


age, and a pseudo ground-truth target, to train our model.

The requirement for the pseudo ground-truth target is that

it should consist of an object that has the identity of the

identity reference and the pose of the pose reference. We

exploit the fact that frames in a short video clip are likely to

contain instances of the same object, to sample the identity

reference and target image. We then find a nearest neigh-

bor of the target image in pose space to construct the pose

reference image. Though an approximation to the ground-

truth, directly feeding input/output pairs to our model pro-

vides a much stronger supervisory signal than only enforc-

ing cyclic constraints, and enables it to achieve the desired

disentanglement. To supplement the direct supervision and

further encourage disentanglement and realism, we propose

to optimize two novel loss functions – disentanglement loss

and pixel verification loss. For the disentanglement loss,

we construct two explicit constraints that force the identity

encoder to only capture identity information and the pose

encoder to only capture pose information – the same iden-

tity feature is used to generate two different poses of the

same object, while two different objects with the same pose

are produced from the same pose feature. The pixel veri-

fication loss promotes realism by exploiting the fact that, a

pixel in the generated image should, in most cases, be able

to trace back to its root in the identity image.

Our model is a novel conditional adversarial learn-

ing framework based on Generative Adversarial Networks

(GANs) [17], trained with the aforementioned loss func-

tions to disentangle identity and pose. We conduct extensive

experiments on both synthetic (3D Cars/Chairs [13, 2]) and

challenging real images (YouTube-BoundingBoxes [42]) to

demonstrate better realism, diversity, and ID/pose disentan-

glement, compared to existing unsupervised approaches.

2. Related Work

Disentangled representations Unsupervised methods

for disentangling factors of variation typically employ

cyclic constraints [35, 10, 20, 25, 31, 12, 23, 21, 47, 33].

A limitation with cyclic constraints is that, though neces-

sary (they would be satisfied with perfect disentanglement),

they are often insufficient for generating high-quality dis-

entangled representations. We instead propose to employ a

simple yet effective procedure to retrieve direct pseudo tar-

gets during training, to enforce a much stronger constraint.

Some place disentanglement in the context of cross-domain

translation [15, 21, 32], which requires a clear definition of

domains. For example, to disentangle the identity and pose

of cars, one would need to define the pose as content (ac-

cording to the definition in [21]) and define one domain for

each car identity, which would require one encoder-decoder

pair for each identity. In contrast, our work only requires

one encoder-decoder pair, and is thus much more scalable.

Others learn disentangled representations by enforcing

explicit priors (e.g., a canonical appearance and a de-

formation field) [46] or focus on specific domains like

faces/humans [41, 4, 52, 3, 34, 40]. In contrast, we avoid

making strong domain-specific assumptions, and grant our

model more freedom to learn directly from data. Reed et

al. [44] learn a disentangled representation via a visual-

analogy task, whereby a query image is transformed anal-

ogously to an example pair of reference images. Un-

like visual-analogy, which takes three input images, our

task only requires two (ID/pose references). Meanwhile,

DDPAE [19] tackles the disentanglement problem with the

motivation of simplifying future frame prediction (i.e., it

is easier to predict changes based on disentangled factors).

Finally, others induce disentanglement by injecting priors

(e.g., maximize/minimize factorability, total correlation,

description length, etc.) on the latent code in a variational

auto-encoding framework [27, 7, 1]. However, they do not

have explicit control over the semantics of the learned repre-

sentation (e.g., the model does not know which dimensions

correspond to “identity”) whereas our approach has explicit

identity and pose representations.

Novel view synthesis from a single RGB image is a

highly under-determined problem that requires 3D under-

standing of objects. Some disentanglement work adopt

novel view synthesis as their application [10, 25, 4, 52, 44].

Others tackle this problem with the help of a large stock

of 3D shape models [26, 45, 56, 61], and sometimes with

a large amount of human involvement [26]. [48] performs

view synthesis in HOG space rather than RGB space. More

recent works train CNNs to function like a graphics render-

ing engine [29, 55, 11] or learn appearance flow to synthe-

size novel views [59]. Unlike these approaches, our method

does not require any 3D shape models, human intervention,

or ground-truth training examples.

Conditional image-to-image translation The most suc-

cessful image-to-image translation algorithms are based on

Generative Adversarial Networks (GANs) [17]. Exam-

ples that learn in a supervised setting—with annotated in-

put/output pairs—include Pix2Pix [22], Pix2PixHD [53],

and GauGAN [39]. Unsupervised approaches leverage

cycle-consistency [60], learn a shared latent space between

domains [21, 8], or impose constraints to disentangle fac-

tors [25]. Our work leverages a large collection of unla-

beled videos to automatically construct pseudo ground-truth

targets. In this way, we can exploit the advantages of the su-

pervised setting, without having to annotate any images.

3. Approach

Our goal is to learn a model that takes as input two im-

ages and generate a new image with one’s identity and an-

other’s pose. Importantly, we do not have any identity nor

pose annotations during both training and testing.
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Figure 5. Comparison to baselines on 3D Cars/Chairs.

4. Experiments

In this section, we compare to state-of-the-art baselines,

and perform ablative studies to demonstrate the effective-

ness of our disentanglement loss and pixel-verification loss.

Datasets. We first conduct proof-of-concept experiments

on two synthetic datasets: 3D Cars and 3D Chairs [13, 2],

which have 183/1393 clips with varying identity and pose of

cars and chairs, respectively. We then test on more challeng-

ing real images: we take 3 classes (Car, Bus, and Truck)

from YouTube-BoundingBoxes [42] (YTBB) video dataset,

which each represent unique challenges. Specifically, cars

can have very different shapes (e.g., sedans, SUVs, vans),

buses generally have lots of textures (e.g., logos, paints),

whereas the appearance of trucks exhibits large uncertainty

(it is hard to predict one view from another). Since these are

real-world YouTube videos, they are quite challenging – fast

motion, drastic illumination changes, compression artifacts,

etc. As we will show in experiments, the challenging nature

of this dataset is also demonstrated by the relatively poor

quality of the results obtained by previous disentanglement

methods. We use Faster-RCNN trained on MS COCO to

detect instances of the object in the videos. We retain detec-

tions which have 0.9 confidence or higher, which removes

inaccurate and strongly-occluded instances. This results in

2233/186, 3008/302, 1833/137 clips for training/testing on

Car, Bus, and Truck, respectively.

Baselines. Pix2pixHD [53]: state-of-the-art conditional

image-to-image translation approach. For the input, we di-

rectly concatenate the ID and Pose image over the channel

axis (i.e., a 6-channel input). The model is trained to out-

put the 3-channel RGB image corresponding to the pseudo

ground-truth target. We use the authors’ implementation.

FusionImage [25]: solely relies on cyclic constraints

which, as we’ll show, are not strong enough to induce the

desired disentanglement due to the challenging nature of

our data (e.g., drastic pose changes). For fair comparison,

we adopt our generator/discriminator architectures (based

3D Cars 3D Chairs

LPIPS FID ID LPIPS FID ID

Ours 0.17 71.33 0.66 0.19 29.58 0.67

Pix2PixHD [53] 0.20 97.76 0.65 0.20 31.01 0.66

FusionImg [25] 0.28 106.96 0.57 0.60 335.39 0.51

DrNet [10] 0.27 72.01 0.57 0.21 7.42 0.60

Table 1. Comparison to baselines on 3D Cars/Chairs. For LPIPS

and FID, the lower the better; For ID, the higher the better. Both

our method and Pix2pixHD perform well on these datasets. DrNet

and FusionImage perform much worse (DrNet obtains good FID

score only because they incorrectly copy-paste pose images).

on Pix2PixHD) and only change the losses to those in [25].

DrNet [10]: pits an identity classifier to classify, using

pose features, whether two images are from the same video

(i.e., have the same identity), and a pose encoder that tries

to maximally confuse the identity classifier. This way, it can

achieve disentanglement by forcing the pose encoder to not

capture identity information. DrNet does not have a target

image and therefore only makes use of indirect supervisory

signals. We implement DrNet with our encoder and decoder

architecture for fair comparison.

Evaluation metrics. We create an evaluation set of 5000

ground-truth triplets. Specifically, we sample two frames

from the same video to serve as identity and target images

(the same way as we construct triplets in training), whereas

for pose image, we manually select an image that has the

same pose as the target image.

LPIPS distance [58]: For a generated image Ig =
G(Ei(Iid), Ep(Ipose)), we measure its LPIPS distance to

the target image Itarget. This metric essentially captures

two aspects: 1) how realistic Ig is, since it has to be realis-

tic to have a low distance to the real image Itarget; 2) how

well Ig preserves the identity of Iid and pose of Ipose, since

Itarget is a ground-truth combination of the two.

Fréchet Inception Distance (FID) [18]: measures both

realism and diversity of the generated data by comparing its

distribution to that of real data using the pool3 features of

the Inception-v3 network [49]. We compute FID between

the set of generated images {I1g , I
2

g , ..., I
N
g } and the corre-

sponding target images {I1target, I
2

target, ..., I
N
target}.

ID and Pose preservation scores: We measure preser-

vation of ID and Pose factors as another way to evaluate

disentanglement. For the ID preservation score, we fine-

tune an ImageNet pre-trained ResNet-50 on our data to min-

imize: max(f(x1) · f(y)− f(x1) · f(x2) +m, 0), where f

extracts a L2-normalized feature from the penultimate layer

of ResNet-50, x1 and x2 are two instances from the same

video clip, and y is from another clip. This triplet loss en-

forces the affinity between positive pairs (frames from same

clip) to be higher than that between a negative pair by a mar-

gin m. During evaluation, we average the affinity between

the generated image Ig and identity image Iid (we sigmoid

the affinity to [0, 1]) across the evaluation set as the final ID

preservation score. It is harder to evaluate pose preservation
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Figure 6. Our generation results for car. The top row shows the input pose images, while the leftmost column shows the input ID images.

From these results, it is clear that our method has learned to disentangle the identity and pose; i.e., for each ID image, we can change it to

different poses, while maintaining its identity.
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Figure 7. Our generation results for bus. The top row shows the input pose images, while the leftmost column shows the input ID images.

since pose annotations are lacking in general. Thus, we only

evaluate on YTBB car by making use of the Multi-View

Car Dataset [38], which has pose annotations, to train a car

pose classifier and compute the pose preservation score in a

similar way.

Implementation details. We train our model using

Adam [28] with a learning rate of 10−4. For data augmen-

tation, we apply standard color jittering (brightness, con-

trast, saturation) and random cropping. To stabilize train-

ing, we perform model averaging following [57]. We gen-

erate 128x128 images for all methods (ours and baselines)

on YTBB and 64x64 on 3D Cars/Chairs.

4.1. 3D Cars and Chairs datasets

We first present results on synthetic data. As shown in

Fig. 5, our method learns to disentangle identity and pose

for both datasets – our generation resembles the identity

of the ID image and the pose of the pose image. Despite

these being simple datasets, FusionImage and DrNet pro-

duce degenerate solutions and are unable to generate realis-

tic results. Specifically, DrNet simply copies the pose im-

age whereas FusionImage either generates a lot of artifacts

(3D Cars) or generates blank images (3D Chairs). We be-

lieve this is due to the lack of supervision in their cyclic

constraints when dealing with large amounts of appearance

variations (from instance to instance). On the other hand,

both pix2pixHD and our method work well on these simple

datasets, as reflected by the quantitative results in Table 1.

4.2. YouTube-BoundingBoxes results

Qualitative results. We next present our model’s results

for car, bus, and truck in Figs. 6, 7 and 8. For each

category, the leftmost column shows the input ID reference

images, while the first row shows the input pose reference

images. Each entry in the matrix corresponds to our model’s

generated image (e.g., entry C3 is result with ID image C

and Pose image 3 as input).

First, it’s clear that our model has learned to disentan-

gle identity and pose, so that it can generate new images

with the identity of one ID image and the pose of many dif-
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Figure 8. Our generation results for truck. The top row shows the input pose images, whereas the leftmost column shows the input ID

images. Note how the generation in column 1 (in blue dotted box) flipped the pose by 180 degrees, exhibiting incorrect frontal views.
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Figure 9. For each row, the pose of the input pose image is fixed

while the identity is varying. Note how consistent the generation

results are in each row, which suggests that our generation is in-

variant to the identity of the pose image.

ferent pose images (see the generated cars in Fig. 6). As

mentioned before, buses usually have lots of textures (lo-

gos, paints, etc.) which makes preserving identity trickier.

Still, one can see that our method preserves the fine texture

details well (e.g., the blue paint on the bottom of the bus

in C1 of Fig. 7). truck is more challenging due to the

uncertainty of its appearance (e.g., it’s sometimes impossi-

ble to infer a truck’s side-view given only its frontal view).

Still, our method is able to capture the gist of the pose while

maintaining the identity. One failure mode we observe is

that our model can get confused with similar-looking views

(e.g., it incorrectly generates a frontal view in column 1 of

Fig. 8) and this is partly because of the error from the near-

est neighbor search during the triplet generation process.

Fig. 9 shows fixed pose results: for an input ID image,

we vary the identity of the pose images but fix their pose.

Given the consistency in generations across each row, it is

clear that our model is accurately disentangling identity and

pose as it is not picking up the identity of the pose image.

ID Pose Ours Pix2PixHD FusionImage DrNet

Figure 10. Comparison to baselines. The first/second column show

the input ID/pose image. See text for details.

Comparison to baselines. We next show comparisons to

baselines in Fig. 10. Note that these are representative ex-

amples for each method. First, FusionImage [25] experi-

ences severe mode collapse and its output is completely

independent of the pose input. DrNet [10] simply copies

the content of the pose image (similar to its behavior on

3D Cars/Chairs), losing the identity information from the

ID image. Pix2PixHD [53] is able to disentangle the ID

and Pose factors. However, our results look more realistic

(1st row) and preserves the identity/pose better (2nd and 5th

row respectively). We believe the reason for the failures of

FusionImage and DrNet is because the indirect cyclic con-

straints they optimize are not sufficient to induce disentan-

glement for our difficult data, and therefore lead to degen-

erate solutions (mode collapse/identity mapping). Unlike

Pix2PixHD, our method not only optimizes the generated

image to be similar to the target, but also encourages our

two encoders to carry disentangled representations and thus

leads to overall better generation results.

As mentioned in Sec. 2, some contemporary work learn
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