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Abstract

We present a simple, fully-convolutional model for real-
time instance segmentation that achieves 29.8 mAP on MS
COCO at 33.5 fps evaluated on a single Titan Xp, which is
significantly faster than any previous competitive approach.
Moreover, we obtain this result after training on only one
GPU. We accomplish this by breaking instance segmenta-
tion into two parallel subtasks: (1) generating a set of pro-
totype masks and (2) predicting per-instance mask coeffi-
cients. Then we produce instance masks by linearly combin-
ing the prototypes with the mask coefficients. We find that
because this process doesn’t depend on repooling, this ap-
proach produces very high-quality masks and exhibits tem-
poral stability for free. Furthermore, we analyze the emer-
gent behavior of our prototypes and show they learn to lo-
calize instances on their own in a translation variant man-
ner, despite being fully-convolutional. Finally, we also pro-
pose Fast NMS, a drop-in 12 ms faster replacement for stan-
dard NMS that only has a marginal performance penalty.

1. Introduction

“Boxes are stupid anyway though, I'm probably a true
believer in masks except I can’t get YOLO to learn them.”
— Joseph Redmon, YOLOV3 [36]

What would it take to create a real-time instance seg-
mentation algorithm? Over the past few years, the vi-
sion community has made great strides in instance seg-
mentation, in part by drawing on powerful parallels from
the well-established domain of object detection. State-of-
the-art approaches to instance segmentation like Mask R-
CNN [18] and FCIS [24] directly build off of advances in
object detection like Faster R-CNN [37] and R-FCN [8].
Yet, these methods focus primarily on performance over
speed, leaving the scene devoid of instance segmentation
parallels to real-time object detectors like SSD [30] and
YOLO [35, 36]. In this work, our goal is to fill that gap with
a fast, one-stage instance segmentation model in the same
way that SSD and YOLO fill that gap for object detection.

N
o

FCIS
38 ® v Mask-RCNN
RetinaMask
36
* PA-Net
a 3 @® MS-RCNN
E 52 Ours
¥
% 30 *
Z 5] ‘s
26
24 A
22 T T T T
0 10 20 30 40 50

FPS
Figure 1: Speed-performance trade-off for various instance
segmentation methods on COCO. To our knowledge, ours
is the first real-time (above 30 FPS) approach with around
30 mask mAP on COCO test-dev.

However, instance segmentation is hard—much harder
than object detection. One-stage object detectors like SSD
and YOLO are able to speed up existing two-stage de-
tectors like Faster R-CNN by simply removing the sec-
ond stage and making up for the lost performance in other
ways. The same approach is not easily extendable, how-
ever, to instance segmentation. State-of-the-art two-stage
instance segmentation methods depend heavily on feature
localization to produce masks. That is, these methods “re-
pool” features in some bounding box region (e.g., via Rol-
pool/align), and then feed these now localized features to
their mask predictor. This approach is inherently sequential
and is therefore difficult to accelerate. One-stage methods
that perform these steps in parallel like FCIS do exist, but
they require significant amounts of post-processing after lo-
calization, and thus are still far from real-time.

To address these issues, we propose YOLACT!, a real-
time instance segmentation framework that forgoes an ex-
plicit localization step. Instead, YOLACT breaks up in-
stance segmentation into two parallel tasks: (1) generat-
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ing a dictionary of non-local prototype masks over the en-
tire image, and (2) predicting a set of linear combination
coefficients per instance. Then producing a full-image in-
stance segmentation from these two components is simple:
for each instance, linearly combine the prototypes using the
corresponding predicted coefficients and then crop with a
predicted bounding box. We show that by segmenting in
this manner, the network learns how to localize instance
masks on its own, where visually, spatially, and semanti-
cally similar instances appear different in the prototypes.

Moreover, since the number of prototype masks is inde-
pendent of the number of categories (e.g., there can be more
categories than prototypes), YOLACT learns a distributed
representation in which each instance is segmented with a
combination of prototypes that are shared across categories.
This distributed representation leads to interesting emergent
behavior in the prototype space: some prototypes spatially
partition the image, some localize instances, some detect in-
stance contours, some encode position-sensitive directional
maps (similar to those obtained by hard-coding a position-
sensitive module in FCIS [24]), and most do a combination
of these tasks (see Figure 5).

This approach also has several practical advantages.
First and foremost, it’s fast: because of its parallel struc-
ture and extremely lightweight assembly process, YOLACT
adds only a marginal amount of computational overhead to
a one-stage backbone detector, making it easy to reach 30
fps even when using ResNet-101 [19]; in fact, the entire
mask branch takes only ~5 ms to evaluate. Second, masks
are high-quality: since the masks use the full extent of the
image space without any loss of quality from repooling, our
masks for large objects are significantly higher quality than
those of other methods (see Figure 7). Finally, it’s gen-
eral: the idea of generating prototypes and mask coefficients
could be added to almost any modern object detector.

Our main contribution is the first real-time (> 30 fps) in-
stance segmentation algorithm with competitive results on
the challenging MS COCO dataset [28] (see Figure 1). In
addition, we analyze the emergent behavior of YOLACT’s
prototypes and provide experiments to study the speed
vs. performance trade-offs obtained with different back-
bone architectures, numbers of prototypes, and image res-
olutions. We also provide a novel Fast NMS approach that
is 12ms faster than traditional NMS with a negligible per-
formance penalty. The code for YOLACT is available at
https://github.com/dbolya/yolact.

2. Related Work

Instance Segmentation Given its importance, a lot of re-
search effort has been made to push instance segmentation
accuracy. Mask-RCNN [18] is a representative two-stage
instance segmentation approach that first generates candi-
date region-of-interests (ROIs) and then classifies and seg-

ments those ROIs in the second stage. Follow-up works
try to improve its accuracy by e.g., enriching the FPN
features [29] or addressing the incompatibility between a
mask’s confidence score and its localization accuracy [20].
These two-stage methods require re-pooling features for
each ROI and processing them with subsequent computa-
tions, which make them unable to obtain real-time speeds
(30 fps) even when decreasing image size (see Table 2c¢).

One-stage instance segmentation methods generate po-
sition sensitive maps that are assembled into final masks
with position-sensitive pooling [0, 24] or combine seman-
tic segmentation logits and direction prediction logits [4].
Though conceptually faster than two-stage methods, they
still require repooling or other non-trivial computations
(e.g., mask voting). This severely limits their speed, plac-
ing them far from real-time. In contrast, our assembly step
is much more lightweight (only a linear combination) and
can be implemented as one GPU-accelerated matrix-matrix
multiplication, making our approach very fast.

Finally, some methods first perform semantic segmen-
tation followed by boundary detection [22], pixel clus-
tering [3, 25], or learn an embedding to form instance
masks [32, 17, 9, 13]. Again, these methods have multi-
ple stages and/or involve expensive clustering procedures,
which limits their viability for real-time applications.

Real-time Instance Segmentation While real-time ob-
ject detection [30, 34, 35, 36], and semantic segmenta-
tion [2, 41, 33, 11, 47] methods exist, few works have
focused on real-time instance segmentation. Straight to
Shapes [21] and Box2Pix [42] can perform instance seg-
mentation in real-time (30 fps on Pascal SBD 2012 [12, 16]
for Straight to Shapes, and 10.9 fps on Cityscapes [5] and 35
fps on KITTI [15] for Box2Pix), but their accuracies are far
from that of modern baselines. In fact, Mask R-CNN [1§]
remains one of the fastest instance segmentation methods
on semantically challenging datasets like COCO [28] (13.5
fps on 5502 px images; see Table 2c).

Prototypes Learning prototypes (aka vocabulary or code-
book) has been extensively explored in computer vision.
Classical representations include textons [23] and visual
words [40], with advances made via sparsity and locality
priors [44, 43, 46]. Others have designed prototypes for ob-
ject detection [1, 45, 38]. Though related, these works use
prototypes to represent features, whereas we use them to
assemble masks for instance segmentation. Moreover, we
learn prototypes that are specific to each image, rather than
global prototypes shared across the entire dataset.

3. YOLACT

Our goal is to add a mask branch to an existing one-stage
object detection model in the same vein as Mask R-CNN
[18] does to Faster R-CNN [37], but without an explicit fea-
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Figure 2: YOLACT Architecture Blue/yellow indicates low/high values in the prototypes, gray nodes indicate functions
that are not trained, and & = 4 in this example. We base this architecture off of RetinaNet [27] using ResNet-101 + FPN.

ture localization step (e.g., feature repooling). To do this,
we break up the complex task of instance segmentation into
two simpler, parallel tasks that can be assembled to form
the final masks. The first branch uses an FCN [31] to pro-
duce a set of image-sized “prototype masks” that do not de-
pend on any one instance. The second adds an extra head
to the object detection branch to predict a vector of “mask
coefficients” for each anchor that encode an instance’s rep-
resentation in the prototype space. Finally, for each instance
that survives NMS, we construct a mask for that instance by
linearly combining the work of these two branches.

Rationale We perform instance segmentation in this way
primarily because masks are spatially coherent; i.e., pixels
close to each other are likely to be part of the same instance.
While a convolutional (conv) layer naturally takes advan-
tage of this coherence, a fully-connected (fc) layer does not.
That poses a problem, since one-stage object detectors pro-
duce class and box coefficients for each anchor as an output
of an fc layer.” Two stage approaches like Mask R-CNN get
around this problem by using a localization step (e.g., Rol-
Align), which preserves the spatial coherence of the fea-
tures while also allowing the mask to be a conv layer out-
put. However, doing so requires a significant portion of the
model to wait for a first-stage RPN to propose localization
candidates, inducing a significant speed penalty.

Thus, we break the problem into two parallel parts, mak-
ing use of fc layers, which are good at producing semantic
vectors, and conv layers, which are good at producing spa-
tially coherent masks, to produce the “mask coefficients”
and “prototype masks”, respectively. Then, because proto-
types and mask coefficients can be computed independently,

2To show that this is an issue, we develop an “fc-mask” model that pro-
duces masks for each anchor as the reshaped output of an fc layer. As our
experiments in Table 2c¢ show, simply adding masks to a one-stage model
as fc outputs only obtains 20.7 mAP and is thus very much insufficient.

the computational overhead over that of the backbone de-
tector comes mostly from the assembly step, which can be
implemented as a single matrix multiplication. In this way,
we can maintain spatial coherence in the feature space while
still being one-stage and fast.

3.1. Prototype Generation

The prototype generation branch (protonet) predicts a set
of k prototype masks for the entire image. We implement
protonet as an FCN whose last layer has k& channels (one
for each prototype) and attach it to a backbone feature layer
(see Figure 3 for an illustration). While this formulation is
similar to standard semantic segmentation, it differs in that
we exhibit no explicit loss on the prototypes. Instead, all
supervision for these prototypes comes from the final mask
loss after assembly.

We note two important design choices: taking pro-
tonet from deeper backbone features produces more ro-
bust masks, and higher resolution prototypes result in both
higher quality masks and better performance on smaller ob-
jects. Thus, we use FPN [20] because its largest feature
layers (Ps in our case; see Figure 2) are the deepest. Then,
we upsample it to one fourth the dimensions of the input
image to increase performance on small objects.

Finally, we find it important for the protonet’s output to
be unbounded, as this allows the network to produce large,
overpowering activations for prototypes it is very confident
about (e.g., obvious background). Thus, we have the option
of following protonet with either a Re LU or no nonlinearity.
We choose Re LU for more interpretable prototypes.

3.2. Mask Coefficients

Typical anchor-based object detectors have two branches
in their prediction heads: one branch to predict c class con-
fidences, and the other to predict 4 bounding box regres-
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Figure 3: Protonet Architecture The labels denote fea-
ture size and channels for an image size of 550 x 550. Ar-
rows indicate 3 x 3 conv layers, except for the final conv
which is 1 x 1. The increase in size is an upsample fol-
lowed by a conv. Inspired by the mask branch in [18].

sors. For mask coefficient prediction, we simply add a third
branch in parallel that predicts & mask coefficients, one cor-
responding to each prototype. Thus, instead of producing
4 + ¢ coefficients per anchor, we produce 4 + ¢ + k.

Then for nonlinearity, we find it important to be able to
subtract out prototypes from the final mask. Thus, we apply
tanh to the k mask coefficients, which produces more sta-
ble outputs over no nonlinearity. The relevance of this de-
sign choice is apparent in Figure 2, as neither mask would
be constructable without allowing for subtraction.

3.3. Mask Assembly

To produce instance masks, we combine the work of the
prototype branch and mask coefficient branch, using a lin-
ear combination of the former with the latter as coefficients.
We then follow this by a sigmoid nonlinearity to produce
the final masks. These operations can be implemented effi-
ciently using a single matrix multiplication and sigmoid:

M = o(PC7T) (1

where P is an h X w x k matrix of prototype masks and C' is
an X k matrix of mask coefficients for n instances surviv-
ing NMS and score thresholding. Other, more complicated
combination steps are possible; however, we keep it simple
(and fast) with a basic linear combination.

Losses We use three losses to train our model: classifi-
cation loss L.;s, box regression loss L., and mask loss
Lnask with the weights 1, 1.5, and 6.125 respectively. Both
L5 and Ly, are defined in the same way as in [30]. Then
to compute mask loss, we simply take the pixel-wise binary
cross entropy between assembled masks M and the ground
truth masks Mg Lyqsk = BCE(M, Mg).

Cropping Masks We crop the final masks with the pre-
dicted bounding box during evaluation. During training, we
instead crop with the ground truth bounding box, and divide
L,qs1 by the ground truth bounding box area to preserve
small objects in the prototypes.

3.4. Emergent Behavior

Our approach might seem surprising, as the general con-
sensus around instance segmentation is that because FCNs
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Figure 4: Head Architecture We use a shallower predic-
tion head than RetinaNet [27] and add a mask coefficient
branch. This is for c classes, a anchors for feature layer P;,
and k prototypes. See Figure 3 for a key.

are translation invariant, the task needs translation variance
added back in [24]. Thus methods like FCIS [24] and
Mask R-CNN [ 18] try to explicitly add translation variance,
whether it be by directional maps and position-sensitive re-
pooling, or by putting the mask branch in the second stage
so it does not have to deal with localizing instances. In
our method, the only translation variance we add is to crop
the final mask with the predicted bounding box. However,
we find that our method also works without cropping for
medium and large objects, so this is not a result of crop-
ping. Instead, YOLACT learns how to localize instances
on its own via different activations in its prototypes.

To see how this is possible, first note that the prototype
activations for the solid red image (image a) in Figure 5 are
actually not possible in an FCN without padding. Because
a convolution outputs to a single pixel, if its input every-
where in the image is the same, the result everywhere in the
conv output will be the same. On the other hand, the consis-
tent rim of padding in modern FCNs like ResNet gives the
network the ability to tell how far away from the image’s
edge a pixel is. Conceptually, one way it could accomplish
this is to have multiple layers in sequence spread the padded
0’s out from the edge toward the center (e.g., with a kernel
like [1,0]). This means ResNet, for instance, is inherently
translation variant, and our method makes heavy use of that
property (images b and c exhibit clear translation variance).

We observe many prototypes to activate on certain “par-
titions” of the image. That is, they only activate on objects
on one side of an implicitly learned boundary. In Figure
5, prototypes 1-3 are such examples. By combining these
partition maps, the network can distinguish between differ-
ent (even overlapping) instances of the same semantic class;
e.g., in image d, the green umbrella can be separated from
the red one by subtracting prototype 3 from prototype 2.

Furthermore, being learned objects, prototypes are com-
pressible. That is, if protonet combines the functionality of
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Figure 5: Prototype Behavior The activations of the same
six prototypes (y axis) across different images (x axis). Pro-
totypes 1-3 respond to objects to one side of a soft, implicit
boundary (marked with a dotted line). Prototype 4 activates
on the bottom-left of objects (for instance, the bottom left of
the umbrellas in image d); prototype 5 activates on the back-
ground and on the edges between objects; and prototype 6
segments what the network perceives to be the ground in the
image. These last 3 patterns are most clear in images d-f.

multiple prototypes into one, the mask coefficient branch
can learn which situations call for which functionality. For
instance, in Figure 5, prototype 2 is a partitioning prototype
but also fires most strongly on instances in the bottom-left
corner. Prototype 3 is similar but for instances on the right.
This explains why in practice, the model does not degrade
in performance even with as low as k = 32 prototypes (see
Table 2b). On the other hand, increasing k is ineffective
most likely because predicting coefficients is difficult. If
the network makes a large error in even one coefficient, due
to the nature of linear combinations, the produced mask can
vanish or include leakage from other objects. Thus, the net-
work has to play a balancing act to produce the right coef-
ficients, and adding more prototypes makes this harder. In
fact, we find that for higher values of k, the network simply
adds redundant prototypes with small edge-level variations
that slightly increase A Pys, but not much else.

4. Backbone Detector

For our backbone detector we prioritize speed as well
as feature richness, since predicting these prototypes and

coefficients is a difficult task that requires good features to
do well. Thus, the design of our backbone detector closely
follows RetinaNet [27] with an emphasis on speed.

YOLACT Detector We use ResNet-101 [19] with FPN
[26] as our default feature backbone and a base image size
of 550 x 550. We do not preserve aspect ratio in order to
get consistent evaluation times per image. Like RetinaNet,
we modify FPN by not producing P, and producing Py and
P as successive 3 x 3 stride 2 conv layers starting from P;
(not Cs) and place 3 anchors with aspect ratios [1,1/2, 2]
on each. The anchors of P53 have areas of 24 pixels squared,
and every subsequent layer has double the scale of the pre-
vious (resulting in the scales [24, 48, 96, 192, 384]). For the
prediction head attached to each P;, we have one 3 x 3 conv
shared by all three branches, and then each branch gets its
own 3 X 3 conv in parallel. Compared to RetinaNet, our
prediction head design (see Figure 4) is more lightweight
and much faster. We apply smooth-L; loss to train box re-
gressors and encode box regression coordinates in the same
way as SSD [30]. To train class prediction, we use softmax
cross entropy with ¢ positive labels and 1 background label,
selecting training examples using OHEM [39] with a 3:1
neg:pos ratio. Thus, unlike RetinaNet we do not use focal
loss, which we found not to be viable in our situation.

With these design choices, we find that this backbone
performs better and faster than SSD [30] modified to use
ResNet-101 [19], with the same image size.

5. Other Improvements

We also discuss other improvements that either increase
speed with little effect on performance or increase perfor-
mance with no speed penalty.

Fast NMS After producing bounding box regression coef-
ficients and class confidences for each anchor, like most ob-
ject detectors we perform NMS to suppress duplicate detec-
tions. In many previous works [35, 36, 30, 37, 18, 27], NMS
is performed sequentially. That is, for each of the c classes
in the dataset, sort the detected boxes descending by con-
fidence, and then for each detection remove all those with
lower confidence than it that have an IoU overlap greater
than some threshold. While this sequential approach is fast
enough at speeds of around 5 fps, it becomes a large barrier
for obtaining 30 fps (for instance, a 10 ms improvement at
5 fps results in a 0.26 fps boost, while a 10 ms improvement
at 30 fps results in a 12.9 fps boost).

To fix the sequential nature of traditional NMS, we in-
troduce Fast NMS, a version of NMS where every instance
can be decided to be kept or discarded in parallel. To do
this, we simply allow already-removed detections to sup-
press other detections, which is not possible in traditional
NMS. This relaxation allows us to implement Fast NMS
entirely in standard GPU-accelerated matrix operations.
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images have the confidence threshold set to 0.3.

To perform Fast NMS, we first compute a ¢ X n X n
pairwise IoU matrix X for the top n detections sorted de-
scending by score for each of c classes. Batched sorting
on the GPU is readily available and computing IoU can
be easily vectorized. Then, we remove detections if there
are any higher-scoring detections with a corresponding IoU
greater than some threshold ¢t. We efficiently implement
this by first setting the lower triangle and diagonal of X to
0: Xy;; =0, Vk,j,7 > j, which can be performed in one
batched t riu call, and then taking the column-wise max:

Kkj = m?x(inj) Vk‘,] (2)
to compute a matrix /' of maximum IoU values for each
detection. Finally, thresholding this matrix with ¢ (K < t)
will indicate which detections to keep for each class.
Because of the relaxation, Fast NMS has the effect of
removing slightly too many boxes. However, the perfor-
mance hit caused by this is negligible compared to the stark
increase in speed (see Table 2a). In our code base, Fast
NMS is 11.8 ms faster than a Cython implementation of
traditional NMS while only reducing performance by 0.1
mAP. In the Mask R-CNN benchmark suite [ 18], Fast NMS
is 15.0 ms faster than their CUDA implementation of tradi-
tional NMS with a performance loss of only 0.3 mAP.

Semantic Segmentation Loss While Fast NMS trades a
small amount of performance for speed, there are ways to

[ i 5 : ; = : N
v set. This base model achieves 29.8 mAP at 33.0 fps. All

increase performance with no speed penalty. One of those
ways is to apply extra losses to the model during training
using modules not executed at test time. This effectively
increases feature richness while at no speed penalty.

Thus, we apply a semantic segmentation loss on our fea-
ture space using layers that are only evaluated during train-
ing. Note that because we construct the ground truth for this
loss from instance annotations, this does not strictly capture
semantic segmentation (i.e., we do not enforce the standard
one class per pixel). To create predictions during training,
we simply attach a 1x1 conv layer with c output channels di-
rectly to the largest feature map (F5) in our backbone. Since
each pixel can be assigned to more than one class, we use
sigmoid and c channels instead of softmax and ¢ + 1. This
loss is given a weight of 1 and results in a +0.4 mAP boost.

6. Results

We report instance segmentation results on MS COCO
[28] and Pascal 2012 SBD [16] using the standard metrics.
For MS COCO, we train on train2017 and evaluate on
val2017 and test—-dev.

Implementation Details We train all models with batch
size 8 on one GPU using ImageNet [ | 0] pretrained weights.
‘We find that this is a sufficient batch size to use batch norm,
so we leave the pretrained batch norm unfrozen but do not
add any extra bn layers. We train with SGD for 800k itera-
tions starting at an initial learning rate of 10~ and divide by
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Figure 7: Mask Quality Our masks are typically higher quality than those of Mask R-CNN [18] and FCIS [24] because of

the larger mask size and lack of feature repooling.

10 at iterations 280k, 600k, 700k, and 750k, using a weight
decay of 5x10~%, a momentum of 0.9, and all data aug-
mentations used in SSD [30]. For Pascal, we train for 120k
iterations and divide the learning rate at 60k and 100k. We
also multiply the anchor scales by 4/3, as objects tend to
be larger. Training takes 4-6 days (depending on config) on
one Titan Xp for COCO and less than 1 day on Pascal.

Mask Results We first compare YOLACT to state-of-the
art methods on MS COCO’s test—dev setin Table 1. Be-
cause our main goal is speed, we compare against other
single model results with no test-time augmentations. We
report all speeds computed on a single Titan Xp, so some
listed speeds may be faster than in the original paper.

YOLACT-550 offers competitive instance segmentation
performance while at 3.8x the speed of the previous fastest
instance segmentation method on COCO. We also note
an interesting difference in where the performance of our
method lies compared to others. Supporting our qualitative
findings in Figure 7, the gap between YOLACT-550 and
Mask R-CNN at the 50% overlap threshold is 9.5 AP, while
it’s 6.6 at the 75% IoU threshold. This is different from
the performance of FCIS, for instance, compared to Mask
R-CNN where the gap is consistent (AP values of 7.5 and
7.6 respectively). Furthermore, at the highest (95%) IoU
threshold, we outperform Mask R-CNN with 1.6 vs. 1.3 AP.

We also report numbers for alternate model configura-
tions in Table 1. In addition to our base 550 x 550 im-
age size model, we train 400 x 400 (YOLACT-400) and
700 x 700 (YOLACT-700) models, adjusting the anchor
scales accordingly (s, = s550/550 * x). Lowering the im-
age size results in a large decrease in performance, demon-
strating that instance segmentation naturally demands larger
images. Then, raising the image size decreases speed sig-
nificantly but also increases performance, as expected.

In addition to our base backbone of ResNet-101 [19],
we also test ResNet-50 and DarkNet-53 [36] to obtain even
faster results. If higher speeds are preferable we suggest
using ResNet-50 or DarkNet-53 instead of lowering the im-

age size, as these configurations perform much better than
YOLACT-400, while only being slightly slower.

Finally, we also train and evaluate our ResNet-50 model
on Pascal 2012 SBD in Table 3. YOLACT clearly out-
performs popular approaches that report SBD performance,
while also being significantly faster.

Mask Quality Because we produce a final mask of size
138 x 138, and because we create masks directly from the
original features (with no repooling to transform and poten-
tially misalign the features), our masks for large objects are
noticeably higher quality than those of Mask R-CNN [ 18]
and FCIS [24]. For instance, in Figure 7, YOLACT pro-
duces a mask that cleanly follows the boundary of the arm,
whereas both FCIS and Mask R-CNN have more noise.
Moreover, despite being 5.9 mAP worse overall, at the 95%
IoU threshold, our base model achieves 1.6 AP while Mask
R-CNN obtains 1.3. This indicates that repooling does re-
sult in a quantifiable decrease in mask quality.

Temporal Stability Although we only train using static
images and do not apply any temporal smoothing, we find
that our model produces more temporally stable masks on
videos than Mask R-CNN, whose masks jitter across frames
even when objects are stationary. We believe our masks are
more stable in part because they are higher quality (thus
there is less room for error between frames), but mostly be-
cause our model is one-stage. Masks produced in two-stage
methods are highly dependent on their region proposals in
the first stage. In contrast for our method, even if the model
predicts different boxes across frames, the prototypes are
not affected, yielding much more temporally stable masks.

7. Discussion

Despite our masks being higher quality and having nice
properties like temporal stability, we fall behind state-of-
the-art instance segmentation methods in overall perfor-
mance, albeit while being much faster. Most errors are
caused by mistakes in the detector: misclassification, box



Method Backbone FPS  Time AP  AP50 AP7s APs AP);  APL
PA-Net [29] R-50-FPN 4.7 2128 36.6  58.0 39.3 16.3 38.1 53.1
RetinaMask [14] R-101-FPN 6.0 166.7 347 554 36.9 14.3 36.7 50.5
FCIS [24] R-101-C5 6.6 151.5 29.5 515 30.2 8.0 31.0 49.7
Mask R-CNN [18] R-101-FPN 8.6 116.3 357  58.0 37.8 15.5 38.1 52.4
MS R-CNN [20] R-101-FPN 8.6 116.3 383 588 41.5 17.8 40.4 54.4
YOLACT-550 R-101-FPN 335 298 29.8 485 31.2 9.9 31.3 47.7
YOLACT-400 R-101-FPN 453 221 249 420 254 5.0 253 45.0
YOLACT-550 R-50-FPN 450 222 282  46.6 29.2 9.2 29.3 44.8
YOLACT-550 D-53-FPN 40.7 246 28.7 468 30.0 9.5 29.6 45.5
YOLACT-700 R-101-FPN 234 427 312  50.6 32.8 12.1 333 47.1

Table 1: MS COCO [28] Results We compare to state-of-the-art methods for mask mAP and speed on COCO test-dev
and include several ablations of our base model, varying backbone network and image size. We denote the backbone archi-

tecture with network—-depth-features, where R and D refer to ResNet [

] and DarkNet [36], respectively. Our base

model, YOLACT-550 with ResNet-101, is 3.9x faster than the previous fastest approach with competitive mask mAP.

Method NMS AP FPS Time k AP FPS  Time Method AP FPS Time
YOLACT Standard  30.0 24.0 41.6 8 268 33.0 304 FCIS w/o Mask Voting 27.8 9.5 105.3
Fast 299 335 29.8 16 27.1 328 30.5 Mask R-CNN (550 x 550) 322 13.5 73.9
* "
Fast 35.8 9.9 101.0 128 276 315 318 YOLACT-550 (Ours) 299 33.0 303
256 277 298 33.6

(a) Fast NMS Fast NMS performs only slightly

worse than standard NMS, while being around 12
ms faster. We also observe a similar trade-off im-
plementing Fast NMS in Mask R-CNN.

(b) Prototypes Choices for
k. We choose 32 for its mix
of performance and speed.

(c) Accelerated Baselines We compare to other
baseline methods by tuning their speed-accuracy
trade-offs. fc-mask is our model but with 16 x 16
masks produced from an fc layer.

Table 2: Ablations All models evaluated on COCO val2017 using our servers. Models in Table 2b were trained for 400k
iterations instead of 800k. Time in milliseconds reported for convenience.

Method Backbone  FPS  Time mAP;, mAP7,
MNC [7] VGG-16 2.8 360 63.5 41.5
FCIS [24] R-101-C5 9.6 104 65.7 52.1
YOLACT-550 R-50-FPN  47.6  21.0 72.3 56.2
Table 3: Pascal 2012 SBD [16] Results Timing for FCIS

redone on a Titan Xp for fairness. Since Pascal has fewer
and easier detections than COCO, YOLACT does much bet-
ter than previous methods. Note that COCO and Pascal FPS
are not comparable because Pascal has fewer classes.

misalignment, etc. However, we have identified two typical
errors caused by YOLACT’s mask generation algorithm.

Localization Failure If there are too many objects in one
spot in a scene, the network can fail to localize each object
in its own prototype. In these cases, the network will out-
put something closer to a foreground mask than an instance
segmentation for some objects in the group; e.g., in the first
image in Figure 6 (row 1 column 1), the blue truck under
the red airplane is not properly localized.

Leakage Our network leverages the fact that masks are
cropped after assembly, and makes no attempt to suppress
noise outside of the cropped region. This works fine when
the bounding box is accurate, but when it is not, that noise
can creep into the instance mask, creating some “leakage”

from outside the cropped region. This can also happen when
two instances are far away from each other, because the net-
work has learned that it doesn’t need to localize far away
instances—the cropping will take care of it. However, if the
predicted bounding box is too big, the mask will include
some of the far away instance’s mask as well. For instance,
Figure 6 (row 2 column 4) exhibits this leakage because the
mask branch deems the three skiers to be far enough away
to not have to separate them.

Understanding the AP Gap However, localization fail-
ure and leakage alone are not enough to explain the almost
6 mAP gap between YOLACT’s base model and, say, Mask
R-CNN. Indeed, our base model on COCO has just a 2.5
mAP difference between its test-dev mask and box mAP
(29.8 mask, 32.3 box), meaning our base model would only
gain a few points of mAP even with perfect masks. More-
over, Mask R-CNN has this same mAP difference (35.7
mask, 38.2 box), which suggests that the gap between the
two methods lies in the relatively poor performance of our
detector and not in our approach to generating masks.
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