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Abstract

Existing models often leverage co-occurrences between
objects and their context to improve recognition accuracy.
However; strongly relying on context risks a model’s gener-
alizability, especially when typical co-occurrence patterns
are absent. This work focuses on addressing such contex-
tual biases to improve the robustness of the learnt feature
representations. Our goal is to accurately recognize a cat-
egory in the absence of its context, without compromising
on performance when it co-occurs with context. Our key
idea is to decorrelate feature representations of a category
from its co-occurring context. We achieve this by learning a
feature subspace that explicitly represents categories occur-
ring in the absence of context along side a joint feature sub-
space that represents both categories and context. Our very
simple vyet effective method is extensible to two multi-label
tasks — object and attribute classification. On 4 challenging
datasets, we demonstrate the effectiveness of our method in
reducing contextual bias.

1. Introduction

Visual context serves as a valuable auxiliary cue for the
human visual system for scene interpretation and object
recognition [4]. Context can either be a co-occurrence of
objects and scenes (e.g., “boat” is often present in “outdoor
waters”) or of two or more objects in a given scene (e.g.,
“skis” often co-occur with a “skier”). Context becomes es-
pecially crucial for our visual system when the visual signal
is ambiguous or incomplete (e.g., due to occlusion, view-
point of the scene capture, etc.). Past research explicitly
models context and shows benefits on standard visual tasks
such as classification [30] and detection [ 13, 3]. Meanwhile,
convolution networks by design implicitly capture context.

Deep networks rely on the availability of large-scale
annotated datasets [22, 12] for training. As highlighted
in [32, 31], despite the best efforts of its creators, most
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Figure 1. Top (cause of contextual bias): Sample training images of the
category “skateboard”. Notice how it very often co-occurs with “person”
and how all images are captured from similar viewpoints. In the rare cases
where skateboard occurs exclusively, there is higher viewpoint variance.
Bottom (effect of such bias): Such data skew causes a typical classifier
to rely on “person” to classify “skateboard” and worse, unable to recog-
nize skateboard when person is absent. Our proposed approach overcomes
such contextual bias by learning feature representations that decorrelate
the category from its context.

prominent vision datasets are afflicted with several forms of
biases. Let us consider an object category “microwave.” A
significant portion of images belonging to this category are
likely to be captured in kitchen environments, where other
objects such as “refrigerator,” “kitchen sink,” and “oven”
frequently co-occur. This may inadvertently induce contex-
tual bias in these datasets, which would consequently seep
into models trained on them. Specifically, in the process
of learning features that separate positive and negative in-
stances in such a (biased) training dataset, a deep discrim-
inative model can very often also strongly capture the con-
text co-occurring with the category of interest. This issue
is exacerbated in a setting where we do not have explicit
location annotations (e.g., bounding boxes and segmenta-
tion masks) of such biased categories, and a model being
trained has to rely solely on image-level annotations to per-
form multi-label classification. Having a model implicitly
learn to localize such context-biased categories in the ab-
sence of location annotations is challenging.



Does it even matter if a model inadvertently learns such
correlations? We believe this can cause problems on two
fronts: (1) failing to identify “microwave” in a differ-
ent context such as an “outdoor” scene or in the absence
of “refrigerator” and (2) hallucinating “refrigerator” even
in an indoor kitchen scene containing only “microwave.”
The issue of co-occurring bias is also prevalent in visual
attributes [23, 35]. For example, in the Deep Fashion
dataset [23], the attribute “trapeze” strongly co-occurs with
“striped.” This results in a less credible classifier that has
a hard time recognizing “trapeze” in clothes with “floral.”
Recent research has identified far more serious mistakes
made by trained models due to inherent biases in both lan-
guage and vision datasets — learning correlations between
ethnicity and certain sport activities [28], gender and profes-
sion [5, 16, 36], and age and gender of celebrities [2]. Such
grave confusion caused due to biases in the data impedes
the deployment of these models in real-world applications.

Given these issues, our goal is to train an unbiased visual
classifier that can accurately recognize a category both in
the presence and absence of its context. Specifically, given
two categories with a strong co-occurring bias, our aim is
to accurately recognize them when either one occurs ex-
clusively, and at the same time not hurt the performance
when they co-occur. To this end, we propose two key ideas.
First, we hypothesize that a network should learn about a
category by relying more on its corresponding pixel regions
than those of its context. Since we only have class labels,
we use class activation maps (CAM) [37] as “weak” loca-
tion annotations and minimize their mutual spatial overlap.

Building on this, we devise a second method that learns
feature representations to decorrelate a category from its
context. While the entire feature space learned by the net-
work jointly represents category and context, we explic-
itly carve out a subspace to represent categories that occur
away from typical context. We learn this feature subspace
only from training instances where a biased category oc-
curs in the absence of its context. In all other cases, the
model should also leverage context and thus the entire fea-
ture space. At test time, we make no such distinction and
the entire feature space is equally leveraged. Therefore,
in the example from Fig. 1, our goal is to learn a feature
subspace to represent “skateboard” while the entire feature
space jointly represents “skateboard” and “person.”

Through extensive evaluation, we demonstrate signifi-
cant performance gains for the hard cases where a cate-
gory occurs away from its typical context. Crucially, we
show that our framework does not adversely effect recogni-
tion performance when categories and context co-occur. To
summarize, we make the following contributions:

e With an aim to teach the network to “learn from the right
thing,” we propose a method that minimizes the over-
lap between the class activation maps (CAM) of the co-

occurring categories (Sec. 4.1).

e Building on the insights from the CAM-based method,
we propose a second method that learns feature represen-
tations that decorrelate context from category (Sec. 4.2).

e We apply both methods on two tasks: object and at-
tribute classification, and 4 datasets, and achieve signifi-
cant boosts over strong baselines for the hard cases where
a category occurs away from its typical context (Sec. 5).

2. Related work

Addressing biases: Prior work [32, 19, 33, 31] has shown
that existing datasets suffer from bias and are not perfectly
representative of the real world. Hence, a model trained
on such data will have difficulty generalizing to non-biased
cases. Attempts to reduce dataset bias include domain adap-
tation techniques [9] and data re-sampling [7, 21], e.g., so
that minority class instances are better represented. One
limitation of data re-sampling is that it can involve reducing
the dataset, leading to sub-optimal models. Recent adver-
sarial learning approaches [2, 20] try to mitigate bias from
the learned feature representations while optimizing per-
formance for the task at hand (e.g., removing gender bias
while classifying age). However, these methods would not
be directly applicable for mitigating contextual bias, as con-
text (the bias factor) can still be useful for recognition—so
it cannot be simply removed. Others study various forms
of bias in the context of image captioning (e.g., gender
bias) [16], image classification (e.g., ethnicity bias) [28],
and object recognition (e.g., socio-economic bias) [11].
Overall, contextual bias in visual recognition remains rel-
atively under explored.

Co-occurring-bias: Contextual bias is a well-studied prob-
lem in the field of natural language processing [25, 29],
however, it is much less studied in the computer vision com-
munity. In vision, most efforts consider context as a use-
ful cue [13, 3]. A few efforts have shown that a recogni-
tion model will fail to recognize an object without its co-
occurring context, but do not propose a solution [8, 26].

A recent method reduces contextual bias in video action
recognition [34], but it relies on temporal information and
thus cannot be applied to the image recognition problems
we tackle in this work. A pre-deep learning approach [17]
reduces the correlation (bias) between visual attributes by
leveraging additional knowledge in the form of semantic
groupings of attributes. Recently [38] tried to reduce con-
textual bias for object detection by learning focused fore-
ground features, but they require expensive bounding-box
annotations. In contrast, our deep learning approach does
not require any additional supervision apart from the ob-
ject/attribute class labels. Most importantly, to our knowl-
edge, there is no prior work focusing on mitigating contex-
tual bias for object classification as we do in this paper.
Relation to few-shot learning: Lastly, contextual bias
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Figure 2. Quantifying bias in b due to its high co-occurrence with c.

could also be formulated as a few-shot [27, 18, 1] or class
imbalance [ 14, 10] problem, since images in which objects
appear without their usual co-occurring context (e.g., key-
board without a mouse next to it) are relatively rare. How-
ever, treating such rare (exclusive) images as a separate
class or simply assigning them higher weight can be sub-
optimal, as we show in our experiments.

3. Problem setup

Our method operates on the premise that the training data
distribution corresponding to a few categories suffers from
co-occurring bias. We henceforth refer to them as biased
categories. We make no such assumptions about the test
data distribution. For example, COCO-Stuff [6] has 2209
images where “ski” co-occurs with “person,” but only has
29 images where “ski” occurs without “person.” A model
trained on such skewed data may fail to recognize when
“ski” occurs in isolation. Our goal is to learn a feature space
that is robust to such training data biases. In particular,
given a (presumably) unbiased test dataset, our goal is to (1)
correctly identify “ski” when it occurs in isolation and (2)
not lose performance when “ski” co-occurs with “person.”
A key aspect of our approach is to identify most biased cat-
egories for a given dataset, which we describe next.

3.1. Identifying biased categories

Suppose we are learning a classifier on a multi-label

training dataset with a vocabulary of M categories. Only
a few of these categories suffer from context' bias; thus, a
key aspect of our approach is to find this set of K category
pairs S = {(b; , ¢j )}, where 0 < j < K, which suffer the
most from co-occurring bias’. Henceforth, b; (e.g. “ski”)
denotes a class which is most biased with c; (e.g. “person”)
due to its high co-occurrence.
Intuition: While there are several ways to construct S, our
method is built on the following intuition: a given category
b is most biased by c if (1) the prediction probability of b
drops significantly in the absence of ¢ and (2) b co-occurs
frequently with c.

We now define our method to identify ¢ for a given b.
For a given category z, let I, N I, and I}, \ I, denote sets of
images where b occurs with and without z respectively. Let
p(i,b) denote the prediction probability of an image i for
a category b obtained from training a standard multi-label

' Throughout, we use context and co-occurring interchangeably.
2 Although we consider pairs of co-occurring categories throughout, the
proposed method is extensible for any number of co-occurring categories.

classifier. We quantify the extent of bias between b and z
as follows:

mleuz%ﬂ p(i,b)
bias(b,z) = b
|[hi]1z\ Z p(l,b)

€]

where |.| denotes cardinality of a set. Eq (1) measures the
ratio of average prediction probabilities of the category b
when it occurs with and without z (see Fig. 2). A higher
value indicates a higher dependency of b on z. We deter-
mine c as follows:

¢ = arg max bias(b, z) )
i.e., for each b, we identify a category c that (i) yields the
highest value of bias and (ii) co-occurs at least 10 — 20%
times (see Sec. 4.3) with b. We then construct S with K
most biased category pairs. We note that the above for-
mulation is directional, i.e., it only captures the biases in
b caused due to c. For instance, bias(ski, person) only cap-
tures bias in “ski” due to “person” but not vice-versa.

We next propose two methods to combat co-occurring
bias in the training data. The input to both methods is (1)
training images and their associated weak (multiple) cate-
gory labels and (2) the set S composed of the K most biased
category pairs (identified from Eq. (1)). We stress that train-
ing images have only weak labels stating which categories
are present; they have no spatial annotations to say where in
the image each category is.

4. Approach

Our first method relies on class activation maps (CAM)
as “weak” automatically inferred location annotations and
minimizes their spatial overlap between biased categories
(Sec. 4.1). Building on the observations from this CAM-
based approach, we propose a second method which learns
a feature space by encouraging context sharing when a
biased category co-occurs with context while suppressing
context when it occurs in isolation (Sec. 4.2).

4.1. CAM as “weak” location annotation

Our method operates on the following premise: as b al-
most always co-occurs with ¢, the network may learn to in-
advertently rely on pixels corresponding to c to predict b.
This is particularly problematic when the network is tested
on images where b occurs in the absence of c. We hypoth-
esize that one way to overcome this issue is to explicitly
force the network to rely less on c¢’s pixel regions, without
using location annotations. While this may not succeed for
occluding pairs like “person” and “shirt,” it seems like a nat-
ural constraint for spatially-distinct categories like “person”
and “skateboard.”
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Figure 3. Our CAM-based approach operates on category labels and
requires no ground-truth location annotations. Instead, we leverage CAMs
as weak location annotations and propose to minimize the mutual overlap
between a biased category and its co-occurring context.

Class Activation Maps: To this end, we propose to use
class activation maps (CAM) [37] as a proxy for object lo-
calization information. For a given image i and class r,
CAM(i, r) indicates the discriminative image regions used
by a deep network to identify r. Specifically, the final con-
volutional layer (conv¢) of any typical network is followed
by a global pooling and a fully connected (fc) layer which
predicts a score for class r in image . CAM(i,r) is gen-
erated by projecting back the weights of the fc layer for r
on convy and computing a weighted average of the feature
maps. Though CAMs are typically used as a visualization
technique, in this work, we also use them to reduce contex-
tual bias as we describe next.

Formulation: In our setup, for each biased category pair
(b, c) in S (defined in Sec. 3.1), we enforce minimal over-
lap of their CAMs via the loss function:

Lo= Y  CAM(,b)® CAM(,c) (3)

iel,Nle

CAM offers two nice properties: (1) it is learned only
through class labels without requiring any annotation effort
and (2) it is fully differentiable, and thus can be integrated
in an end-to-end network during training.

Ideally, Eq (3) should learn to reduce the spatial overlap
between co-occurring categories, without hurting the clas-
sification performance. However, while attempting to min-
imize overlap, Eq (3) could also lead to a trivial solution
where the CAMs of b and c drift apart from their actual
pixel regions. To prevent this without strongly-supervised
spatial annotations, we introduce a regularization term Lg.
Specifically, we pre-train a separate network (offline) for
the standard classification task and generate CAM,,; from
it for b and c. We then ground the CAMs of each category
to be closer to its pixel regions predicted from CAMp,.. Lr
is thus defined as follows:

Lr = Z |CAMpre(i7 b) - CAM(17 b)H’
i€l N, “4)
|CAMpre (i, ¢) — CAM(i, ¢)|

We use a standard binary cross-entropy loss (Lpcg) for
the task of multi-label classification. Thus, our final loss
becomes:

Lcam = AiLo + A2Lg + Lpcs, ()

Fig. 3 for the entire approach. As we show in results
(Sec. 5), our CAM-based method successfully learns to rely
more on the biased category’s pixel regions thereby improv-
ing recognition performance. Our method yields large gains
when a biased category occurs in the absence of its typical
context. However, it sometimes hurts performance when
biased category co-occurs with context (discussed later in
Fig. 7). One reason could be that the pixel regions surround-
ing the co-occurring category also offer useful complemen-
tary information for recognizing the biased category. By
discouraging mutual spatial overlap, CAM-based approach
may not be able to leverage this information. This key in-
sight led to the formulation of our next approach, which
splits the feature space into two and separately represents
context and category, while posing no constraints on their
spatial extents.

4.2. Feature splitting and selective context suppres-
sion

Rather than optimizing CAMs, we propose to learn a
feature space that is robust to the inherent co-occurring bi-
ases in the training data. We observe that cases when a
biased category co-occurs with context are often visually
distinct from those where it occurs exclusively (see Fig. 1).
This motivates us to learn a dedicated feature (sub) space
to represent biased categories occurring away from their
typical context. While the entire feature space learned by
the model jointly represents context and category, this dedi-
cated subspace should decouple the representations of a cat-
egory from its context. We learn this feature subspace only
from training instances where biased categories occur in the
absence of their typical context. These modifications only
affect training; at inference time the architecture is identical
to the standard model.

Formulation: Given a deep neural network ¢, let x denote
the D-dimensional output of the final pooling layer just be-
fore the fully-connected layer (fc). Let the weight matrix
associated with fc layer be W € RP*M, where M denotes
the number of categories in a given multi-label dataset. The
predicted scores inferred by a classifier (ignoring the bias
term) are

7 =WTx. (6)
Because we wish to separate the feature representations of a
category from its context, we (row-wise) split W randomly
into two disjoint subsets: W, and Wy, each of dimension
D

5 X M. Consequently, x is split into x, and x5 and the

above equation can be rewritten as:

¥ =Wlx, + Wlx,. (7)
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Figure 4. Our feature splitting approach where images and their associated category labels are provided as input. During training, we split the feature
space into two equal sub spaces: X, and xs. If a training instance has a biased category occurring in the absence of context, we suppress xs (no back-prop),
forcing the model to leverage x,. In all other scenarios, x, and xs are treated equally. At inference, the entire feature space is equally leveraged.

In scenarios where a biased category occurs in the ab-
sence of its context, we want to enforce the network to only
rely on W,, by suppressing Wg. This step allows the net-
work to explicitly capture the biased category-specific in-
formation when it occurs away from its context in W,. On
the other hand, when a biased category co-occurs with its
context, we want to encourage the network to leverage both
W, and Wy. This would allow the network to jointly en-
code category and context in the full feature space.

To achieve this, we make two minor modifications to
a standard classifier when a biased category occurs away
from its typical context. First, we disable back propaga-
tion through Wy thereby forcing the network to learn only
through W,. Second, we set x5 to a constant value. We
believe these two simple modifications allow us to suppress
context in selective cases, i.e., when a biased category oc-
curs away from its context. For instance, when ski occurs in
the absence of its typical context person, our method sup-
presses Wy thereby encouraging W, to encode its appear-
ance; when ski co-occurs with person, both W, and Wy are
leveraged.

In practice, we set x5 = X, where X; is the average of xg

over the last 10 mini-batches, and allowed stabler training.
Also, X; is a closer approximation to the range of values x,
witnesses at test time.
Intuition behind weighted loss: An underlying aspect of
our method is that the biased categories occur very rarely in
the absence of their context, making the training data dis-
tribution skewed (see Sec. 3). This is a problem since W,
is learned solely from the (very few) samples with biased
categories occurring in the absence of their typical context.
We address this issue by associating a higher weight to such
training samples. All other samples are weighed equally.
Specifically, we define a weight « such that

‘|]1112Q1]116\‘ , when b occurs exclusively
a= ®)
1 otherwise

Thus, « is the ratio of the number of training instances
where category occurs in the presence vs. absence of con-
text. A higher value of « for a given biased category indi-

cates more data skewness. *.
Given ground-truth label t and sigmoid function o, our
weighted binary cross-entropy loss is defined as follows:

Lpop = —a(tlog(a(y)) + (1 - t)log(l — o(¥))), (9

Figure 4 illustrates the proposed method. While a stan-
dard classifier jointly encodes category and context, it fails
to recognize biased categories occurring without context.
By contrast, our approach splits the feature space and repre-
sents biased categories occurring without context in a ded-
icated subspace. As we will show in results, due to selec-
tive context suppression, this feature subspace successfully
captures category-specific information. Furthermore, in the
second subspace, our method effectively leverages context
when available and jointly encodes it with category.

As we show in results, leveraging context when avail-
able, distinguishes this method with the CAM-based
method described in Sec. 4.1 and plays a key role in recog-
nition performance. Further, while we selectively suppress
context when a biased category occurs away from its con-
text, the CAM-based method optimizes the mutual spa-
tial overlap when a biased category co-occurs with con-
text. We stress that both methods are applied only for the
K biased category pairs; thus, misclassification loss for the
other (non-biased) categories also plays an important role
in learning. Finally, our method poses no constraints on the
spatial extents of categories; thus, unlike our CAM-based
approach, is extensible to attributes.

4.3. Training setup

Determining biased categories: For each category, we
first identify other categories that occur frequently (at least
10% — 20% times, based on the dataset). Next, we parti-
tion the training data into non-overlapping 80 — 20 split.
We train a standard multi-class classifier with BCE loss on
the 80% split and compute bias (Eq. 1) on the 20% split.
While both methods proposed in this work can be applied to
any number of biased category pairs, we found that setting
K = 20 (Sec. 3.1) sufficiently captures biased categories in
all the datasets we study here.

3In practice, we ensure « is at least oy, (a constant value > 1) when
b occurs exclusively.



Datasets Task #Classes #Train / #Test

MS COCO + Stuff [6] object 171 82,783 /40,504
UnRel [24] object 43 -/1,071

Deep Fashion [23] attribute 250 209,222/40,000

AwA [35] attribute 85 30,337 /6,985

Table 1. Properties of evaluation datasets. For COCO-Stuff, we use
object training and validation data from COCO-2014 split [22].

Test images

Test set for b

Exclusive
P

Co-occur:
I

Figure 5. Our evaluation setup has two different test data distributions:
(1) exclusive and (2) co-occurring. Our goal is to improve recognition
performance on (1) without compromising on (2).

Optimization: We follow a two-stage training procedure:
in the first stage, we start with a pre-trained network as
a backbone and fine-tune it on all categories of a given
dataset. This step ensures that the network learns useful
context cues for the target task. In the second stage, we fine-
tune our network and separately apply the modified loss
defined in each proposed method. In the CAM-based ap-
proach, we reduce spatial overlap between the |K| category
pairs; in the feature splitting method, we selectively sup-
presses context when the |K| biased categories occur exclu-
sively and encourage context sharing in all other scenarios.
Implementation details: For both proposed methods, we
use ResNet-50 [15] pre-trained on ImageNet as a backbone.
For the first stage, an initial learning rate of 0.1 is used
which is later divided by 10 following the standard step de-
cay process for the learning rate. Following this, during
the second stage of training, we train the network with a
learning rate of 0.01 for both methods. For the CAM-based
approach, we set A; and Ag to be 0.1 and 0.01 respectively.

The input images are resized such that their shortest side
is 256 and random crops of size 224 x 224 are used for train-
ing. To augment training data, we horizontal flip images.
We use a batch size of 200 and stochastic gradient descent
for optimization. Our model is implemented using PyTorch
1.0. Overall training time of both proposed methods is very
close to that of a standard classifier and their inference time
is exactly same as that of the standard classifier.

5. Experiments

In this section, we study the effectiveness of our ap-
proach across two tasks: object and attribute classification.
We first describe our evaluation setup then report qualitative
and quantitative performance on four image datasets against
competitive baselines.

Datasets: We evaluate our approach on four multi-label
datasets (summarized in Table 1). The choice of these
datasets was driven by the fact that they exhibit strong co-
occurrence bias. We summarize their co-occurrence statis-
tics in the supplementary material. For DeepFashion [23],

we only consider 250 most frequent attributes in the train-
ing data as other attributes do not have sufficient training
samples. For Animals with Attributes (AwA) [17, 35], fol-
lowing common practice, we train an attribute prediction
network on seen (40) animal categories and evaluate on un-
seen (10) categories. Finally, UnRel dataset [24] contains
images of objects in unusual contexts, as they are obtained
from rare and unusual triplet queries (e.g. “person ride gi-
raffe,” “dog ride bike”). We stress-test the generalizability
of our model pre-trained on COCO-Stuff on this dataset.
Evaluation setup: We reiterate that our goal is to im-
prove performance when highly biased categories occur ex-
clusively, without losing much performance when they co-
occur with other categories. Towards this end, for each
dataset, we first determine the most biased category pairs
(S) following the approach in Sec. 3.1. Next, for these (b, ¢)
category pairs, we report performance on two different test
data distributions: (1) exclusive: b never occurs with ¢ and
(2) co-occur: b always co-occurs with ¢. We illustrate the
two test distributions in Fig. 5. We report top-3 recall for
DeepFashion [23] and mAP for all other datasets.
Baselines: Aside from a standard classifier trained with
a binary cross-entropy loss for each category, we compare
with the following state-of-the-art methods that tackle the
issue of co-occurring bias: (1) class balancing loss [10]
by treating the scenarios where biased categories occur ex-
clusively as tail classes and (2) attribute decorrelation ap-
proach [17], where we replace the hand-crafted features
with deep network features (conv5 features of ResNet-50)
for a fairer comparison. To further test the strength of our
method, we designed the following competitive baselines:

1. remove co-occur labels, where we remove labels corre-
sponding to ¢ for each b in S during training. By remov-
ing supervision about co-occurring categories, we intend
to soften the context-induced bias on the model.

2. remove co-occur images shares the same motivation as
(2) but instead we remove training instances where the
biased category and context co-occur.

3. weighted loss, where we apply 10 times higher weight to
the loss when biased categories occur exclusively.

4. negative penalty, where we assign a large negative
penalty if the network predicts co-occurring category in
cases where a biased category occurs exclusively.

5.1. Object Classification Performance

5.1.1 Opverall Results

In Table 2, we report performance on COCO-Stuff for
the 20 most biased categories. First, we observe that the
standard classifier has much better performance for co-
occurring compared to exclusive test splits. This clearly
demonstrates the inherent contextual bias present in COCO-
Stuff, as standard classifier struggles when biased cate-



Methods Exclusive | Co-occur
standard 24.5 66.2
class balancing loss [10] 25.0 66.1
remove co-occur labels 25.2 65.9
remove co-occur images 28.4 28.7
weighted loss 304 60.8
negative penalty 23.8 66.1
ours-CAM 26.4 64.9
ours-feature-split 28.8 66.0

Table 2. Performance on COCO-Stuff for the 20 most biased categories.
Both our methods perform very well on all baselines except weighted loss
and remove co-occur images on the exclusive test split, while successfully
maintaining performance on the co-occurring test split.

gories do not co-occur with context. class balancing loss
yields marginal gains indicating that weighing the rare ex-
clusive cases alone cannot address contextual bias.

Next, we observe that both ours-CAM and ours-feature-
split outperform standard by 1.9% and 4.3% respectively
on the exclusive test set. ours-feature-split has a very
marginal drop of 0.2% on the co-occurring split, compared
to standard, while the performance drop is higher for ours-
CAM. On categories such as “ski” and “skateboard” which
have a very high co-occurrence bias with “person”, the mAP
boost from ours-feature-split is 24.2% and 19.5% respec-
tively (per-class mAP for both methods in supp. material).
Comparison with other baselines: We note that remove
co-occur images approach performs poorly as it relies only
on the exclusive images of the biased categories and do not
take advantage of the vast amount of co-occurring images
which supply complementary visual information. weighted
loss improves performance on the exclusive test split com-
pared to ours-feature-split (30.4% vs. 28.8%), but signifi-
cantly hurts performance on co-occurring split (60.8% vs.
66.0%). negative penalty does not hurt co-occurring split,
but has inferior performance compared to our methods on
the exclusive split. We also note that performance trends
exhibited by these methods are consistent across all other
datasets we test on; for all future experiments, we compare
our methods with standard and class balancing loss.
Performance on the non-biased categories: We evaluate
on the 60 non-biased object categories of COCO-Stuff and
observe that both ours-CAM and ours-feature-split perform
on par with standard, with a very mild drop of 0.2% over-
all mAP (details in supp. material). This indicates that
our methods, while successfully improving performance for
the biased categories, do not adversely effect the rest of the
(non-biased) categories.

5.1.2 Qualitative Analysis

Next, we use CAM as a visualizing tool to analyze how our
methods effectively tackle contextual bias.

standard vs. ours-CAM: In Fig. 6, we present evidence
where standard fails but ours-CAM succeeds* to recognize

“We determine ‘success’ when the predicted probability is >= 0.5 and
“failure’ otherwise.

(a) CA_I\_/I_‘of remote (b) CAM of skateboard

)

Standard Ours-CAM

Figure 6. Learning from the right thing: ours-CAM (a) “remote” is
contextually-biased by “person.” In the absence of “person,” ours-CAM
focuses on the right pixel regions compared to standard. (b) “skateboard”
co-occurs with “person.” standard wrongly focuses on “person” due to
contextual bias, while ours-CAM rightly focuses on “skateboard.”

CAM of skateboard
:’" " . o "

Standard Ours-CAM

CAM of ski

" Ours-CAM

Ours-CAM Ours-feature-split

Ours-feature-split

Figure 7. ours-CAM vs. ours-feature-split on the images for which ours-
feature-split is able to recognize where as ours-CAM fails. ours-CAM
primarily focuses on the object and does not use context whereas ours-
feature-split makes use of context for better prediction.

\

Figure 8. Learning from the right thing: ours-feature-split First 3
columns indicate success cases where ours-feature-split recognizes biased
categories occurring away from their context while strandard fails. Last
column: failure cases where both standard and ours-feature-split fail.

biased categories. In both cases where a biased category co-
occurs with context as well as occurs in its absence, ours-
CAM focuses on the right category thus “learns from the
right thing.”

ours-CAM vs. ours-feature-split: Fig. 7 presents cases
where ours-feature-split succeeds but ours-CAM struggles
to recognize biased categories. We observe that while ours-
CAM rightly focuses on the category’s pixel regions, ours-
feature-split additionally leverages the available context and
thus performs better.

standard vs. ours-feature-split: The first 3 columns in
Fig. 8 present evidence where the standard classifier fails
but ours-feature-split succeeds. For example, our method
is able to recognize “skateboard” and “snowboard” in the
absence of “person”, and “microwave” in the absence of
“oven”. By contrast, the standard classifier relies more on
the context, thus fails on these images. The last column
presents some failure cases where both ours-feature-split
and standard fail when biased categories occur without con-
text. Common failure cases are challenging scenarios when
the image has poor lighting, the object is zoomed out and
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Figure 9. Interpreting ours-feature-split by visualizing CAMs with re-
spect to W, (left) and Wy (right). W,, has learnt to consistently focus on
the actual category (e.g., car) while Wy captures context (e.g., road).

Methods | standard | ours-CAM | ours-feature-split
mAP 42.0 45.3 52.1

Table 3. Cross-dataset experiment where models trained on COCO-
Stuft are applied without fine-tuning on UnRel. ours-feature-split yields
huge boost over standard highlighting its generalizability on unseen data.
thus very small (e.g., microwave).

Analysing W, and Wg: Recall that in Sec. 4.2, ours-
feature-split is formulated with a goal to prominently cap-
ture biased category-specific features through W, and con-
text through Ws. We visually verify this by generating two
distinct class activation maps: (i) x, weighted by W, and
(i1) x5 weighted by Wy. From Fig. 9, it is evident that W,
learns to prominently focus on the category (e.g., handbag,
car) and Wy on the co-occurring context (e.g., person, road).

5.2. Cross dataset experiment on UnRel

We next perform a cross-dataset experiment by taking
our models trained on COCO-Stuff and testing them di-
rectly — without any fine-tuning — on UnRel dataset. Un-
Rel has objects that are out-of-context (e.g., cat on a skate-
board). Thus, a model that truly understands what the object
is would be able to correctly classify it compared to a model
that relies heavily on (or confuses the object with) context.
Thus, this setting is a great testbed to evaluate our methods.
Because we do not finetune, we evaluate only on the 3 cat-
egories of UnRel that overlap with the 20 biased categories
of COCO-Stuff. From Table 3, we observe that both ours-
CAM and ours-feature-split outperform standard by a large
margins. This clearly demonstrates that both our methods
learn from the right category and overcome contextual bias.

5.3. Attribute Classification

Here, we show that our approach of reducing contextual
bias generalizes to attributes. Our CAM-based approach is
not applicable to attributes, as they lack well-defined spatial
extents (details in Sec. 4.1). As noted in Sec 5.1, the inher-
ent contextual bias and difficulty in recognizing biased cat-

DeepFashion Animals with Attributes
(top-3 recall) (mAP)
Methods Exclusive Co-occur | Exclusive — Co-occur
standard 4.9 17.8 19.4 72.2
class balancing loss [10] 5.2 194 20.4 68.4
attribute decorrelation [17] - - 184 70.2
ours-feature-split 9.2 20.1 20.8 72.8

Table 4. Attribute Classification Performance: on DeepFashion and
Animals with Attributes computed on the 20 most biased attributes. ours-
feature-split offers boosts over all approaches for the exclusive test split,
without hurting performance on the co-occurring split.

egories in the absence of their context leads to low scores
on exclusive test split for all methods and datasets.

Results on DeepFashion: As is the common practice, we
report per class top-3 recall on DeepFashion [23]. From Ta-
ble 4, we note that ours-feature-split outperforms standard
by a significant margin on both test splits. For attributes
like trapeze and bell which exhibit strong co-occurrence
with striped and lace respectively, ours-feature-split yields
aboost of 21.2% and 17.4% top-3 recall respectively com-
pared to standard classifier. We present per-attribute results
and comparisons with other baselines in the suppl. material.
Results on Animals with Attributes: Animals with At-
tributes [35] suffers from severe bias among attributes, e.g.
blue and spots are highly correlated to coastal and long
leg respectively. In this task, the goal is to learn an at-
tribute classifier on “seen” animal categories (e.g “spots”
attribute from the animal category “dalmatian”) and evalu-
ate the model’s generalizability on unseen animal categories
(e.g. “spots” attribute on the unseen animal category “leop-
ard”). From Table 4, we observe that ours-feature-split of-
fers gains on the exclusive test split over other methods
without hurting the co-occurring case. In particular, we out-
perform attribute decorrelation [17], which was specifically
designed to decorrelate attributes.

6. Conclusion

We demonstrated the problem of contextual bias in pop-
ular object and attribute datasets by showing that standard
classifiers perform poorly when biased categories occur
away from their typical context. To tackle this issue, we
proposed two simple yet effective methods to decorrelate
feature representations of a biased category from its context.
Both methods perform better at recognizing biased classes
occurring away from their co-occurring context while main-
taining the overall performance. More importantly, our
methods generalize to new unseen datasets and perform sig-
nificantly better than standard methods. Our current frame-
work tackles contextual bias between pairs of categories;
future efforts should leverage more available (scene or cat-
egory) information and model relationships between them.
Extending proposed methods to tasks like object detection
and video action recognition is a worthy future direction.
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