2, otherwise the claims about
concavity/convexity of u are trivial. First notice that v(1) =0, and

v (x) = xl/H(% — 1) (xl/l’ — <1 + l(x — 1))).
p p

Therefore, if p € (2, 00) it follows from concavity of x > x!/7 that v’ > 0, and hence v < 0; i.e., u is
concave. Similarly, if p € (1, 2), then v > 0; i.e., u is convex. Next, if p € (0, 1) then x — x/P is convex,
and hence v' > 0, i.e., u is concave. Finally, if p € (—o0, 0) then x +— x1/P is convex, and therefore

v/ <0;i.e., u is convex.
The function G,: Let b, (s, z) = G,(1+s, 1 —5, z), with (s, z) in the upper half-disc. For p > 0 we can
write b, explicitly as
w(l—|sl,2), z=1-]sl,
b,(s,z2) =2+
p( 0 {<2P—2)z, z<1—1ls|,

where w is the one-homogeneous function given by

2\1/p\P 2
w(t,z)::(tl/”—i-(%) )—<t+z?>,

with (¢, z) € (0, 1)2. It is easy to check that b, continuously takes the boundary values
bp(s, O) = 2 = (pp’
bp(s, M) =((1 +s)1/” + (1 _s)l/p)p =,
Let
h(@) :=w(t, ) =P+ — @17, 1€, 1.

By the one-homogeneity of w and the fact that b, is linear on the triangle {z < 1 — [s|} with vertical
gradient, if we show that 4'(1) = 0 and that 4 is concave/convex on [0, 1], then b, is C ! away from
(s, z) = (£1, 0) and concave/convex. Furthermore, b, is linear when restricted to the segments through
(s,z) = (£1, 0) that lie outside of the triangle {z < 1 — |s|}, so G, is the concave/convex envelope
provided the above conditions on 4 are confirmed. To that end we compute the first two derivatives of 4.
The first derivative is

h/(t) — (l,l/p _,’_t—]/p)p—l(tl/p—] _t—l/p—l) _ (1 _t—Z).
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This confirms that 4'(1) = 0. The second derivative is
Wy =P =L qur 4 upyp2 -t -1y
g + %(rl/l’ +17 Py = pyt PR (L4 pye PRy — 23
= LU i Upyp2p 1y Vp-1 = 112
d VP TP (= PR (L TP - 2
- %(r”f’ TP @ = TP =2

= 213?47 VPYP (TP 2/ p — D) — 1]
=23 [(1+ 2Py 2 (14 2/p — De*/P) —1].

Let x := /P € [0, 1]. It suffices to show that

gp(x) = (1 + (% - 1)x> — (1 +x)>P

satisfies g, <0 on [0, 1] for p € (1,2) and g, > 0 on [0, 1] for p € (0, 1]U[2, 00). Note that g,(0) = 0.
The desired inequality for g, (1) is equivalent to the fact that the linear function p crosses the convex
function 27~ at p = 1 and p = 2. Finally, we observe that the first term in g p 1s linear, and the second
term is convex for p € (1, 2) and concave for p € (0, 1) U (2, 00). The desired inequality for g,(x) with
x € (0, 1) follows immediately from this observation and the inequalities at the endpoints x = 0 and
x=1.

When p < 0 we can write b, explicitly as

{17)(1 —lIsl,2), z=1-Isl,

b,(s,7) =
P D=0 z<1—1sl,

where w is the one-homogeneous function given by
W(t, 2) i= ("7 + (/)PP
with (¢, z) € (0, 1)2. The same considerations as above reduce the problem to showing that
h(t) ==, 1) = (/P +171/P)P

satisfies E’(l) =0 and & is concave on [0, 1]. We have

W= ([1/17 +t—1/p)p—1(t1/P—1 _ ,—l/p—l) N fl/(l) =0,

R =272 Py PR 2 p - D),
and the conclusion follows quickly using p < 0. Il

Remark 4.1. It follows from the concavity/convexity properties of G, that

Gp(x,y,2) <x+y+(2F-2)z
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when p € [1, 2], and the inequality reverses for p € (0, 1]U[2, 00). Indeed, G, agrees with the linear
function on the right-hand side on an open set. We conclude from Theorem 2.5 that for any nonnegative
numbers a, b, and any p € [1, 2], we have

(a+b)? <a” +bP + (2P —2)(ab)"/?,

and the inequality reverses if p € (0, 1]U[2, 00).

5. Proof of Corollary 2.6
In this final section we prove Corollary 2.6.

Proof of Corollary 2.6. Recall from Remark 4.1 that for any nonnegative numbers a, b, and any p € [1, 2],
we have

(@a+b)P <a’ +bP + (27 —2)(ab)P’?,

and the inequality reverses for p € (0, 1]U[2, oo). Since for p € [0, 2] we have (a +b)PI2 < qP/? 4 pP/2,
and the reverse inequality holds if p > 2, it follows by induction that for any nonnegative numbers a; > 0

we have
)4
(Zaf) =D/ +@" =D} (@ap™” (13)
J i<j
for p € [1, 2], and the reverse inequality holds if p € (0, 1]U[2, 00). Finally it remains to put a; = f;(x)
and integrate the inequality. O

Remark 5.1. When p < 0, inequality (13) does not hold with three or more a;. Take, e.g., a; = 1 for
J=<3.

6. Concluding remarks on envelopes

An important challenge in this work was to compute the envelopes (11) and (12). In this section we
briefly explain how we found them.

We recall from Section 3 that for the measure space ([0, 1], B, dx) we have B p= H p 1s defined on €2,
one-homogeneous, and equal to ¢, on 9€2; that is, ﬁp (x, y, J/xy) = (x!/P 4 y1/PyP. We also recall from
the discussion at the beginning of Section 4 that by one-homogeneity, to compute H p it is enough to
restrict our attention to the cross-section D = QN {x +y =2}. Writing D = {(1+s, 1 —s, z)} with (s, z)
in the upper half-disc, this reduces the problem to understanding how the upper boundary of the convex
envelope of the space curve

y(s)= (s, V/1=s2 (1= + A +5)P)P), se[-1,1],

looks. One can show that the torsion 7, of the space curve y changes sign only once from — to +,
at s =0, when p € (0, 1) U (2, 00), and from + to — when p € (—o0, 0) U (1, 2). Consider the case
p €(0,1)U (2, c0). Then it follows from Lemma 29 of Section 3.2 in [Ivanisvili 2015] that locally, say
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for some § € (0, 1], there exists a function a(s) : [0, 5] — [—1, 0] such that a(0) = 0, a(s) is strictly
decreasing, and the function B(u, w), defined parametrically by

B(A(a(s),v1—a(s)®) + (1 —=1)(s, V1 —s52))

=M —a@)"P+ A +a()"")P + 1 =201 =)"/P + (1 +5)"/P)?

for 1 € [0, 1], s € [0, 8], is concave. In other words B has the prescribed boundary condition, i.e.,
B(s, V1 —52) = ((1 —s)/P + (1 +5)/P)P, it is linear along the line segments

€(s) := [(als), v/1 —a(s)?), (s, V1 = s2)],

and B is concave. It follows that “locally” B is a concave envelope. Because of the symmetry in x and y

of the boundary data ¢,, one can show that the line segments £(s) must be horizontal; i.e., a(s) = —s,
and in fact § = 1. This means that B is a global concave envelope

B(u, w) = (1 =v1=w?)/? 4 (1 + V1 —w)!/P)?

forall |u| <1and 0 <w <+/1 — u2. Now it remains to change variables back to recover the envelope (11).
The case p € (—o00, 0) U(1, 2) is different because 7, changes sign from + to —, and in this case an
“angle” arises with vertex sitting around the point s = 0; see Section 3 in [Ivanisvili 2015].
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