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A Multiscale Agent-Based Model of
Ductal Carcinoma In Situ

Joseph D. Butner

Abstract—Objective: we present a multiscale agent-
based model of Ductal Carcinoma in Situ (DCIS) in order
to gain a detailed understanding of the cell-scale popula-
tion dynamics, phenotypic distributions, and the associated
interplay of important molecular signaling pathways that
are involved in DCIS ductal invasion into the duct cavity
(a process we refer to as duct advance rate here). Meth-
ods: DCIS is modeled mathematically through a hybridized
discrete cell-scale model and a continuum molecular scale
model, which are explicitly linked through a bidirectional
feedback mechanism. Results: we find that duct advance
rates occur in two distinct phases, characterized by an early
exponential population expansion, followed by a long-term
steady linear phase of population expansion, a result that
is consistent with other modeling work. We further found
that the rates were influenced most strongly by endocrine
and paracrine signaling intensity, as well as by the effects
of cell density induced quiescence within the DCIS popula-
tion. Conclusion: our model analysis identified a complex
interplay between phenotypic diversity that may provide a
tumor adaptation mechanism to overcome proliferation lim-
iting conditions, allowing for dynamic shifts in phenotypic
populations in response to variation in molecular signal-
ing intensity. Further, sensitivity analysis determined DCIS
axial advance rates and calcification rates were most sen-
sitive to cell cycle time variation. Significance: this model
may serve as a useful tool to study the cell-scale dynamics
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involved in DCIS initiation and intraductal invasion, and may
provide insights into promising areas of future experimental
research.

Index Terms—Breast cancer, cell lineage, DCIS mod-
eling, mammography, mathematical modeling, molecular
signaling.

I. INTRODUCTION

REAST cancer is the most frequently diagnosed form of
B cancer in the United States, with 239,109 new cases diag-
nosed in 2014 alone (the most recent year complete statistics
reported; specifically 236,968 cases in women and 2,141 in men)
[1]. This translates to roughly 12% of women experiencing a
positive diagnosis within their lifetime. Carcinomas in situ con-
stitute roughly 20% of all cancers of the breast [2], [3], with the
majority (~83%) occurring within the mammary gland duct,
known as ductal carcinoma in situ (DCIS) [4]. DCIS is a cancer
of the luminal epithelial cells, and is characterized by loss of
heterogeneity of the luminal cells composing the inner layer of
the mammary gland duct, resulting in dysregulated proliferation
into the duct cavity. DCIS is a stage zero pre-invasive cancer (as
it remains contained within the duct), and has been associated
with increased risk of invasive or recurring breast cancer [2], [5].
The debate over if and when to treat DCIS continues, as even
the most aggressive estimates of DCIS transitioning to invasive
cancer suggest it occurs in only 1 in 3 cases [6], highlighting
the need for tools to prevent overdetection and overtreatment.
DCIS originates from cells in the epithelial walls of the mature
duct, a bilayered structure consisting of an outer myoepithelial
layer and an inner luminal layer (see Fig. 1 A). Both are known to
be maintained by stem cell niches: small subpopulations within
the gland of bipotent stem-like epithelial cells [7], [8]. Within
the mammary gland, epithelial cells are phenotypically distinct
based on the presence or lack of estrogen receptor o (estro-
gen receptor positive: ER+ phenotype) or fibroblast growth
factor receptor (FGFR), and also based on stem, proliferative,
or terminally differentiated phenotype. This results in distinct
cellular components within the signaling pathway, where cells
that express ER do not express FGF, and vice versa. Paracrine
estrogen signals to ER+ cells and results in upregulation of
amphiregulin (AREG) production in these cells, cascading an
AREG epithelial to stromal paracrine mechanism, where AREG
upregulates FGF production in the stroma. FGF then reenters
the mammary epithelium and signals to the estrogen receptor
a negative (ER—)/FGF receptor positive (FGFR+) cells [9].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/



BUTNER et al.: MULTISCALE AGENT-BASED MODEL OF DUCTAL CARCINOMA in Situ

1451

A)
Myoepithelium
Lumen
Luminal
cavity
B)

Estrogen from
Bloodstream

Mature Duct
Epithelial Wall

Progenitors {

Terminally
Differentiated

0

2 Myoepithelial, Progenitor R+ = :
Luminal, Quiescent ‘ Stem-like Cell

ER- ) Myoepithelial, Differentiated

‘ 3 Luminal, Progenitor

ER- | | ER+

Stem-like Cell,
Quiescent

Tumor Initiating Cell,
e TIC Niche

........ AREG signaling
R FGF signaling

Necrotic (in duct)

@ Lysed/Calcified
Luminal, Differentiated

—> Proliferation and/or differentiation pathway
--------------- Estrogen signaling

Fig. 1. Computational domain, cell phenotype hierarchy, and signaling
pathways. (A) The mature mammary gland duct is composed of an outer
myoepithelial layer and an inner luminal layer, both surrounding the duct
cavity. At time t = 0, we initiate a number of tumor initiating cells (TICs)
within the luminal population, initiating the onset of DCIS. (B) Cross-
sectional schematic of a duct section shows DCIS phenotypic hierarchy
and signaling pathways. Cell signaling is as shown, with estrogen from
the bloodstream signaling to the ER+ population and upregulating pro-
liferation. These cells are stimulated to produce AREG, which leaves
through the duct boundary and into the stroma, upregulating production
of FGF, which reenters the duct, binding to and upregulating proliferation
in the ER— phenotype; for simplicity, not all agent types are shown. (C)
Legend for agent color coding and signaling pathways as shown in A and
B. Note that we combine all cell types into necrotic and lysed/calcified,
as phenotype is no longer pertinent in these dying/dead agents. Further,
all residual material from the lysis process from each individual agent
(cytoplasmic contents, calcified remains, etc.) are summed together and
represented by a single agent (light green).

This pathway exists within the pubertal terminal end bud dur-
ing mammary gland development, and persists subsequent to
gland maturity, playing an important role in mature gland main-
tenance (and, when abnormal, may contribute to breast cancer
[10]). Although only a piece of the signaling pathway, this im-
portant cascade is critical in inducing cell proliferation involved
in mammary epithelium maintenance, and is the focus of the
molecular cell-cell signaling portion of this study.

As many as 70% of all breast cancers are ER+ [11]. Estrogen
receptor « loss of function has been shown to be associated with
transition to DCIS, which may result from an epithelial to mes-
enchymal transition [12]. Aberrations in the FGF receptor have
also been discovered in breast cancer, and are often associated
with increased FGF signaling and negative patient prognosis

[10]. In addition to classification by plasma membrane recep-
tor status, DCIS is also classified histologically, based both on
cytological features and cellular architecture (cell distribution
and density within the duct). The most aggressive phenotype
is the comedo-type [13], which is indicated by aggressive cell
proliferation and ductal advance rates, axial necrosis, and subse-
quent microcalcifications (small accumulations of hydroxyap-
atite) along the duct axis, and is the focus of our modeling study.

Hybrid agent-based modeling (ABM) [14]—[25] can be a use-
ful tool for simulating the role of diversity in cell populations
and cell-cell and cell-environment interactions, providing mech-
anistic interpretations of data, and making new experimentally
or clinically testable predictions. In order to elucidate how dis-
ruption of the signaling pathways, cell-cell physics, and cellular
phenotypic types and hierarchies involved in normal mammary
gland development may contribute to DCIS, we have imple-
mented here a hybrid, multiscale ABM of DCIS. Mathematical
modeling has yielded many important insights on DCIS through
both continuum [26], [27] and discrete methods [28], [29]. A
number of hybrid ABMs have also been developed for studying
the mechanisms of cell-scale factors and behaviors that influ-
ence DCIS progression [30], [31]. Notably, although detailed
molecular signaling was not considered, Macklin et al. imple-
mented a two-dimensional hybrid DCIS model, which was able
to successfully predict DCIS ductal advance rates, cell density,
and transition to hypoxic and necrotic states (and the resulting
viable rim thickness), as validated with patient data [32]-[34].
Hybrid models of DCIS have also shed insights into the effects
of contact inhibition, hypoxia, necrosis, calcification [35], and
acidosis on DCIS architecture [29], [36], and the selective influ-
ence of these and other factors on the development and evolution
of the DCIS phenotype [37].

In the present work, we seek to provide further insight into
DCIS by including key signaling components, such as estro-
gen, AREG, and FGF pathways (Fig. 1B). We examine how
phenotypic transitions within the DCIS cell population influ-
ence DCIS progression, including the effects on phenotypic
distributions and duct advance rates as limited by proliferation-
dependent molecular signaling and the effects of cell density
induced quiescence. By including the surrounding mature duct
layer, we gain a more complete representation of cell signaling
(i.e., AREG production by the ER—population within the lumi-
nal layer of the mature gland). This layer also affects estrogen
and oxygen concentrations within the duct, as these molecules
are used by the mature duct cells and play a key role in the
epithelial to stromal signaling pathway (i.e., AREG to FGF),
and has been included for future studies of myoepithelial DCIS
and our ongoing work studying pubertal mammary gland devel-
opment as well [38]. Both molecules cross the mature duct cell
layers (and may be influenced by the appropriate cell phenotypes
therein) as a fundamental part of their signaling mechanisms.
Thus, we attempt to implement a more complete picture of the
mammary gland environment surrounding the DCIS popula-
tion through inclusion of the mature duct layers, in order to
better obtain a more detailed description of the complicated in-
terplay of molecular- and cell-scale dynamics in DCIS disease
progression.
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[I. METHODS

In our ABM, cells are represented as unique, discrete enti-
ties (agents), while molecular signaling profiles and molecular
movement are represented as continuums through a mathemati-
cal description using partial differential equations (PDEs) which
are solved numerically at each time step. A cellular phenotypic
hierarchy has also been implemented based on the published lit-
erature as shown in Fig. 1B. Briefly, agents are implemented in
a 3D, lattice free system, where all agent interactions and move-
ments are determined based on cell-cell and molecular level
physics. Continuum and discrete scales are explicitly linked
mathematically, and feedback between the two scales is explic-
itly computed. At each time step, agents probe the continuum
solutions for information about the molecular concentrations
within their microenvironment, and then they modify these pro-
files based on cellular phenotype and their associated molecu-
lar production or consumption. In this work, we use the terms
“consumption” to describe any molecular concentrations which
are reduced by cell behavior (e.g., oxygen consumption and
metabolism or the binding of signaling molecules to membrane-
bound receptors), while “production” refers to all cell behaviors
which increase the concentration of the molecule of interest
(e.g., cells may produce proteins or they may release already-
translated proteins). Agents are bound by rules which are coded
to represent literature-supported cell types and behaviors, in-
cluding signaling pathways, receptor expression and overex-
pression, cell cycle times, proliferation, and growth rates and
patterns. The model was implemented in C++, with meshes
generated using Trelis, mesh processing supported by Exodus
II [39] and VTK [40], graphics pipeline via OpenGL, QT, and
X11, FEM solutions obtained via Sundance [41], and also using
various functionality from BOOST, FLANN [42], and Bullet-
Physics [43].

A. Continuum Methods

Molecular signaling is represented as a continuum, described
mathematically using a Fick’s law description of the reaction-
diffusion equation, as described in Eq. 1,

du = DV?u+ R (u), (1)
dt

and based on some of our previous modeling work [38]. This
PDE describes the time-dependent molecular concentration (i)
within the computational domain (e.g., the simulated duct), as
dependent on the diffusion constant (D), and as modified by a
reaction term R(u), which accounts for both molecular consump-
tion or production U(u,x), as well as molecular degradation L(u);
ie., R(u) = U(u,z) — L(u). Time steps for continuum solu-
tions, shorter than ABM time steps, have been tested to ensure
solution stability. FEM solutions are obtained using Sundance
[41], a high-level finite element method library included as part
of Trilinos, a numerical methods package developed by Sandia
National Laboratory on a 3D tetragonal mesh (mesh generated
with Trelis meshing software; see Fig. 2A) (examples are shown
in Fig. 2A-D).

Fig. 2. Examples of continuum (A-D) and discrete (E, F) model com-
ponents. Continuum solutions from FEM within an idealized mammary
gland duct are shown for (A) oxygen, (B) estrogen, (C) AREG, and (D)
FGF. Oxygen enters into the duct from the boundary under Dirichlet con-
ditions; regions shown in blue are where DCIS has reduced the local
oxygen conditions. C, D) AREG is produced in the duct by ER+ cells
(red: high concentrations; indicates localized AREG production) and dif-
fuses throughout the domain and out of the duct radial boundary. The
FGF boundary condition is derived from the AREG solution. (E) Internal
view of DCIS five days after DCIS initiation (viewpoint: inside the duct
cavity looking parallel to the duct central axis); the TIC niche is shown in
white (red arrow), with a growing DCIS mass (purple) seen encroaching
into the duct cavity away from the TIC niche. (F) An example view of
DCIS 11 days after DCIS initiation; the mature duct cells and healthy
DCIS progenitors are shown as transparent so the stem phenotype, as
well as hypoxia and calcification internal to the DCIS may be seen clearly.
A—D: 100 xm diameter duct; E, F: 200 m diameter duct (shown for ease
of visibility); all agent colors are as shown in Fig. 1C.

Boundary conditions are defined to best describe the biolog-
ical conditions for each molecule of interest. Blood is supplied
to the mammary gland through a system of surrounding capil-
laries, which we assume are located directly on the outer duct
surface and contain a rapidly replenished blood supply (through
circulation) at all times. This results in a constant concentration
of molecules of interest (e.g., oxygen, estrogen) at the bound-
ary. In our model, estrogen and oxygen enter into the system
numerically as constant Dirichlet boundary conditions (BCs) on
the outer surface of the duct, but excluding the ends where we
truncate the computational domain into a “duct section.” For
each molecule of interest m, we apply a constant value C,,, on
all boundary nodes z;, as per

Um ($b) = Cma (2)

and these molecules may diffuse into the domain freely (but
according to appropriate diffusion constants) according to (1).
For boundary conditions, blood oxygen concentrations (Cop, )
is taken to be 100 mmHg [44], while female pubertal blood
estrogen concentrations are lower than oxygen concentrations
(median of 70.3 pMol/L [45]; and lower still post-menopause,
when most DCIS occurs). These molecules may be removed
by agents from the local concentration R(x) due to molecular
consumption (oxygen, Ay and A¢ for healthy and cancer cells,
respectively) or binding to the appropriate receptor (estrogen to
ER+ agents, and FGF to ER— agents). This is summed with a
molecular degradation term, L(u), which accounts for potential
molecular sinks (including molecules lost to agent necrosis,
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lysis, and apoptosis), and the presumed uptake of molecules
by other cells. These molecular losses are taken to be small,
i.e., |L(u)| < |R(u)|, but are included in the model for sake of
completeness. Specifically, the total change in local molecular
concentration u at location x is calculated as

R(z,u) =U (z,u) — L (u)
R(gc,u)::I:Z)»iH(Ti—|x—a7¢|)u—L(u), 3)

where r; and a; are the radius and center of mass coordinates of
the agent, respectively, H(x) is the Heavyside function, and A; is
the per-volume or per-surface area consumption or production
value for the appropriate molecule (positive sign is production,
and negative sign is uptake or consumption). We have made the
assumption that all cells of the same phenotype (i.e., cancer vs.
healthy, or as per cell receptor status, e.g., ER+/—) have the
same A; values in the work presented here.

The magnitudes of local molecular concentrations are com-
puted as the average values from all agents with their center of
mass a; closest to each node (as determined through Voronoi tes-
sellation [46], a method of subdividing the domain into regions
which enclose the volume closest to each node), normalized
into per-volume or per-surface area values, and applied to the
appropriate node of interest numerically through application of
a Dirac delta function, defined as

Sl au [0 (x —a;)de

U(u,z) = . ) “

where 7 is the number of agents in the Voronoi cell. To sim-
plify calculations, we take the total volume (and thus the total
contribution to local molecular concentration) of the agent to be
within the Voronoi cell containing its center of mass; thus, the
total values for each cell are implemented into the continuum
solution entirely at the nearest node. By subdividing the mesh
into elements of similar length to the mature agent diameter,
we have attempted to ensure that only a small number of agents
are associated with each node, thus maintaining an acceptable
degree of precision within this approximation.

AREG is sourced exclusively from cellular production by
the ER+ phenotype within both mature duct layers and the
DCIS population. AREG is free to diffuse out of the domain
across the outer radial boundary under the same conditions that
it diffuses though the domain through the implementation of
homogenous Neumann boundary conditions, with molecular
concentration attenuating toward equilibrium at the far-field.
Biologically, the AREG that leaves the duct signals to epidermal
growth factor receptor (EGFR) in the stroma, stimulating an
epithelial to stromal cascade which results in FGF reentering
the duct (as diagramed in Fig. 1B). Numerically, we implement
this as a time-dependent Dirichlet boundary condition, defined
for each time step (#) as a function of the per-node values of the
AREG solution from the previous time step (f — 1) as

1), (=0,....,n;) (5

for each node n;. In this way, a direct downstream epithe-
lial to stromal signaling mechanism is implemented, provid-
ing a reasonable approximation of the epithelial to stromal

urar, (t) = uareqg,: (t —
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TABLE |
MODEL PARAMETERS
Model Parameter Baseline Value  Reference
Hypoxia threshold Oy 1/3 normoxia [44, 47]
Oxygen diffusion constant  Doyygen 2.5 % 10° cm? 57! [48]
Blood oxygen
concentration Co, 100 mmHg [44]
Estrogen diffusion D 245 x 10° cm? "
constant estrogen s!
-7 2

AREG diffusion constant ~ Dageg 3'12_1 X 107 em [49]**
Proliferation rate
(frequency) Ap <1 per 16 hours [50, 51]
Cell cycle time 7 16 hours [50, 51]
Progenitor symmetric o
proliferation probability or 100%
Proliferation cycles before
differentiation Prax 30 (52, 53]
Stem cell symmetric o
proliferation probability @se 12% [54]
Mafrure mammary cell B 5 um (51, 55]
radius
Healthy cell oxygen y 45 attoMol cell”! [55]
consumption rate H sec”!
Cancer cell oxygen y 4.5x healthy cell

: e [55]
consumption rate rate
Hypoxia time to necrosis ™ 12 hours [56]
Lysis vqlume increase due v 100% 57, 58]
to swelling
Lysis time 23 6 hours [59]
Time to calcification c 14 days [60]

1 0,
Calmﬁ?d volume % of Ve 30% [61]
pre-lysis cell volume
N

Estrogen paselme (% 0.85 (0.05)
perturbation)
FGF baseline’ (% 0.5(0.1)

perturbation)

Important model parameter baseline values. When not readily available in the
literature, diffusion constants were estimated either through interpolation from
values from structurally similar molecules (*) or from known values based on
relative molecular weights (**). Other uncited values were determined from model
calibration. TNormalized values. We have reduced the value for stem cell symmetric
proliferation by 1% from [54].

signaling pathway. An example of FEM solutions for the ep-
ithelial to stromal (i.e., AREG to FGF) pathway is shown in
Fig. 2C, D. We have strived to, whenever possible, implement
literature supported values in these equations. The details of
how we selected, calibrated, and validated our baseline val-
ues (e.g., oxygen: Doxygen, Afi, Ac; as well as for endocrine
and paracrine signaling molecules estrogen, AREG, and FGF)
based on extensive literature review are shown in Supplemen-
tary Materials Section S1.1, and a summary of important model
parameter baseline values is shown in Table I. Additionally, fur-
ther details of the continuum numerical methods are provided
in Supplementary Materials Section S1.3.

B. Discrete Methods

Cells in the mature mammary gland and the DCIS popula-
tion are represented discretely through implementation of an
ABM. Each cell agent is unique, with its own geographical
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Fig. 3. Agent decision flowchart. Agent decisions are made according
to the rules shown for each time step of the discrete model. Blue and
red arrows indicate transition pathways between top and bottom boxes
(shown without complete arrows connecting the two regions for clarity).

coordinates, phenotype (luminal or myoepithelial, healthy or
cancerous, etc.), receptor status (ER+/-), size (approximated
as spheres with radius r to simplify the mathematics of the
physics cell-cell interaction), cell generation number, and cell
state. Agents proliferate as instructed through molecular signal-
ing, and as allowed by phenotype, neighbor density, and cell
cycle time restrictions. Cells in the model may only proliferate
when molecular signaling thresholds are satisfied (approximated
in this work via a simple binary step function), as done in our
prior ABM work [38], [62]-[68], when they are not induced
into quiescence due to agent density restrictions, and only af-
ter a full cell cycle has occurred after their last mitosis event,
at a frequency f),, taken to be > the standard cell cycle time
7, = 16 hours [50], [51] (see Table I).

A new daughter cell must complete a simulated interphase
(cell growth, which is modeled explicitly by cell volume in-
crease at each time step until the cell reaches a mature cell
volume, but without explicit representation of the involved sub-
cellular processes) before it is eligible to proliferate again. Once
the last cell cycle is complete, a cell of progenitor phenotype may
proliferate, provided a set of conditions are satisfied, including
if relevant molecular concentrations are above a proliferation
threshold and if local cell density is below a density threshold.
When all conditions for the mitosis event are satisfied, the cell
divides, splitting its cytoplasmic volume and plasma membrane
contents evenly between its daughters. This decision-making
process is described graphically in Fig. 3. All cell movement,
due to both proliferation and cell-cell interactions, occurs in an
off-lattice configuration, where cells may occupy any allowed

coordinate within the computational domain. This is solved via
a physics-engine representation of the discrete model (solved
with BulletPhysics [43]), as detailed in Supplementary Materi-
als Section S2.1.

Cells follow a cell hierarchy as shown in Fig. 1B. At time
t = 0, we allow a small number of cells in the luminal layer of
the mature duct to have a tumor initiating cell (TIC) phenotype
(shown in white, Fig. 1 and 2D, E). Each TIC is seeded to be at a
random time within the cell cycle, through implementation of an
individual counter (thus there is one unique counter for each cell)
which records the time since the cell’s last mitosis event. This
counter is incremented for each agent each time the ABM time is
stepped forward, and the agent may not proliferate again until the
counter value is at least equal to the cell cycle time 7, (16 hours
based on [50], [51], see Table I). TICs are taken to have unlimited
proliferation potential, and may thus proliferate an unlimited
number of times [69], [70], while proliferative DCIS agents are
limited to a maximum number of proliferation cycles based on
the literature (see Supplemental Materials Section S2.2).

Aggressive cell proliferation in the absence of a properly de-
veloped vasculature (as observed in solid tumors) often results in
restrictions of oxygen availability, hypoxia, and even hypoxia-
induced necrosis. In our model, agents become hypoxic if the
local oxygen concertation falls below a critical hypoxia thresh-
old (e.g.,Co, < 0p),and will undergo necrosis and subsequent
cell lysis if the local hypoxic conditions persist longer than the
critical threshold 7. Quantification of these values is detailed
in Supplementary Materials Section S2.4, and baseline values
are provided in Table I. Note that we have made the assumption
that, due to mutations resultant in the cancer phenotype, apopto-
sis pathways are turned off in the DCIS populations; thus all cell
death in the model is due to the hypoxia and necrosis pathway.

C. Hybridization of Models

In our model, components of the continuum and discrete
scales are explicitly linked mathematically. Information is di-
rectly communicated between the scales at each time step, and
each scale component is directly affected by, and directly af-
fects, the other. Agents in the discrete scale receive informa-
tion about their microenvironment directly from the continuum
scale. Each agent probes its microenvironment at the beginning
of each time step in order to determine the local concentration
of all molecules represented in the continuum scale (oxygen, es-
trogen, AREG, and FGF) at its location (for simplicity, agent lo-
cation is taken to be its center of mass). Because the solutions of
continuum molecular profiles are only known exactly at the node
locations, agents must interpolate the concentration at their loca-
tion from the values at their nearest nodes. Each agent identifies
its nearest nodes at each time step, and agents then interpolate
the value at their location from the values at the nearest nodes
using linear barycentric interpolation. Agents also feedback into
the continuum scale through direct modification of the contin-
uum solutions, based in part on their phenotype (see Fig. 1B),
as described in detail in Continuum Methods. Through explicit
linking of discrete and continuum scales, the model is able
to provide detailed information about interplay between contin-
uum (tissue) and discrete (cell) scales, and to give useful insights
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into the contributions of molecular factors involved in determin-
ing behavior observed at a cellular level. Hence, the information
that can be gained here with the hybrid method is not available
through using either discrete or continuum methods alone.

lll. RESULTS

We have implemented our 3D DCIS model to simulate the
earliest stages of DCIS in a simulated duct. The mammary duc-
tal structure possesses significant variation in duct diameter,
which shows significant variation even within a single gland
[30], [71]. In a study measuring 1,285 excised human mam-
mary ducts, Mayr ef al. reported a mean diameter of 90 pum for
the normal duct (520 samples, range 39—314 pm), but a sta-
tistically significant increased mean diameter of 314 pm (765
samples, range 60—1708 pm) in ducts with intraductal carci-
noma [71]. Of the ducts measured, ~97% of healthy ducts and
~30% of ducts containing intraductal carcinoma were found to
be smaller than 200 pm diameter. This significant variation in
duct diameter between healthy ducts and ducts containing DCIS
is due (at least in part) to mechanical stretching of the duct by
DCIS expansion. Simulations presented here were performed in
three different diameters of mammary gland duct Sections (100,
150, and 200 pm luminal cavity diameter based on [30], [71];
i.e., the thickness of luminal and myoepithelial layers in the
mature duct are not included in this measurement, but instead
surround a luminal cavity of this diameter), each represented as
a cylinder of duct 1 mm in length axially.

A. Model Setup

Through initial testing (see Supplementary Section S3.1),
we found that the number of TICs initiated in the niche at
time 1 = 0 had a negligible influence on the total DCIS extent
and rate of advance for all duct sizes tested. Hence, we chose
to proceed with 5 TICs assigned in the luminal layer of the
mature duct at the start of all simulations. These TICs may
proliferate indefinitely, placing their daughters into the luminal
cavity, as determined by cell phenotypic hierarchies shown in
Fig. 1. These cells may continue to proliferate, as determined by
mitosis threshold rules (see Table I) and satisfaction of molecular
signaling thresholds. TICs were initiated at the center of the duct
axis (e.g.,in a 1,000 pm axial length duct section, they would be
placed as close to axial location x = 500 pm as possible), with
all TICs in a contiguous location. For consistency, we seeded
a standard set of agent locations in the mature duct layers at
the start of simulations (#+ = 0; however, each non-TIC agent
has a stochastically determined phenotype, making the cellular
composition of each simulation unique). The DCIS population
may invade the duct both radially across from the TIC niche and
axially along the duct from this central locations. The total ductal
axial extent is taken to be the summed magnitude of cell advance
through the duct cavity bidirectionally from the TIC niche. At
each time step, details of each agent (locations, phenotypes,
cell states, etc.) were recorded, and results are detailed in the
sections below. We note that, under the model configurations
tested here, our simulation results only model the comedo-type
solid DCIS architecture.
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Fig. 4. Total cell count over time for three duct sizes: 100, 150, and
200 pm internal diameter. DCIS cell population expansion occurs over
two distinct phases: early exponential growth due to population doublings
occurring once per cell cycle, followed by a linear growth phase (transition
times between phases indicated by dashed lines, colors correspond to
figure legend; found to be 5.6, 7.0, and 6.38 days in the 100, 150, and
200 um ducts, respectively; see Table Il). Subsequent to this transition,
the population remains in a linear growth pattern. This effect is further
accentuated in the 200 xm duct, where the total cell count increase due
to disease progression is balanced by necrosis-induced cell death. All
data shown with 5 TICs initiated at t = 0 and without signaling threshold
effects. Points show mean values of 3 simulations (taken at the end of
each simulated day), error bars = standard deviation.

Model outputs of interest reported here include the extent of
DCIS (measured as described in the previous paragraph), the
associated DCIS axial advance rates (estimated as a linear best-
fit to measured DCIS extent), and total DCIS cell population,
as well as extent of hypoxia and calcification when appropriate.
Simulation results were compared against literature-reported
ductal invasion rates within the human mammary gland, and
both calibration of baseline parameters and validation of suc-
cessful model results were determined based on consistency
between model results and literature-reported values for duc-
tal invasion rates (reported to range from 5.5-13 mm/yr) [72],
[73]. Literature-supported parameter values were used as base-
line values (Table I), with perturbations applied for sensitiv-
ity analysis (i.e., Results III.D). When parameter values were
not available from the literature, we calibrated the model phe-
nomenologically to reproduce behaviors we were able to obtain
from the literature (see Supplementary Section S1.2). All simu-
lations were run on the Lonestar 5 supercomputer, located at the
Texas Advanced Computing Center, The University of Texas at
Austin.

B. Early-Stage DCIS Growth Occurs in Two Distinct
Phases

Examination of the total cell count over time reveals two
distinct phases of DCIS growth behavior: an early, transient ex-
ponential growth period, followed by an extended linear growth
period, which in good agreement with previous modeling work
[74]-[77]. This behavior is observed in all duct sizes (see Fig. 4),
and for all numbers of TICs seeded in the TIC niche (data
not shown). Transition between these two phases was found to
occur between 5.6 to 7 days (median transition times across
duplicate runs (the average of 2x runs with 5 TICs in the niche)
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TABLE Il
TRANSITION TIMES BETWEEN EXPONENTIAL AND LINEAR RATES OF CELL
POPULATION INCREASE

D.u ct Transition Exponential 2 Linear fit 2
SIZE€  time (days) fit R (v = kt) R
(um) Y o=ae Y
100 5.60 14.02¢%7#t 0991 251.90-¢ 0.999
150 7.00 24.93€%633 0992 737.09-t 0.998
200 6.38 16.82¢%717t 0992 1164.38-t 0.989

Transition times between exponential and linear cell population increase rates observed
across all duct diameters tested. Transition times were determined by iteratively dividing
growth data for each duct size tested into exponential and linear subsets; with transition
time chosen as the division time that maximized R? across both exponential and linear sets.
At early times, cell population increase rates (exponential) were observed to be similar
across all duct diameters tested, while at later times the linear cell population expansion
increased with increasing duct diameter.

were found to be 5.60 days, 7.00 days, and 6.38 days in the
100 pm, 150 pm, and 200 pum diameter ducts, respectively; as
indicated by short dashed lines in Fig. 4). These observed expo-
nential growth phases correspond to DCIS population doubling
times of 23.3 hours, 26.28 hours, and 23.2 hours for 100, 150,
and 200 pm diameter ducts, respectively. The early-stage expo-
nential growth phase was maintained until cell-density induced
quiescence reduced proliferation in the DCIS population, after
which consistent linear growth rates were observed across all
duct diameters. This biphasic pattern of DCIS population in-
crease is observed to be irreversible, and once a transition from
exponential to linear growth occurs, the model will remain in
the linear growth pattern for the rest of the simulation. In all
cases, it was observed that the rate of increase in the DCIS cell
population is larger for larger duct diameters, due to a larger to-
tal non-quiescent population. Detailed values for times to phase
transition, as well as best-fit values for exponential and linear
growth rates and R? values are shown in Table II.

C. Model Parameter Sensitivity Analysis

We performed a local sensitivity analysis (i.e., only one pa-
rameter is varied, while keeping all other parameters fixed at
their reference values), to examine the impact of changes in
parameter values on DCIS growth dynamics. In our analysis,
we focused on four input parameters: DCIS cell cycle time
(Tp), hypoxia threshold (fy), cancer cell oxygen consumption
rate (Ac), and FGF proliferation threshold; and two model out-
puts of interest: tumor advance rate (um/day) and calcification
growth rate (m?/day) in the largest duct examined in this study
(200 pm diameter) over 30 days of simulated DCIS growth.
These input parameters were perturbed from 0.8-fold (a 20%
decrease) to 1.2-fold (a 20% increase) of the baseline values
(Table I) in 5% increments. The effects on the overall model
outputs of interest were quantified using a sensitivity coefficient
[78], defined as:

M _ OM/M

" ep/p

where p represents the parameter which is varied, M represents
the system response, and 0M is the change in M due to &p,

the change in p. In the case of the analysis presented here,
M, corresponds to tumor advance rate and Ms corresponds to

(6)

TABLE llI
SENSITIVITY ANALYSIS

Calcification
Tumor advance
Days rate (um/day) gmwjt h rate
Parameter simulated (um’/day)
|s¥|  Variation |s Variation
Cell cycle 30 2.159 0.95 37.42 0.95
time (zp)
Hypoxia
threshold 30 0.988 0.95 13.30 1.1
(On)
Cancer cell
oxygen 30 0.768 105 2246 1.05
consumption
rate (Ac)
FGF
proliferation 30 0.462 1.1 13.82 0.95
threshold

Parameters were varied individually as indicated in +5% intervals (in a range of 0.8-
to 1.2-fold of their baseline values), with all other parameters held constant at their
baseline values (Table I). All parameters were run for times indicated, with 30 day
runs for all cases examined. In each case, the maximum absolute value of sensitivity
coefficient \S;“ | gives quantification of overall model sensitivity of the parameter
tested, which was observed at the associated reported variation value. The model was
found to be most sensitive to variations in the cell cycle time, with lower cell cycle
lengths resulting in greater total DCIS cell population and faster axial advance rates.

calcification growth rate, while p corresponds to any of the
parameters varied, as shown in Table III and Fig. 5. In all cases,
that larger the absolute change in the sensitivity coefficient,
|S;,” |, the more sensitive the model is to the given parameter.

We found that the model was most sensitive to changes in
cell cycle time (7p; duct advance rate |SC| = 2.159 and calci-
fication rate |SC| = 37.42; Fig. 5A, D), while the model was
found to be less sensitive to other parameters examined. That is,
the magnitude of the percent change in model output (6M/M)
was roughly linearly related to change in model input (6p/p);
resulting in similar values of SC (i.e., Eq. 6) for the cases ex-
amined (maximum values for |[SC| in these cases are shown in
Table III). These results and the likely causes are examined in
greater detail in Discussion.

D. Necrosis Acts as a Hypoxia Relief Mechanism

Due to the relationship between duct radius and the diffusion
distance of oxygen in this tissue (Table I; and also noting that
cancer cells consume more oxygen than cells), oxygen remains
plentiful in the 100 gm and 150 pm diameter ducts, and hy-
poxic conditions were only observed in the 200 pm duct; this is
consistent with data reported by Mayr et al. [71]. In the 200 pm
duct, hypoxic conditions were observed to follow the leading
edge of the tumor, once the tumor thickness has exceeded the
diffusion distance for oxygen radially. Because we assume a
constant blood oxygen concentration at the duct boundary, the
oxygen threshold at the center of the DCIS mass will remain
below the hypoxia threshold (67 ) unless local cellular oxygen
consumption is reduced. While cells may be displaced out of
this region, more commonly we observed that this is not the
case, due to the high density of cells surrounding this region.
Usually, local hypoxic conditions were reduced following hy-
poxia induced necrosis of agents in the hypoxic region. That
is, the death of these cells reduced the oxygen consumption
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sensitivity coefficient (SC), which quantifies change in model output per change in model input parameter [see Equation (6)].
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Fig. 6. Necrosis acts as a partial relief mechanism for hypoxia. (A)
Cross sectional view of a section of DCIS with axial necrosis and cell lysis
(inset: cell type legend), with the corresponding oxygen solution profile in
panel. (B) Lowest oxygen concentrations were observed in the location
of necrotic agents in the DCIS population, following the leading edge of
DCIS (panel A, light blue agents and red arrow). In regions of cell lysis
and calcification (green agents), oxygen concentrations are observed
to raise slightly (green arrow, dashed), due to the relief mechanism of
necrosis and calcification through reduction of oxygen consumption at
these locations.

burden in these regions, allowing oxygen concentration to in-
crease slightly in these locations in subsequent time steps, and
thus reducing the slope of the oxygen gradient along the duct
radius in these locations; this effect is shown in Fig. 6. In this
way, necrosis was observed to function as a relief mechanism
for hypoxic conditions, allowing local oxygen concentration to
rebound slightly, ensuring the remaining cancer population is
sufficiently oxygenated, as well as potentially allowing some

cells to survive their hypoxia and return to normoxic conditions
due to the local oxygen concentration recovery.

E. Molecular Signaling Effects

In order to examine the effects of molecular signaling on
DCIS, we tested the model in the case of both high and low
signaling thresholds for both estrogen (upregulating ER+ cell
proliferation) and FGF (upregulating ER— cell proliferation).
We define the molecular signaling threshold as the signaling
intensity that stimulates a cell to undergo mitosis. Briefly, when
thresholds are high, progenitor cells may only be stimulated
to mitosis when high local signaling molecule concentrations
exceed the high threshold; while low thresholds allow a cells
to be stimulated into mitosis under low local molecular con-
centration. We performed a series of signaling threshold tests
to determine the effects of variations in signaling intensity on
DCIS progression dynamics in the 100 pym duct. In all tests,
we held constant the release and uptake rates for each molecule
(i.e., estrogen, AREG, and FGF) across all cells of appropriate
phenotype. DCIS axial advance rates were seen to be sensitive
to signaling thresholds, as high thresholds limit mitosis, result-
ing in slower population expansion and fewer DCIS cells over
time relative to the low threshold case (Fig. 7, curve 1). Fur-
thermore, this effect was more pronounced in the high estrogen
threshold case (Fig. 7, curves 8 and 9), while low estrogen sig-
naling thresholds show lesser reduction in DCIS axial advance,
even with high FGF thresholds (Fig. 7, curve 3). This effect is
attributed to the upstream to downstream effect of the epithelial
to stromal (i.e., estrogen to FGF) signaling pathways, and is ex-
amined in additional detail in Supplementary Materials Section
S2.3 and Fig. S2.

Simulation output from several cases of interest (correspond-
ing to the data shown in Fig. 7) is shown in Fig. 8. An example
of a non-threshold limited case is shown in Fig. 8A; it can be
seen that the viable rim on the right is completely composed of
ER— phenotype, resulting in a large section of completely ER—
agents, while the left side is observed to be of mixed phenotype
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Fig. 7.  Effects of molecular signaling thresholds on DCIS axial extent.
Plot shows the location of the leading edge of the DCIS mass along both
axial directions (indicated by upper and lower curve pairs, as shown by
white dashed lines in inset, bottom left) under various molecular signaling
sensitivity thresholds. Increased molecular signal thresholds for estrogen
and FGF resulted in reduced DCIS axial invasion, with high thresholds
for both simultaneously showing the most pronounced effect. All results
shown are for a 100 um diameter duct. Case 1 provides a baseline (i.e.,
with only minimal thresholding effects). Thresholding is implemented
using normalized molecular concentrations (1.0 estrogen baseline, with
low = 0.8, medium = 0.85 and high = 0.9, and FGF 0.5 baseline low
= 0.3, medium = 0.4, and high = 0.5). Additional details are shown in
Supplemental Materials Fig. S2.

due to the mixed phenotypic distribution within the viable rim.
Fig. 8B shows a case of high FGF proliferation thresholds; in this
case, the DCIS population is dominated by the ER+ phenotype,
likely due to early stage proliferation limitations in the ER—
population, resulting in establishment of a completely ER+ vi-
able rim early in the simulation and subsequent development of
a completely ER+ tumor. Fig. 8C, D shows two cases of high
estrogen thresholding under the same simulated conditions. In
the test case shown in Fig. 8C, the ER+ dominated viable rim
(left, red arrows) is substantially limited in axial advance rate,
in part due to high estrogen uptake in this area (many ER+ cells
lower the local estrogen concentration in this region, further re-
ducing mitosis). However, the ER— viable rim (right side) is not
limited by the estrogen signaling threshold, resulting in substan-
tially faster axial advance rates. Of note, the ER+ dominated
viable rim was not completely arrested in proliferation events,
as estrogen may diffuse down the duct (in the direction of the
red arrows) from a higher estrogen concentration farther down
the duct axis, thereby maintaining some limited proliferation at
this location. Fig. 8D shows a case of a mixed phenotype vi-
able rim (green arrows, high estrogen threshold), which allowed
the viable rim to adapt to the threshold limitations. The ER—
phenotype was able to proliferate more readily than the ER+
phenotype, and overtook it in this case, transitioning the viable
rim to only the phenotype not limited by signaling thresholds
(ER—, blue arrow). This suggests that the mixture of phenotypes
of DCIS may serve as a tumor adaptation mechanism, allowing
for tumor progression even when conditions are unfavorable for
one or more phenotypes.

IV. DISCUSSION

We observed that the initial number of TICs at time t = 0
only affected DCIS population dynamics at early times (i.e.,
2.25—5.9 days). This effect is due to the cell density limitations
we impose on the system. At early times after DCIS initia-
tion, cell population increase is exponential, with the number of

A) Estrogen Low, FGF Low (Figure 8 curve 1)

B) Estrogen Low, FGF High (Figure 8 curve 3)
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Fig. 8. Example simulation results with signaling effects. (A) Baseline
example without signaling limited proliferation, presented as a cross-
section to show the inner phenotype distribution within the DCIS (times
shown in days). (B) FGF limited proliferation case: the ER— population
is completely unable to proliferate at early model times, resulting in the
viable rim being completely composed of ER+ cells, resulting in almost
the entire DCIS population being an ER+ phenotype. (C, D) Estrogen-
limited case examples. (C) The ER+ viable rim (red arrows) is seen
to advance more slowly than the ER— (right side) viable rim due to
estrogen limited ER+ proliferation. (D) In another simulation instance
under the same simulation conditions as (C), a mixed viable rim (green
arrows at t = 6, 8, 10 days) is seen to overcome the proliferation lim-
ited ER+ population (due to high estrogen threshold), resulting in an
ER+ viable rim (blue arrow, t = 12 days) and demonstrating a possi-
ble adaptation mechanism to signaling limited cases in the DCIS cancer
population. All results shown in a 100 m duct; cases A—-C correspond to
curves shown in Fig. 8 (as indicated), with agent color scheme as shown
in Fig. 1C and 7A.

TICs acting as the base of the exponential. However, once the
population expands to reach the cell density-restricted region,
cell proliferation is significantly reduced. Subsequent to the ex-
ponential growth phase, cell density demonstrated consistent
regulation of proliferation events within the TIC niche and in
the DCIS population (e.g., see Fig. 4). Under these conditions
in our model, DCIS advance through the ducts becomes primar-
ily a function of proliferation events within the leading edge of
the tumor, where tumor cell density is the lowest. Because cell
density and thickness (i.e., number of cell layers) of the prolif-
erating population at the leading edge is similar in all duct sizes
(i.e., under the same density conditions in all duct diameters), a
similar number of nonquiescent progenitor cell layers was ob-
served in all duct diameters examined, resulting in a consistent
linear axial duct advance rate in all duct sizes (but requiring a
larger total number of cells in the larger ducts).

Results of model sensitivity analysis showed notable sensi-
tivity to cell cycle time (7p ), with a shorter simulated cell cycle
resulting in faster ductal advance rates (but, importantly, as reg-
ulated by estrogen and FGF signaling thresholds; see Table III
and Fig. 5). In all cases, larger total DCIS cell populations (due
to more total or more frequent cell proliferation events) result
in greater duct advance and increased total oxygen consump-
tion (and thus larger hypoxic regions). However, development
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of hypoxia, necrosis, and calcification is highly dependent on
development of a high-density (comedo-like) DCIS completely
filling the duct cross-section; when cell density is lower, cal-
cification is reduced, which is due, in part, to local signaling
limitations (e.g., Fig. S2E) or development of less dense mor-
phological configurations. Ultimately, calcification is the most
downstream process in this model, and is thus the most variable
model output, as it is influenced by many other upstream model
parameters (Fig. SE).

Proliferation events within the DCIS population occur at the
leading edge of the tumor (where cell density is at the lowest),
while hypoxia, necrosis, and calcification occur in the center of
DCIS mass (where cell density is the highest). Thus, cell pro-
liferation is not directly decreased by hypoxia and necrosis, as
these two phenomena occur in different DCIS subpopulations,
and ductal advance rates showed minimal (if any) change due
to oxygen and hypoxia thresholds. Further, the effects of FGF
signaling variation were also found to be small, demonstrat-
ing effective paracrine control over DCIS population dynamics
and the ability of phenotypic diversity to overcome signaling
limitations. Because FGF production is largely (but indirectly)
dependent on the ER+ cell population (through the epithelial
to stromal AREG to FGF signaling pathway; see Fig. 1), FGF
signaling intensity is directly tied to the ER+ population, which
remained fairly constant across all tests, as the estrogen sig-
naling threshold was held at the baseline value for all FGF
perturbation tests. Due to this downstream nature of FGF sig-
naling, FGF proliferation restrictions may be overcome by a
transition to a predominantly ER+ phenotype in the DCIS lead-
ing edge, an example of which is shown in Fig. 8D. Although
high FGF thresholds exhibit restrictions on the ER— population,
this is balanced by normal (baseline) proliferation in the ER+
population, and only minimal variation was observed in total
cell population (and thus axial invasion) in this case.

Our model analysis showed that necrosis functions as a relief
mechanism for hypoxic conditions in the tumor, allowing a slight
rebound of local oxygen concentration subsequent to necrotic
cell death (see Fig. 6). We expect this may play a key role in the
natural selection mechanism for a hypoxia-resistant phenotype
in vivo, where hypoxia-resistant cells are able to outlast the
necrotic transition of their hypoxia-susceptible neighbors long
enough to benefit from the observed rebound in local oxygen
concentration. Interestingly, we observe a predictable, regular
distance between the axial extent of calcification and the leading
edge of the tumor. This may allow us to make predictions of an
effective surgical margin around ducts where calcification is
observed with our future modeling efforts (similar to results
obtained in 2D by Macklin et al., who were the group first
to simulate and examine microcalcifications in DCIS [33]), as
the majority of DCIS cases are diagnosed by observation of
calcification via mammography [79].

Molecular signaling thresholds functioned as expected, with
high thresholds limiting proliferation in the associated pheno-
type. Of particular interest, as shown in Fig. 8B, the DCIS was
seen to be completely composed of the ER+ phenotype in this
particular case. Although there are ER— cells near the TIC
niche, stochastic proliferation at early times in the simulation

run pictured resulted in the viable rim being completely
composed of ER+ cells, resulting in an almost completely
ER+ phenotype in the DCIS. In this test case, the expand-
ing ER+ population produced AREG, and thus the local FGF
concentrations were plentiful to allow for ER— phenotype pro-
liferation at later times in the simulation, but this could not
occur as there were no ER— agents in the leading edge. This
example demonstrates an important concept: early molecular
signing thresholds (or other signaling events early in the DCIS
initiation) play an important role in establishing the phenotypes
found in the tumor leading edge. If the leading edge is only com-
posed of one phenotype after this period, any future phenotypic
diversity in the DCIS population may be due to (or even depen-
dent upon) further mutations within the cancer cell population,
or may be derived from de-differentiation events, which are
known to occur in mammary cancers (i.e., a cell becomes less
differentiated, potentially back to a stem-like phenotype) [80],
although at this stage we do not include this phenomena in our
model.

In another test case (Fig. 8D), one phenotype becomes dom-
inant when a selective pressure results in reduced proliferation
in the other phenotype. In this way, the tumor may adapt to
be better suited to survival in its host, likely with ER+ fa-
vored in environments with high estrogen signaling, and ER—
in cases of higher FGF signaling (or vice-versa in cases of re-
duced signaling intensity). Because estrogen functions through
a system-wide endocrine mechanism, but FGF is a function of
the local stroma, these two signaling pathways may be disrupted
due to distinct mechanisms in a host, and these may favor one
phenotype, analogous to sensitivity mutations in the different
cell phenotypes in our model. Although this may potentially
serve as a tumor adaptation mechanism, it does so at a cost of
sacrificing some phenotypic diversity as currently implemented
in our model.

In the future, we will calibrate a set of model parameters
(e.g., cell density thresholds and different signaling thresholds)
against our own in vivo animal data, and will also study the
transition from an in situ cancer to an invasive cancer. Because
our model also includes the surrounding mature duct layer, we
will also be able to study the tumor-suppressing effects of p63
in DCIS, which has been shown to come exclusively from the
outer myoepithelial layer of the mammary gland [81]. We are
also preparing a follow-up study of extensive sensitivity analy-
sis on more parameters using both local and global sensitivity
analysis [82]-[84], as well as investigating how DCIS becomes
invasive breast cancer, and how these respond to chemotherapy
or other drugs. Ultimately, we will use our model to provide
valuable discoveries on the physical and signaling effects that
lead to, and are thus indicative of, either consequential or indo-
lent lesions. There is increasing evidence that most DCIS will
not become invasive cancer, and women who receive treatment
in these cases endure unnecessary pain and anxiety without
gaining any benefit [85], [86]. We hope to use our model to
gain valuable insights into how overdetection, excessive mor-
bidity, and unnecessary clinical interventions may be reduced,
as well as identifying biophysical markers that may be used to
distinguish consequential from indolent lesions.
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V. CONCLUSION

We have presented a 3D, lattice-free hybrid model of DCIS
that spans molecular signaling and cell scales in order to exam-
ine how phenotypic transitions within the DCIS cell populations
due to different signaling events influence early-time DCIS. Our
model has shown agreement with biologically reported data,
both in terms of ductal advance rates and extent of calcification
[71]-[73], which we take to be affirmative evidence of its accu-
rate replication of the disease state and predictive power. With
the model calibrated as presented, we note that the early expo-
nential growth state of the disease is short-lived, with a rapid
transition to a linear growth behavior later on, which is in good
agreement with other modeling work [74]-[77]. In particular,
this shows encouraging agreement with early time tumor de-
velopment rates in existing breast cancer growth models, which
have reported logistic or Gompertz growth behavior [87], [88].
Our model showed that a complex interplay of cell density in-
duced quiescence, cell cycle times, molecular signaling, and
phenotypic distribution (and likely other factors as well) deter-
mines DCIS axial invasion rates and overall disease progression
rate. We observed consistent axial invasion rates across all duct
diameters tested and consistent distance between calcification
extent and the leading edge of the tumor, suggesting full tumor
extent and accurate surgical margins may be predictable based
on imaging data on a per-patient basis, as is consistent with
other DCIS modeling results [33].
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