


Does it even matter if a model inadvertently learns such

correlations? We believe this can cause problems on two

fronts: (1) failing to identify “microwave” in a differ-

ent context such as an “outdoor” scene or in the absence

of “refrigerator” and (2) hallucinating “refrigerator” even

in an indoor kitchen scene containing only “microwave.”

The issue of co-occurring bias is also prevalent in visual

attributes [23, 35]. For example, in the Deep Fashion

dataset [23], the attribute “trapeze” strongly co-occurs with

“striped.” This results in a less credible classifier that has

a hard time recognizing “trapeze” in clothes with “floral.”

Recent research has identified far more serious mistakes

made by trained models due to inherent biases in both lan-

guage and vision datasets – learning correlations between

ethnicity and certain sport activities [28], gender and profes-

sion [5, 16, 36], and age and gender of celebrities [2]. Such

grave confusion caused due to biases in the data impedes

the deployment of these models in real-world applications.

Given these issues, our goal is to train an unbiased visual

classifier that can accurately recognize a category both in

the presence and absence of its context. Specifically, given

two categories with a strong co-occurring bias, our aim is

to accurately recognize them when either one occurs ex-

clusively, and at the same time not hurt the performance

when they co-occur. To this end, we propose two key ideas.

First, we hypothesize that a network should learn about a

category by relying more on its corresponding pixel regions

than those of its context. Since we only have class labels,

we use class activation maps (CAM) [37] as “weak” loca-

tion annotations and minimize their mutual spatial overlap.

Building on this, we devise a second method that learns

feature representations to decorrelate a category from its

context. While the entire feature space learned by the net-

work jointly represents category and context, we explic-

itly carve out a subspace to represent categories that occur

away from typical context. We learn this feature subspace

only from training instances where a biased category oc-

curs in the absence of its context. In all other cases, the

model should also leverage context and thus the entire fea-

ture space. At test time, we make no such distinction and

the entire feature space is equally leveraged. Therefore,

in the example from Fig. 1, our goal is to learn a feature

subspace to represent “skateboard” while the entire feature

space jointly represents “skateboard” and “person.”

Through extensive evaluation, we demonstrate signifi-

cant performance gains for the hard cases where a cate-

gory occurs away from its typical context. Crucially, we

show that our framework does not adversely effect recogni-

tion performance when categories and context co-occur. To

summarize, we make the following contributions:

• With an aim to teach the network to “learn from the right

thing,” we propose a method that minimizes the over-

lap between the class activation maps (CAM) of the co-

occurring categories (Sec. 4.1).

• Building on the insights from the CAM-based method,

we propose a second method that learns feature represen-

tations that decorrelate context from category (Sec. 4.2).

• We apply both methods on two tasks: object and at-

tribute classification, and 4 datasets, and achieve signifi-

cant boosts over strong baselines for the hard cases where

a category occurs away from its typical context (Sec. 5).

2. Related work

Addressing biases: Prior work [32, 19, 33, 31] has shown

that existing datasets suffer from bias and are not perfectly

representative of the real world. Hence, a model trained

on such data will have difficulty generalizing to non-biased

cases. Attempts to reduce dataset bias include domain adap-

tation techniques [9] and data re-sampling [7, 21], e.g., so

that minority class instances are better represented. One

limitation of data re-sampling is that it can involve reducing

the dataset, leading to sub-optimal models. Recent adver-

sarial learning approaches [2, 20] try to mitigate bias from

the learned feature representations while optimizing per-

formance for the task at hand (e.g., removing gender bias

while classifying age). However, these methods would not

be directly applicable for mitigating contextual bias, as con-

text (the bias factor) can still be useful for recognition—so

it cannot be simply removed. Others study various forms

of bias in the context of image captioning (e.g., gender

bias) [16], image classification (e.g., ethnicity bias) [28],

and object recognition (e.g., socio-economic bias) [11].

Overall, contextual bias in visual recognition remains rel-

atively under explored.

Co-occurring-bias: Contextual bias is a well-studied prob-

lem in the field of natural language processing [25, 29],

however, it is much less studied in the computer vision com-

munity. In vision, most efforts consider context as a use-

ful cue [13, 3]. A few efforts have shown that a recogni-

tion model will fail to recognize an object without its co-

occurring context, but do not propose a solution [8, 26].

A recent method reduces contextual bias in video action

recognition [34], but it relies on temporal information and

thus cannot be applied to the image recognition problems

we tackle in this work. A pre-deep learning approach [17]

reduces the correlation (bias) between visual attributes by

leveraging additional knowledge in the form of semantic

groupings of attributes. Recently [38] tried to reduce con-

textual bias for object detection by learning focused fore-

ground features, but they require expensive bounding-box

annotations. In contrast, our deep learning approach does

not require any additional supervision apart from the ob-

ject/attribute class labels. Most importantly, to our knowl-

edge, there is no prior work focusing on mitigating contex-

tual bias for object classification as we do in this paper.

Relation to few-shot learning: Lastly, contextual bias
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Figure 3. Our CAM-based approach operates on category labels and

requires no ground-truth location annotations. Instead, we leverage CAMs

as weak location annotations and propose to minimize the mutual overlap

between a biased category and its co-occurring context.

Class Activation Maps: To this end, we propose to use

class activation maps (CAM) [37] as a proxy for object lo-

calization information. For a given image i and class r,
CAM(i, r) indicates the discriminative image regions used

by a deep network to identify r. Specifically, the final con-

volutional layer (convf ) of any typical network is followed

by a global pooling and a fully connected (fc) layer which

predicts a score for class r in image i. CAM(i, r) is gen-

erated by projecting back the weights of the fc layer for r
on convf and computing a weighted average of the feature

maps. Though CAMs are typically used as a visualization

technique, in this work, we also use them to reduce contex-

tual bias as we describe next.

Formulation: In our setup, for each biased category pair

(b, c) in S (defined in Sec. 3.1), we enforce minimal over-

lap of their CAMs via the loss function:

LO =
∑

i∈Ib∩Ic

CAM(i, b)⊙ CAM(i, c) (3)

CAM offers two nice properties: (1) it is learned only

through class labels without requiring any annotation effort

and (2) it is fully differentiable, and thus can be integrated

in an end-to-end network during training.
Ideally, Eq (3) should learn to reduce the spatial overlap

between co-occurring categories, without hurting the clas-
sification performance. However, while attempting to min-
imize overlap, Eq (3) could also lead to a trivial solution
where the CAMs of b and c drift apart from their actual
pixel regions. To prevent this without strongly-supervised
spatial annotations, we introduce a regularization term LR.
Specifically, we pre-train a separate network (offline) for
the standard classification task and generate CAMpre from
it for b and c. We then ground the CAMs of each category
to be closer to its pixel regions predicted from CAMpre. LR

is thus defined as follows:

LR =
∑

i∈Ib∩Ic

|CAMpre(i, b)− CAM(i, b)|+

|CAMpre(i, c)− CAM(i, c)|

(4)

We use a standard binary cross-entropy loss (LBCE) for

the task of multi-label classification. Thus, our final loss

becomes:

LCAM = λ1LO + λ2LR + LBCE, (5)

Fig. 3 for the entire approach. As we show in results

(Sec. 5), our CAM-based method successfully learns to rely

more on the biased category’s pixel regions thereby improv-

ing recognition performance. Our method yields large gains

when a biased category occurs in the absence of its typical

context. However, it sometimes hurts performance when

biased category co-occurs with context (discussed later in

Fig. 7). One reason could be that the pixel regions surround-

ing the co-occurring category also offer useful complemen-

tary information for recognizing the biased category. By

discouraging mutual spatial overlap, CAM-based approach

may not be able to leverage this information. This key in-

sight led to the formulation of our next approach, which

splits the feature space into two and separately represents

context and category, while posing no constraints on their

spatial extents.

4.2. Feature splitting and selective context suppres­
sion

Rather than optimizing CAMs, we propose to learn a

feature space that is robust to the inherent co-occurring bi-

ases in the training data. We observe that cases when a

biased category co-occurs with context are often visually

distinct from those where it occurs exclusively (see Fig. 1).

This motivates us to learn a dedicated feature (sub) space

to represent biased categories occurring away from their

typical context. While the entire feature space learned by

the model jointly represents context and category, this dedi-

cated subspace should decouple the representations of a cat-

egory from its context. We learn this feature subspace only

from training instances where biased categories occur in the

absence of their typical context. These modifications only

affect training; at inference time the architecture is identical

to the standard model.

Formulation: Given a deep neural network φ, let x denote

the D-dimensional output of the final pooling layer just be-

fore the fully-connected layer (fc). Let the weight matrix

associated with fc layer be W ∈ RD×M, where M denotes

the number of categories in a given multi-label dataset. The

predicted scores inferred by a classifier (ignoring the bias

term) are

ŷ = WTx. (6)

Because we wish to separate the feature representations of a

category from its context, we (row-wise) split W randomly

into two disjoint subsets: Wo and Ws, each of dimension
D

2
× M . Consequently, x is split into xo and xs and the

above equation can be rewritten as:

ŷ = WT
o xo +WT

s xs. (7)
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Figure 4. Our feature splitting approach where images and their associated category labels are provided as input. During training, we split the feature

space into two equal sub spaces: xo and xs. If a training instance has a biased category occurring in the absence of context, we suppress xs (no back-prop),

forcing the model to leverage xo. In all other scenarios, xo and xs are treated equally. At inference, the entire feature space is equally leveraged.

In scenarios where a biased category occurs in the ab-

sence of its context, we want to enforce the network to only

rely on Wo by suppressing Ws. This step allows the net-

work to explicitly capture the biased category-specific in-

formation when it occurs away from its context in Wo. On

the other hand, when a biased category co-occurs with its

context, we want to encourage the network to leverage both

Wo and Ws. This would allow the network to jointly en-

code category and context in the full feature space.

To achieve this, we make two minor modifications to

a standard classifier when a biased category occurs away

from its typical context. First, we disable back propaga-

tion through Ws thereby forcing the network to learn only

through Wo. Second, we set xs to a constant value. We

believe these two simple modifications allow us to suppress

context in selective cases, i.e., when a biased category oc-

curs away from its context. For instance, when ski occurs in

the absence of its typical context person, our method sup-

presses Ws thereby encouraging Wo to encode its appear-

ance; when ski co-occurs with person, both Wo and Ws are

leveraged.

In practice, we set xs = x̄s, where x̄s is the average of xs
over the last 10 mini-batches, and allowed stabler training.

Also, x̄s is a closer approximation to the range of values xs
witnesses at test time.

Intuition behind weighted loss: An underlying aspect of

our method is that the biased categories occur very rarely in

the absence of their context, making the training data dis-

tribution skewed (see Sec. 3). This is a problem since Wo

is learned solely from the (very few) samples with biased

categories occurring in the absence of their typical context.

We address this issue by associating a higher weight to such

training samples. All other samples are weighed equally.

Specifically, we define a weight α such that

α =















√

|Ib∩Ic|
|Ib\Ic|

, when b occurs exclusively

1 otherwise

(8)

Thus, α is the ratio of the number of training instances

where category occurs in the presence vs. absence of con-

text. A higher value of α for a given biased category indi-

cates more data skewness. 3.

Given ground-truth label t and sigmoid function σ, our

weighted binary cross-entropy loss is defined as follows:

LBCE = −α (tlog(σ(ŷ)) + (1− t)log(1− σ(ŷ))), (9)

Figure 4 illustrates the proposed method. While a stan-

dard classifier jointly encodes category and context, it fails

to recognize biased categories occurring without context.

By contrast, our approach splits the feature space and repre-

sents biased categories occurring without context in a ded-

icated subspace. As we will show in results, due to selec-

tive context suppression, this feature subspace successfully

captures category-specific information. Furthermore, in the

second subspace, our method effectively leverages context

when available and jointly encodes it with category.

As we show in results, leveraging context when avail-

able, distinguishes this method with the CAM-based

method described in Sec. 4.1 and plays a key role in recog-

nition performance. Further, while we selectively suppress

context when a biased category occurs away from its con-

text, the CAM-based method optimizes the mutual spa-

tial overlap when a biased category co-occurs with con-

text. We stress that both methods are applied only for the

K biased category pairs; thus, misclassification loss for the

other (non-biased) categories also plays an important role

in learning. Finally, our method poses no constraints on the

spatial extents of categories; thus, unlike our CAM-based

approach, is extensible to attributes.

4.3. Training setup

Determining biased categories: For each category, we

first identify other categories that occur frequently (at least

10%− 20% times, based on the dataset). Next, we parti-

tion the training data into non-overlapping 80 − 20 split.

We train a standard multi-class classifier with BCE loss on

the 80% split and compute bias (Eq. 1) on the 20% split.

While both methods proposed in this work can be applied to

any number of biased category pairs, we found that setting

K = 20 (Sec. 3.1) sufficiently captures biased categories in

all the datasets we study here.

3In practice, we ensure α is at least αmin (a constant value > 1) when

b occurs exclusively.
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