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Abstract

We propose a novel approach that disentangles the iden-
tity and pose of objects for image generation. Our model
takes as input an ID image and a pose image, and generates
an output image with the identity of the ID image and the
pose of the pose image. Unlike most previous unsupervised
work which rely on cyclic constraints, which can often be
brittle, we instead propose to learn this in a self-supervised
way. Specifically, we leverage unlabeled videos to automat-
ically construct pseudo ground-truth targets to directly su-
pervise our model. To enforce disentanglement, we propose
a novel disentanglement loss, and to improve realism, we
propose a pixel-verification loss in which the generated im-
age’s pixels must trace back to the ID input. We conduct
extensive experiments on both synthetic and real images to
demonstrate improved realism, diversity, and ID/pose dis-
entanglement compared to existing methods.

1. Introduction

Consider the NYC street scene shown in Fig. 1 (left).
As a human, it is not difficult to imagine what a red sedan
would look like in place of the yellow taxis. This is likely
because we have been exposed to thousands of different cars
in various poses in our lifetime, and have learned how to
disentangle a car’s identity from its pose. In this paper, we
propose to learn a model to perform this task — specifically,
synthesizing a novel pose of an object instance conditioned
on the pose of a different reference object (see Fig. 1, right),
without any labels.

This task requires the model to disentangle the object’s
identity and pose. For example, in Fig. 1, in order to encode
the ID information of the red sedan, the model needs to cap-
ture the appearance and shape that is unique to that specific
car instance, independent of pose. Meanwhile, the model
also needs to encode the pose information specified by the
taxis (the pose reference image), independent of identity. It
can then combine the identity of the red sedan with the pose
of the taxis to create a new image with the desired pose.

Disentangled representations, in which e.g., one latent

Figure 1. Our self-supervised model learns to disentangle identity
(red sedan) and pose (taxis) of objects for image generation.

subspace controls one factor of variation, can provide ro-
bustness to complex variations in the data and be useful
for downstream visual recognition tasks [S]. There has
been a long line of research on learning disentangled rep-
resentations for images [51, 43, 55, 10, 46, 15, 20, 21, 21].
Early works like Tenenbaum and Freeman [51] operate in
a fully-supervised setting in which the factors of interest
(e.g., content and style) are annotated for each training im-
age. We instead aim to solve this task with a self-supervised
approach, without using any pose or identity annotations.
Self-supervised disentanglement of identity and pose is an
extremely challenging problem, since the two factors are
highly intertwined. For example, shape constitutes an im-
portant part of an object’s identity — to distinguish a side-
view van from a side-view sedan, we need to analyze their
specific shape differences. On the other hand, the difference
between pose and shape is often subtle and interdependent
— as the pose of the car changes, so does its perceived shape.

To tackle this, recent image generation methods either
introduce cyclic constraints [35, 20, 15, 21, 25] (similar in
spirit to cycleGAN [60]) or inject priors on the representa-
tion based on domain knowledge [46, 27]. Though promis-
ing, these methods typically only work well when there is
no large pose change in the objects. The reason is quite intu-
itive: due to the lack of direct supervision (i.e., ground-truth
target images), the supervisory signals provided by either
the proposed constraints or the prior on the representation
are often insufficient to induce disentangled representations.

We take a different approach. We utilize unlabeled
videos to automatically construct training triplets, each con-
sisting of an identity reference image, a pose reference im-



age, and a pseudo ground-truth target, to train our model.
The requirement for the pseudo ground-truth target is that
it should consist of an object that has the identity of the
identity reference and the pose of the pose reference. We
exploit the fact that frames in a short video clip are likely to
contain instances of the same object, to sample the identity
reference and target image. We then find a nearest neigh-
bor of the target image in pose space to construct the pose
reference image. Though an approximation to the ground-
truth, directly feeding input/output pairs to our model pro-
vides a much stronger supervisory signal than only enforc-
ing cyclic constraints, and enables it to achieve the desired
disentanglement. To supplement the direct supervision and
further encourage disentanglement and realism, we propose
to optimize two novel loss functions — disentanglement loss
and pixel verification loss. For the disentanglement loss,
we construct two explicit constraints that force the identity
encoder to only capture identity information and the pose
encoder to only capture pose information — the same iden-
tity feature is used to generate two different poses of the
same object, while two different objects with the same pose
are produced from the same pose feature. The pixel veri-
fication loss promotes realism by exploiting the fact that, a
pixel in the generated image should, in most cases, be able
to trace back to its root in the identity image.

Our model is a novel conditional adversarial learn-
ing framework based on Generative Adversarial Networks
(GANSs) [17], trained with the aforementioned loss func-
tions to disentangle identity and pose. We conduct extensive
experiments on both synthetic (3D Cars/Chairs [13, 2]) and
challenging real images (YouTube-BoundingBoxes [42]) to
demonstrate better realism, diversity, and ID/pose disentan-
glement, compared to existing unsupervised approaches.

2. Related Work

Disentangled representations Unsupervised methods
for disentangling factors of variation typically employ
cyclic constraints [35, 10, 20, 25, 31, 12, 23, 21, 47, 33].
A limitation with cyclic constraints is that, though neces-
sary (they would be satisfied with perfect disentanglement),
they are often insufficient for generating high-quality dis-
entangled representations. We instead propose to employ a
simple yet effective procedure to retrieve direct pseudo tar-
gets during training, to enforce a much stronger constraint.
Some place disentanglement in the context of cross-domain
translation [15, 21, 32], which requires a clear definition of
domains. For example, to disentangle the identity and pose
of cars, one would need to define the pose as content (ac-
cording to the definition in [21]) and define one domain for
each car identity, which would require one encoder-decoder
pair for each identity. In contrast, our work only requires
one encoder-decoder pair, and is thus much more scalable.
Others learn disentangled representations by enforcing

explicit priors (e.g., a canonical appearance and a de-
formation field) [46] or focus on specific domains like
faces/humans [41, 4, 52, 3, 34, 40]. In contrast, we avoid
making strong domain-specific assumptions, and grant our
model more freedom to learn directly from data. Reed et
al. [44] learn a disentangled representation via a visual-
analogy task, whereby a query image is transformed anal-
ogously to an example pair of reference images. Un-
like visual-analogy, which takes three input images, our
task only requires two (ID/pose references). Meanwhile,
DDPAE [19] tackles the disentanglement problem with the
motivation of simplifying future frame prediction (i.e., it
is easier to predict changes based on disentangled factors).
Finally, others induce disentanglement by injecting priors
(e.g., maximize/minimize factorability, total correlation,
description length, etc.) on the latent code in a variational
auto-encoding framework [27, 7, 1]. However, they do not
have explicit control over the semantics of the learned repre-
sentation (e.g., the model does not know which dimensions
correspond to “identity’””) whereas our approach has explicit
identity and pose representations.

Novel view synthesis from a single RGB image is a
highly under-determined problem that requires 3D under-
standing of objects. Some disentanglement work adopt
novel view synthesis as their application [10, 25, 4, 52, 44].
Others tackle this problem with the help of a large stock
of 3D shape models [26, 45, 56, 61], and sometimes with
a large amount of human involvement [26]. [48] performs
view synthesis in HOG space rather than RGB space. More
recent works train CNNSs to function like a graphics render-
ing engine [29, 55, 11] or learn appearance flow to synthe-
size novel views [59]. Unlike these approaches, our method
does not require any 3D shape models, human intervention,
or ground-truth training examples.

Conditional image-to-image translation The most suc-
cessful image-to-image translation algorithms are based on
Generative Adversarial Networks (GANs) [17]. Exam-
ples that learn in a supervised setting—with annotated in-
put/output pairs—include Pix2Pix [22], Pix2PixHD [53],
and GauGAN [39]. Unsupervised approaches leverage
cycle-consistency [60], learn a shared latent space between
domains [21, 8], or impose constraints to disentangle fac-
tors [25]. Our work leverages a large collection of unla-
beled videos to automatically construct pseudo ground-truth
targets. In this way, we can exploit the advantages of the su-
pervised setting, without having to annotate any images.

3. Approach

Our goal is to learn a model that takes as input two im-
ages and generate a new image with one’s identity and an-
other’s pose. Importantly, we do not have any identity nor
pose annotations during both training and testing.



Figure 2. An illustration of the generator. Our generator takes as input both the identity reference image /;4 and the pose reference image
Ipose, and tries to generate an output image that matches I¢qrge¢, Which has the same identity as I;4 but with the pose of Ij,,s.. Notice how

the pose encoded feature (
the identity encoded feature (

block) is used to generate both I;qrget and Ipose, SO it cannot contain any identity information. Likewise,
block) is used to generate both I14rget and I;4, so it cannot contain any pose information. Furthermore,

we propose a novel pixel verification module (PVM, details shown on the right) which computes a verifiability score between I, and [;4,

indicating the extent to which pixels in I, can be traced back to I;q4.

3.1. Network architecture

Generator To disentangle identity and pose, we use
a two-branch generator network that processes the two
streams of inputs separately. As shown in Fig. 2 (left, red
arrows), the ID/Pose encoder processes the ID/pose ref-
erence image into a feature map that exclusively captures
identity/pose information. The concatenated ID and pose
feature maps (along the channel dimension) are fed into the
decoder. Overall, our generator can be expressed as:

I, = G(Ei(Lia), Ep(Ipose))

where I;4 and I,,s. denote the ID/pose reference image re-
spectively. F; and E), are the ID and pose encoders and
G is the decoder. The ID encoder consists of consecu-
tive Conv - ReLU blocks whereas the Pose encoder con-
sists of consecutive Conv — Norm - ReLU blocks. We
add instance normalization (following [53]) to the Pose en-
coder to remove instance-specific feature means and vari-
ances which are correlated with object identity [21]. For the
decoder, we follow the architecture used in [53] (from resid-
ual blocks and onwards), except we replace transposed con-
volutions with Upsample - Conv to mitigate checker-
board artifacts [36].

Discriminator For the output to preserve both realism
and identity, we set up two discriminators. The first is the
Real/Fake discriminator D.,..,;, which takes in as input a
single RGB image and classifies it as real or fake. It pushes
the generated image I, to look as real as possible, in order
to fool the discriminator. The second discriminator D,
focuses on preserving the object’s identity in the generation
and is trained to classify whether an input pair shares the
same identity or not. The generator is thus trained to match
the identity of the generated image to that of the input ID
image. Following [53], we adopt a 2-scale discriminator,

which enforces realism both locally (e.g., specific object de-
tails) and globally (e.g., overall shape).

3.2. Constructing ID-pose-target training triplets

The key difference between our work and previous un-
supervised disentanglement works (e.g., [10, 20, 25, 21, 31,
15]) is that rather than relying only on indirect cyclic con-
straints, we instead construct a pseudo ground-truth target
image I;4,ge; Using unlabeled videos so that we can directly
train the model in a supervised way, but without any labels.
We demonstrate that this provides stronger supervision than
cyclic constraints.

We first sample two images from the same video clip
as I;q and I;qrgec. The assumption is that these images
will contain the same object instance, which is generally
true for short clips (for long videos, unsupervised tracking
could also be applied). We then retrieve a nearest neighbor
of Itarget from other videos (so that it’s unlikely to have the
same identity) using a pre-trained convnet, to serve as the
pose reference image Ip,sc. Fig. 3 illustrates this process.
The key insight is that retrieving objects with the same pose
is much easier than retrieving objects with the same identity
— objects with the same pose share a large amount of edges,
which can be well-captured with an off-the-shelf feature ex-
tractor. Specifically, we use the conv4 feature map of an
AlexNet trained in a self-supervised way on ImageNet to
avoid using any image labels [14]; see Fig. 4. Although
the retrieved I, ge¢ 1S an approximation to the real ground-
truth, we show that it is highly effective in our experiments.
Finally, to ensure diversity of the sampled pairs’ (£;4, Ipose)
poses, we cluster all images into M different poses, and
then sample a balanced number of unique pose pairs.

3.3. Loss functions

To generate images that are realistic and identity/pose-
preserving, we use the following loss functions.
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Figure 3. Constructing ID, pose, and target training triplets. With this procedure, we automatically obtain supervision to train our model.

Disentanglement loss To directly supervise our model
with the pseudo ground-truth target, we minimize the L;
difference between our model’s generation and the target:

Liis = Htarger = G(Ei(Lia), Ep(Ipose))|:-

However, since there are many possible solutions for mini-
mizing this loss, it alone will not necessarily enforce the de-
sired disentanglement. To ensure that the ID/Pose encoder
only encodes information about identity/pose, in addition to
generating I, get, We also ask our model to reconstruct I;4
and Ipose:

G(Ei(Lia), Ep(Lia))|l1
G(Ei(IPOSE)v Ep<Ipose)) | ‘ 1

dzs *”Iid -
+ [ pose —

As shown in Fig. 2, this will force the ID encoder to not
capture any pose information since its output is used to gen-
erate two targets with distinct poses (I;4 and Ii4rget); the
same logic applies to the Pose encoder. Our final disentan-
glement loss is:

‘Cd’LS - L:dzs + Edzs

We adopt the perceptual loss [24] as it captures the dis-
tance at a semantic level.

Pixel verification loss Recall that our final generated im-
age should preserve the identity of the ID reference. This
implies that for (almost) every pixel in our generation, we
should be able to trace it back to the ID image. For exam-
ple, for a car’s front light pixel in our generation, we should
be able to find the same front light pixel in the ID image,
if our generation correctly preserves its identity. This will
only be false when there are unobserved parts in the ID im-
age that need to be generated. However, we can still as-
sume that even for those unseen parts, their low-level color
and texture (which are generally shared throughout an im-
age) could still be taken from some weighted combination
of pixels in the ID image.

To this end, we propose a novel pixel verification module
(PVM) that matches every pixel in the generation back to
the ID image. Specifically, PVM first transforms the ID
image to spatially align it to the generated image. For this,
it matches each pixel in I, to each pixel in I;4 using their
features (we use the last layer feature of our decoder, right
before converting to RGB space), which results in a weight
matrix W € RP*P where P is the total number of pixels
in both I;4 and I, and Wi;; indicates the affinity between
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Figure 4. Retrieving nearest neighbors with a self-supervised
AlexNet [14] trained on ImageNet. The nearest neighbors resem-
ble the pose of the query well.

the i-th pixel in I, and the j-th pixel in I;4. To make each
row of W sum to 1, we pass W through a softmax function
along its rows. Then, PVM transforms the ID image by:

iai) = ZW(%J) Lia(j), Vi

The result I/, is the ID image aligned to the generation. An
example is shown in Fig. 2 (right). The PVM then computes
the L, difference between I, and I, to compute the pixel
verification loss:

[’pv = ||Iz(d - Ig”l-

A low L, value indicates high degree of verifiability in
the generation. Thus minimizing this loss ensures that every
generated pixel can be traced back to the ID image. We note
PVM is related to the MatchTrans module proposed in [54],
however PVM does not constrain a local search window,
thus allowing larger pose changes.

Adversarial loss & Auxiliary classification loss To fuel
the adversarial game between the generator and the discrim-
inators (D.¢q; and Dy, from Section 3.1), we employ two
adversarial losses £7¢4h and LE'4 to encourage realism
and conditional identity-preservation, respectively. Finally,
as prior research demonstrated the benefit of auxiliary clas-
sification tasks when training the discriminator [16, 37], we
use the clip index as a proxy to set-up an identity classifi-
cation task by assuming that cars within the same/different
clip correspond to the same/different instances. This gives
us Lgyz as a cross-entropy classification loss.

Total loss Combining all loss functions, we form the fol-
lowing min-max optimization problem:

mén max  A1Lgis + A2 Lpy + A3Laus + MLcan,

Dyeat,Dpair
where Loan = LI¥5h + L2y and Ay = Ay = A3 =
A4 = 1. We alternate between fixing the generator G' and
training the discriminators D to maximize the losses, and
fixing D and training G to minimize the losses.
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Figure 5. Comparison to baselines on 3D Cars/Chairs.

4. Experiments

In this section, we compare to state-of-the-art baselines,
and perform ablative studies to demonstrate the effective-
ness of our disentanglement loss and pixel-verification loss.

Datasets. We first conduct proof-of-concept experiments
on two synthetic datasets: 3D Cars and 3D Chairs [13, 2],
which have 183/1393 clips with varying identity and pose of
cars and chairs, respectively. We then test on more challeng-
ing real images: we take 3 classes (Car, Bus, and Truck)
from YouTube-BoundingBoxes [42] (YTBB) video dataset,
which each represent unique challenges. Specifically, cars
can have very different shapes (e.g., sedans, SUVs, vans),
buses generally have lots of textures (e.g., logos, paints),
whereas the appearance of trucks exhibits large uncertainty
(it is hard to predict one view from another). Since these are
real-world YouTube videos, they are quite challenging — fast
motion, drastic illumination changes, compression artifacts,
etc. As we will show in experiments, the challenging nature
of this dataset is also demonstrated by the relatively poor
quality of the results obtained by previous disentanglement
methods. We use Faster-RCNN trained on MS COCO to
detect instances of the object in the videos. We retain detec-
tions which have 0.9 confidence or higher, which removes
inaccurate and strongly-occluded instances. This results in
2233/186, 3008/302, 1833/137 clips for training/testing on
Car, Bus, and Truck, respectively.

Baselines. Pix2pixHD [53]: state-of-the-art conditional
image-to-image translation approach. For the input, we di-
rectly concatenate the ID and Pose image over the channel
axis (i.e., a 6-channel input). The model is trained to out-
put the 3-channel RGB image corresponding to the pseudo
ground-truth target. We use the authors’ implementation.
FusionImage [25]: solely relies on cyclic constraints
which, as we’ll show, are not strong enough to induce the
desired disentanglement due to the challenging nature of
our data (e.g., drastic pose changes). For fair comparison,
we adopt our generator/discriminator architectures (based

3D Cars 3D Chairs

|LPIPS FID ID |LPIPS FID ID

Ours 017 7133 0.66 | 0.19 2958 0.67

Pix2PixHD [53] | 020 97.76 0.65| 0.20 31.01 0.66

FusionImg [25] | 0.28 10696 0.57 | 0.60 335.39 0.51

DrNet [10] 0.27 7201 057 | 0.21 742  0.60
Table 1. Comparison to baselines on 3D Cars/Chairs. For LPIPS
and FID, the lower the better; For ID, the higher the better. Both
our method and Pix2pixHD perform well on these datasets. DrNet
and Fusionlmage perform much worse (DrNet obtains good FID

score only because they incorrectly copy-paste pose images).

on Pix2PixHD) and only change the losses to those in [25].

DrNet [10]: pits an identity classifier to classify, using
pose features, whether two images are from the same video
(i.e., have the same identity), and a pose encoder that tries
to maximally confuse the identity classifier. This way, it can
achieve disentanglement by forcing the pose encoder to not
capture identity information. DrNet does not have a target
image and therefore only makes use of indirect supervisory
signals. We implement DrNet with our encoder and decoder
architecture for fair comparison.

Evaluation metrics. We create an evaluation set of 5000
ground-truth triplets. Specifically, we sample two frames
from the same video to serve as identity and target images
(the same way as we construct triplets in training), whereas
for pose image, we manually select an image that has the
same pose as the target image.

LPIPS distance [58]: For a generated image I, =
G(Ei(Lia), Ep(Ipose)), we measure its LPIPS distance to
the target image I;4rge¢. This metric essentially captures
two aspects: 1) how realistic I is, since it has to be realis-
tic to have a low distance to the real image I;4rges; 2) how
well I, preserves the identity of I;4 and pose of I,,s., since
Iiqrget 1s a ground-truth combination of the two.

Fréchet Inception Distance (FID) [18]: measures both
realism and diversity of the generated data by comparing its
distribution to that of real data using the poo13 features of
the Inception-v3 network [49]. We compute FID between
the set of generated images {I},12,...,I)} and the corre-

R R
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sponding target images {1;,,get> Linrgets -+ Liarget -

ID and Pose preservation scores: We measure preser-
vation of ID and Pose factors as another way to evaluate
disentanglement. For the ID preservation score, we fine-
tune an ImageNet pre-trained ResNet-50 on our data to min-
imize: max(f(z1) - f(y) — f(x1) - f(x2) +m,0), where f
extracts a Ly-normalized feature from the penultimate layer
of ResNet-50, 1 and x5 are two instances from the same
video clip, and y is from another clip. This triplet loss en-
forces the affinity between positive pairs (frames from same
clip) to be higher than that between a negative pair by a mar-
gin m. During evaluation, we average the affinity between
the generated image I, and identity image I;4 (we sigmoid
the affinity to [0, 1]) across the evaluation set as the final ID
preservation score. It is harder to evaluate pose preservation



Figure 6. Our generation results for car. The top row shows the input pose images, while the leftmost column shows the input ID images.
From these results, it is clear that our method has learned to disentangle the identity and pose; i.e., for each ID image, we can change it to

different poses, while maintaining its identity.

Pose
D Input
Input

Figure 7. Our generation results for bus. The top row shows the input pose images, while the leftmost column shows the input ID images.

since pose annotations are lacking in general. Thus, we only
evaluate on YTBB car by making use of the Multi-View
Car Dataset [38], which has pose annotations, to train a car
pose classifier and compute the pose preservation score in a
similar way.

Implementation details. We train our model using
Adam [28] with a learning rate of 10~*. For data augmen-
tation, we apply standard color jittering (brightness, con-
trast, saturation) and random cropping. To stabilize train-
ing, we perform model averaging following [57]. We gen-
erate 128x128 images for all methods (ours and baselines)
on YTBB and 64x64 on 3D Cars/Chairs.

4.1. 3D Cars and Chairs datasets

We first present results on synthetic data. As shown in
Fig. 5, our method learns to disentangle identity and pose
for both datasets — our generation resembles the identity
of the ID image and the pose of the pose image. Despite
these being simple datasets, Fusionlmage and DrNet pro-
duce degenerate solutions and are unable to generate realis-

tic results. Specifically, DrNet simply copies the pose im-
age whereas Fusionlmage either generates a lot of artifacts
(3D Cars) or generates blank images (3D Chairs). We be-
lieve this is due to the lack of supervision in their cyclic
constraints when dealing with large amounts of appearance
variations (from instance to instance). On the other hand,
both pix2pixHD and our method work well on these simple
datasets, as reflected by the quantitative results in Table 1.

4.2. YouTube-BoundingBoxes results

Qualitative results. We next present our model’s results
for car, bus, and truck in Figs. 6, 7 and 8. For each
category, the leftmost column shows the input ID reference
images, while the first row shows the input pose reference
images. Each entry in the matrix corresponds to our model’s
generated image (e.g., entry C3 is result with ID image C
and Pose image 3 as input).

First, it’s clear that our model has learned to disentan-
gle identity and pose, so that it can generate new images
with the identity of one ID image and the pose of many dif-



Figure 8. Our generation results for t ruck. The top row shows the input pose images, whereas the leftmost column shows the input ID
images. Note how the generation in column 1 (in blue dotted box) flipped the pose by 180 degrees, exhibiting incorrect frontal views.

Figure 9. For each row, the pose of the input pose image is fixed
while the identity is varying. Note how consistent the generation
results are in each row, which suggests that our generation is in-
variant to the identity of the pose image.

ferent pose images (see the generated cars in Fig. 6). As
mentioned before, buses usually have lots of textures (lo-
gos, paints, etc.) which makes preserving identity trickier.
Still, one can see that our method preserves the fine texture
details well (e.g., the blue paint on the bottom of the bus
in C1 of Fig. 7). truck is more challenging due to the
uncertainty of its appearance (e.g., it’s sometimes impossi-
ble to infer a truck’s side-view given only its frontal view).
Still, our method is able to capture the gist of the pose while
maintaining the identity. One failure mode we observe is
that our model can get confused with similar-looking views
(e.g., it incorrectly generates a frontal view in column 1 of
Fig. 8) and this is partly because of the error from the near-
est neighbor search during the triplet generation process.
Fig. 9 shows fixed pose results: for an input ID image,
we vary the identity of the pose images but fix their pose.
Given the consistency in generations across each row, it is
clear that our model is accurately disentangling identity and
pose as it is not picking up the identity of the pose image.

Figure 10. Comparison to baselines. The first/second column show
the input ID/pose image. See text for details.

Comparison to baselines. We next show comparisons to
baselines in Fig. 10. Note that these are representative ex-
amples for each method. First, Fusionlmage [25] experi-
ences severe mode collapse and its output is completely
independent of the pose input. DrNet [10] simply copies
the content of the pose image (similar to its behavior on
3D Cars/Chairs), losing the identity information from the
ID image. Pix2PixHD [53] is able to disentangle the ID
and Pose factors. However, our results look more realistic
(1st row) and preserves the identity/pose better (2nd and 5th
row respectively). We believe the reason for the failures of
FusionImage and DrNet is because the indirect cyclic con-
straints they optimize are not sufficient to induce disentan-
glement for our difficult data, and therefore lead to degen-
erate solutions (mode collapse/identity mapping). Unlike
Pix2PixHD, our method not only optimizes the generated
image to be similar to the target, but also encourages our
two encoders to carry disentangled representations and thus
leads to overall better generation results.

As mentioned in Sec. 2, some contemporary work learn
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Figure 11. FactorVAE [27] on 3D Chairs and YTBB car datasets.

car bus truck
LPIPS FID ID Pose|LPIPS FID ID [LPIPS FID ID

Ours 0.33 18.03 0.63 0.65| 0.37 16.77 0.63| 0.35 24.87 0.62
Pix2PixHD [53]| 0.37 25.18 0.60 0.64| 0.40 3231 0.60| 0.39 75.82 0.58
FusionImg [25] | 0.51 239.37 0.52 0.57| 0.49 230.06 0.56| 0.43 68.76 0.60

DrNet [10] 0.48 2459 0.52 0.69| 048 38.63 0.52| 046 28.14 0.53

Ours w/o Ly, | 0.34 1847 0.63 0.65| 037 19.73 0.63| 0.36 26.33 0.62
w/oLgiS 035 19.14 0.63 0.65| 0.38 24.88 0.63| 0.38 37.38 0.62

Table 2. Quantitative results on YTBB car, bus, and truck.
For LPIPS and FID, lower is better; for ID and Pose score, higher
is better. As explained in the text, we only have pose score for car
since we do not have supervised pose classifiers for bus and truck.

disentangled representations by injecting a factorability
prior on the latent code in a variational auto-encoding
framework. Although not directly comparable (since the
model does not have direct control over the learned seman-
tics), we present some representative results of one such
model, FactorVAE [27], on 3D Chairs and YTBB car.
Specifically, in Fig. 11, we display the latent code dimen-
sion that (with manual inspection) is maximally correlated
with pose. As shown in the first row, on simple data like 3D
Chairs, FactorVAE is able to learn a latent code that corre-
sponds to pose. However, when applied to more challeng-
ing data like YTBB car, the latent code mixes up different
factors like shape, color, and pose.

Quantitative results. We quantitatively evaluate our
method’s realism, diversity, and id/pose disentanglement.
We also investigate the pixel verification loss, disentangle-
ment loss, and choice of discriminator output.

How real are our generated images? Our method out-
performs all baselines for all categories in FID (see Table 2),
which suggests that our generated images are more realistic
and diverse compared to those of the baselines.

How well do our generated images match the target
image? By comparing the LPIPS distance, we can see that
our results are closest to the ground-truth target.

How well does our model disentangle id and pose?
Our method also outperforms the baselines on both iden-
tity and pose preservation scores (except for DrNet, which
achieves a better pose preservation score since it incorrectly
copy-pastes the pose image), which implies the highest de-
gree of disentanglement between the two factors.

These results are telling in two aspects. Compared to Fu-
sionlmage and DrNet, our approach clearly benefits from
having a direct supervisory signal. On the other hand, the
importance of explicitly enforcing disentanglement is re-
vealed when comparing our approach to Pix2PixHD. Over-
all, both the qualitative and quantitative results demonstrate
that our method is able to model several different object cat-

Figure 12. Image composition application. Left: original image,
Right: modified image with our generations alpha-blended in.

egories despite their various unique challenges.

Ablation studies. We next perform ablation studies (see
Table 2 bottom). First, we remove the pixel-verification loss
Ly, This consistently hurts FID by a sizable margin, which
suggests that pixel-verification is effective in terms of boost-
ing the overall realism and diversity of the generation. If
we also remove part of the disentanglement loss L2, (so
we are only left with the perceptual loss L}, ), the perfor-
mance further drops, both in terms of FID and LPIPS, which
again demonstrates that our disentanglement loss is helping
to learn a good disentangled representation.

4.3. Application: Image Composition

One potentially useful application of our approach is
image composition. Standard image composition ap-
proaches [6, 30, 9, 50] require users to supply an image of
the desired object pose (or a 3D CAD model matching its
identity, which is even harder). For example, to replace all
three cars in Fig. 12 (bottom row) with a sports car, images
of the sports car facing three different directions would be
needed. With our approach, we only need a single image
of the desired car, in any view. The results in Fig. 12 are
produced by alpha-blending our generation into the image.

5. Discussion

Although better than the baselines, our results are
not perfect and one prominent failure mode is confusion
amongst similar looking poses (e.g., frontal and rear view
trucks). This is partly due to the error in nearest neigh-
bor search for generating the training triplets. We believe
this issue could potentially be mitigated with a much larger
dataset, since our approach can find the nearest neighbor
pose image from any image or video.
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