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Mathematical prediction of clinical outcomes 
in advanced cancer patients treated with checkpoint 
inhibitor immunotherapy
Joseph D. Butner1, Dalia Elganainy2, Charles X. Wang3, Zhihui Wang1,4, Shu-Hsia Chen5,6,  
Nestor F. Esnaola6,7, Renata Pasqualini8,9, Wadih Arap8,10, David S. Hong11, James Welsh2,  
Eugene J. Koay2*, Vittorio Cristini1,3*

We present a mechanistic mathematical model of immune checkpoint inhibitor therapy to address the oncological 
need for early, broadly applicable readouts (biomarkers) of patient response to immunotherapy. The model is built 
upon the complex biological and physical interactions between the immune system and cancer, and is informed 
using only standard-of-care CT. We have retrospectively applied the model to 245 patients from multiple clinical 
trials treated with anti–CTLA-4 or anti–PD-1/PD-L1 antibodies. We found that model parameters distinctly identi-
fied patients with common (n = 18) and rare (n = 10) malignancy types who benefited and did not benefit from 
these monotherapies with accuracy as high as 88% at first restaging (median 53 days). Further, the parameters 
successfully differentiated pseudo-progression from true progression, providing previously unidentified insights 
into the unique biophysical characteristics of pseudo-progression. Our mathematical model offers a clinically rele-
vant tool for personalized oncology and for engineering immunotherapy regimens.

INTRODUCTION
Immunotherapy has emerged as a promising therapy for multiple 
cancers, and its utility is projected to grow as combinatorial effects 
with existing modalities of cancer treatment become elucidated (1, 2). 
Notably, some patients with traditionally dire prognosis have been 
found to respond to immunotherapy treatment with notable efficacy 
as measured with current canonical metrics of tumor burden response 
(3): the gold standard of overall survival, followed by progression- 
free survival, and a consensus measure of tumor burden [Response 
Evaluation Criteria in Solid Tumors (RECIST 1.1)] (4, 5). However, 
to date, only a minority of patients have been reported to receive 
clinical benefit from immunotherapy (6). Recognizing the need for 
more refined metrics of treatment response by immunotherapy, the 
modified iRECIST has been proposed (7). While iRECIST provides 
a guideline that helps maintain standards of interpretation of clinical 
data from prospective trials, it only provides prognostic value after 
extended monitoring (7), and widespread consensus on standardized 
guidelines for its implementation remains elusive (8). The cost of 
this delayed response feedback is that by the time immunotherapy 
is definitively confirmed to be of unsatisfactory benefit to the patient, 
it is often too late to adapt treatment to affect the patient’s outcome.

To address the need for earlier determinants of treatment re-
sponse, multiple groups have investigated circulating tumor DNA 
(9), complete “-omics” (10) mRNA profiling (11), and immune cell 
population shifts (12, 13). However, most of these metrics require 
either invasive procedures or technically challenging analyses, which 
may prove to be a hurdle for some patients and clinical centers, re-
spectively. To achieve the goal of personalized medicine for all 
patients, a noninvasive and objective metric to determine who will 
benefit from immunotherapy is needed. To this end, we have developed 
a mechanistically based biophysical model that describes the immuno-
therapy response. In this study, we use tumor growth rate obtained 
from standard-of-care computed tomography (CT) imaging, and 
model-derived quantifications of tumor cell kill rate (m) and antitumor 
immune state (L) to predict treatment outcomes for a mixed popu-
lation of patients undergoing checkpoint inhibitor treatment for 
metastatic disease of various primary tumor types, and demonstrate 
methodologies whereby the model may be implemented prospectively 
as a predictor of patient response and survival at times as early as 
first restaging (a1). Last, we offer model-derived insights into the 
mechanistic underpinnings of pseudo-progression, suggesting new 
directions for further study of this phenomenon.

MATERIALS AND METHODS
Assumptions about the tumor microenvironment 
and immune response
Immune cell presence in the tumor microenvironment is necessary 
for potential cancer cell kill. Immune cells (killer T cells) respond to 
diffusion of immunotherapy drug (antibody) molecules and con-
sequently become activated, in the presence of immunotherapy drug 
binding, through cell signaling pathways and chemotaxis. The underlying 
model hypothesis is that these drug molecules diffuse within the 
tumor microenvironment and block the interaction of immune 
checkpoint inhibitory ligands expressed on immune T cells with their 
complementary proteins on tumor cells or antigen-presenting cells 
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(APCs). This binding renders effector immune T cells potentially 
active for cancer cell killing and ultimately implies that the therapeutic 
site of action occurs within the tumor microenvironment. The equa-
tions and functional relationships of the model parameters are thus 
universal across the spectrum of checkpoint inhibitors, whereas the 
parameter values are cancer type and immunotherapy drug specific 
as they reflect specific underlying mechanisms of action.

The biophysical processes briefly outlined below and in Fig. 1, 
and in particular molecule and cell transport physics, effectively set 
the values of several parameters and thus effectively determine 
immunotherapy outcome. For example, the physics of transport of 
immune cells via chemotaxis (c) and of drug molecule diffusion 
(DA) affect the total immune cell counts (yk) in the tumor micro-
environment, and the total drug (s) delivered to and bound (l) to 
their respective ligands on T cells (e.g., Fig. 1); the molecular biology 
and tumor mutational burden (among other factors) are likely to 
play a major role in the binding, as well as in the values of the pharma-
codynamic coefficient lp representing the specific kill rate effected 
by immune cells, and in the coupling between immune and cancer 
cells. This rate is a property of the cancer type, the immune cell types 
(T cells and dendritic cells), and the immunotherapy drug, and, in 
principle, can be measured experimentally. It phenomenologically 
describes the drug-mediated activation of T cells by the dendritic cells, 
after which the T cells can recognize and kill cancer. Together, these 
biological properties (and others, see below and the Supplementary 
Materials) are described mathematically according to the physics of 
their movement and behavior within the tumor microenvironment, 
leading to the development of the model presented here.

Mathematical model
Building on our established models of patient response to chemo-
therapy (14–21), we have developed a mathematical model that 

describes the total tumor burden (r) over time and is built upon the 
key mechanistic biological factors or processes [e.g., concentration 
of therapeutic T cells (yk), intratumoral immunotherapy antibody 
concentration (s), cytokine secretion (LC), and ratio of immune to 
tumor cells over time (Ly)] and physical factors or processes [e.g., 
rates of tumor cell proliferation (a) and death (m), antibody-target 
binding rates (l), diffusion of antibodies and cytokines (DA, DC), 
specific death rate of cancer cells (lp), chemotaxis (c), and mass 
conservation] that underlie immunotherapy intervention in many 
or all solid tumors (Fig. 1).

By explicitly combining and mathematically linking the relation-
ships between these biological and physical processes (Fig. 1 and 
Eqs. 1 to 4), our model quantifies their combined effects (and the 
feedback processes between them) on the time-dependent change 
in tumor burden under immunotherapy intervention in a way that 
is advantageous over descriptions based exclusively on only biological 
or physical parameters. In words, the four key underlying equations 
shown in Fig. 1 state that (i) the concentration of viable cells within 
a tumor over time is a function of the tumor’s intrinsic growth rate 
reduced by tumor cell kill rate, which occurs due to antibody binding 
(calculated or estimated; in this case, checkpoint inhibitors binding 
to their respective ligands) and the time history of antibody uptake 
and binding within the tumor, and (ii) the time-dependent intra-
tumoral concentration of therapeutic immune cells is a function of 
chemotaxis-mediated migration into and within the tumor via cytokine 
signaling and immune cell coupling with tumor cells and (iii and iv) 
describe the steady-state diffusion balances of antigen-antibody inter-
action and cytokine concentrations within the tumor microenvironment. 
Solving these four equations (detailed in the Supplementary Materials) 
leads to our master equation (Fig. 1 and Eq. 5) that mechanically 
describes tumor burden over time under immunotherapy inter-
vention based on only three parameters, where a0 is the intrinsic 

Fig. 1. Mechanistic mathematical model of immunotherapy. The model describes the tumor as it grows at an intrinsic growth rate (a0) and is affected by the biophysical 

processes of immunotherapy. Together, these processes are combined mathematically into calculated superparameters representing tumor kill rate (m; light blue) and 

antitumor immune state (L; yellow). This is described mathematically by four partial differential equations (Eqs. 1 to 4), which are solved to obtain the master equation 

(Eq. 5). A detailed mathematical description of model derivation and underlying assumptions is provided in the Supplementary Materials.
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tumor growth rate without treatment intervention, and super-
parameters (e.g., each represents a combination of several biophysical 
factors) m and L represent key biological and physical processes 
involved in the immunotherapy mechanism (Fig. 1). m is the tumor 
kill rate by immunotherapy (mathematically represented as the 
product of immune cell fitness, penetration into tumor, and anti-
body binding), and L is the patient’s antitumor immune state, here 
defined as the coupling of immune cell activity and the tumor cell 
kill [immunogenicity of an individual tumor, mathematically described 
as the number of cancer cells that an immune cell can kill (dimension-
less) scaled by the ratio of tumor cells to intratumoral immune cells 
at the time of treatment]. Definitions of these superparameters and 
other key parameters are provided in Table 1. Together, these super-
parameters serve as mathematical biomarkers of immunotherapy re-
sponse. Additional details on model development, derivations, and 
underlying assumptions are provided in the Supplementary Materials.

At early times subsequent to treatment initiation, i.e., from initi-
ation of treatment up to the first restaging, the short-term solution 
of Eq. 5 is

  r(t ) ≈  e   ( a  0  −m)⋅t   (6)

Thus, the early stages of treatment depend primarily on the tumor 
cell kill rate (m) representing the decrease in the tumor growth rate 
due to immunotherapy, which may be calculated as the difference 
between baseline (pretreatment) and long-term (over the course of 
treatment; calculated retrospectively after time of last follow-up) 
growth rates (Fig. 2 and Eq. 7). These parameters are, in principle, 
directly measurable from histopathology and imaging (e.g., CT). All 
parameters used in the results presented here are listed and defined 
in Table 1.

Patients
All studies were conducted in accordance with U.S. Common Rule 
and with Institutional Review Board Approval at MD Anderson 
(PA14-0852), including waiver of informed consent. We reviewed 

all patients that had completed participation in the clinical trials 
and were eligible for inclusion (calibration cohort, n = 28; institu-
tional validation cohort NCT02239900, n = 93) by the time of our 
study; some patients were excluded from analysis (calibration, n = 2; 
institutional validation, n = 3) due to unavailable pretreatment 
CT imaging. Regarding the calibration cohort, we note that data for 
a total of 58 patients were obtained for the calibration study; however, 
only 28 were useable, as 17 patients had received nonimmune check-
point inhibitor immunotherapy, 11 had been concurrently treated with 
complimentary standard (i.e., nonimmunotherapy) or noncheckpoint 
inhibitor immunotherapy, and 2 were missing pretreatment mea-
surements needed to quantify a0. Out of the total 121 patients in-
cluded, for the calibration cohort, 14.3% (4 of 28) were responders 
(tumor burden reduced at last restaging, i.e., r ≤ 1), 2 of whom were 
pseudo-progressors (showed initial tumor burden increase followed 
by subsequent reduction in tumor burden; also responders), and 
85.7% (24 of 28) were nonresponders (tumor burden increased at 
last restaging, i.e., r > 1), while in the institutional validation cohort, 
22.6% (21 of 93) were responders (of these, 6 were pseudo-progressors) 
and 77.4% (72 of 93) were nonresponders. Patient characteristics 
are described in tables S1 and S2 for the calibration and institutional 
validation cohorts, respectively.

Determining normalized total tumor burden by CT analysis
All patients underwent triple-phase (precontrast, arterial, and portal 
venous phases) CT scans at baseline. For postcontrast phases, 2.5-mm- 
thick slices were obtained. Arterial and portal venous phase scanning 
were initiated with 20- to 25-s and 50- to 60-s delay, respectively. At 
each restaging, routine abdomen, pelvis, and lung CT scans were 
done. Lesion measurements were taken on postcontrast CT scans at 
baseline and at each restaging (restagings ranged from 1 to 12; 
median, 2). Selection of indexed lesions and follow-up guidelines 
adhered to standard RECIST 1.1 procedures, and the long and short 
axes of each indexed lesion (total indexed lesions ranged from 1 to 9) 
were determined at each follow-up time point (4). Axes were averaged 

Table 1. Key model parameters and their biophysical meaning.  
Symbols Definitions

r
Tumor volume—volume of tumor 
measured from CT imaging at 
each time point

m

Tumor kill rate—score that 
encompasses variables that 
quantify tumor kill rate, as 
illustrated in Fig. 1.

L

Anti-tumor immune state—score 
that encompasses important 
variables within the immune state, 
as illustrated in Fig. 1.

a

Tumor growth rate—may be 
calculated at:

• Baseline: intrinsic baseline 
tumor growth before treatment 
(a0); Fig. 2 (Eq. 8)

• First restaging: (a1); Fig. 2 (Eq. 9)

• Long term: calculated 

retrospectively after last patient 

follow-up (a∞); Fig. 2 (Eq. 7)

Fig. 2. Calculating model parameters. Tumor volumes (r) are measured via CT 

imaging at indicated time points. The baseline intrinsic tumor growth rate (a0) is 

calculated from images before treatment and at time of treatment inception (Eq. 8). 

Long-term tumor growth rate (a∞) is calculated retrospectively by subtracting the 

tumor kill rate from the intrinsic tumor growth rate (Eq. 7). The model-derived mea-

sure of tumor growth rate estimated at first restaging (a1) is calculated using Eq. 9.
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geometrically to obtain a reasonable approximation of the mean 
lesion diameter (d), which was then converted to the associated lesion 
volume (mm3) by approximating lesions as three-dimensional (3D) 
spheres of radius d/2. Any nonindexed lesions were omitted from 
our calculations. This method of estimation of tumor volume calcu-
lated from orthogonal diameter measurements is based on published 
methodologies, which have been shown to have high correlation with 
region of interests (ROIs) determined from 3D scans in patients (22), 
and are also standard and accurate in murine xenograft models 
(23, 24). If lesions were obscured or not seen in images at a restaging 
time point, long and short axes were estimated via linear interpolation 
or extrapolation from measured axes in the immediately preceding 
and following restaging. In all work presented here, the time of 
immunotherapy initiation is set as t = 0, with pretreatment events 
being t < 0 and all events after treatment initiation as t ≥ 0. At each 
time point, we calculated a representative total tumor burden for each 
patient by summing the volumes of all indexed lesions at each time 
point divided by the total burden at beginning of treatment. We refer 
to this normalized quantity as total patient tumor burden (r) in this 
article. Representative time-course data are shown in fig. S1.

Measuring baseline tumor growth rate (a0), long-term 
tumor-cell killing rate (m), and antitumor immune state (L) 
from imaging
Equation S2 was fit numerically to these time-course data using the 
built-in Mathematica function NonLinearModelFit (25) (numerically 
optimizes a defined function to data) to retrospectively obtain best-fit, 
“exact” model parameter values L and m for each patient.

This was a two-step process for each patient (Fig. 2); in step 1, 
lesion data from before treatment initiation (t < 0) and treatment 
initiation (t = 0) were interpolated to determine the pretreatment 
growth kinetic rate a0 for each patient assuming exponential growth 
kinetics before initiation of therapy according to Eq. 8 (see also Eq. 6 
and its related considerations). Then, a0 was inputted into eq. S2, leaving 
only two unknowns: L and m, whose values were then obtained in 
step 2 from the nonlinear fitting of eq. S2 to the patient tumor burden 
data (r) measured from imaging at t ≥ 0 (Table 1 and fig. S1, D to F).

Measurements of model parameters from imaging  
at first restaging
A patient-specific, accurate estimation of the tumor growth rate 
after immunotherapy a1 (and thus of parameter m1 from Eq. 10) at 
time of first restaging during the course of treatment was calculated for 
each patient by fitting the short-term model solution between the 
measured tumor burden at time of treatment initiation and at the time 
of first restaging. The exponential tumor growth rate was measured via 
Eq. 9 (Fig. 2); note that this definition is consistent with Eqs. 6 and 7.

Categorizing patients into response groups
For each patient, we analyzed the total normalized tumor burden (r) 
at each restaging time point, including from the time of first restaging 
to the end of treatment. We define response based on the total tumor 
burden measured at the time of last patient follow-up relative to 
baseline tumor burden and thus classify responders (r ≤ 1) versus 
nonresponders (r > 1).

Statistics
All statistical analyses were conducted in Excel, GraphPad Prism 
version 8, and RSWE (26). Significance between groups was calcu-

lated using Wilcoxon rank sum (two-tailed). Survival curves were 
constructed using the Kaplan-Meier method; P values were reported 
as log-rank test (Mantel-Cox). Multivariate survival analyses were 
performed using Cox proportional hazards model. Overall survival 
under immunotherapy treatment was defined from time of treatment 
initiation to time of death or last follow-up.

RESULTS
Rate of tumor cell killing (m) and antitumor immune state (L) 
associate with immunotherapy response
Retrospective model analysis was performed on a patient set obtained 
from various immunotherapy clinical trials treated with checkpoint 
inhibitor therapy (n = 28, see table S1) to verify that model parameters 
were able to reliably identify patient response based on quantifica-
tion of the underlying biophysical and mechanistic forces and processes, 
to determine how model parameters vary with patient response, and 
to establish quantified thresholds for predicting patient outcome. 
Because of our concerns about the small size of this sample, and the 
misbalance between responders (n = 4) and nonresponders (n = 24), 
this analysis was then repeated on, and the results were validated in, 
two additional patient cohorts: one from a clinical trial performed 
at MD Anderson (n = 93; table S2), and the second obtained from 
the literature (n = 124; table S3).

Our mathematical parameters m (rate of tumor cell killing) and 
tumor growth rate after treatment (a1) were found to have statistically 
significant separation (P < 0.01) when we compared them between 
populations that either had reduced tumor volumes (r ≤ 1.0; re-
sponders) or increased tumor volumes (r > 1.0; nonresponders) at 
last restaging following immunotherapy treatment (Fig. 3, A and B). 
We note that L was not found to separate patient response signifi-
cantly (P = 0.1991) in the calibration set, and it was found to be only 
minimally significant in both validation cohorts (Figs. 4 and 5).

Model parameters associate with individual  
patient response
We investigated whether model parameters a∞ (tumor growth rate 
after treatment), m (tumor cell killing rate by immune cells), and L 
(antitumor immune state) would correlate with patient response on 
a per-patient basis. Receiver operator characteristic (ROC) analysis 
of patient separation between responder and nonresponder groups 
in the calibration cohort revealed high accuracy between parameter 
values m and a∞ and patient response (accuracy = [(true positives + 
true negatives)/total sample size] = 0.893 and 0.964, respectively), 
while accuracy was reduced (accuracy, 0.750) when parameter L was 
used. Cutoff values that maximize accuracy of predicting response 
were found to be m = 0.01 day−1, L = 0.144, and a∞ = 0.0 (Fig. 3 and 
fig. S6). The cutoff value for m is consistent with the average growth 
kinetics parameter in the calibration set a0 = 0.0120 day−1 (i.e., it is 
roughly equal and opposite the intrinsic growth rate, where m > a0 is 
required for tumor burden reduction). We note that, for both clinical 
patient cohorts examined, the intrinsic tumor growth rate (a0) was 
not significantly associated with response (fig. S4).

Measurement of any of these parameters for a given patient, and 
comparison to the corresponding cutoff value, leads to determina-
tion of the probability of that patient being classified as responders 
or nonresponders, with an accuracy as high as 88% (for a1) and 
greater than 89% (if m is use; table S5). The probability of a patient 
being in a response group may be plotted as percentage of responder 
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or nonresponder patients with a parameter value greater than the 
value measured in that patient (fig. S6), allowing the probability of 
response for new patients to be read off the curve; for example, there 
is ca. 10% probability of values of m greater than the cutoff in non-
responder patients and ca. 90% in responder patients (calibration 
cohort; fig. S6A). Combined, these results provide valuable infor-
mation on the likelihood of response to immunotherapy for the 
patient in question.

Model parameters identify unique characteristics  
of pseudo-progressors
It has been observed following immunotherapy administration that 
some patients have an initial increase in tumor size, followed by a 
decrease in tumor size [e.g., r(ti) > 1.0, then r(tj) ≤ 1.0; t0 < ti < tj]. 
This clinical phenomenon is called pseudo-progression and represents 
a challenge when deciding whether to continue immunotherapy or 
not, especially when patients report feeling better after starting immuno-
therapy but demonstrate enlarging tumors (27). Now, there is no 
reliable method to delineate patients with pseudo-progression from 
patients who are true nonresponders. Using our model, we are able 
to estimate tumor kill rate at early time (first restaging) after treat-
ment (m1; fig. S5) from a1 as

   m  1   =  a  0   −  a  1    (10)

Our analysis found that, for the clinical validation set, the tumor 
cell kill rate at the first restaging (m1) (Eq. 10) for pseudo-progressors 
is consistent with nonresponders, but at a later time, the tumor cell 

kill rate (m) is consistent with responders. Thus, the early measured 
value of the tumor cell kill rate parameter m1 is lower than the long-
term value m that is obtained from the fits (fig. S5D); we refer to this 
ramping-up of immune response as Dm = m – m1. This behavior was 
not observed in normal responder or nonresponder patients, which 
were observed to have unsubstantial Dm between first restaging and 
the later retrospectively determined value (fig. S5E). Moreover, our 
analysis found that L (antitumor immune state under immunotherapy) 
was statistically similar to responder and nonresponder patients in 
the calibration cohort but was statistically different from non-
responders in the validation cohort (fig. S5I), suggesting in our 
mechanistic analysis that pseudo-progression is caused by a delayed 
ramp-up of tumor cell killing by the immune system [this is explored 
further in the Supplementary Materials; we note that this was not 
observed in the calibration cohort, likely due to high patient hetero-
geneity, small sample size, and low number of pseudo-progressors 
(n = 2)].

Model parameters are quantifiable at early times  
after start of treatment
We investigated whether patient response could be predicted at the 
first restaging, using the growth rate a1 directly measured from imaging 
(see Materials and Methods and Eq. 9) as a surrogate for the exact 
model parameter a∞. We observed ca. 82% accuracy, as compared 
to the 96% accuracy of the exact parameter (notably, a1 and a∞ were 
found to be strongly correlated; Fig. 3E), using the same cutoff for 
the exact model parameter a∞ (fig. S6 and table S5).

Fig. 3. Model parameters derived from the calibration cohort can delineate individual patient response to immunotherapy. Retrospective analysis of per-patient 

model parameters representing (A) tumor cell killing rate, (B) antitumor immune state, and (C) long-term tumor growth (or reduction) rate under immunotherapy inter-

vention for responders and nonresponders. Responders are defined as having reduced tumor burden at last restaging relative to treatment initiation, while tumor burden 

was increased in nonresponders. (D) Tumor growth rates under immunotherapy intervention estimated at first restaging were found to be significantly associated with 

response and (E) were consistently correlated with long-term values (Pearson = 0.8634) but with slightly reduced accuracy (F). Red bars (A to D) indicate mean ± SD 

(black). ***P ≤ 0.001, **P ≤ 0.01 by Wilcoxon rank sum (two-tailed).
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Model validation
To confirm the results obtained from analysis of the calibration 
dataset, validation was performed on two additional patient cohorts, 
first using one obtained from an in-house clinical trial using the 
CTLA-4 inhibitor ipilimumab (NCT02239900, n = 93) and then on 
a second set obtained from the literature, consisting of data from four 
clinical trials of anti–PD-1 (nivolumab) or anti–PD-L1 (atezolizumab) 
applied to four different cancer types (renal cell carcinoma, non–
small cell carcinoma, melanoma, and urothelial cell carcinoma; n = 124; 
table S3) (28–31).

Analysis of the first (institutional) validation cohort included 
long-term estimation (see Materials and Methods; Fig. 2) of a∞, m, 
and L, and the measurement of tumor growth after treatment at 
first restaging (a1). In all cases, model parameter values showed sig-
nificant separation between responder and nonresponder patients 
(Fig. 4, A to D and F), and the estimate of tumor growth rate at first 
restaging a1 was found to be strongly correlated with the retro-
spectively determined true long-term growth rate a∞ (Fig. 4E). 
Further, the optimal values to sort patient response identified in the 
calibration set were found to also perform well in this institutional 
validation cohort, with high accuracies of 0.774 for m, 0.731 for L, 
1.0 for a∞, and 0.849 for a1.

A second validation cohort was obtained from literature-reported 
data (consisting only of normalized tumor burden measurements at 
and after time of treatment initiation), with the intention of testing 
the model’s ability to perform under conditions of minimal data 
availability. Analysis was performed as described above. Because of 
the lack of availability of pretreatment tumor volume data for this 

set, we parametrized the baseline tumor growth rate a0 based on the 
fastest growing 10% of tumors (Supplementary Materials; fig. S3) to 
estimate the tumor kill rate (m) for this patient set. This parameter-
ization and underlying assumptions were validated through extensive 
sensitivity analysis, which demonstrated stability in m (maximum 
observed variation in m was 13.5% across all iterations). Significant 
separation (P < 0.0001) was observed between m values for responders 
and nonresponders for the parameter perturbation range examined 
(e.g., Eq. 7; detailed in the Supplementary Materials). In addition to 
m, all the other model parameters (L, a∞, and a1) were also found to 
show significant separation between response types (Fig. 5, A to D), 
and a1 was significantly correlated with a∞ (Fig. 5E).

Model parameter a1 predicts patient survival
Using the available retrospective data about patient outcome in the 
calibration cohort (death or censor), we were able to correlate a1 
(tumor growth rate at first restaging) with patient outcome through 
a ROC analysis. The binary classifier for ROC analysis was defined 
as patient survival (or death) to 50% patient survival time, i.e., 
447 days in the calibration cohort, with the individual a1 value for 
each patient used as the discrimination threshold across the entire 
patient set. The optimal threshold value for prediction of patient 
survival to 50% survival time was found to be (Fig. 6A) a1 = 0.002 day−1 
(Youden’s J statistic, 0.25; F score, 0.72). Comparison of Kaplan-Meier 
survival curves between favorable and unfavorable groups was sta-
tistically significant to 95% (P = 0.0347). Confirmation of the opti-
mal threshold value a1 = 0.002 day−1 using the institutional validation 
cohort also demonstrated significant patient separation to 50% survival 

Fig. 4. Model parameters delineate individual patient response to immunotherapy in the institutional validation cohort. Measurement of per-patient model pa-

rameters at long term to quantify (A) immune-mediated tumor cell kill rate, (B), antitumor immune state under immunotherapy intervention, and (C) long-term tumor 

growth (or reduction) rate under immunotherapy intervention for responders and nonresponders. (D) Tumor growth rates under immunotherapy intervention estimated 

at first restaging were found to be significantly associated with response and (E) were consistently correlated with long-term values (Pearson = 0.8604) but with slightly 

reduced accuracy (F). Red bars (A to D) indicate mean ± SD (black). ****P ≤ 0.0001 by Wilcoxon rank sum (two-tailed).
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time (416 days in this validation cohort, Youden’s J statistic = 0.185, 
F score = 0.693; Fig. 6B). This result was further validated via Cox 
proportional hazards multivariate analysis; this is detailed in the 
Supplementary Materials (table S4).

Univariate and multivariate analyses
Univariate analysis of the calibration cohort revealed a significant 
association between neutrophil-to-lymphocyte ratio [NLR, which is 

reported to be associated with increased overall and progression-free 
survival in melanoma (12) and other cancers (32)] and overall survival 
[hazard ratio (HR) = 1.1 (1.02 to 1.24), P = 0.016], and multivariate 
analysis confirmed this correlation [HR = 1.17 (1.03 to 1.3), P = 0.01]; 
this was confirmed in the institutional validation cohort analysis 
(Table 2). Examination of our early estimate of patient response (a1) 
in this limited dataset did not reveal a significant correlation with 
patient survival (univariate analysis: a1 HR = 1.95 × 1011, P = 0.08; 
multivariate analysis: a1 HR = 5.22 × 1013, P = 0.054). However, a1 
was found to be significantly correlated with patient survival in the 
validation set (P < 0.01), likely due to this set being a larger, more 
uniform patient cohort [e.g., only two cancer types all treated with 
the same checkpoint inhibitor, as compared to the high cancer type 
and drug heterogeneity in calibration cohort (table S1)].

DISCUSSION
In this paper, we apply a mathematical model (Eq. 5) to three patient 
cohorts: two clinical cohorts and one literature-derived cohort to 
predict response to treatment with checkpoint inhibitor immuno-
therapy. Our model uses standard-of-care CT imaging data as inputs, 
and with these inputs, the model is able to provide reliable quantifi-
cation for three key mechanistic values: (i) the tumor cell killing rate 
(m), (ii) the antitumor immune state (L), and (iii) the posttreatment 
growth rate a∞ on a per-patient basis. The parameters m and a∞ 
indicate immunotherapy response (Figs. 3, 4, A and C, and 5B). 
However, it is important to note that a positive tumor kill rate 
(m > 0) is not necessarily sufficient for favorable tumor response; 

Fig. 5. Model parameters delineate individual patient response to immunotherapy in the literature-derived validation cohort. Retrospective analysis of per-patient 

model parameters to quantify (A) tumor cell killing rate, (B) antitumor immune state under immunotherapy intervention, (C) long-term tumor growth (or reduction) rate 

under immunotherapy intervention (a∞), and (D) tumor growth rate under immunotherapy intervention estimated at first restaging (a1); these were all found to show 

significant separation between response categories. (E) Estimates of a1 were found to have significant correlation with the long-term values a∞ (Pearson = 0.8837) and 

showed reduced accuracy relative to the long-term values (F). Red bars (A to C) indicate mean ± SD (black). ****P ≤ 0.0001 by Wilcoxon rank sum (two-tailed).

Fig. 6. Model-derived parameter a1 is associated with survival benefit. Kaplan-Meier 

analysis demonstrates significant association between growth rate measured at 

first restaging a1 (Eq. 9) and patient survival in both (A) calibration (n = 28) and 

(B) institutional validation (n = 93) cohorts. Validation was not performed with 

the literature-derived cohort (n = 124) due to unavailability of survival data for 

this cohort. Cutoff value for predicting survival outcome a1 = 0.002 day
−1

 (identi-

fied in the calibration cohort) also significantly separates patients in this validation 

cohort (P < 0.01). P values (Mantel-Cox) for separation shown in inset.
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instead, tumor kill rate must exceed the intrinsic growth rate (e.g., 
m > a0; Eq. 7). This suggests valuable insights for personalized medicine, 
where an individual patient’s a0 may be used to select treatment 
aggressiveness on a per-patient basis. We also found that tumor growth 
rate at the time of first restaging (a1) is significantly associated with 
tumor burden at end of treatment (Figs. 3 to 5E) and predicts patient 
survival (Fig. 6). When applied to our institutional validation set, 
which contains a larger and more uniform patient cohort relative to 
our calibration cohort (tables S1 and S2), we observed significant 
correlation between patient survival and our measure of tumor growth 
at first restaging (a1). Moreover, our model parameters were found 
to have significant correlation with patient response, while baseline 
blood markers examined (neutrophils, lymphocytes, and NLR) and 
growth rates did not (figs. S2 and S4). Last, we have observed in some 
patients that tumor growth rate is faster after treatment; this mani-
fests as negative values of m and L. It is known that immunotherapy 
causes increased growth rates in some tumors; however, the bio-
logical underpinnings of this phenomenon remain elusive (33). 
Unfortunately, this prevents our inclusion of these biophysical processes 
in our model; however, we are currently conducting new experiments 
in our laboratory to isolate the processes that may be responsible for 
this behavior; this is discussed further in the Supplementary Materials. 
This work not only provides an easily implemented clinical tool 
but also a framework to understand and study the mechanistic bio-
physical underpinnings of immunotherapy response by quantitatively 
describing the constitutive biophysical processes involved.

For patients exhibiting disease progression (nonresponders), we 
compared this progression to the growth kinetics before initiation 
of therapy (a0), projecting that growth would have continued expo-

nentially at the same baseline rate in the absence of treatment 
(Eq. 8). It was observed that, even for patients who had tumors that 
continued to grow during treatment (nonresponders), there is a 
meaningful effect of treatment resulting in a reduction of the growth rate 
with respect to the rate before treatment: a∞ < a0. Reduced tumor 
growth relative to the projected growth reflects the effect of treat-
ment even for progressive disease (fig. S1, D to F). We have shown 
that the migration of m values from those that correspond to non-
responders to those of responders over time is a critical feature of 
pseudo-progressors (fig. S5). This suggests that their immune sys-
tem is actually experiencing a gradual but definitive “ramp-up” in 
patients who are clinically described as pseudo-progressors. This 
counters the current dogma that pseudo-progression is caused by 
inflammatory cell infiltrates into the tumor (27). This influx of immune 
cells reaches a steady state (hours/days) in a far shorter time scale 
than what would likely be observed in restaging (weeks to months later). 
This has biological implications on the very essence of immunology 
and warrants further investigation.

With the increasing utility of immunotherapy in the treatment 
of various forms of cancer, there have been fervent efforts to predict 
treatment outcome for individual patients. While these studies have 
yielded positive predictors, they often require input data/samples 
that are not readily available in all clinical settings. Our contribution 
to this ongoing effort is the development of a predictor that uses 
clinically available standard-of-care, noninvasive CT scans to predict 
patient benefit from immunotherapy as early as the first restaging, 
making it easily integrated into clinical practice. Furthermore, our 
predictor can be complementary to other biomarkers to increase 
accuracy. Conceptually, our model describes the change in tumor 

Table 2. Multivariate analysis of calibration and validation cohorts. Bold values indicate statistical significance. NLR, neutrophil-to-lymphocyte ratio; HR, 

hazard ratio; CI, confidence interval. 

Overall survival

Definition
Univariate analysis Multivariate analysis

P HR [95% CI] P HR [95% CI]

Calibration cohort

Age 0.96 1.001 [0.95–1.05] 0.37 1.03 [0.97–1.08]

Gender
Female 0.33 0.59 [0.2–1.73] 0.3 0.58 [0.19–1.74]

Male Reference Reference

Toxicity
Grade 3+ 0.83 0.89 [0.3–2.5] 0.45

Grade 1 or 2 Reference Reference

a1 0.08
1.95 × 10

11
 [0.07–9.49 

× 10
22

]
0.054 5.22 × 10

13
 [0.49–3.15 × 10

27
]

NLR 0.016 1.1 [1.02–1.24] 0.01 1.17 [1.03–1.3]

Tumor burden 0.6 1 [0.99–1] 0.98 1 [0.99–1]

Institutional 
validation cohort

Age 0.19 1.01 [0.99–1.03] 0.03 1.02 [1–1.04]

Gender
Female 0.57 1.16 [0.68–1.9] 0.17 1.5 [0.83–2.8]

Male Reference Reference

Toxicity Grade 3+ 0.33 1.3 [0.75–2.36] 0.68 1.13 [0.63–2.08]

Grade 1 or 2 Reference Reference

a1 0.005 5.65 × 10
12

 
[9,063.07–6.09 × 10

20
]

0.002 1.09 × 10
15

 [528,545.2–2.24 × 10
24

]

NLR 0.006 1.07 [1.02–1.12] 0.03 1.07 [1.01–1.15]

Tumor burden 0.18 1.00005 [0.99–1.0001] 0.59 1 [0.99–1]
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mass over time after immunotherapy treatment initiation as a balance 
of tumor proliferation and tumor-killing effects of immunotherapy, 
thereby yielding valuable insights into the mechanistic underpinnings 
of immunotherapy response. While predicting treatment outcome 
from tumor volume change is not novel in and of itself (34, 35), to our 
knowledge, this is the first report that mathematically encapsulates 
the multiple biological mechanisms of immunotherapy and retro-
spectively applies it to a prospective immunotherapy clinical trial. 
Furthermore, a key feature of our model is that, by representing 
tumor volume change as a rate (e.g., per time) instead of by absolute 
volume change, it allows for variability in terms of time of CT scan 
acquisition that is often the case in the clinical setting and does not 
require additional laboratory-based testing. We note that we have 
intentionally used RECIST v1.1 axial measurements to estimate tumor 
volumes in the work presented here (in our case, long and short 
orthogonal axes), instead of other available estimates of tumor volume 
(e.g., contouring). RECIST gives larger volume weights to tumors 
that develop extreme aspect ratios relative to tumors that remain 
relatively uniform in shape, a quantification that is representative of 
the idea that irregularly shaped tumors often exhibit more aggressive 
growth; we have intentionally included this clever idea into our 
methodology as well (mathematically, this is a “virtual volume”). 
Our model, and the parameters it contains, are built on the funda-
mental physical law–based mechanistic properties of tumor response, 
while RECIST 1.1 is empirically derived on the basis of meta-analysis 
of large patient sets and therefore lacks the mechanistic underpinning 
our model is able to provide. Hence, our model can provide a plat-
form to study the underlying biological and physical causes of the 
response outcome, and for prediction of response based on measure-
ments of these quantities (offering a valuable improvement over 
RECIST or its derivatives).

Some limitations of this approach are that (i) our study is a retro-
spective review of a prospective clinical trial; (ii) the population is a 
heterogeneous cohort of patients with liver and/or lung metastasis; 
(iii) variations in CT imaging protocols among different institutions 
and in tumor boundary identification among radiologists have not 
been investigated at this stage; (iv) some patients also underwent 
varying combinations of radiation therapy (for example, at least one 
tumor in each patient was irradiated in the patient cohort trial 
NCT02239900; these were removed from our calculations of tumor 
burden), and the overall “out-of-field” or abscopal effects remains 
unclear; and (v) a small number of patients were not able to remain 
on study until first restaging, and we were unable to apply our model 
to these patients due to lack of response data, or to associate model 
parameter a1 to survival in this subset (this was 6% of patients in 
NCT02239900; detailed values for other cohorts examined here are 
unavailable). However, we emphasize that our results demonstrate 
that the model performs satisfactorily in all patient cohorts to which 
it is able to be applied, and this is not diminished by this small set of 
patients. We understand that treatment response is affected by 
additional factors not included in our model in its current form, for 
example, drug resistance, hypoxia, angiogenesis, and stroma. These 
may also be supplemented by other imaging-derived bulk tumor 
quantities that could be informative to our model, such as tumor 
texture or morphology; however, we are not completely sure how these 
parameters may be of consistent value in such a diverse cohort, and 
hence, these are not explored in this study. Biophysical factors 
selected for inclusion in the model as presented here were chosen 
because they represent the most robust factors that are widely sup-

ported by the literature, in terms of both magnitude of effects on 
immunotherapy intervention and broadness of applicability to a 
large range of solid tumor types. Furthermore, because of the limited 
biological knowledge of the basic mechanisms of immunotherapy, 
we cannot account mathematically for parameters that are still 
unknown to the field at large. Our use of long- and short-axis mea-
surements to estimate 3D tumor volumes is advantageous as it 
offers the possibility for rapid transition to widespread clinical 
application of our model; however, detailed contouring is expected 
to provide more exact tumor volumes and model parameter quan-
tification; the ability of contouring tumor volumes to increase accuracy 
of our model predictions is currently under investigation in our labo-
ratory, and one focus of an upcoming publication. Nevertheless, our 
application provides a useful clinical tool in the emerging landscape 
of immunotherapy. This successful initial model validation will 
provide a foundation for continued investigation and further iterations 
of the model to improve its precision and accuracy.

In conclusion, this paper applied a refined mechanistic mathe-
matical model of immunotherapy response to a prospective clinical 
trial of checkpoint inhibitor therapy, validated with two separate 
cohorts representing various immunotherapy drugs, drug mechanisms, 
and cancer types, to predict the outcomes of patients. In doing so, 
we demonstrated that our model can accurately describe the variable 
response patterns of patients and discern pseudo-progressors from 
traditional responders and nonresponders. Notably, the model’s unique 
signature of (m) and (L) provides testable hypotheses of a distinct 
biology in this patient population and warrants further investigation. 
This early predictor of immunotherapy response may allow for critical 
adjustments to individual patient treatments and is one step closer 
to the promise of personalized medicine. Future investigations will 
focus on expanding the scope of this model to other clinical datasets 
and further refinement of the complex interactions between the tumor 
and its milieu.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/

content/full/6/18/eaay6298/DC1
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