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ABSTRACT

Towards clinical translation of cancer nanomedicine, it is important to systematically investigate the var-
ious parameters related to nanoparticle (NP) physicochemical properties, tumor characteristics, and
inter-individual variability that affect the tumor delivery efficiency of therapeutic nanomaterials.
Comprehensive investigation of these parameters using traditional experimental approaches is impracti-
cal due to the vast parameter space; mathematical models provide a more tractable approach to navigate
through such a multidimensional space. To this end, we have developed a predictive mathematical model
of whole-body NP pharmacokinetics and their tumor delivery in vivo, and have conducted local and glo-
bal sensitivity analyses to identify the factors that result in low tumor delivery efficiency and high off-
target accumulation of NPs. Our analyses reveal that NP degradation rate, tumor blood viscosity, NP size,
tumor vascular fraction, and tumor vascular porosity are the key parameters in governing NP kinetics in
the tumor interstitium. The impact of these parameters on tumor delivery efficiency of NPs is discussed,
and optimal values for maximizing NP delivery are presented.

© 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

1. Introduction

Nanoparticle (NP)-mediated cancer therapy has been only mod-
erately successful in clinical translation, and one of the main rea-
sons for this lack of success is the low tumor delivery efficiency
exhibited by NPs [1-3]. Despite their demonstrated potential to
exploit the leaky tumor vasculature to passively accumulate in
the tumor interstitium, a phenomenon described as the enhanced
permeability and retention (EPR) effect [4], or their ability to
actively target cancer cells following surface-functionalization
[5-7], it has been found that across the board merely 0.7% ID (per-
cent injected dose) of NPs accumulates in tumors [3]. Such low
delivery efficiency can be primarily attributed to the clearance of
NPs from the systemic circulation by mononuclear phagocytic sys-
tem (MPS) organs, in particular the liver and spleen. Due to certain
microanatomical and physiological features such as large vessel
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wall pores (also called sinusoidal fenestrations) and phagocytic
cells (e.g. hepatic Kupffer cells and splenic macrophages) in the
microvasculature of the liver and spleen, NPs are vulnerable to
sequestration in these organs, thereby facing a major challenge fol-
lowing systemic injection [8,9]. Nonetheless, these interactions
depend upon the physicochemical properties of the NPs [10,11],
or the physiological state of the MPS [12], indicating that all NPs
are not treated alike by the MPS, and manipulation of particle
properties provides a way to regulate their sequestration by the
MPS [13]. Similarly, clearance of NPs by the kidneys is NP size-
and charge-dependent, and thus is another tunable mechanism
of NP removal from the systemic circulation that can affect access
of NPs to the tumor [14]. In a nutshell, the tumor delivery effi-
ciency of NPs is not only dependent upon the properties of the
tumor, but is also strongly dependent upon the properties of the
NPs and the physiology of the MPS and kidneys.

To improve upon the status quo, the tumor delivery efficiency of
NPs must be better understood in the context of both their sys-
temic pharmacokinetics and the tumor microenvironment. While
the divide and conquer strategy in the pre-clinical evaluation of
this problem has improved our understaning of the importance
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of various physicochemical, biophysical, and physiological factors
in isolation [10-12,15-18], the systemic-level phenomena can be
drastically different when these isolated parts evolve together as
a system; thus, a holistic investigation of this multidimensional
parameter space is necessary to conclusively establish the impor-
tance of the key variables of interest. To this end, mathematical
models can be a valuable tool to investigate in silico the role of
NP-, tumor-, and individual-related parameters in determining
the tumor deliverability of nanomaterials. While mathematical
models developed in the past for investigation of in vivo NP
dynamics have revealed valuable insights into NP-cellular interac-
tions, effects of hemodynamics and hemorheology on intravascular
NP transport, and the importance of NP properties and tumor
microenvironment in delivery of NPs to the tumor [18-28,81], they
have either been limited in the scope of their spatiotemporal scale
or the parameter space under investigation. Further, the physiolog-
ically based pharmacokinetic (PBPK) models developed so far,
which are ideal for evaluating the disposition of NPs at the
whole-body scale, have in our knowledge lacked an explicit tumor
compartment, and instead have focused only on the whole-body
biodistribution aspect of the problem [29-34]. This limits the abil-
ity of these models to make predictions about the tumor delivery
efficiency of the nanoformulations under investigation.

Thus, we have developed a tumor-compartment bearing PBPK
model to investigate in silico the effects of NP properties, tumor
variables, and individual physiological differences on the systemic
bioavailability, MPS sequestration, tumor delivery, and excretion of
NPs. Built on our extensive experience in mechanistic and PKPD
modeling of nanomedicine and drug delivery in cancer
[10,16,35-38], this model is mechanistic in nature, making it cap-
able of predicting systemic behaviors from properties of smaller

parts, such that it can simulate the whole-body disposition and
tumor delivery kinetics of NPs of any intended combination of
physicochemical properties (including size, density, and degrada-
tion rate). The model has been validated with preclinical data,
and local and global parameter sensitivity analyses have been con-
ducted to rank the importance of various parameters pertinent to
the problem of tumor delivery of NPs. We note that, while the ther-
apeutic efficacy of NPs also depends upon their drug loading capac-
ity (defined as the amount of drug that can be loaded into a given
NP) and the ICsq of the payload, the investigation as is currently
presented in this paper is only focused on the delivery efficiency
of NPs.

2. Methods
2.1. Theoretical basis of the model

Upon injection into the bloodstream, NPs are transported across
the body via the vascular network through a highly dynamic
microenvironment characterized by microscopic nano-bio interac-
tions that govern the fate of NPs in terms of their global biodistri-
bution kinetics and, more importantly, their delivery to the target
site (in the current context, this is a solid vascular tumor) [20]. As
shown in Fig. 1a, NP interactions with blood cells (erythrocytes in
particular), with endothelium, or with endothelium-lining cells
(macrophages) at the microvascular scale (capillary bed) play a
critical role in NP pharmacokinetics, and are thus important com-
ponents for effective mathematical modeling of NP transport kinet-
ics through the vasculature of a given region of interest (ROI).
Further, extravasation of NPs into the extravascular space (tissue
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Fig. 1. Mathematical model description. a) Dynamics of NPs at the capillary scale is shown such that they exhibit non-uniform radial distribution due to the effects of
sedimentation, diffusion, and advection (inset). b) Structure of whole-body tumor-bearing PBPK model is shown. Notation- red arrows: plasma flow, dashed blue arrows:
lymph flow, bright yellow arrows: extravasation, white arrows: phagocytosis, mustard arrows: excretion, dotted white arrows: NP deposition on the vascular wall (kon;), and
dotted black arrows: NP dislodging from the vascular wall (ko ;). GI denotes gastrointestinal tract. ¢) Schematic of a representative healthy compartment containing three
sub-compartments: vascular, extravascular, and phagocytic. d) Schematic of tumor compartment containing vascular and extravascular sub-compartments. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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interstitium) of the ROI, via either bulk transport or diffusion, can
further modify the transport kinetics of NPs through the ROL It is
thus important to consider these interactions and transport pro-
cesses in the development of a whole-body physiologically realistic
model of NP pharmacokinetics and tumor delivery. To account for
these interactions in our model, we characterize each process
through mechanistic parameters derived through fundamental
physical laws, as described below.

2.1.1. NP deposition on the microvascular wall

As shown in Fig. 1a, NPs may not have a uniform radial distribu-
tion in the microvascular space; they may rather partition between
the vascular core (cell-enriched layer) and the vascular periphery
(cell-free layer and endothelial wall), with a preference for the
periphery. We hypothesize that this partitioning is based on their
tendency to undergo sedimentation, which maybe augmented by
Brownian diffusion and shear-induced diffusion due to the pres-
ence of erythrocytes [24,39-42]. Once in the vascular periphery,
NPs can either remain as free-flowing, or they may bind to the
sticky glycocalyx covering the endothelial wall based on the inter-
play between their tendency to marginate from the cell-free layer
towards the wall and their ability to dislodge from the endothelial
glycocalyx, thereby governing the rate at which NPs pass through
the capillary bed [13]. Thus, the intravascular partitioning of NPs
and their tendency to remain as free-flowing or bound is affected
by NP properties, hemorheology, and hemodynamic conditions in
the microvasculature [22,23,25], which eventually affects the
kinetics of NPs observed at the organ scale [43].

Assuming that NP motion from the core towards vessel the wall
(radial direction) is due to gravitational and buoyant forces, we
obtain the terminal sedimentation velocity v for a NP of radius r
in the absence of longitudinal blood flow and erythrocytes via
Stoke’s law:

_2(Prp =Py, 2
v_9< L >gr M

where p,, and p, are the density of NP and plasma, respectively; g
is the dynamic viscosity of blood in organ i, and g is the gravita-
tional acceleration constant.

However, in the presence of blood flow and erythrocytes, the
sedimentation velocity must be corrected for the effects of NP
advection caused by blood flow (that will carry the particles along
the length of the capillary), and with the velocity effects of diffu-
sion. Heuristically, the stronger the advection of NPs, the faster will
be their exit from the capillary bed (characteristic length equal to
the length of a capillary [), and thus less time will be available to
them to sediment and diffuse towards the endothelial wall [8].
However, with greater diffusivity, their approach will be faster
towards the wall (characteristic length equal to the radius of a cap-
illary R). Thus, correction to the sedimentation velocity is accom-
plished by dividing Eq. (1) by the Peclet number (%), where u is
the average blood flow velocity in a capillary of characteristic
length [ (see section 4 of SI). Here, D denotes the effective diffusiv-
ity of NPs, obtained by summing diffusivity due to Brownian
motion (Dg) and diffusivity due to shear-induced diffusion (Ds)
caused by laminar flow in a cylindrical vessel under no-slip bound-
ary conditions and interaction with erythrocytes. We used the
Stokes-Einstein equation to calculate Dg, and an analytical expres-
sion developed by Xu et al. [40] to calculate Ds as:

Ds = 0.38*yH? (2)

where $ is the radius of erythrocytes, ) is the shear rate (defined in
section 4 of SI), and H is the hematocrit: the volume fraction of red
blood cells in the blood.

Further, by dividing the corrected sedimentation velocity of NPs
by the characteristic length of sedimentation (radius of microves-
sel, R) we obtain the ko,; parameter (time~') that characterizes
the rate of deposition of NPs on the microvascular wall:

2/ Pop— P )grle
koni =a P E 3
' 9< K uR® ®)

The relative magnitude of sedimentation, Brownian diffusion,
erythrocyte-enhanced diffusion, and advection depend upon NP
properties, blood characteristics, and flow conditions, and the
dominant process(es) may change based on the size of therapeutic
NPs delivered. In order to obtain a generalized model of NP phar-
macokinetics that is applicable across a wide range of NP sizes
(nm-pm) and physiological conditions, we included all of these
processes in our model.

2.1.2. NP dislodging from the microvascular wall

NPs that have marginated towards the microvascular wall are
either endocytosed by endothelium-lining macrophages, as dis-
cussed next, or remain non-specifically bound on the endothelial
wall. However, the latter can be overcome, and the particles can
reenter the vessel lumen to continue their longitudinal transport if
the NPs can diffuse back through the thickness of the sticky glycoca-
lyx covering the endothelial wall (characteristic diffusion length
equal to the thickness of glycocalyx I;). This provides us with a mea-
sure of the rate of dislodging ko, (time™!) from the endothelium as:

kotti = Dy/I2 (4)

Although NP dislodgement from the endothelial wall maybe
affected by the strength of specific interactions between NP-
surface ligands and endothelial cell surface receptors [44], we
assume for simplicity that the relative tendency of NPs to approach
the endothelial wall and diffuse away from the wall are respec-
tively governed by k,n; and ke;. We note that inclusion of the
strength of microscopic NP-cellular interactions is currently out
of the scope of this model.

2.1.3. NP phagocytosis

To quantify the rate constant k.. (time™!) of NP phagocytosis
by endothelium-lining macrophages, we take the inverse of the
NP wrapping time of macrophages, estimated by equating the
mechanical work performed by motor proteins for wrapping NPs
against the elastic energy of the macrophage membrane. We
implement this using the following expression derived by Lunov
et al. [45]:

Kmac = p/4mry (5)

where p is the power of motor proteins and 7y is the surface tension
of the membrane.

2.1.4. NP extravasation via bulk transport or diffusion

NPs in the vasculature of a healthy or tumorous tissue can
extravasate across the vascular endothelium via pores or fenestra-
tions in the vascular wall to enter the tissue interstitium (extravas-
cular space). Every healthy tissue has a characteristic pore size
(radius, Tperei) associated with its vascular wall that controls the
passage of fluids and solutes [46]. NPs can cross the endothelial
wall through bulk transport with the effluxing lymph fluid, as reg-
ulated by the size-dependent impedance to particle extravasation
through fenestrations, which is characterized by the reflection
coefficient o;. The reflection coefficient for a NP is given by the fol-
lowing empirical relation [47]:

16
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where o; is the ratio of NP size to pore size, i.e. I'/T'pore;; G and F are
decreasing hydrodynamic functions of o; (given in section 2 of SI
(Egs. (S36), (S37))). A detailed analysis of the vascular reflection
coefficient and vasculature permeability (Eq. (7), below) as a func-
tion of NP size is presented in Fig. S4.

Tumors have much larger pores in their vascular walls relative
to healthy tissue, that are a result of poorly developed neo-
angiogenic blood vessels [4,48]. Although this makes the tumor
vessels highly permeable, it also causes excessive leakage of lymph
into the tumor interstitium [49-51]. Further, due to solid stress
generated in a growing tumor, lymph vessles tend to be non-
functional due to physical compression, thereby leading to poor
lymphatic drainage [52]. Both of these factors lead to elevated
tumor interstitial fluid pressure that reduces the hydrostatic pres-
sure difference between vasculature and interstitium; thus bulk
transport of NPs is hampered, and the only feasible means of
extravasation of NPs in tumors is diffusion [53,54]. Diffusion-
dependent extravasation of NPs across the leaky tumor vascular
wall is characterized by the permeability (P)- surface area (S) pro-
duct (P - S, dimensions: volume-time '), and we use it to model the
passive targeting of NPs to solid tumors (EPR effect). The expres-
sion for permeability as obtained from Mescam et al. [47] is:

P=¢-(1—oq)FDs/ly (7)

where ¢ denotes the porosity of the tumor vessels and is defined as
the area of pores in a unit area of the microvessels, and l,, represents
the thickness of the vessel wall. The calculation of total tumor
microvascular surface area S is given in Section 3 of SI.

2.2. PBPK model development

To predict the global disposition kinetics of NPs, we used a PBPK
modeling framework and incorporated the previously described
microscopic mechanisms of NP interactions in the organ microvas-
culature [55]. The model is composed of the following compart-
ments, representing the major organs or tissues of interest: brain,
heart, lungs, plasma, liver, spleen, gastrointestinal tract, kidneys,
muscle, others, lymph nodes, and a facultative tumor (see
Fig. 1b). The “others” represents a lumped compartment compris-
ing bones, glands, and adipose tissue. Each healthy compartment is
divided into a vascular and an extravascular sub-compartment,
with the MPS organ compartments (liver and spleen) containing
an additional macrophage sub-compartment. The model is formu-
lated as a system of ordinary differential equations (ODEs) that are
based on conservation of mass and the law of mass action. Here,
we detail the equations that describe the NP distribution kinetics
in a representative healthy organ compartment (containing all the
three sub-compartments; Fig. 1c) and in the tumor compartment
(Fig. 1d). For the complete system of equations, refer to section 1
of SI (Egs. (S1)-(S35)).

2.2.1. Healthy organ compartment

2.2.1.1. Vascular sub-compartment. At the organ scale, as shown in
Fig. 1c, the vascular sub-compartment, which represents the
intravascular volume of the tissue, is fed with NPs via the incoming
blood at plasma flow rate Q;. Once in the vascular space, particles
can either efflux into the interstitial space via bulk transport with
the flowing lymph at the lymph flow rate L;, or can exit the vascu-
lar space to rejoin the systemic circulation at a rate Q; — L;. These
three transport processes are typically used to model the kinetics
of NPs or antibodies in the vascular sub-compartment. However,
as discussed previously, the non-homogenous distribution of NPs
within the vascular space due to sedimentation and their interac-
tion with erythrocytes, macrophages, and the endothelial wall
can affect the kinetics of NPs passing through the microvasculature
of a given organ.

As an improvement over conventional PBPK models, to capture
the vascular dynamics of NPs more appropriately, we introduced
the mechanistic ko ; (Section 2.1.1) and ko ; (Section 2.1.2) param-
eters in our model to incorporate the physical phenomena of NP
deposition on the vessel wall and dislodging from the vessel wall,
respectively. Further, since the particles in the vascular periphery
may be captured by macrophages in the MPS organs, we character-
ize this process by the mechanistic parameter kp,. (Section 2.1.3).
Thus, by classifying NPs in the vascular sub-compartment into free
and bound particles, we obtain the following ODEs for NP mass
kinetics in the vascular space:

Free NPs
Vyi s = Qi — (Qi — L)Ch, = Li- (1= 0)Ch — koni Vi€, @®
ot Vi, Vi ChL(0) = 0
Bound NPs
Vv1d§b = koniViCh kofflvvzc
— kmacAmaciViCoi ViiC2(0) =0 (9)

where Cf and Cb represent the concentration of free-flowing and
bound NPS in the vasculature of organ i, respectively; Cp is the NP
concentration in the plasma compartment; V,; is the vascular vol-
ume of organ i; and Anm,c; represents the area fraction of macro-
phages in the microvasculature of organ i, discussed below.

2.2.1.2. Extravascular sub-compartment. As discussed before, the
extravascular sub-compartment, representing the extravascular
volume of the organ, receives NPs from the vascular sub-
compartment through bulk transport of NPs along with the lymph
fluid movement, and regulated by the NP to vascular pore size-
dependent reflection coefficient. Thus, we have:
dCe;

Vei—gp = Li- (1= 0)Cy ~ LiCes VeiCeyi(0) =0 (10)
where C.; is the concentration of NPs in the extravascular sub-
compartment of volume V..

2.2.1.3. Phagocytic sub-compartment. NPs that are interacting with
the vascular wall are prone to phagocytosis by macrophages lining
the vascular wall in the MPS. The rate of uptake of NPs by the
macrophages can be represented as: = kmacVV,Cw, where Np;
is the mass of phagocytized NPs. However, in reality not all of these
NPs may be accessible by macrophages for engulfment due to lack
of proximity, and in order to correct for this we multiply CE‘,- by the
dimensionless term Ap,c; (area fraction of macrophages in the
microvasculature of organ i). Thus, Amac_,,-CEj represents the concen-
tration of vascular bound NPs that are in close proximity of macro-
phages and are available to undergo phagocytosis. Thus, rate of NP
phagocytosis can now be represented as:

dN;
dt

We further assume that phagocytosed NPs are degraded (and
excreted) at a rate characterized by a first order rate constant
kdeg. Thus, the kinetics of the phagocytic sub-compartment can
be represented as:

dNp;
dt
Note that organs other than the MPS organs do not have a

phagocytic sub-compartment due to the anatomical localization
of macrophages in the extravascular space of such organs, so these

= KmacAmaciViCo; (11)

Vv

kmacAmac1Vv1 vi kdegN p.i Np‘i(o) =0 (12)
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macrophages do not have direct access to NPs in the vasculature,
i.e. Amaci ~ 0. Refer to SI for the detailed equations of all the organs
(Egs. (S1)-(535)).

Additionally, excretion of NPs from the extravascular sub-
compartments in the kidneys and liver is governed by glomerular
filtration rate (GFR), urine (U), and bile (B) flow rates, which are
described in greater detail in the SI.

2.2.2. Tumor compartment

As shown in Fig. 1d, while the tumor compartment follows the
same general structure as a healthy compartment without the
phagocytic sub-compartment, the bulk transport-mediated
extravasation of NPs from the vascular to the extravascular sub-
compartment is replaced by diffusion-dependent transport. Also,
we assume that NPs sequestered in the tumor interstitium undergo
degradation (and excretion) at the same rate kg, as in the MPS
macrophages. Thus, the mass kinetics of NPs in the vascular and
extravascular sub-compartments of the tumor can be represented
as:

2.2.2.1. Vascular sub-compartment. Free NPs

dCyy £ £ f
==Qr (G —Cyp) =P-S-Cop —kon1VyrCi 1

Y

+ kotr1VorCp VirClr(0) =0 (13)
Bound NPs
dCST f b b
Vv,Td—t’ = kon,TVv.TCV_T - koff,TVv,TCVVT VV,TCV‘T(O) = 0 (14)
2.2.2.2. Extravascular (tumor interstitum) sub-compartment.
dN
d;‘T =P-S. Cf,,T — kgegNer, Net(0) =0 (15)

where N.t is the mass of NPs in the tumor interstitium.
2.3. Model parameterization and validation

Several physiological parameters were known a priori from the
literature (Tables 1 and 3), and the rest were derived through
mathematical models discussed above (Table 2). Equations used
for estimation of these parameters are given in SI

Table 3

List of parameters for sensitivity analysis. Perturbed parameter values were chosen
randomly from a uniform distribution within the +99% range around their respective
literature-based mean values.

Parameter Description (Units) Value
(References)

NP-related parameters

r Nanoparticle radius (nm) 50

Pnp Nanoparticle density (g-cm™3) 2 [39]

Kaeg Nanoparticle degradation rate (h™1) 0.01 [16]

Tumor-related parameters

Qr Tumor blood flow rate (ml-g~!-min~') 0.1[79]

Hr Tumor blood viscosity (cP) 742 [61]

for Tumor vascular fraction’ 0.1 [61]

TporeT Tumor vascular pore radius (nm) 850 [48]

¢ Tumor vascular porosity 0.001 [48]

Individual-related parameters

AmacL Area fraction of liver vasculature occupied by 0.5 [29]
Kupffer cells (section 7 of SI)

Amacs Area fraction of spleen vasculature occupied by 0.1 [29]
splenic macrophages (section 7 of SI)

H Hematocrit (%) 45 [61]

" Volume fraction of tumor occupied by vasculature.

The PBPK model (without the tumor compartment) was first
validated with longitudinal in vivo data extracted from our previ-
ously published study on NP pharmacokinetics [10]. In this study,
highly stable, monodisperse, radiolabeled mesoporous silica NPs
were administered intravenously into rats, following which the
animals were imaged over time until 24 h post injection. The
images were quantified to estimate the radioactivity concentration
(defined as percent of injected dose per gram, %ID'g~!) in various
organs of the body as a surrogate for NP concentration Kinetics.
We used the data from this study for neutrally charged NPs ranging
in hydrodynamic size from ~45 nm to ~160 nm to quantitatively
compare the model simulation predictions with the observed data.
The quality of predictions was assessed by conducting a correlation
analysis between model predictions and the observed data. All the
analyses were performed in MATLAB R2018a.

2.4. Model analysis

To investigate the significance of how various model parame-
ters affect NP pharmacokinetics and their delivery to the tumor,

Table 2
List of estimated model parameters.
Parameter Description Calculation Value
(Units) Tumor Healthy
Estimated Literature (Reference) Estimated Literature (Reference)
u Capillary blood  Eq. (540) 30 0-200 [73] 553 100-1000 [8,70,74]
flow velocity
(pm-s™1)
Qeapii Capillary blood  Eq. (S39) 0.15 0.21 (ischemia) [75] 2.58 2.4-3.47 [8,70]
volumetric flow
rate (nl-min~")
7 Capillary shear  Eq. (541) 16 0-30 [73] 116 100-1000 [61,70,74]
rate (s )
o Reflection Egs. (6), n/a Liver: 0.43, Spleen: 0.0025, Liver, spleen: 0.85
coefficient (S36), Others: 1 (reference NP size  Others: 0.9-0.99
(S37) 10 nm); also see Fig. S4a (reference NP
size ~ 10 nm) [65]
P Permeability Eq. (7) 1.1 x 1077 (reference NP size 2 x 1077 (reference NP size  n/a
(mm-s~1) 90 nm); 1.27 x 1075 (reference 90 nm) [76]; 2.82 x 1076
NP size 9.4 nm); also see Fig. S4b  (reference NP size 9.4 nm)
[77]
N Surface area Section 3 40 34-45 78] n/a

(mm?/mm?) of SI
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we conducted both local (LSA) and global (GSA) sensitivity analy-
ses. The effects of parameters were quantified based on area under
the curve (AUGC,_..) of plasma, MPS, tumor interstitum, and excre-
tion curves.

2.4.1. Local sensitivity analysis (LSA)

LSA was conducted by perturbing one parameter at a time over
a range +99% of its reference value (these are shown in Table 3),
while the remaining parameters were held constant at their
respective reference values. Each parameter was tested at 1000
levels within the above range, and four model outputs of interest

were examined: AUCH*™, AUCY™ , AUCH™”, and AUCS"*®. The

effect of each parameter perturbation was quantified by measuring
the sensitivity coefficient (SC) as:

AUC,_, — AUC . ) /AUCy
(Par’ — Par)/Par

SC = ( (16)

where AUC,_,, and AUCLHC represent the AUC of a given compart-
ment before and after perturbation, respectively; Par refers to the

reference value of the parameter under investigation, and Par rep-
resents its perturbed value. Trapezoidal numerical integration via
built-in MATLAB function trapz was used to estimate the AUCs. A
larger value of the SC denotes greater significance of the parameter
for the given model output. The parameters were then ranked for
each model output based on the maxima of the absolute value of
SCs obtained for parameter perturbations over the +99% range.

2.4.2. Global sensitivity analysis (GSA)

GSA involved simultaneous perturbation of all eleven tested
parameters within their respective +99% range around the refer-
ence value (Table 3). We followed a sampling-based GSA workflow
described by Wang et al. [56,57] to conduct the analysis. Briefly,
Latin hypercube sampling (LHS) was used to obtain a sample of
5000 sets of parameters from the multidimensional parameter
space under investigation. Ten such samples were generated,
unlike the bootstrapping done by Wang et al. A simulation was
run for each set of parameters to estimate the four model outputs

(AUCH™™ AUCH™S | AUCY™", and AUCS*™?), On each sample, mul-
tivariate linear regression analysis (MLRA), partial rank correlation
analysis (PRCA), and analysis of variance (ANOVA) was conducted
to obtain the regression coefficient from MLRA, partial correlation
coefficient from PRCA, and F-value from ANOVA as a measure of
the sensitivity index (SI) for each model output. Ranking of param-
eters was then obtained via one-way ANOVA and Tukey'’s test on
the SIs for ten samples for each technique. Finally, a weighted
parameter ranking from the three techniques was obtained as out-
lined in Wang et al. [56]. All analyses were performed in MATLAB
R2018a.

3. Results and discussion

3.1. Model is independently validated with a NP biodistribution
dataset

In our model, the parameters were either known a priori or esti-
mated through mathematical models (see Sections 2.1-2.3). We
thus directly move to the model validation step without perform-
ing any regression-based model calibration procedures. The PBPK
model (without the tumor compartment) was used to simulate
the whole-body disposition kinetics of NPs of different sizes
(46 nm, 69 nm, 113 nm, and 162 nm) following intravenous
administration into the plasma compartment of rats. The selected
sizes match the hydrodynamic sizes of NPs for which in vivo data
used for model validation was available in the literature [10].

Details of model parameters used in these simulations are given
in Tables 1 and 2. The model system of ODEs was solved numeri-
cally in MATLAB as an initial value problem, using the built-in stiff
ODE solver ode15s, with the plasma compartment containing 100%
ID at time t = 0 and the remaining compartments containing 0% ID
at the initial time.

As shown in Fig. 2, the model solution correctly represents the
initial conditions, and as calculated, the sum of NP mass (% ID)
across all compartments in a given simulation at any time point
is 100% ID, i.e., conservation of mass is upheld in the model as
was intended. Importantly, the model predictions of NP mass
kinetics over 24 h are in close agreement with the experimental
observations in the majority of compartments for all four NP sizes
(Fig. 2, red points), as confirmed through a Pearson correlation
coefficient R > 0.94 (Fig. S1), thereby indicating good predictive
performance of the model. Because in vivo data was not available
for all modeled compartments, model outputs of gut and lymph
node compartments could not be evaluated for their accuracy.

Further, becuase the tumor compartment was not included in
the above validation, we indirectly validated the physiological con-
sistency of the tumor compartment by comparing the estimated
parameters pertinent to the tumor compartment with physiologi-
cal values available in the literature. As seen in Table 2, all esti-
mated model parameters, including the ones for healthy
compartments, are within their physiologically viable range,
thereby lending credibility to the simulation results of the
tumor-bearing model (discussed next).

3.2. Parameter analysis

Following model validation, sensitivity analysis of the tumor-
bearing model was carried out to explore its multidimensional
parameter space in order to assess the significance and magnitude
of how changes in model parameters of interest affect NP pharma-
cokinetics and their delivery to the tumor. The model parameters
chosen for the analysis can be classified into NP-related parame-
ters, tumor-related parameters, and individual-related parameters
(Table 3). For sensitivity analysis, we compared model outputs due
to parameter perturbations to the reference model outputs shown
in Fig. 3, which were obtained by simulating the model with the
reference parameter values given in Table 3. For example, the
whole-body pharmacokinetics for a reference NP of size 100 nm
simulated under reference conditions and reference parameter val-
ues for a spherical tumor of diameter 1 cm is shown in Fig. 3a. The
corresponding AUC,_,, of each compartment is shown in Fig. 3b,

out of which the AUCy_,. of the plasma compartment (AUCS‘B;‘“),
MPS super-compartment’ (AUCY™), tumor interstitium sub-

0—o0

compartment (AUCy™"), and total excreta (AUCG*"™) were used as
the model outputs of choice for sensitivity analysis.

3.2.1. Local sensitivity analysis (LSA) and parameter ranking

3.2.1.1. NP-related parameters.

3.2.1.1.1. NP size. We tested the effect of NP size in the clinically
meaningful range of 1-199 nm. As shown in Fig. 4a (upper panel),
at ~4 nm (equivalent to ~8 nm diameter) we see a deflection in the
AUC,_,, of plasma, MPS, and tumor interstitium compartments.
This deflection point coincides with the physiological cutoff of
~8 nm for glomerular filtration (see also Fig. S4), thereby repre-
senting the point after which renal clearance of NPs becomes neg-
ligible [14]. With respect to NP accumulation in the tumor
interstitium (represented by AUC;™), accumulation is highest
around the deflection point, suggesting that neither very large par-
ticles nor very small (rapidly renally clearable) particles can accu-

1 MPS super-compartment includes both liver and spleen.
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Fig. 2. In vivo model validation. Model simulation outputs for NPs of size a) 46 nm, b) 69 nm, ¢) 113 nm, and d) 162 nm are shown as blue lines in various model
compartments. Red dots and error bars represent mean + S.D. of the experimental data from the literature for mesoporous silica NPs of matching hydrodynamic sizes (n = 4
animals per group). Note: y-axes are in logarithmic scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

mulate efficiently in the tumor interstitium. As shown in Fig. S2a,
to quantify the window of optimal NP size, we estimated the tumor
delivery efficiency as AUCy"7*" /t, where t was fixed at 1000 h (~in-
finity), and observed out that only NPs ranging from 7 to 22 nm
diameter have a delivery efficiency >0.7% ID. (0.7% ID is the average
tumor delivery efficiency across a wide variety of NPs, based on a
published metanalysis of NP pharmacokinetics [3]). Therefore, con-
sistent with other observations [16,58,59], NPs ranging in hydrody-
namic diameter from ~7 to 22 nm seem to be able to better exploit
the enhanced permeability and retention (EPR) effect-based pas-
sive accumulation in solid tumors compared to other sizes.

A similar trend was observed for the plasma compartment,
although the impact of NP size on plasma bioavailability is less
pronounced than its impact on tumor NP accumulation. Further,
unlike plasma and tumor, NP accumulation in the MPS increases
beyond the deflection point for larger particles. To distil these
observations, we simulated NPs of various sizes from 1 to
199 nm (Fig. S2b), and observed that ultrasmall NPs (<7 nm dia.)
are removed relatively quickly from the plasma compartment

through the renal pathway, thereby minimizing their circulation
time in plasma and lowering their accumulation in the MPS, tumor,
or remaining organs. For larger particles (7-50 nm dia.), plasma
circulation time is longer than ultrasmall NPs, primarily due to
reduced renal clearance and only moderate MPS accumulation,
thereby allowing efficient delivery to the tumor. Beyond 50 nm,
MPS accumulation increases significantly and thus plasma circula-
tion time goes down, thereby also lowering tumor delivery. Finally,
at long term, all particle sizes are almost completely excreted,
although the relative excretion through renal and hepatic routes
depends on their size.

3.2.1.1.2. NP density. Next, we explored the impact of NP density,
which has been an underexplored parameter so far, on tumor accu-
mulation and NP pharmacokinetics. Although, for uniformity
across parameters, we perturbed the density parameter from + 99%
of its reference value (2 g-cm™3), we restrict our discussion of the
density parameter to the right-hand side of the curve in Fig. 4b
(>1 g-cm™3), because physically the density of NPs is usually
>1 g.cm 3. As shown in Fig. 4b (upper panel), NP density > 1 g-cm 3
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Fig. 3. Reference behavior of tumor-bearing model. a) Model simulation for a NP of size 100 nm, as a reference for the sensitivity analysis, is shown. Dashed red line and solid
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reduces plasma bioavailability and accumulation in tumor intersti-
tium, apparently due to increased accumulation in the MPS, as sup-
ported by evidence in the literature [60]. Excretion remains
unaffected by NP density, and all particles are completely excreted
at long time. As a caveat of LSA, we can be conclusive about these
results only for the reference NP size of 100 nm. To overcome this
limitation, we conducted GSA to more comprehensively study the
effect of parameters (Section 3.2.2).

3.2.1.1.3. NP degradation rate. The in vivo degradation rate of NPs is
a lumped parameter that accounts for NP degradation and metabo-
lism due to the combined activity of metabolic proteins, endoso-
mal or lysosomal enzymes, and hydrolysis. In our model, we
assume that NP degradation occurs when NPs are localized either
in the MPS macrophages or in the tumor interstitium, but not
when particles are in circulation. Also, we assume that the rate
of removal of degraded NPs from these sites into the feces is faster
than the rate of degradation itself, and as a result, the rate of degra-
dation, which is the rate limiting step, is used as a substitute for
rate of excretion from MPS macrophages and the tumor
interstitium.

From Fig. 4c (upper panel), it can be observed that increasing
degradation rate increases total excretion and lowers NP accumu-
lation in the MPS and tumor interstitium. It is important to under-
stand that increased degradation rate reduces tumor or MPS
accumulation not by reducing sequestration of NPs in the tumor
or MPS, but by increasing the degradation of NPs accumulated in
these compartments. This is corroborated by the observation that
plasma kinetics remains unaltered by the degradation rate, indicat-
ing that this parameter acts downstream of the plasma compart-
ment, i.e., it acts upon NPs that are already removed from the
plasma.

3.2.1.2. Tumor-related parameters. One common observation across
all tumor-related parameters (Fig. 4d-h) is that they do not impact
the global disposition of NPs, e.g., plasma, MPS, or excretion remain
relatively unperturbed by alterations in the tumor-related param-
eters. Since a tumor typically comprises only a minute fraction of
the organism (e.g., ~0.5 g in a 200 g rat in our simulations), it is

expected that NP accumulation in the tumor does not significantly
shift the mass balance of the in vivo system.

Surprisingly, we also observed that the tumor plasma flow rate
parameter does not significantly affect tumor accumulation, at
least in the studied range (Fig. 4d). To understand this observation,
we simulated the model at different flow rates for two different NP
sizes (10 and 200 nm). As seen in Fig. S3, tumor accumulation
showed only minimal variation across flow rates for a given NP
size, although it did vary significantly between particles sizes.
The corresponding plasma concentrations in Fig. S3 also vary
across NP sizes but not across tumor plasma flow rates, indicating
that plasma concentration corrleates directly with tumor accumu-
lation, and the impact of plasma concentration is much stronger
than tumor plasma flow rate in governing the accumulation in
the tumor interstitium. Therefore, NPs with longer plasma half-
lives can accumulate more in the tumor interstitium relative to
NPs with shorter plasma half-lives, irrespective of tumor plasma
flow rates.

As is already known, tumor blood viscosity is generally higher
in tumors than in healthy tissues [61], which as seen in Fig. 4e
can reduce the accumulation of NPs in tumor interstitium, argu-
ably due to reduction in the diffusivity of NPs that can reduce
the permeability parameter (Eq. (7)) and lower transvascular
migration across porous tumor vessel walls. Further, tumor vascu-
lar fraction (Fig. 4f), tumor vascular pore size (Fig. 4g), and tumor
vascular porosity (Fig. 4h) are directly correlated to tumor intersi-
tium accumulation of NPs. As we know from Egs. (7), (S36), and
section 3 of SI, all three parameters are directly related to the
permeability-surface area product of the tumor, which governs
the diffusion-dependent rate of NP influx into the tumor intersti-
tium, thereby explaining the behavior of these parameters.

3.2.1.3. Individual-related parameters. We further investigated
parameters that have been experimentally tuned to improve the
efficacy of nanomedicine (e.g. macrophage reduction [12]), or can
potentially change in a cancer-bearing patient (e.g. hematocrit
[61]). As shown in Fig. 4i, reduction in Kupffer cell concentration
in the liver can reduce MPS accumulation and thus increase plasma
bioavailability or accumulation in the tumor interstitium,
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their respective literature-based mean values (Table 3).

consistent with other observations in the literature [12]. Reduction
in splenic macrophages has a similar effect, but the impact is not as
pronounced, most likely due to the lesser supply of NPs to the
spleen compared to the liver (based on the difference in the mass
of NPs supplied via plasma flow) (Fig. 4j). Finally, hematocrit,
which directly affects erythrocyte-enhanced diffusion of NPs (Eq.
(2)) if elevated in the systemic circulation, can reduce the circula-
tion half-life of NPs in the plasma compartment due to the
enhancement of the ko,; parameter (Eq. (3)). Increase in kon; will

increase the deposition of NPs on the microvascular walls of the
organs, which will especially benefit NP sequestration in the
macrophages in the MPS, thereby causing increased accumulation
in the these organs, as seen in Fig. 4k. As a result of reduction of
systemic concentration of NPs, the delivery efficiency to the tumor
interstitium will decrease.

3.2.1.4. LSA-based parameter ranking. Parameter ranking was
obtained based on the findings of the LSA, which shows that tumor
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accumulation is most strongly affected by blood viscosity, followed
by NP size and degradation rate (Fig. 5). Plasma bioavailability is
most affected by NP density, followed by hematocrit and Kupffer
cell density. NP accumulation in the MPS depends mostly on NP-
related parameters, with degradation rate found to be the most
important parameter, followed by NP density and size. Finally, as
expected, excretion is primarily affected by NP degradation rate.

3.2.2. Global sensitivity analysis (GSA) and parameter ranking

Lastly, we conducted GSA to overcome the limitations of LSA
and explore the impact of simultaneous parameter perturbations
on tumor delivery and whole-body pharmacokinetics of NPs. As
shown in Fig. 6, all three GSA techniques (ANOVA, PRCA, MLRA)
confirm the finding from LSA that tumor-related parameters do
not significantly affect the plasma bioavailability (Fig. 6a-c), MPS
accumulation (Fig. 6d-f), or excretion (Fig. 6j—1) of NPs. This further
supports the argument that the presence of a tumor does not sig-
nificantly affect the mass balance of the system given the premise
that a very small amount (<1% ID) of NPs ever reaches the tumors.
However, tumor size, which was not investigated here, may have
an impact such that larger tumors may accumulate enough mass
to affect the systemic kinetics of NPs.

With respect to the plasma bioavailability of NPs, as shown in
Fig. 6a-c, GSA shows that hematocrit is the most critical parame-
ter, followed by NP density, NP size, and Kupffer cell area fraction.
As shown in Figs. 5 and 6m, while GSA and LSA both rank these
four parameters as highly significant for plasma bioavailability,
the ranking order obtained is slightly different depending on which
sensitivity analysis method is used. Thus, the most easily tunable
parameters, i.e. NP size and NP density, are critical in affecting
the systemic bioavailability of NPs, with particles in the diameter
range of 7-22 nm and with density close to the density of plasma
(e.g. liposomes) being ideal candidates for applications that
demand long term systemic circulation of NPs.

Further, in the context of MPS accumulation (Fig. 6d-f), NP
degradation was found to be the most critical parameter. However,
as discussed before, this only indicates that high NP degradation
rates lead to lesser accumulation in the MPS due to faster excretion
of NPs from MPS, rather than due to reduced uptake from the sys-
temic blood. Thus, this tunable parameter can be of significance in
the context of the potential hepatotoxic effects of some nanomate-
rials. With respect to parameters that affect the uptake of NPs by
the MPS, hematocrit followed by NP size and NP density are of
the greatest importance. This observation correlates with the
observation for the plasma compartment, indicating that NPs with
optimal size and density attain higher systemic bioavailability due
to reduced MPS accumulation of NPs. Interestingly, the macro-

phage area density parameter ranks very low in the GSA ranking
(Fig. 6m), indicating that depletion of macrophages does not pro-
vide for an effective strategy to reduce MPS accumulation of NPs.
Further, as we will see in the case of tumor delivery of NPs, macro-
phage area fraction does not seem to be a critical parameter either,
as also supported by evidence in the literature [12]. These results
indicate that the sinusoidal fenestrations and other cells in the
MPS should be further investigated to better understand their sys-
tematic role in MPS accumulation of NPs.

In the context of delivery to the tumor interstitium, GSA
upholds the importance of tumor blood viscosity, as predicted by
LSA, but considers NP degradation rate to be equally important.
The role of NP degradation rate in the tumor is similar to the degra-
dation rate in the MPS, and thus NP concentration in the tumor is
reduced due to NP degradation (as opposed to limited NP delivery),
analogous to what was observed in the MPS compartments. Impor-
tantly, NP size, tumor vascular porosity, and tumor vascular frac-
tion are critical parameters in governing tumor accumulation of
NPs, arguably due to their ability to affect the P - S parameter (Eq.
(7)). While hematocrit is critical in affecting plasma bioavailability
and MPS accumulation, it seems relatively less important for
tumor accumulation of NPs. Finally, as expected, NP degradation
rate is the most relevant parameter concerning NP excretion, as
was also suggested by LSA.

While other NP physicochemical properties such as polydisper-
sity, surface charge, and surface chemistry are considered critical
in governing the pharmacokinetics of NPs, they are out of the scope
of the current model and will be considered in future investiga-
tions. As discussed before, the drug loading capacity of NPs and
the ICsq of the payload are important parameters when considering
the pharmacodynamics of drugs delivered through NPs; however
our focus in this study is on the systemic disposition of NPs, and
as such these parameters are not included in the current investiga-
tion. Also, becuase spatial dependency is homogenized through
integration over space in a PBPK model, such that bivariate compo-
nents (space and time) are reduced to time-dependent averages
[62], it becomes challenging to incorporate spatial heterogeneities
in tumor vascularization and extracellular matrix density that
affect intratumoral distribution of nanomaterials and drugs [63].
Thus, our assumption of a homogeneous tumor compartment
means our model is unable to provide information on the spatial
distribution of NPs in the tumor. In the future, we will consider a
more detailed tumor compartment through introduction of a dis-
crete agent-based tumor description in our model. Finally, inter-
animal variation in physiological parameters (due to differences
in age, gender, and breed) that were assumed to be constant in
the current study may be a source of variation in the pharmacoki-
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netics and tumor deliverability of NPs, which will be explored in
future investigations.

4. Conclusions

We developed a generalized PBPK model to study the whole-
body pharmacokinetics of NPs and to investigate their tumor deliv-
erability. The model, based on physiological parameters that were
known a priori or derived mechanistically, can be used in its cur-
rent form to predict the in vivo behavior of NPs, in particular the

plasma circulation time, MPS accumulation, excretion Kkinetics,
and tumor delivery efficiency, solely based on the NP size, density,
and degradation rate. It can also be used to simulate physiological
or pathophysiological conditions to explore unknown scenarios for
investigating tumor delivery efficiency of nanomedicine, and thus
generate NP design guidelines or personalized treatment strate-
gies. LSA and GSA revealed the importance of NP degradation rate,
tumor blood viscosity, NP size, tumor vascular fraction, and tumor
vascular porosity in affecting delivery to the tumor interstitium. In
these analyses, we did not include parameters that are practically
constant irrespective of the presence of the tumor. Thus, only
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parameters that are tunable, or that change due to the presence of
the tumor, or belong to the tumor compartment itself were
included. Following appropriate inter-species scaling, our predic-
tive modeling platform holds the key to test in silico the efficacy
of cancer nanomedicine in a variety of imaginable clinical
scenarios.
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