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PROBABILITY INEQUALITIES AND TAIL ESTIMATES
FOR METRIC SEMIGROUPS

APOORVA KHARE AND BALA RAJARATNAM

ABSTRACT. We study probability inequalities leading to tail estimates in a general semi-
group ¢ with a translation-invariant metric d¢. (An important and central example of this
in the functional analysis literature is that of ¢ a Banach space.) Using our prior work
[Ann. Prob. 2017] that extends the Hoffmann-Jgrgensen inequality to all metric semigroups,
we obtain tail estimates and approximate bounds for sums of independent semigroup-valued
random variables, their moments, and decreasing rearrangements. In particular, we obtain
the “correct” universal constants in several cases, extending results in the Banach space lit-
erature by Johnson—Schechtman—Zinn [Ann. Prob. 1985], Hitczenko [Ann. Prob. 1994], and
Hitczenko and Montgomery-Smith [Ann. Prob. 2001]. Our results also hold more generally,
in a very primitive mathematical framework required to state them: metric semigroups .
This includes all compact, discrete, or (connected) abelian Lie groups.

1. INTRODUCTION AND MAIN RESULTS

This paper follows our prior work [15] and continues the study of probability theory be-
yond — but also subsuming — the Banach space setting. In the present work, we estimate
sums of independent random variables in several ways, under very primitive mathematical
assumptions that suffice to state our results. The setting is as follows.

Definition 1.1. A metric semigroup is defined to be a semigroup (¢,-) equipped with a
metric dg : 4 x 4 — [0,00) that is translation-invariant. In other words,

dg(ac,bc) = dg(a,b) = dg(ca,cb) Va,b,c € 4.

(Equivalently, (¢,dy) is a metric space equipped with a associative binary operation such
that dg is translation-invariant.) Similarly, one defines a metric monoid and a metric group.

Metric groups are ubiquitous in probability theory and functional analysis, and subsume
all normed linear spaces as well as compact and (connected) abelian Lie groups as special
cases. More modern examples of recent interest are mentioned presently.

Now suppose (2,47, 1) is a probability space and Xi,...,X, € L%(Q,¥) are ¥-valued
random variables. Fix zg,z1 € ¢ and define for 1 < j < n:

S;j=X1Xo--- X5, Uj:= mfg{jdg(zl,zoSi), Yj :=dy(20,20X;), M;:= maxY;. (1.2)

1< 1<i<y
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In this paper we discuss bounds that govern the behavior of U,, — and consequently, of sums
Sy, of independent ¢-valued random variables X; — in terms of the variables X;, and even
Y; or M;. We are interested in a variety of bounds: (a) one-sided geometric tail estimates;
(b) approximate two-sided bounds for tail probabilities; (c) approximate two-sided bounds for
moments; and (d) comparison of moments. For instance, is it possible to obtain bounds for
E,[UR]Y/? in terms of the tail distribution for U, or in terms of E,[U;]'/ for p,q > 0? The
latter question has been well-studied in the literature for Banach spaces, and universal bounds
that grow at the “correct” rate have been obtained for all ¢ > 0. We explore the question of
obtaining correctly growing universal constants for metric semigroups, which include not only
normed linear spaces and inner product spaces, but also all connected abelian and compact
Lie groups. Our results show that the universal constants in such inequalities do not depend
on the semigroup in question.

1.1. Motivations. Our motivations in developing probability theory in such general settings
are both modern and classical. An increasing number of modern-day theoretical and applied
settings require mathematical frameworks that go beyond Banach spaces. For instance, data
and random variables may take values in manifolds such as (real or complex) Lie groups.
Compact or connected abelian Lie groups also commonly feature in the literature, including
permutation groups and other finite groups, lattices, orthogonal groups, and tori. In fact
every abelian, Hausdorff, metrizable, topologically complete group G admits a translation-
invariant metric [17], though this fails to hold for cancellative semigroups [18]. Certain classes
of amenable groups are also metric groups (see [14] for more details). Other modern examples
arise in the study of large networks and include the space of graphons with the cut norm,
which arises naturally out of combinatorics and is related to many applications [21]. In a
parallel vein, the space of labelled graphs ¢ (V') on a fixed vertex set V' is a 2-torsion metric
group (see [12, 13]), hence does not embed into a normed linear space.

With the above settings in mind, in this paper we develop novel techniques for proving
maximal inequalities — as well as comparison results between tail distributions and various
moments — for sums of independent random variables taking values in the aforementioned
groups, which need not be Banach spaces.

At the same time, we also have theoretical motivations in mind when developing proba-
bility theory on non-linear spaces such as 4 (V) and beyond. Throughout the past century,
the emphasis in probability has shifted somewhat from proving results on stochastic conver-
gence, to obtaining sharper and stronger bounds on random sums, in increasingly weaker
settings. A celebrated achievement of probability theory has been to develop a rigorous and
systematic framework for studying the behavior of sums of (independent) random variables;
see e.g. [20]. In this vein, we provide unifications of our results on graph space with those
in the Banach space literature, by proving them in a more primitive mathematical frame-
work encompassing both of these (and other) settings. In particular, our results apply to
compact/abelian/discrete Lie groups, as well as normed linear spaces.

For example, maximal inequalities by Hoffmann-Jgrgensen, Lévy, Ottaviani-Skorohod,
and Mogul’skii require merely the notions of a metric and a binary associative operation
to state them. Thus one only needs a separable metric semigroup ¢ rather than a Banach
space to state these inequalities. However, note that working in a metric semigroup raises
technical questions. For instance, the lack of an identity element means one has to specify
how to compute magnitudes of ¢-valued random variables (before trying to bound or estimate
them); also, it is not apparent how to define truncations of random variables. The lack of
inverses, norms, or commutativity implies in particular that one cannot rescale or subtract
random variables.
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In the present work, we explain how to overcome these challenges. We also hope to
show that the approach of working with arbitrary metric semigroups turns out to be richly
rewarding in (i) obtaining the above (and other) results for non-Banach settings; (ii) unifying
these results with the existing Banach space results in order to hold in the greatest possible
generality; and (iii) further strengthening these unified versions where possible.

1.2. Organization and results. We now describe the organization and contributions of
the present paper. In Section 2 we prove the Mogul’skii-Ottaviani—Skorohod inequalities
for all metric semigroups ¢. As an application, we show Lévy’s equivalence for stochastic
convergence in metric semigroups.

In Section 3, we come to our main goal in this paper, of estimating and comparing moments
and tail probabilities for sums of independent ¥-valued random variables. Our main tool is
a variant of Hoffmann-Jgrgensen’s inequality for metric semigroups, which is shown in recent
work [15]. The relevant part for our purposes is now stated.

Theorem 1.3 (Khare and Rajaratnam, [15]). Notation as in Definition 1.1 and Equa-
tion (1.2). Suppose X1,..., X, € L°(Q,%) are independent. Fiz scalars

ni,...,n; €N, t1,. .., tg, s €10,00),

and define
Ip={1<i<k:P, (U, <t;)™ %" <1/n!},
where ;1 denotes the Kronecker delta. Now if Zle n; <n+1, then:

k k
P, (Un > (2ny — Dty + 2Zniti + (Z n; — 1> s)

=2 i=1

. 1
<Py (My > 8) + P (Un < t)1¢0 [P (U > 1) [T — (

1€l ¢

]P)M (Un > ti) i
Pu (Un < ti) '

Remark that Theorem 1.3 generalizes the original Hoffmann-Jgrgensen inequality in three
ways: (i) mathematically it strengthens the state-of-the-art even for real variables; (ii) it uni-
fies previous results by Johnson and Schechtman [10], Klass and Nowicki [16], and Hitczenko
and Montgomery-Smith [6] in the Banach space literature; and (iii) the result holds in the
most primitive setting needed to state it, thereby being applicable also to e.g. Lie groups.

We now discuss several ways in which to estimate the size of sums of independent ¥¢-
valued random variables, for metric semigroups ¢. We present two results in this section,
corresponding to two of the estimation techniques discussed in the introduction. (For a third
result, see Theorem 3.6.)

The first approach, informally speaking, uses the Hoffmann-Jgrgensen inequality to gen-
eralize an upper bound for E,[[|S,||P] in terms of the quantiles of ||S,|| as well as E,[M}] —
but now in the “minimal” framework of metric semigroups. More precisely, we show that
controlling the behavior of X, is equivalent to controlling S,, or U, for all metric semigroups.

Theorem A. Suppose A C N is either N or {1,..., N} for some N € N. Suppose (¥,dy) is
a separable metric semigroup, zo,z1 € Y, and X, € L°(Q,9) are independent for all n € A.
If sup,,c 4 dg (21, 205n) < 00 almost surely, then for all p € (0, 00),

E, |supdy (20, 20Xn)’ | <00 <= E, |supdy(z1,205.)"| < o0.
neA neA
This result extends [7, Theorem 3.1] by Hoffmann-Jgrgensen to the “minimal” framework
of metric semigroups. The proofs of Theorem A and the next result use the notion of the
quantile functions, or decreasing rearrangements, of ¢-valued random variables:
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Definition 1.4. Suppose (¢,dy) is a metric semigroup, and X : (2,27, u) — (¥, %By).
We define the decreasing (or non-increasing) rearrangement of X to be the right-continuous
inverse X* of the function ¢t — P, (dy(z20,20X) > t), for any zg € 4. In other words, X* is
the real-valued random variable defined on [0, 1] with the Lebesgue measure, as follows:

X*(t) :=sup{y € [0,00) : P, (dg (20, 20X) > y) > t}.

Note that X* has exactly the same law as dy(z0, 20X ). Moreover, if (¢,] - ||) is a normed
linear space, then dg(zp,20X) can be replaced by || X, and often papers in the literature
refer to X* as the decreasing rearrangement of || X|| instead of X itself. The convention that
we adopt above is slightly weaker.

The second approach provides another estimate on the size of .S,, through its moments,
by comparing ||Sy |4 to [|Sull, — or more precisely, E,[U]'/7 to E,[UE]Y/P — for 0 < p < g.
Moreover, the constants of comparison are universal, valid for all abelian semigroups and all
finite sequences of independent random variables, and depend only on a threshold:

Theorem B. Given py > 0, there exist universal constants ¢ = c(po),d = (pp) > 0
depending only on pg, such that for all choices of (a) separable abelian metric semigroups
(4,dg), (b) finite sequences of independent 4 -valued random variables X1,...,X,, (¢) g =
p = po, and (d) € € (—q,log(16)], we have

E,[UY4 < q E [UP1YP & M*(e—4 E (A9
ulUn] CmaX(p,log(E + Q))( ulU o M (€72/8)) - eyl Mo
d 1 (EJUPIYP + B, [MIY7)  if e > min(1, e — po).

max(p, log(e + q))
Moreover, we may choose

c(po) = c(po) - <81/p°e + max(1, 1@:(;7;—])0)0 )

Theorem B extends a host of results in the Banach space literature, including by Johnson—
Schechtman—Zinn [11], Hitczenko [5], and Hitczenko and Montgomery-Smith [6]. (See also
[20, Theorem 6.20] and [19, Proposition 1.4.2].) Theorem B also yields the correct order of
the constants as ¢ — 0o, as discussed by Johnson et al in loc. cit. where they extend previous
work on Khinchin’s inequality by Rosenthal [24]. Moreover, all of these results are shown
for Banach spaces. Theorem B holds additionally for all compact Lie groups, finite abelian
groups and lattices, and spaces of labelled and unlabelled graphs.

2. LEVY’S EQUIVALENCE IN METRIC SEMIGROUPS
In this section we prove:

Theorem 2.1 (Lévy’s Equivalence). Suppose (¢,dy) is a complete separable metric semi-
group, X, @ (Q,./, 1) — (4,PBy) are independent, X € L°(Q,9), and S, is defined as in
(1.2). Then

Sy — X as. P, <+ SHLX.
Moreover, if the sequence S, does not converge as above, then it diverges almost surely.

Special cases of this result have been shown in the literature. For instance, [2, §9.7]
considers 4 = R™. The more general case of a separable Banach space B was shown by
It6—Nisio [9, Theorem 3.1], as well as by Hoffmann-Jgrgensen and Pisier [8, Lemma 1.2].
The most general version in the literature to date is by Tortrat, who proved the result for a
complete separable metric group in [25]. Thus Theorem 2.1 is the closest to assuming only
the minimal structure necessary to state the result (as well as to prove it).
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In order to prove Theorem 2.1, we first study basic properties of metric semigroups. Note
that for a metric group, the following is standard; see [17], for instance.

Lemma 2.2. If (¥,dy) is a metric (semi)group, then the translation-invariance of dy implies
the “triangle inequality”:

deg (y1y2, 2122) < dg(y1, 21) + dy (Y2, 22) Yyi, zi € 9, (2.3)

and in turn, this implies that each (semi)group operation is continuous.
If instead ¥ is a group equipped with a metric dg, then except for the last two statements,
any two of the following assertions imply the other two:

(1) dg is left-translation invariant: deg(ca,cb) = dg(a,b) for all a,b,c € 4. In other
words, left-multiplication by any c € & is an isometry.

(2) dy is right-translation invariant.

(3) The inverse map : 9 — 94 is an isometry. Equivalently, the triangle inequality (2.3)
holds.

(4) dg is invariant under all inner/conjugation automorphisms.

In order to show Theorem 2.1 for metric semigroups, we recall the following preliminary
result from [14], and will use it below without further reference.

Proposition 2.4 ([14]). Suppose (4,dy) is a metric semigroup, and a,b € 4. Then
dg((l, ba) = d‘f(b7 b2) = d‘f(av ab) (25)

is independent of a € ¢. Moreover, a set & is a metric semigroup only if 4 is a metric
monoid, or the set of non-identity elements in a metric monoid 4'. This is if and only if the
number of idempotents in 4 is one or zero, respectively. Furthermore, the metric monoid 4’
is (up to a monoid isomorphism) the unique smallest element in the class of metric monoids
containing 4 as a sub-semigroup.

Remark 2.6. In the sequel, we denote — when required — the unique metric monoid contain-
ing a given metric semigroup ¢ by ¢4’ := 4 U{1’}. Note that the idempotent 1" may already
be in ¢, in which case 4 = %’. One consequence of Proposition 2.4 is that instead of working
with metric semigroups, one can use the associated monoid ¢’ instead. (In other words, the
(non)existence of the identity is not an issue in many such cases.) This helps simplify other
calculations. For instance, what would be a lengthy, inductive (yet straightforward) compu-
tation now becomes much simpler: for nonnegative integers k, [, and zg, z1, ..., 2p+ € ¢, the
triangle inequality (2.3) implies:

l l

l
dg (20 2ky 20+ 2k) = dgr (U, [ [ 2hegs) <D dapr(V, 2040) = dig (20, 2028 14)-
1 =1

= =1

2.1. The Mogul’skii inequalities and proof of Lévy’s equivalence. Like Lévy’s Equiv-
alence (Theorem 2.1) and the Hoffmann-Jgrgensen inequality (Theorem 1.3), many other
maximal and minimal inequalities can be formulated using only the notions of a distance
function and of a semigroup operation. We now extend to metric semigroups two inequalities
by Mogul’skii, which were used in [22] to prove a law of the iterated logarithm in normed
linear spaces. The following result will be useful in proving Theorem 2.1.

Proposition 2.7 (Mogul’skii-Ottaviani-Skorohod inequalities). Suppose (¢,dy) is a sepa-
rable metric semigroup, 29,21 € 4, a,b € [0,00), and X1, ..., X, € L°(Q,9) are independent.
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Then for all integers 1 < m < n,

P, < min dg(z1,205%) < a> - min P, (dg(Sk, Sn) < b) <Py (dy(21,205,) <a+b),

m<k<n m<k<n

m<k<n

P, < max dy (21, 205%) = a> - min P, (dg(Sk,Sn) < b) <Py (dg(21,205.) = a—1b).

These inequalities strengthen [22, Lemma 1] from normed linear spaces to arbitrary metric
semigroups. Also note that the second inequality generalizes the Ottaviani—Skorohod inequal-
ity to all metric semigroups. Indeed, sources such as [2, §9.7.2] prove this result in the special
case 4 = (R",+),20 =21 =0,m=1,a=a+ (,b= 3, with a, 8 > 0.

We omit the proof of Proposition 2.7 for brevity as it involves standard arguments. Using
this result, one can now prove Theorem 2.1. The idea is to use the approach in [2]; however,
it needs to be suitably modified in order to work in the current level of generality.

Proof of Theorem 2.1. The forward implication is easily verified in the more general setting
of a separable metric space; see e.g. [2, Section 9.2]. Conversely, we claim that S; is Cauchy
almost everywhere, if it converges in probability to X. Given e, > 0, the assumption and
definitions imply that there exists ng € N such that

n
> _ m = nog.
P, (deg(Sm, X) > €/8) < 20 1) Vm = ng

This implies that P, (dg(Sm,Sn) > €/4) < % for all n > m > ng. Now define S! :=

H;:1 Xno+j- Fix n > ng and apply Proposition 2.7 to {X,,,4; : 1 < i < n —ng} with
m=1,a=¢/2,b=¢/4, and zy = 21:

P, ( max  dg(Sng, Sm) = e/2> =P, < max  dy (20, 205)) = e/2>

no+1<m<n 1<i<n—ng
]P)u (d‘f’ (207 ZOS;L—nO) = 6/4) 77/(1 + 77)
h 1- maxléién—no ]PM (dg’(S;7 S;L—n()) 2 6/4) 1- 77/(1 + 77)
Now define Qn, = sup,~,, d%(Sng,Sn) and 8,y := SUP,~sng A9 (Sm, Sn). Then 6,5 <
2@, ; moreover, taking the limit of the above inequality as n — oo yields:
Py(Qny =2€/2) < = Pu(0ny =€) <.

But then P, (sup,,~,, dg(Sm,Sn) =€) < 7 for all m > ng. Thus, S, is Cauchy almost
everywhere. Since ¢ is complete, the result now follows from [2, Lemma 9.2.4]; that the

almost sure limit is X is because 9, , x. Finally, since the X,, are independent, the
convergence of the sequence S, is a tail event. In particular, it has probability zero or one
by the Kolmogorov 0-1 law, concluding the proof. O

We remark for completeness that the other Lévy equivalence has been addressed in [1, 3, 25]
for various classes of topological groups. See also [23] for a variant in discrete completely
simple semigroups, [2, 9] for Banach space versions, and [14] for a version over any normed
abelian metric (semi)group.

3. MEASURING THE MAGNITUDE OF SUMS OF INDEPENDENT RANDOM VARIABLES

We now prove Theorems A and B using the Hoffmann-Jorgensen inequality in Theorem 1.3.
Recall that the Banach space version of this inequality is extremely important in the literature
and is widely used in bounding sums of independent Banach space-valued random variables.
Having proved Theorem 1.3, an immediate application of our main result is in obtaining the
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first such bounds for general metric semigroups ¢. We also provide uniformly good LP-bounds
and tail probability bounds on sums 5,, of independent ¢-valued random variables.

3.1. An upper bound by Hoffmann-Jgrgensen. In this subsection we prove Theorem A.
The proof uses basic properties of decreasing rearrangements (see Definition 1.4), which we
record here and use below, possibly without reference.

Proposition 3.1. Suppose X,Y : (Q, 7, ) — [0,00) are random variables, and
xz,o, B,y >0, te]0,1].

(1) X*(t) <z if and only if P, (X > x) < t.
(2) X*(t) is decreasmg int € [0,1] and increasing in X > 0.
(3) (X/:L") (t) = X*(t)/=.
(4) uppose P, (X >2) < P, (Y >~x) for all x > 0. Then for all p € (0,00) and
€ (0,1),
E.[Y?] > B~14PE,[X7), E, [ XP] > tX"(t)P.
(5) Fix finitely many tuples of positive constants (o, Bi, Vi, 5l)f\i 1> and real-valued nonde-
creasing functions f; such that for all x > 0 there exists at least one i such that

Fi(Pu (X > aiz)) < BiP, (Y > i)™ (3.2)
Then
X*(t) < jmax f*((fz( B)/Bi)"%). (3.3)
If on the other hand (3.2) holds for all i, then X*(t) < 1I<]%i<nN %Y*((fi(t)/ﬁi)l/éi).

Proof. These properties are shown using the definitions via straightforward arguments, and
so we omit the proofs, except for the final part. By assumption there exists at least one ¢ such
that if P, (X > a;x) > t for some t, then 3;P, (Y > 7ix)% > fi(t) since f; is nondecreasing.
For this choice of i, we obtain:

a7y Pu(X >y) >t} Cy{y: BPL(Y > )" > fi(t)}

=7 My B (Y >y) > (fi(h)/8:)"}
(where we only consider y > 0). Therefore for all t € [0, 1],

{y=0: P, (X >y) >t} C U 7 y=0: P, (Y >y)> (fi(t)/B)% ).
i=1
Taking the supremum of both sides yields Equation (3.3). If on the other hand Equation (3.2)
holds for all ¢, then the preceding inclusion holds with the union replaced by intersection.
Now taking the supremum of both sides yields Equation (3.3) with maximum replaced by
minimum (since each set in the intersection is an interval containing 0). O

Using Proposition 3.1, we now show one of the main results in this paper.
Proof of Theorem A. Note for all n that
dey (20, 20Xn) < dg(21,209-1) + dg(21, 205n),

from which we obtain

deg (20, 20X )P < 277" sup dy (21, 205)".
neA
Taking first the supremum over n € A and then the expectation proves the backward im-

plication. Conversely, first claim that controlling sums of ¢-valued LP random variables in
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probability (i.e., in L") allows us to control these sums in L? as well, for p > 0. Namely, we
make the following claim:

Suppose (4,dy) is a separable metric semigroup, p € (0,00), and X1,...,X, € LP(Q,9)
are independent. Now fix 29,21 € 4 and let Sy, Uy, M,, be as in Definition 1.1 and Equa-
tion (1.2). Then,

E,[UF] < 212 (BL[MP) + Us (27172)P).

Note that the claim is akin to the upper bound by Hoffmann-Jgrgensen that bounds
E,[||S»|[] in terms of E,[M}] and the quantiles of ||S,|| for Banach space-valued random
variables (see [7, proof of Theorem 3.1] and [4, Lemma 3.1]). We omit its proof for brevity,
as a similar statement is asserted in [20, Proposition 6.8]. Given the claim, define:

tn ::UZ(2_1_2”) (n € A), Uy = supdg(z1, 205n),
necA

My := supdyg(z0,20Xn), tyg = UZ(2_1_2p),
neA

(3.4)

as above, where we also use the assumption that Uy < oo almost surely. Now for all n € A,
compute using the above claim and elementary properties of decreasing rearrangements:

E,[UP] < 2'Y%PE,, [MP] + 2(4t,)P < 2YP%PE, [MA] + 2(4t.4)P.
This concludes the proof if A is finite; for A = N, use the Monotone Convergence Theorem

for the increasing sequence 0 < UY — U Z. O

3.2. Two-sided bounds and L? norms. We now formulate and prove additional results
that control tail behavior for metric semigroups and monoids — specifically, M 4, U, U;:. This
includes proving our other main result, Theorem B. We begin by setting notation.
Definition 3.5. Suppose ¢ is a metric semigroup.

(1) Given X, € L°(£,%) as above, for all n in a finite or countable set A, define the
random variable £x = {(x, ) : R — [0, oc] via:

)inf{y >0 ¢ Y caPu(dy (20, 20Xn) > y) <t if t € [0, 1],
Ux(t) = .
0, otherwise.

As indicated in [6, §2], one then has: P({x > x) = > P, (dy(20,20Xn) > z),
where P is the Lebesgue measure on [0, 1].

(2) Two families of variables P(t) and Q(t) are said to be comparable, denoted by P(t) ~
Q(t), if there exist constants c1,co > 0 such that ¢; ' P(t) < Q(t) < caP(t) uniformly
over all t. The ¢; are called the “constants of approximation”.

For the remaining definitions, assume (4,1g,dy) is a separable metric monoid.

(3) Given t > 0 and a random variable X € LY(Q,%), define its truncation to be:

X(t) . 1y, if dg(lg.g,X) > t,
X, otherwise.

(4) Given variables X1,..., X, : Q@ = ¢, and r € (0,1), define:

1<k<n

k
Uy, (r) i= max dy(lg, [ [ Xi(x(r))).
i=1

The following estimate on tail behavior compares U,, with its decreasing rearrangement.
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Theorem 3.6. Given py > 0, there exist universal constants of approximation (depending
only on py), such that for all p > pg, separable abelian metric monoids (4, 1y, dy), and finite
sequences X1, ..., X, of independent &-valued random variables (for any n € N),

E[UF]Y? ~ Uy (€77 /4) + EIR]YP = (U, (e77/8))" (e77 /4) + B[R],
where U, and U], were defined in Equation (1.2) and Definition 3.5 respectively.

For real-valued X, the expression E[|X|P]'/? is also denoted by || X||, in the literature.

To show Theorem 3.6, we require some preliminary results which provide additional es-
timates to govern tail behavior, and which we now collect before proving the theorem. As
these preliminaries are often extensions to metric semigroups of results in the Banach space
literature, we will sketch or omit their proofs now.

The first result obtains two-sided bounds to control the behavior of the “maximum mag-
nitude” M4 (cf. Equation (3.4)).

Proposition 3.7. Suppose {X,, : n € A} is a (finite or countably infinite) sequence of

independent random variables with values in a separable metric semigroup (¢ ,dy).

(1) Forallt € (0,1), €x(2t) < Ux(t/(1—1t)) < Mji(t) < Lx(t).
(2) Suppose X,, € LP(Q,9) for some p >0 (and for alln € A). For allt > 0, define:

Wy (t) ::pZ/ WP, (dy (20, 20X0) > u) du.
neA £x(t)

thx ()P + Ux(t)

Then, T2 S EL[MY] < Ux(t)P + Ux(t).
Proof. The first part follows [6, Proposition 1] (using a special case of Equation (3.3)). For
the second, follow the arguments for showing [4, Lemma 3.2]; see also [20, Lemma 6.9]. O

We next discuss a consequence of Hoffmann-Jgrgensen’s inequality for metric semigroups,
Theorem 1.3, which can be used to bound the LP-norms of the variables U,, — or more precisely,
to relate these LP-norms to the tail distributions of U,, via U};.

Lemma 3.8. (Notation as in Definition 1.1 and Equation (1.2).) There exists a universal
positive constant c¢1 such that for any 0 < t < s < 1/2, any separable metric semigroup
(9,dy) with elements zg,z1, and any sequence of independent ¢-valued random variables
X17 s 7XTL}

log(1/1)
max{log(1/s),loglog(4/t)}

Proof. We begin by writing down a consequence of Theorem 1.3:

Un(t) < (Un(s) + My (t/2)).

1 (P, (U, >t)\*
P, (U, K-1t) < — [ 2222 P, (M, , , VK, . .
w (Un > (3 )t) % (PM(Unét)> +P, (M, >t), Vt>0, VK,neN. (3.9)

If P, (U, >t) < 1/2, then this quantity is further dominated by
1
2 max {IP’H (M, >t), H@Pu (Up, > t))K} .

Now carry out the steps mentioned in the proof of [6, Corollary 1]. O

The final preliminary result is proved by adapting the proofs of [6, Lemma 3 and Corollary
2] to metric monoids.
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Proposition 3.10. Suppose (¥,1¢,dy) is a separable metric monoid and X1,..., X, : Q —
4 is a finite sequence of independent 4 -valued random variables. For r € (0,1), define:
k
" L !
V() i= o daCi [T X))
1=

where X!(t) equals 1y if dy(lg, X;) < t, and X; otherwise.

(1) Then U]!(r) may be expressed as the sum of “disjoint” random variables Vi, for k € N.
In other words, Q can be partitioned into measurable subsets Ey such that Vi, = U]/ (r)
on Ey and 1y otherwise. Moreover, the Vi, may be chosen such that V' (t) < k-£(t(k—

1)!/rk=1),

(2) Given the assumptions, for all p € (0,00),
B, (UL (PP < 267 PR
With the above results in hand, we can now show the above theorem.
Proof of Theorem 3.6. Compute using the triangle inequality (2.3) and Remark 2.6:
dy(ly, Xi) < dg(lg, Sk—1) + dg(lg, Sk) < 2U,.
Hence M,, < 2U,,. Now compute for p > pg, using Propositions 3.1 and 3.7:
EAUZY? > JEAMEP > 27 B,
B, [UZ]'Y/? > (e77/8)/PU (€77 /8) = 8770 T 1Us (€77 /4).
Hence there exists a constant 0 < ¢; = ¢1(pg) such that:
Eu[UR)'P 2 ¢ M (U (77 /4) + B[R ]'/7).
This yields one inequality; another one is obtained using Proposition 3.7 as follows:
Py (Un # U (e7P/8)) < P(M,, > Ux(e7P/8)) <Py (M, > M (e7P/8)) < e7?/8.
Now if P, (U;,(e7?/8) > y) > n for some 1 € [%, 1], then by the reverse triangle inequality,
Py (Up>y) =P, (U, >y, U, =0, (e77/8))
> B (UA(P/8) > 1) — By (Un £ U 7/8)) > 51— .
Hence by definition and the above calculations,
Un(e7/8)"(n) S Up(n—e?/8). (3.11)
Applying this with n = e™?/4,
Un(e?/8)"(e77/4) S Uy (e7?/8) < e8Y/PE,[UFYP < e8P, [UF]'/P.
Hence as above, there exists a constant 0 < ¢ = ca(po) such that:
Eu[UR'P > ¢ ' (U (e77/8)" (77 /4) + EIR]'/P).

This proves the second of the four claimed inequalities. The remaining arguments can now
be shown by suitably adapting the proof of [6, Theorem 3]. O

Finally, we use Theorem 3.6 to prove our remaining main result.
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Proof of Theorem B. Using Proposition 2.4, let ¢’ denote the smallest metric monoid con-
taining ¢. Thus the X} are a sequence of independent ¢’-valued random variables, and we
may assume henceforth that ¢4 = ¢’. Compute using Proposition 3.7, and the fact that X*
and X have the same law for the real-valued random variable X = M,,:

1/2 1/2 1
E[¢t%] = / Cx(26) - 2dt < 2 M ()T dt < 2/ M (t)? dt = 2E[(M,;)?]
0 0 0

= 2E, [M].

Using this computation, as well as Lemma 3.8 and Theorem 3.6 for ¢’, we compute:

E,[U7)"
< (B[] + Us(em1/4))
log(4e?) B B
<d Colap (ppa1l/a ! (o 7P/A) 4+ M*(e 1
‘1 H[ n] +Clclmax(log(élef”),10glog(16eq)) (Un(e / )+ n(e /8))
log(4e?)

< o - 2VIE MY+ ey (2B [UR)VP + M (e7/8))

max(log(4eP),log(e + q))

since € € (—q,log(16)]. There are now two cases: first if e? > € + ¢, then

log(4e?) _atlog®) g _ q

max(log(4e?),log(e +q)) ~ p+log(4) ~ p  max(p,log(e +q))

On the other hand, if e? < € 4+ ¢ then set C' := 1 + 10%% and note that Cq > ¢ + log(4).
Therefore,

log(4e) 4 + log(4) - Cq o q

max(log(4eP),log(e + ¢q)) ~ log(e +¢) ~ log(e + q) max(p,log(e +¢q))

Using the above analysis now yields:

E,[Uf]'/

log(4) q N
< VIR (M 4 ¢ (1 ) E,[UP1YP 1+ M*(e™9/8)).
&1 H[ n] +6161 + 0 max(p,log(e—l—q))(c2 H[ n] + n(e /))

Setting ¢ := ¢} max(2'/70, ¢; (1+1og(4)/po), c1c2(1+1log(4)/po)), we obtain the first inequality
claimed in the statement of the theorem.

To show the second inequality, we first verify that if € > min(1, e — py), then the function
f(z) :=x/log(e + x) is strictly increasing on (pp,o0). Now compute:

g i <z, L) > min <1, L)
max(p, log(e + q)) p’ log(e+q) log(e + q)

> min <1, p70> .
log(e + po)

Next, use Proposition 3.1 to show: M(e~/8) < E,[M}]'/9(8e9)Y/1 < 81/roeE,, [M;]/a.
Using the previous two facts, we now complete the proof of the second inequality by beginning
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with the first inequality:

E, U]
c a (E,[UP]Y? + M*(e=/8)) + B, [M9)]1/4
max(p,log(e +¢)) " " " S
q 1/ 1/po q11/q q1l/q
< E, [UP]/? E,[M -1-E,[M,
cmax(p,log(e—i—q))( M[Un] +8 e M[ n] ) +c M[ n]
q 1/ 1/po q)1/q log(e + po) q11/q
E, [UP*/? +8 E,[M, 1, ———)E,[M .
Cmax(p, IOg(E + q)) < M[ n] + € M[ n] + max( ’ Do ) M[ n]
The second inequality in the theorem now follows. O
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