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Abstract  

Pancreatic ductal adenocarcinoma (PDAC) is regarded as one of the most lethal cancer types for 

its challenges associated with early diagnosis and resistance to standard chemotherapeutic 

agents, thereby leading to a poor five-year survival rate. The complexity of the disease calls for a 

multidisciplinary approach to better manage the disease and improve the status quo in PDAC 

diagnosis, prognosis, and treatment. To this end, the application of quantitative tools can help 

improve the understanding of disease mechanisms, develop biomarkers for early diagnosis, and 

design patient-specific treatment strategies to improve therapeutic outcomes. However, such 

approaches have only been minimally applied towards the investigation of PDAC, and we review 

the current status of mathematical modeling works in this field.   

 

  



Introduction  

Approximately 420,000 new cases of pancreatic cancer will have been diagnosed globally by 

2020, of which ~410,000 patients are estimated to die [1]. Of these cases, 93% will be pancreatic 

ductal adenocarcinomas (PDAC) occurring in the exocrine part of the pancreas, and the 

remaining 7% will be pancreatic neuroendocrine tumors developing in the endocrine portion of 

the pancreas [2]. PDAC has very poor prognosis with a 5-year survival rate of ~5%, and <11-

months of median survival. Thus, PDAC ranks as the third most lethal form of cancer after lung 

and colon [2]. The incidence of PDAC is expected to increase, with projections of more than 

two-fold rise in the number of new diagnoses and PDAC-related deaths within the next ten years 

[3]. In addition to demographic factors like age, gender, and ethnicity, other risk factors 

associated with PDAC include smoking, chronic diabetes mellitus, chronic pancreatitis, obesity 

or sedentary lifestyle, non-O blood group, and genetic susceptibility [4, 5]. Progression from 

healthy mucosa to invasive malignant PDAC occurs via a series of step-wise mutations that lead 

to the development of pre-cancerous precursor lesions namely, pancreatic intraepithelial 

neoplasm (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic 

neoplasm (MCN), each bearing characteristic molecular, pathological, and clinical features [6]. 

The pathophysiological hallmarks of PDAC include nearly 100% KRAS mutation frequency [7]; 

strong desmoplastic reaction that leads to a dense extracellular matrix, hypovascularity, hypoxia, 

reprogrammed cell metabolism, evasion of immunity [8]; and a heightened tendency for local 

invasion and distant metastasis [9]. 

 PDAC poses significant challenge in early diagnosis and is generally diagnosed in 

patients above 40 years of age, with the median age of diagnosis being 71 years, and the majority 

of cases presenting with a locally advanced or metastatic disease with nodal involvement  [4, 5]. 



Sensitive and accurate serum biomarkers for early detection of PDAC are a work in progress. 

Carbohydrate antigen 19-9 (CA 19-9) and carcinoembryonic antigen (CEA) are the only two 

clinically used serum biomarkers for PDAC, but they suffer from low sensitivity and specificity 

[10]. Other biomarkers like circulating tumor cells or circulating tumor DNA suffer from similar 

issues of limited sensitivity or specificity [10]. MicroRNAs isolated from pancreatic tumor 

tissue, blood samples, pancreatic juice, stool, urine, and saliva are also being investigated for 

their diagnostic value [11]. Imaging techniques, such as computed tomography (CT scan), 

endoscopic ultrasound (EUS), and magnetic resonance imaging (MRI) are commonly used to 

confirm the diagnosis and to help assess whether the tumor is surgically resectable. Due to poor 

diagnosis and early metastasis of the disease, only few patients are eligible for curative-intent 

surgery, and thus systemic chemotherapy is the mainstay of treatment for patients diagnosed with 

PDAC, with the chemotherapeutics of choice being gemcitabine, 5-fluorouracil, capecitabine, 

and folfirinox [11-13]. With improvements in understanding of the in vivo behavior of 

nanomaterials [14-16], the development of novel nanoparticle-based therapies for cancer 

diagnosis and treatment has seen a surge in the past decade [17, 18]. This has also led to the 

development of nanomaterials for improved delivery of drugs in PDAC [19-21]. However, the 

clinical translation of such novel drug delivery platforms has been limited primarily due to 

preferential accumulation of nanomaterials in the mononuclear phagocytic system and 

heterogenous tumor penetration [22, 23]. Checkpoint inhibitor monoclonal antibodies in 

combination with other agents are also being investigated to overcome the immunosuppressive 

microenvironment of PDAC and recruit effector T cells for effective treatment [24]. 

Over the last two decades considerable progress has been achieved in basic or 

translational research involving PDAC. However, the application of mathematical and 



computational tools to support explorations in PDAC biology, diagnosis, prognosis, and 

treatment has lagged behind, and this becomes even more evident when compared to the 

progress made in quantitative investigations of other cancer types (Figure 1) [25-41]. This gap 

highlights the need for the development and application of novel quantitative tools to improve 

the understanding of PDAC progression and support clinical care. Here, we review mathematical 

modeling efforts undertaken to understand PDAC progression, and explore their applications in 

PDAC diagnosis, prognosis, drug delivery, and precision medicine. 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Graph showing PubMed results of total publication count over the last two decades 

(1/1/2000-9/28/2019) for the keywords ‘pancreatic ductal adenocarcinoma’ (square shapes), 

‘pancreatic ductal adenocarcinoma mathematical modeling’ (circle shapes), and ‘breast cancer 

mathematical modeling’ (diamond shapes).   



Mathematical models of PDAC progression: Applications in treatment 

The discrepancy between the highly successful in vitro efficacy of a therapeutic agent and its 

suboptimal performance in vivo can be attributed to tumor microenvironment variables that can 

radically influence drug delivery and cytotoxic potential of the drug, and simultaneously alter the 

aggressiveness of the targeted cells [42-44]. To this end, Lee et al.  [45] combined in vitro 

cytotoxicity data with nutrient and oxygen concentration gradient dependent cell proliferation 

and death parameters to inform a nonlinear mathematical model of PDAC progression, which is 

an adaptation of a model developed by Cristini et al.  [46-48]. The model assumes a quasi-steady 

state diffusion-reaction equation to describe the concentration of cell substrates (nutrients) 

throughout the tumor domain:  

ߪଶߘ െ ܴ ൌ 0            (1) 

where ߪ is the concentration of substrate and ܴ denotes the substrate addition rate, which 

incorporates i) the transport of material from the vasculature and ii) the loss of material due to 

the intrinsic consumption by tumor cells. The model also assumes that the cells move with 

velocity ࢛ due to intratumoral pressure gradients. The governing equation for the velocity 

follows the Darcy flow expression: 

࢛ ൌ െ(2)            ܲߘߤ 

where ߤ denotes the cell mobility, and ܲ is the intratumoral pressure.  

Lastly, the equation that couples the concentration with the pressure is a characterization of the 

sinks and sources of cells in the domain. This is accomplished by means of the divergence 

operator applied to the velocity. Namely, ߘ ⋅ ࢛ ൌ  ௣ depends on the concentration ofߣ ௣, whereߣ

cells, their mitotic rate ܾ and their apoptotic rate ߣ஺. Explicitly, ߣ௣ ൌ ߪܾ െ   .஺ߣ

 



The model was informed by in vitro experiments on pancreatic cancer cell lines for cellular 

proliferation and apoptosis rates and used to simulate tumor growth and test the efficacy of 

gemcitabine. As shown in Figure 2, for the concentrations of the chemotherapeutic agent under 

consideration, the growth of the tumor always remained positive, which is consistent with in vivo 

observations on an orthotopic tumor model with the same cell line. This model provides a tool to 

simulate tumor growth under variable scenarios and thus predict therapeutic efficacy.   

 

 

Figure 2. Progression of tumor growth (ܸ/ܩ) and tumor radius as a function of the concentration 

of gemcitabine predicted by the model. Reproduced with permission from Lee et al.  [45].  

 

In the aforementioned model, the governing equations are deterministic and consider a 

localized tumor that grows in time but that does not invade proximal and distal tissues. However, 

in reality, several of the mechanisms that drive the evolution of cancer are stochastic in nature. 

Furthermore, one of the hallmarks of PDAC is metastasis. Hence, a model capable of 

incorporating these two aspects could be especially useful in predicting survival rates for 

patients. Moreover, with the appropriate parameters, it could be used to quantify the population 



of metastatic cells as a function of time, giving reasonable estimates for the progression of the 

disease. To this end, Haeno et al.  [49] model cancer metastasis as a random process and assume 

an initial exponential growth using a rule-based modeling approach. To generate and later test 

their model, they use data from two clinical databases. The key players in the model are cancer 

cells classified into three categories, type 0, type 1, and type 2.  Type 0 is characterized by non-

metastatic cells residing in the primary tumor that possess a proliferation rate ݎ and a death rate 

݀. Type 1 cells are metastatic and originate from type 0 cells possibly through epigenetic 

mutations at a rate ݑ per cell division. Similar to type 0 cells, type 1 cells continue to reside 

within the primary tumor and migrate to adjacent regions at a rate ݍ to finally become type 2 

cells. The proliferation and death rates for the cell type ݇ for ݇ ൌ 1,2, is given by the constants 

ܽ௞ and ܾ௞, respectively.  

The system initiates with ܯଵ tumor cells, cell fitness is assessed, and the aforementioned 

transition rules are applied to 4 different scenarios: (i) no treatment, (ii) the patient has surgery 

and a fraction of the primary tumor is removed, (iii) chemoradiation or chemotherapy is 

administered diminishing the proliferation rate of all cell populations by a certain factor, and (iv) 

the patient undergoes both surgery and chemoradiation/chemotherapy. The parameters ݑ 

(conversion into type 1) and ݍ (migration) are determined through the available clinical data of 

tumor metastasis and computed, by means of probability generating functions [50]. The model 

was used to test the effect of variable treatment regimens on patient survival. Finally, we 

mention that a generalization to Haeno et al.  [49] can be found in Yamamoto et al.  [51], where 

the authors include the effects of metastasis suppressor genes and epithelial mesenchymal 

transition. Other avenues that also follow a stochastic approach based on the methods of Haeno 

et al.  [49] involve the analysis of the effects of the genes KRAS, CDKN2A, TP53, and SMAD4 



in determining the likelihood of the cancer becoming metastatic [52], and the investigation of 

optimal strategies in administering therapies consisting of the drugs Folfirinox, gemcitabine, and 

the combination of gemcitabine with nab-paclitaxel [53]. In all instances, the numerical results 

generated by the simulations correlated with the available clinical data.  

Further, to elucidate the cause of drug resistance in PDAC, Yachida et al.  [54] sequenced 

seven PDAC metastases and compared their clonal profile against primary and metastatic 

neoplasms, to test two hypotheses: i) cancer is detected too late, at a point where the damage is 

irreversible, and ii) cells become metastatic and migrate at a fairly early stage. To investigate 

this, they developed a mathematical model based on a Poisson process [55]. With this technique 

the authors concluded that on average 10 years elapse from the origin of the non-metastatic 

founder cell to the point where its lineage begins to exhibit the first traces of a metastatic 

mutation. Furthermore, they discovered that 5 additional years are necessary for the cells to fully 

develop their metastatic potential. From this point onwards the spread of the disease is extensive 

and the patients live on average 2 years. Thus, one can identify three relevant periods of time in 

the model. T1, the time between the origin of the founder cell and the first mutation, T2, the time 

after T1 acquires a completely functional metastatic potential, and T3, the remaining lifespan of 

the patient after T2.  

We remark that a refinement of Yachida et al.  [54] can be found in Makohon-Moore et 

al.  [56], where the authors provide a more detailed description of the type of lesions under 

consideration. For instance, they make the distinction between PDAC, low-grade pancreatic 

intraepithelial neoplastic lesions (LG-PanIN) that possess a medium level of cytological 

abnormalities, and high-grade PanIN (HG-PanIN) with extensive cytological mutations that are 

hypothesized to enable the cancer to penetrate surrounding tissue.  Furthermore, the proposed 



model considers three scenarios based on the number of somatic mutations that are shared 

between the various types of lesions. These mutations are in turn divided into two driver genes 

D1 and D2, whose simultaneous presence is necessary to result in an activated metastatic 

potential. The first scenario assumes no commonalities between the mutations and hence D1 is 

unique to PDAC and D2 is unique to PanIN. In the second case, an ancestral cell leads to the 

formation of PanIN and PDAC lineages by means of a founder cell, where both the founder cell 

and PanIN lack the metastatic potential. Hence, the founder cell possesses the first driver 

mutation D1 and PDAC the second D2, becoming fully metastatic. Finally, in the third scenario, 

the ancestral cell produces a metastatic founder cell having both driver mutations D1 and D2. 

Pancreatic stellate cells (PSCs) are particularly relevant in processes that lead to 

pancreatic fibrosis, which is a hallmark of PDAC. Transcription factor STAT1 (signal transducer 

and activator of transcription 1) mediated interferon-ߛ (IFN- ߛ) signaling in PSCs is believed to 

reduce tumor progression by either inhibiting fibrogenesis, or by having a direct effect on the 

proliferation of tumor cells. To answer their question, Lange et al.  [57] proposed a signaling 

pathway and developed a systems model comprising a system of ordinary differential equations 

(ODEs) that were solved numerically. Interestingly, their model incorporates delay terms, 

resulting in a system of delayed differential equations. Combining clinical data and their 

mathematical model, the authors concluded that the effectiveness of IFN-ߛ was independent of 

the presence of PSCs. Moreover, they observed that when PSCs are present the key mechanism 

is through fibrogenesis inhibition and that in their absence it is probably due to a combination of 

inhibitory effects on cells local to the microenvironment and the direct action on tumor cells. It is 

noteworthy to mention that in a follow-up study, Lange et al.  [58] were able to generate 

numerical results consistent with observed experimental clinical data related to the selective 



tyrosine-kinase inhibitor drug erlotinib. Their findings provided supporting evidence to the 

proposed mechanisms of action and explain the effectiveness of erlotinib.   

A detailed systems biology model of PDAC progression that incorporated cancer-stroma-

immune interactions was developed by Louzoun et al.  [59]. The model consisted of a system of 

11 ODEs representing the following variables: pancreatic cancer cells (PCCs), PSCs, pro-

inflammatory macrophages (M1), anti-inflammatory macrophages (M2 & MDSCs), cytotoxic T 

cells (CTL), and primary cytokines (TGFβ, IL6, MCSF, GMCSF, IL10 and IL12). In order to 

simplify the model, they used quasi-steady-state approximations for cytokine concentrations and 

ended up with four ODEs where the species of interest were: the density of PCCs, the density of 

PSCs, the density of CTL, and a new variable representing the ratio of M1/(M1+M2) 

macrophages. The model was validated with data from published literature and was used to 

investigate the relationship between drug efficacy and immune response. It was observed that 

immunotherapy is only effective when the killing rate of cancer cells by T cells (௖) and the 

parameters describing the effect of PCCs and PSCs (ߛ௖, ߛ௣, respectively) on polarization of the 

macrophages fall within a specific range, suggesting that the immune system has a certain 

window of opportunity to efficiently suppress cancer under treatment. When ߛ௖ ൌ 0 and ߛ௣ ൌ 0, 

the steady state of tumor size ܥ slowly decreases as ௖ increases, however if the values are non-

zero, there is a faster decline in ܥ. Further, it was seen that at ௖=5e-8, ܥ remains high regardless 

of the values of ߛ௖ and ߛ௣, but if ௖=5e-7, ܥ decreases significantly at low values of ߛ௖ and ߛ௣.       

To describe pancreatic cancer progression under therapy, Chen et al.  [60] used a cell-

based mathematical modeling approach (Figure 3). The model is based on the following key 

simplifications: considers only three cell phenotypes (epithelial cells, cancer cells, and T-

lymphocytes), considers two possible states for each cell (dead or viable), and assumes a uniform 



collagen density for the desmoplastic stroma. The migration of epithelial and cancer cells was 

modeled using the strain energy density, the total repulsive force, and random walks. T-

lymphocytes migration modeling took into account chemotaxis, mechanical repulsion, random 

walk, and small range impingement. The probability of cell division, mutation, and death was 

simulated with stochastic processes. A two-dimensional orientation is created to simulate the 

changes in migration of the T-lymphocytes due to the orientation of the desmoplastic ECM. 

Treatment injection is modeled as a source point with a diffusive behavior afterwards. Monte 

Carlo simulations were used to investigate the propagation of uncertainties in the parameters and 

after each simulation is completed, the final fraction of cancer cells is calculated as an evaluation 

criterion for cancer development. The authors used the model to compare the effectiveness of 

PEGPH20 and gemcitabine therapy at different stages of diagnosis. It was observed that the final 

fraction of cancer cells is dependent on the fraction of cancer cells on which the treatments is 

initiated. This model can be used for testing treatment efficacy and could be used to design drug 

dosage regimen.  

 
 

 

 

 

 

 

 

                                   

 



Figure 3. Schematic of model domain showing epithelial cells, cancer cells, T-lymphocytes, and 

extracellular matrix in blue, red, black, and gray colors, respectively. Black asterisk represents 

the site of drug injection. Reproduced with permission from Chen et al.  [60]. 

 

 The kinetic model constructed by Roy et al. [61] consists of a system of 47 ODEs that 

intended to describe the metabolic network dynamics involved in glycolysis, glutaminolysis, 

tricarboxylic acid cycle (TCA), and the pentose phosphate pathway (PPP) in PDAC. It is based 

on a priori knowledge of the 46 metabolites involved in the different pathways and the 53 

reactions and interactions between them. Each metabolite concentration change rate is 

represented by one ODE and the final ODE describes the time evolution of the number of cancer 

cells. Each metabolite’s initial concentration had the possibility to vary within a specific range; 

Latin Hypercube Sampling was applied to efficiently explore the entire spectrum of possibilities. 

In order to obtain the parameters for the model, only the reaction velocities and the growth 

parameters were fitted into the training data, and the rest of them used literature values. To 

validate the model, the authors used available experimental measurements for cell proliferation 

under conditions of nutrient deprivation. To test the robustness of the model they performed 

Monte Carlo analysis on the increase in number of cancer cells for varying metabolite initial 

conditions. The result of these simulations indicate that cell proliferation is sensitive to the initial 

metabolite concentrations. This model predicts a nonlinear influence of glucose and glutamine 

availability on cell proliferation and a stronger dependency of the number of pancreatic cells 

with glutamine availability, as compared to glucose. By predicting the dynamic reaction fluxes 

under varying conditions, the model is also able to provide insight into the metabolic phenotype 

of the pancreatic cancer cells. Additionally, the model has the capability of predicting system-

level response to various metabolic perturbations and novel strategies to reduce cell proliferation. 



Using this model, the authors were able to show the importance of targeting the PPP, TCA cycle, 

and mitochondrial-cytoplasmic shuttle reactions for regulating tumor metabolism. 

Using a priori knowledge of signaling pathways in pancreatic cancer, Gong et al.  [62] 

developed a Boolean network model to study the interplay between tumor growth, cell cycle 

arrest, and apoptosis. The major signaling pathways included were: the Hedgehog, WNT, KRAS, 

RB-E2F, NFB, p53, TGF, and apoptosis pathways. The input signals for the model represent 

different growth factors; the output signals are apoptosis, proliferation, and cell arrest. Each node 

in the model represents a protein or lipid in the signaling pathway, and it has two states: ON (1) 

or OFF (0). The time evolution of each node state is described by a Boolean transfer function 

that depends on the neighbor’s node state. The total Boolean network consisted of 61 nodes, 

which included 7 input nodes and 3 output nodes. Symbolic Model Checking was used to verify 

that the model satisfies temporal logic properties related to cell fate, cell cycle, and oscillations. 

In order to use it, the model’s intended behaviors were expressed as Computation Tree Logic 

formulas. Some results that the model provides are: (i) inhibition of apoptosis and cell cycle 

arrest are not unavoidable and permanent, (ii) apoptosis can be activated even when p53 is not, 

(iii) an initial overexpression of TGF or PIP3 always leads to oscillations in the expression 

level of NFB’s. The model results present new interesting properties for future testing.   

 

Mathematical models for PDAC diagnosis and prognosis 

Imaging-based diagnosis and prognosis 

The metastatic potential of PDAC has been found to be controlled by the stroma around the 

tumor, hence certain characteristics of the stroma may serve as measurable biomarkers to assess 

PDAC aggresiveness. To investigate this, Koay et al.  used quantitative computed tomography 



(CT) imaging on preoperative tumors to measure the “delta” value at the tumor-normal tissue 

interface [63]. The “delta” value is defined as the difference between the mean Hounsfield unit 

value of the tumor contour and the normal tissue contour at the interface. The “delta” 

measurement was used for a binary classification of patients into high-delta and low-delta that 

correlated with more aggressive and less aggressive disease, respectively. High-delta patients 

also demonstrated poorer response to therapy than low-delta patients. To investigate the 

biophysical mechanisms leading to the morphological differences in PDAC tumors, they 

developed a mathematical model of macroscopic tumor progression that accounts for cell 

proliferation and cell migration. The model is based on a multicomponent mixture modeling 

framework that accounts for the tumor and healthy tissue comprising of a mixture of viable and 

dead cells with volume fractions ߶୚ and ߶ୈ, respectively. The mass balance equation describing 

the temporal evolution of ߶୚ or ߶ୈ is: 

డథ೔
డ௧
൅ ׏ ∙ ሺu௜߶௜ሻ ൌ െ׏ ∙ J௜ ൅ S௜,   ݅ ൌ V, D      (3)  

where, u௜ is the velocity, J௜ is a flux, and S௜ is a source term accounting for cell proliferation and 

death. The model is used to numerically simulate tumors with cell proliferation rate (Ʌ୔) lower 

than cell migration rate (Ʌ୑), and tumors with the opposite behavior. The stability parameter 

Ʌ ൌ Ʌ୔/Ʌ୑ characterizes the stability of the tumor-host tissue interface, and as shown in Figure 

4, low Ʌ values show tumor intermingling with stroma, which is representative of low-mode 

instability that manifests as finger-like projections, and high Ʌ produces simulations of tumors 

with distinct tumor-stroma interface. The simulation results were analogous to macroscopic 

features observed in patient CT scans (Figure 4a,c). Thus, using the mathematical model they 

explain the observed phenomena of high- and low-delta tumors, and provide a tool based on 



standard CT scans that can be used pre-treatment to predict disease prognosis and thus tailor 

patient-specific treatments.               

  

Figure 4. a,c) Tumor images from CT scans (circled in red) showing high-delta (a) and low-

delta (c) tumors, and b,d) corresponding simulations of the mathematical model showing distinct 

tumor-healthy tissue interface patterns that explain the CT scan observations. Values of the 

stability parameter Ʌ used for simulations are shown in the inset. Reproduced with permission 

from Koay et al.  [63].  

 

To improve the diagnosis of PDAC and be able to accurately differentiate between cancerous 

and non-cancerous pancreatic lesions, Bali et al.  [64] used quantitative parameters obtained 

from mathematical modeling of dynamic contrast enhanced magnetic resonance imaging (DCE 

MRI) data to correlate with fibrosis content and microvascular density (MVD) in the lesions. 

They used one-compartment and two-compartment pharmacokinetic models to fit to the contrast 

enhancement kinetics data obtained from DCE MRI, in order to estimate mechanistic parameters 

that characterize the transport properties of the contrast agent in the lesions. Contrast 

enhancement kinetics is modeled using the following equations: 

One compartment model: 

ሻݐ୘ሺܥ ൌ ୲୰ୟ୬ୱܭ ׬ ᇱሻ݁ݐୟ୰୲ሺܥ
ି಼

౪౨౗౤౩ሺ೟ష೟ᇲሻ
೑ ᇱݐ݀

௧
଴        (4)  



where, ܥ୘ and ܥୟ୰୲ represent the concentration of contrast agent in tissue interstitium and 

abdominal aorta, respectively; ܭ୲୰ୟ୬ୱ is the mass transfer rate constant representing the 

transvascular transfer of contrast agent; and ݂ is the volume fraction of tissue available to the 

contrast agent (includes, plasma and extravascular extracellular space).    

Two compartment model: 

ሻݐ୘ሺܥ ൌ ୲୰ୟ୬ୱܭ ׬ ᇱሻ݁ݐୟ୰୲ሺܥ
ି಼

౪౨౗౤౩ሺ೟ష೟ᇲሻ
ೡ೔ ᇱݐ݀

௧
଴ ൅   ሻ     (5)ݐୟ୰୲ሺܥ୮ݒ

where, ݒ୮ and ݒ୧ represent the tissue volume fraction occupied by plasma and extravascular 

extracellular space, respectively. The two-compartment model is permeability-limited, while the 

one compartment model is perfusion-limited. As a result, the ܭ୲୰ୟ୬ୱ parameter in the one 

compartment model is a measure of tissue perfusion, rather than of tissue permeability, and fits 

the DCE MRI data for hypovascular lesions that have low tissue perfusion better than the two-

compartment model. Overall, the ܭ୲୰ୟ୬ୱ values were lower for malignant tumors than for benign 

lesions and healthy tissue. Also, the two-compartment model revealed smaller values of ݒ୮ for 

hypovascular tumors and also for benign lesions and healthy pancreatic tissues. However, in 

hypervascular tumors the two-compartment model provided better fits and larger values for the 

 ୮ parameter. Further, the estimates of model parameters showed significant correlation withݒ

histopathological measures of fibrosis and MVD. ܭ୲୰ୟ୬ୱ estimates from the two models were 

negatively correlated with fibrosis content in the lesion, whereas ݂ and ݒ୧ showed a positive 

correlation with fibrosis content and MVD. This study thus demonstrates the application of DCE 

MRI and pharmacokinetic modeling as a prognostic and diagnostic tool for pancreatic lesions.   

 A similar approach was employed by Liu et al.  where they used two-compartment and 

three-compartment pharmacokinetic models to estimate transport parameters from DCE MRI 

data of PDAC patients to test the correlation with tumor fibrosis and vascularization [65]. The 



analysis revealed significant correlations between the pharmacokinetic model parameters and 

tumor characteristics like fibrosis and vascular density, further supporting the application of 

integrated DCE MRI imaging with mathematical modeling for predictive applications in the 

clinic.   

Blood biomarker-based diagnosis  

In order to improve early diagnosis of PDAC, a mathematical model was developed by Root et 

al.  to investigate the feasibility of application of blood-based biomarkers in PDAC detection 

[66]. The model consists of a mass balance-based ODE that defines the blood concentration 

kinetics of the biomarker by taking into account biomarker secretion into blood from normal and 

cancerous cells, and its elimination (clearance) from the blood (Equation 6).    

ௗ஻

ௗ௧
ൌ ୡݏ݂ ୡܸሺݐሻ ൅ ୬ݏ݂ ୬ܸ െ  ሻ        (6)ݐሺܤ݇

where, ܤ represents blood biomarker concentration; ݂ represents the fraction of biomarker 

entering the blood from tumor or healthy tissue interstitium; ݏୡ and ݏ୬ are the rates of shedding 

or secretion of biomarker from the cancerous and normal cells, respectively; ݇ is the rate of 

excretion of the biomarker from blood; ୡܸ and ୬ܸ represent the volume of tumor and healthy 

tissue, respectively. ୬ܸ is assumed to be constant and ୡܸ grows exponentially over time as defined 

by the tumor growth equation: ୡܸሺݐሻ ൌ ଴ܸ݁௚௧. ଴ܸ is the volume of primary tumor at diagnosis, 

and ݃ is the tumor growth rate constant.   

Model simulations reveal that PDAC detection through a blood-based biomarker is feasible and 

can help with detection almost a year and a half before the lower limit for detection through 

imaging is reached, provided the biomarker production rate is moderately high.  

 

 



Mathematical models of drug delivery in PDAC 

The traditionally accepted predictor of therapeutic efficacy, i.e. plasma drug concentration 

kinetics may not reflect the drug concentration kinetics in the vicinity of cancerous cells due to 

the barriers to drug diffusion imposed by the dense extracellular matrix of PDAC. Thus, the 

tumor microenvironment of PDAC plays a crucial role in the transport of drug molecules from 

the tumor microvasculature to the cancerous cells. Further, due to patient- or tumor-specific 

variability, a greater difference in the tumor site drug concentration may exist across patients, 

thereby leading to differential therapy response to gold-standard treatment regimens in the 

patient population. To investigate the role of mass transport properties of the PDAC 

microenvironment in inducing therapeutic resistance to gemcitabine, Koay et al.  conducted a 

clinical trial on patients with resectable primary PDAC tumors that were administered 

intraoperative gemcitabine infusion during curative-intent surgery [67]. Using integrated CT 

imaging and mathematical modeling, they estimated transport parameters of the tissue and 

assessed their correlation with incorporation of gemcitabine in the cellular DNA. Also, they 

investigated the correlation of transport properties with response to neoadjuvant therapy (Figure 

5).  The mathematical model consists of an ODE that models the density kinetics of the contrast 

agent in the tissue of interest: 

ௗ௒

ௗ௧
ൌ ܴሺ ୫ܻୟ୶

୚ ݁ିோౙ௧ െ ܻሻ         (7) 

where, ܻ is the density of contrast in the tissue at time ݐ, ୫ܻୟ୶
୚  is the imposed density of contrast 

in the vasculature, ܴ is the transvascular mass transfer rate constant, and ܴୡ is the rate of 

excretion of the contrast agent from blood. Following fitting of the model to CT data from 

individual patient scans, the estimated transport parameter (normalized area under the curve 

(AUC)) correlated inversely with gemcitabine incorporation into tumor DNA and with response 



to therapy, indicating that better transport improves drug delivery and thus treatment outcome. 

The study provides a clinical tool that can be used to assess the transport properties of PDAC and 

other solid tumors and design treatment regimens accordingly. A follow up study on the same 

patients was then conducted to understand intratumoral heterogeneity in gemcitabine transport, 

which revealed significant differences in drug transport within a tumor and across the patient 

population as determined by the drug transport model parameter estimates [68].     

                                       

Figure 5. A schematic showing the protocol for measurement of transport properties through CT 

imaging. Abdominal CT scans at the precontrast, arterial phase, and portal venous phase are 

obtained to acquire the contrast enhancement kinetics in the tumor and healthy pancreatic 

regions. The mathematical model is then fit to the imaging data to obtain an estimate for the area 

under the curve for both tumor and healthy regions. Reproduced with permission from Koay et 

al.  [67].   



Conclusions 

The challenges associated with early diagnosis and drug resistance in PDAC make it one of the 

most lethal cancer types. For improved pathophysiological understanding of the disease, 

development of novel biomarkers for early diagnosis, investigation of the effects of inter-

individual and intra-tumoral-heterogeneity, a multidisciplinary approach involving basic 

research, imaging, and mathematical modeling holds the key to bring a significant change in the 

state of affairs. In this review, we highlight such interdisciplinary studies that have performed to 

model PDAC disease progression for testing therapy efficacy, develop biomarkers for early 

diagnosis, and investigate drug delivery challenges due to pathological conditions in the tumor It 

is essential to invest more efforts in the direction of personalized treatment through the 

application of quantitative tools to overcome the status quo in the clinical management of PDAC.    
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