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Deoxygenation worldwide is increasing in aquatic systems with implications
for organisms’ biology, communities and ecosystems. Eastern Baltic cod has
experienced a strong decline in mean body condition (i.e. weight at a specific
length) over the past 20 yearswith effects on the fishery relying on this resource.
The decrease in cod condition has been tentatively linked in the literature to
increased hypoxic areas potentially affecting habitat range, but also to benthic
prey and/or cod physiology directly. To date, no studies have been performed
to test these mechanisms. Using otolith trace element microchemistry and
hypoxia-responding metrics based on manganese (Mn) and magnesium
(Mg), we investigated the relationship between fish body condition at capture
and exposure to hypoxia. Cod individuals collected after 2000 with low body
condition had a higher level of Mn/Mg in the last year of life, indicating
higher exposure to hypoxic waters than cod with high body condition. More-
over, lifetime exposure to hypoxia was even more strongly correlated to body
condition, suggesting that condition may reflect long-term hypoxia status.
These results were irrespective of fish age or sex. This implies that as
Baltic cod visit poor-oxygen waters, perhaps searching for benthic food, they
compromise their own performance. This study specifically sheds light on
the mechanisms leading to the low condition of cod and generally points to
the impact of deoxygenation on ecosystems and fisheries.
1. Introduction
Cod (Gadus morhua) is a key demersal fish species in the North Atlantic, both eco-
logically and economically. In the Baltic Sea, since themid-1980s, the frequency of
very slender specimens of eastern Baltic cod has been increasing progressively,
and the mean body condition of individuals has decreased by around 30%
[1,2]. The average weight of a 40-cm long cod has dropped from 900 to 600 g
from the early 1990s to 2018. This is of biological concern in terms of affecting
population reproductive potential [3] andmortality [4], but also changing trophic
interactions [5,6]. Additionally, the increase of slender cod has been detrimental
for the fisheries industry that complained about increased catches of scrawny
individuals with little or no commercial value.

A number of hypotheses have been proposed to explain the decline in cod
condition, including the increased extent of hypoxicwaters, decreased abundance
of pelagic prey, increased parasite infection or a combination of these factors [1,2].
A recent study [2] found a strong statistical correlation between the temporal
changes in the extent of hypoxic areas and changes in cod mean condition in
the central Baltic Sea. Hypoxic areas could affect cod condition directly via phys-
iological stress induced by exposure to hypoxia, indirectly by reducing the
availability of benthic prey, or by contraction of suitable habitat [2]. However,
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Figure 1. Left: examples of cod taken from different areas of the Baltic Sea indicative of wild cod in very good and very poor condition. Right: Map of the Baltic Sea
showing the sampling areas (ellipses). Waters with oxygen concentration less than 2 ml l−1 (defined as hypoxia limit in the Baltic Sea) are frequently found below
70 m depth in the sampling areas. Numbers indicate ICES subdivisions, see electronic supplementary material, tables S1 and S2. Photos: Y. Heimbrand and J. Pönni.
(Online version in colour.)
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no direct evidence has been provided to date to support or
refute any of these hypotheses.

Otolith chemistry may offer a direct test of whether the
low condition of individual fish relates to past hypoxia
exposure. Otoliths, the small aragonitic concretions within
the hearing/balance system in teleost fishes, readily take up
the trace element manganese (Mn) when present in the
environment, and Mn2+ and Mn3+ become available (dis-
solved) under suboxic/hypoxic conditions [7,8]. Otolith
Mn/Ca ratios distinguish fish from hypoxic versus normoxic
environments, but manganese uptake is also affected by
growth rate [8]. Therefore, a new otolith chemical proxy for
hypoxia has been recently developed [9], that is the ratio of
Mn to the trace element magnesium (Mg), which is also
taken up in otoliths but is regulated by growth processes
(e.g. [10–12]). Thus, in this paper, we investigated whether
direct exposure to hypoxia, as proxied by the Mn/Mg ratio
accumulated in the otoliths, could explain the difference in con-
dition between cod individuals collected in the open Baltic Sea
in the period of worsening hypoxia (i.e. after 2000) [2].
2. Methods
Otoliths from 134 cod individuals sampled in February–March
during the Baltic International Trawl Survey (BITS) in ICES sub-
divisions 25 and 27 (figure 1) were extracted from archives; this is
within the range of the eastern Baltic cod population where
the occurrence of western Baltic cod is considered minor [13].
Fish were collected in 1990–1995, 2000 (N = 57 up to 2000),
2005, 2010–2015 and 2017 (N = 79 for 2000 onward). Otoliths
from fish in good body condition (Fulton’s condition factor K
[K = (total weight (g)/(total length3 (mm))) × 105]≥ 0.9) and
poor condition (K < 0.9) at capture were randomly selected for
each time period. Transverse thin sections exposed each otolith’s
entire depositional sequence from core formation (birth) to the
outer edges (death). Microchemical analyses were made with
laser ablation inductively coupled plasma mass spectrometry;
lasered transects ran from core to outer edge, along the major
dorsal growth axis (for details see [8]). Post-processing included
parsing the data contained within a year’s otolith growth by
superimposing chemical transects on an otolith image and
assigning annulus marks (figure 2a,b).

The data analysed were mean and cumulative Mn/Mg within
annual otolith growth zones. Duration of hypoxia exposurewithin
a year was defined as the distance (in micrometers), from one
annulus to the next, on the otolith transect where Mn/Mg
exceeded the age-based median values for all the samples [9].
These durations were then expressed as percentages of years by
dividing the ‘hypoxic’ distances within a given annulus by its
total distance. Percent durations were subsequently grouped into
quartiles (less than 25%, 25–49.9%, 50–74.9% and≥ 75%) to
define ‘hypoxia exposure groups’ (HEGs), where HEG-1 were
the least exposed and HEG-4 the most exposed [9].

Analysis of variance (ANOVA) tested whether cod in good
versus poor condition at the time of capturewere exposed to differ-
ent levels of hypoxia during their lifetime, examining the period
prior to 2000 (characterized by relatively good oxygen levels)
separately from 2000 onward (period of chronic Baltic hypoxia).
We tested the average and cumulative lifetime exposure, as well
as the average and cumulative exposure during the most recent
year of life. We tested both levels of Mn/Mg (degree of exposure)
and duration of exposure (as defined above). Additionally, we
tested the proxy of metabolic activity (Mg/Ca, see [12]), i.e. the
lifetime accumulated Mg/Ca ratio, against age and HEG to
test for long-term metabolic effects. Analyses were checked for
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Figure 2. Differences in otolith chemistry as related to hypoxia and fish condition (measured by Fulton’s K ). (a,b) Otolith cross sections with Mn/Ca (blue), a hypoxia
proxy partly affected by growth, and Mg/Ca (orange, lighter grey line in black and white), a proxy for metabolic activity and growth; arrows point to transects (right-
hand panels) made by dividing Mn by Mg, to correct for growth effects on Mn. Yellow dots indicate the locations of winter annuli (left panels). The X-axis denotes the
distance (in microns) from the otolith core. (a) Fish 420 mm long and age 5, was caught in February 2014 and had a low Fulton’s K value; note persistently high seasonal
hypoxia events and decoupling of Mg/Ca in the third year. (b) Fish 450 mm long and age 3 was caught in March 2005 and had high Fulton’s K, lower Mn/Ca and higher
Mg/Ca. (c) Lifetime accumulated metric of hypoxia exposure duration measured by the otolith proxy as the lifetime Mn/Mg exceeding year-specific thresholds versus age
and categorized condition factor (high condition is 0.9 or greater) for pre-2000 and 2000s; p-values shown are calculated for (Fulton’s K × age) separately for each period
( joint p-value of Fulton’s K × age × period = 0.15). (d ) Cube root-transformed lifetime cumulative Mg/Ca, a metabolic proxy, as a function of age and hypoxia
exposure group (HEG, quartiles of hypoxia duration) for pre-2000 and 2000s. Error bars for (c,d) are 95% confidence intervals. (Online version in colour.)
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normality and homogeneity of variances, and transformed or
variance-weighted as needed.
3. Results
A total of 134 cod with equal sex ratios were analysed. Fish
lengths ranged between 340 and 969 mm and the estimated
ages ranged between 3 and 9 years. Cod in poor condition
(mean K = 0.721 ± 0.088 s.d., range 0.482–0.889, N = 64) were
distinct in the dataset from high condition fish (mean K =
1.105 ± 0.084 s.d., range 0.90–1.380, N = 70). Example otolith
transects showing Mn/Ca (hypoxia proxy uncorrected for
growth) and corresponding Mg/Ca (proposed proxy of meta-
bolic activity and growth) for a poor condition cod (figure 2a,
left) versus a high condition cod (figure 2b, left) demonstrate
how fish of either condition statusmay experience summertime
hypoxia (peaks inMn/Ca), but themagnitudes of exposure are
higher in the low condition fish. Additionally,Mg/Ca tracks the
seasonal pattern of Mn/Ca in the healthy fish (figure 2b, left),
but decouples from the Mn/Ca pattern in the fish with low K
(figure 2a, left). Dividing the Mn by Mg results in the proxy
of hypoxia exposure (figure 2a,b, right).

Proxies of hypoxia exposure differed considerably between
time periods (table 1). Overall, Mn/Mg proxies were elevated
during the 2000s, the period of chronic hypoxia intensity.
Mean Mn/Mg during the last year of life differed by condition
class significantly in the 2000s (table 1, part A), irrespective of
fish sex and age.MeanMn/Mg valuesweremuchmore similar
and not significantly different in the pre-2000 (table 1, part A).
The duration of hypoxia in the final year of life was nearly
significant for the 2000s (p = 0.06) but not so for the period
pre-2000 (p = 0.86), irrespective of fish sex and age. Over
entire lifetimes, mean and cumulative Mn/Mg ratio and



Table 1. Analysis of variance results for hypoxia exposure proxies and fish condition (Fulton’s K )a; s.e., standard error.

proxy period high K s.e. low K s.e. d.f. p-value

A. During last year of life (*=2 high extreme outliers deleted based on Q–Q plots)

mean Mn/Mg pre-2000 0.094 0.01 0.08 0.01 44 (*) 0.377

2000s 0.163 0.03 0.294 0.03 63 (*) 0.006

cumulative Mn/Mg pre-2000 54.3 9.1 62.9 11.9 47 0.565

2000s 103.5 17.3 127.9 16 63 (*) 0.304

duration of hypoxia proxy (as fraction of last year) pre-2000 0.339 0.06 0.321 0.008 47 0.855

2000s 0.479 0.06 0.639 0.06 66 0.058

B. Over entire lifetime

lifetime mean Mn/Mg pre-2000 0.304 0.02 0.298 0.02 53 0.849

2000s 0.406 0.06 0.539 0.05 77 0.069

LN (lifetime cumulative Mn/Mg) pre-2000 7.00 0.079 7.09 0.084 54 0.434

2000s 7.07 0.073 7.34 0.063 75 0.008

LN (1 + Mn/Mg duration over lifetime) pre-2000 0.894 0.081 0.908 0.096 52 0.918

2000s 0.968 0.071 1.444 0.055 76 <10−6

aFulton’s K mean values (± s.e.) are pre-2000 high K: 1.12 (0.015); pre-2000 low K: 0.72 (0.019); 2000s high K: 1.07 (0.015); 2000s low K: 0.72 (0.013).
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lifetime duration of hypoxia exposure (one-way ANOVA,
table 1, part B) were also strongly separated by condition
class in the 2000s but not in the pre-2000s. In the 2000s low
and high condition classes differed significantly (p = 0.012)
from age 2 onwards, with increasing divergence observed
during fish life (variance-weighted ANOVA, figure 2c),
irrespective of sex.

Lifetime cumulative Mg/Ca, our proxy of lifetime metab-
olism [12], when tested against age and HEG groups, showed
highly significant divergences (figure 2d): the least hypoxia
exposed (HEG-1) and most exposed (HEG-4) separated the
most, whereas the intermediate groupings HEG-2 and HEG-3
largely overlapped each other (figure 2d). The (age ×HEG)
interactions were significant for the period 2000s onward ( p =
0.021) and both periods combined (p = 0.008), but not for the
period pre-2000 (p = 0.916).
4. Discussion
During the past two decades (2000 onwards), a period of
rapidly increasing, chronic hypoxia, cod in poor condition at
capture had experienced a higher degree of hypoxia exposure,
as suggested in our analyses by the higher Mn/Mg ratio, both
in the last year of life and over entire lifetimes. Additionally,
cumulative indices of the duration of exposure were signifi-
cantly parsed by condition classes (table 1), becoming more so
with increasing age (figure 2c). This suggests an accumulative
effect of recurring hypoxia exposures on condition. In strong
contrast, both low and high condition fish collected before
2000 experienced relatively little hypoxia as indexed by our
proxies. This suggests that other factors affected cod condition
prior to 2000, such as pelagic prey availability and density-
dependent processes [2]; and that perhaps a change in system
functioning occurred after 2000 due to deoxygenation.

Beginning in the mid-1990s, the mean body condition of
eastern Baltic cod decreased by around 30% [2] and the pro-
portion of fish with condition close to lethal levels (Fulton’s
K < 0.8) has increased, reaching up to 35% in recent years
[13]. These changes in cod body condition co-occurred with
the expansion of hypoxic and anoxic areas, mirroring a gen-
eral deoxygenation of the central Baltic Sea [14]. Our analyses
independently support the conclusions of Casini et al. [2]
linking declines in body condition to increasing hypoxia, as
evidenced directly by otolith chemistry.

Our results shed light on some of the processes leading to
low condition in Baltic Sea cod. The findings indicate that
cod do not entirely avoid hypoxic waters but instead at least
partially persist there, likely in search of benthic organisms
[2] which constitute a key food resource for adults [15]. More-
over, the exposure to hypoxia appears to increase during the
second year of life, when the cod switch from a diet of semi-
pelagic invertebrates to a predominance of benthic prey. Cod
otolith chemistry (Sr/Ca ratios) indicates directed offshore
movements into deeper, saltier water at about that age [7].
Tagging experiments have shown that codundertake short, fre-
quent visits to hypoxic deepwaters [16], presumably to forage.
Our study suggests that these sojourns in oxygen-poor waters
(indexed by Mn/Mg) produce physiological stress in cod
(indexed by lower Mg/Ca), mirrored by a decrease in body
condition as shown in our analyses and also demonstrated in
controlled experiments in fish including cod [17–18]. Lifetime
cumulative Mg/Ca, an index of lifetime metabolic activity,
split out byHEG (figure 2d), with the highest cumulativemeta-
bolic activity in the least exposed group, and vice-versa. We
suggest this is further evidence of the long-term impact of
living in environments with recurring seasonal hypoxia.

As deoxygenation spreads due to climate warming
and continued eutrophication [19], more organisms and eco-
logical communities will be confronted with low oxygen as a
metabolic constraint (e.g. [17,20–23]. Eastern Baltic Sea cod pre-
sent a dramatic case of a population being driven into decline
by a combination of environmental pressures and overfishing
[24]. Hypoxia and weakened condition appear to have made
this population susceptible to a cascade of ecological changes,
including increased predation by seals and parasitic infections
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[1] as well as heightened competition from flounder [25]. More
study of the complex responses of ecological communities
to hypoxia will be urgently needed as hypoxia continues to
spread. This also points out the immediate societal need
to address the drivers of hypoxia.
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