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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is regarded as one of the most lethal cancer types for
its challenges associated with early diagnosis and resistance to standard chemotherapeutic
agents, thereby leading to a poor five-year survival rate. The complexity of the disease calls for a
multidisciplinary approach to better manage the disease and improve the status quo in PDAC
diagnosis, prognosis, and treatment. To this end, the application of quantitative tools can help
improve the understanding of disease mechanisms, develop biomarkers for early diagnosis, and
design patient-specific treatment strategies to improve therapeutic outcomes. However, such
approaches have only been minimally applied towards the investigation of PDAC, and we review

the current status of mathematical modeling works in this field.



Introduction
Approximately 420,000 new cases of pancreatic cancer will have been diagnosed globally by
2020, of which ~410,000 patients are estimated to die [1]. Of these cases, 93% will be pancreatic
ductal adenocarcinomas (PDAC) occurring in the exocrine part of the pancreas, and the
remaining 7% will be pancreatic neuroendocrine tumors developing in the endocrine portion of
the pancreas [2]. PDAC has very poor prognosis with a 5-year survival rate of ~5%, and <I1-
months of median survival. Thus, PDAC ranks as the third most lethal form of cancer after lung
and colon [2]. The incidence of PDAC is expected to increase, with projections of more than
two-fold rise in the number of new diagnoses and PDAC-related deaths within the next ten years
[3]. In addition to demographic factors like age, gender, and ethnicity, other risk factors
associated with PDAC include smoking, chronic diabetes mellitus, chronic pancreatitis, obesity
or sedentary lifestyle, non-O blood group, and genetic susceptibility [4, 5]. Progression from
healthy mucosa to invasive malignant PDAC occurs via a series of step-wise mutations that lead
to the development of pre-cancerous precursor lesions namely, pancreatic intraepithelial
neoplasm (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic
neoplasm (MCN), each bearing characteristic molecular, pathological, and clinical features [6].
The pathophysiological hallmarks of PDAC include nearly 100% KRAS mutation frequency [7];
strong desmoplastic reaction that leads to a dense extracellular matrix, hypovascularity, hypoxia,
reprogrammed cell metabolism, evasion of immunity [8]; and a heightened tendency for local
invasion and distant metastasis [9].

PDAC poses significant challenge in early diagnosis and is generally diagnosed in
patients above 40 years of age, with the median age of diagnosis being 71 years, and the majority

of cases presenting with a locally advanced or metastatic disease with nodal involvement [4, 5].



Sensitive and accurate serum biomarkers for early detection of PDAC are a work in progress.
Carbohydrate antigen 19-9 (CA 19-9) and carcinoembryonic antigen (CEA) are the only two
clinically used serum biomarkers for PDAC, but they suffer from low sensitivity and specificity
[10]. Other biomarkers like circulating tumor cells or circulating tumor DNA suffer from similar
issues of limited sensitivity or specificity [10]. MicroRNAs isolated from pancreatic tumor
tissue, blood samples, pancreatic juice, stool, urine, and saliva are also being investigated for
their diagnostic value [11]. Imaging techniques, such as computed tomography (CT scan),
endoscopic ultrasound (EUS), and magnetic resonance imaging (MRI) are commonly used to
confirm the diagnosis and to help assess whether the tumor is surgically resectable. Due to poor
diagnosis and early metastasis of the disease, only few patients are eligible for curative-intent
surgery, and thus systemic chemotherapy is the mainstay of treatment for patients diagnosed with
PDAC, with the chemotherapeutics of choice being gemcitabine, 5-fluorouracil, capecitabine,
and folfirinox [11-13]. With improvements in understanding of the in vivo behavior of
nanomaterials [14-16], the development of novel nanoparticle-based therapies for cancer
diagnosis and treatment has seen a surge in the past decade [17, 18]. This has also led to the
development of nanomaterials for improved delivery of drugs in PDAC [19-21]. However, the
clinical translation of such novel drug delivery platforms has been limited primarily due to
preferential accumulation of nanomaterials in the mononuclear phagocytic system and
heterogenous tumor penetration [22, 23]. Checkpoint inhibitor monoclonal antibodies in
combination with other agents are also being investigated to overcome the immunosuppressive
microenvironment of PDAC and recruit effector T cells for effective treatment [24].

Over the last two decades considerable progress has been achieved in basic or

translational research involving PDAC. However, the application of mathematical and



computational tools to support explorations in PDAC biology, diagnosis, prognosis, and
treatment has lagged behind, and this becomes even more evident when compared to the
progress made in quantitative investigations of other cancer types (Figure 1) [25-41]. This gap
highlights the need for the development and application of novel quantitative tools to improve
the understanding of PDAC progression and support clinical care. Here, we review mathematical
modeling efforts undertaken to understand PDAC progression, and explore their applications in

PDAC diagnosis, prognosis, drug delivery, and precision medicine.
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Figure 1. Graph showing PubMed results of total publication count over the last two decades
(1/1/2000-9/28/2019) for the keywords ‘pancreatic ductal adenocarcinoma’ (square shapes),
‘pancreatic ductal adenocarcinoma mathematical modeling’ (circle shapes), and ‘breast cancer

mathematical modeling’ (diamond shapes).



Mathematical models of PDAC progression: Applications in treatment

The discrepancy between the highly successful in vitro efficacy of a therapeutic agent and its
suboptimal performance in vivo can be attributed to tumor microenvironment variables that can
radically influence drug delivery and cytotoxic potential of the drug, and simultaneously alter the
aggressiveness of the targeted cells [42-44]. To this end, Lee ef al. [45] combined in vitro
cytotoxicity data with nutrient and oxygen concentration gradient dependent cell proliferation
and death parameters to inform a nonlinear mathematical model of PDAC progression, which is
an adaptation of a model developed by Cristini ef al. [46-48]. The model assumes a quasi-steady
state diffusion-reaction equation to describe the concentration of cell substrates (nutrients)
throughout the tumor domain:

V26 —R=0 (1)
where o is the concentration of substrate and R denotes the substrate addition rate, which
incorporates 1) the transport of material from the vasculature and ii) the loss of material due to
the intrinsic consumption by tumor cells. The model also assumes that the cells move with
velocity u due to intratumoral pressure gradients. The governing equation for the velocity
follows the Darcy flow expression:

u=—ulvP (2)
where p denotes the cell mobility, and P is the intratumoral pressure.

Lastly, the equation that couples the concentration with the pressure is a characterization of the
sinks and sources of cells in the domain. This is accomplished by means of the divergence

operator applied to the velocity. Namely, V - u = A4,,, where 4, depends on the concentration of

cells, their mitotic rate b and their apoptotic rate 44. Explicitly, 4, = bo — A,4.



The model was informed by in vitro experiments on pancreatic cancer cell lines for cellular
proliferation and apoptosis rates and used to simulate tumor growth and test the efficacy of
gemcitabine. As shown in Figure 2, for the concentrations of the chemotherapeutic agent under
consideration, the growth of the tumor always remained positive, which is consistent with in vivo
observations on an orthotopic tumor model with the same cell line. This model provides a tool to

simulate tumor growth under variable scenarios and thus predict therapeutic efficacy.
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Figure 2. Progression of tumor growth (V' /G) and tumor radius as a function of the concentration

of gemcitabine predicted by the model. Reproduced with permission from Lee ef al. [45].

In the aforementioned model, the governing equations are deterministic and consider a
localized tumor that grows in time but that does not invade proximal and distal tissues. However,
in reality, several of the mechanisms that drive the evolution of cancer are stochastic in nature.
Furthermore, one of the hallmarks of PDAC is metastasis. Hence, a model capable of
incorporating these two aspects could be especially useful in predicting survival rates for

patients. Moreover, with the appropriate parameters, it could be used to quantify the population



of metastatic cells as a function of time, giving reasonable estimates for the progression of the
disease. To this end, Haeno et al. [49] model cancer metastasis as a random process and assume
an initial exponential growth using a rule-based modeling approach. To generate and later test
their model, they use data from two clinical databases. The key players in the model are cancer
cells classified into three categories, type 0, type 1, and type 2. Type 0 is characterized by non-
metastatic cells residing in the primary tumor that possess a proliferation rate r and a death rate
d. Type 1 cells are metastatic and originate from type O cells possibly through epigenetic
mutations at a rate u per cell division. Similar to type 0 cells, type 1 cells continue to reside
within the primary tumor and migrate to adjacent regions at a rate g to finally become type 2
cells. The proliferation and death rates for the cell type k for k = 1,2, is given by the constants
a, and by, respectively.

The system initiates with M; tumor cells, cell fitness is assessed, and the aforementioned
transition rules are applied to 4 different scenarios: (i) no treatment, (ii) the patient has surgery
and a fraction of the primary tumor is removed, (iii) chemoradiation or chemotherapy is
administered diminishing the proliferation rate of all cell populations by a certain factor, and (iv)
the patient undergoes both surgery and chemoradiation/chemotherapy. The parameters u
(conversion into type 1) and g (migration) are determined through the available clinical data of
tumor metastasis and computed, by means of probability generating functions [50]. The model
was used to test the effect of variable treatment regimens on patient survival. Finally, we
mention that a generalization to Haeno et al. [49] can be found in Yamamoto ef al. [51], where
the authors include the effects of metastasis suppressor genes and epithelial mesenchymal
transition. Other avenues that also follow a stochastic approach based on the methods of Haeno

et al. [49] involve the analysis of the effects of the genes KRAS, CDKN2A, TP53, and SMAD4



in determining the likelihood of the cancer becoming metastatic [52], and the investigation of
optimal strategies in administering therapies consisting of the drugs Folfirinox, gemcitabine, and
the combination of gemcitabine with nab-paclitaxel [53]. In all instances, the numerical results
generated by the simulations correlated with the available clinical data.

Further, to elucidate the cause of drug resistance in PDAC, Yachida ef al. [54] sequenced
seven PDAC metastases and compared their clonal profile against primary and metastatic
neoplasms, to test two hypotheses: 1) cancer is detected too late, at a point where the damage is
irreversible, and ii) cells become metastatic and migrate at a fairly early stage. To investigate
this, they developed a mathematical model based on a Poisson process [55]. With this technique
the authors concluded that on average 10 years elapse from the origin of the non-metastatic
founder cell to the point where its lineage begins to exhibit the first traces of a metastatic
mutation. Furthermore, they discovered that 5 additional years are necessary for the cells to fully
develop their metastatic potential. From this point onwards the spread of the disease is extensive
and the patients live on average 2 years. Thus, one can identify three relevant periods of time in
the model. T1, the time between the origin of the founder cell and the first mutation, T2, the time
after T1 acquires a completely functional metastatic potential, and T3, the remaining lifespan of
the patient after T2.

We remark that a refinement of Yachida et al. [54] can be found in Makohon-Moore et
al. [56], where the authors provide a more detailed description of the type of lesions under
consideration. For instance, they make the distinction between PDAC, low-grade pancreatic
intraepithelial neoplastic lesions (LG-PanIN) that possess a medium level of cytological
abnormalities, and high-grade PanIN (HG-PanIN) with extensive cytological mutations that are

hypothesized to enable the cancer to penetrate surrounding tissue. Furthermore, the proposed



model considers three scenarios based on the number of somatic mutations that are shared
between the various types of lesions. These mutations are in turn divided into two driver genes
D1 and D2, whose simultaneous presence is necessary to result in an activated metastatic
potential. The first scenario assumes no commonalities between the mutations and hence D1 is
unique to PDAC and D2 is unique to PanIN. In the second case, an ancestral cell leads to the
formation of PanIN and PDAC lineages by means of a founder cell, where both the founder cell
and PanIN lack the metastatic potential. Hence, the founder cell possesses the first driver
mutation D1 and PDAC the second D2, becoming fully metastatic. Finally, in the third scenario,
the ancestral cell produces a metastatic founder cell having both driver mutations D1 and D2.
Pancreatic stellate cells (PSCs) are particularly relevant in processes that lead to
pancreatic fibrosis, which is a hallmark of PDAC. Transcription factor STAT1 (signal transducer
and activator of transcription 1) mediated interferon-y (IFN- y) signaling in PSCs is believed to
reduce tumor progression by either inhibiting fibrogenesis, or by having a direct effect on the
proliferation of tumor cells. To answer their question, Lange et al. [57] proposed a signaling
pathway and developed a systems model comprising a system of ordinary differential equations
(ODEs) that were solved numerically. Interestingly, their model incorporates delay terms,
resulting in a system of delayed differential equations. Combining clinical data and their
mathematical model, the authors concluded that the effectiveness of IFN-y was independent of
the presence of PSCs. Moreover, they observed that when PSCs are present the key mechanism
is through fibrogenesis inhibition and that in their absence it is probably due to a combination of
inhibitory effects on cells local to the microenvironment and the direct action on tumor cells. It is
noteworthy to mention that in a follow-up study, Lange et al. [58] were able to generate

numerical results consistent with observed experimental clinical data related to the selective



tyrosine-kinase inhibitor drug erlotinib. Their findings provided supporting evidence to the
proposed mechanisms of action and explain the effectiveness of erlotinib.

A detailed systems biology model of PDAC progression that incorporated cancer-stroma-
immune interactions was developed by Louzoun et al. [59]. The model consisted of a system of
11 ODEs representing the following variables: pancreatic cancer cells (PCCs), PSCs, pro-
inflammatory macrophages (M1), anti-inflammatory macrophages (M2 & MDSCs), cytotoxic T
cells (CTL), and primary cytokines (TGFf, IL6, MCSF, GMCSF, IL10 and IL12). In order to
simplify the model, they used quasi-steady-state approximations for cytokine concentrations and
ended up with four ODEs where the species of interest were: the density of PCCs, the density of
PSCs, the density of CTL, and a new variable representing the ratio of M1/(M1+M2)
macrophages. The model was validated with data from published literature and was used to
investigate the relationship between drug efficacy and immune response. It was observed that
immunotherapy is only effective when the killing rate of cancer cells by T cells (4.) and the

parameters describing the effect of PCCs and PSCs (y., vy, respectively) on polarization of the
macrophages fall within a specific range, suggesting that the immune system has a certain
window of opportunity to efficiently suppress cancer under treatment. When y, = 0 and y,, = 0,
the steady state of tumor size C slowly decreases as A, increases, however if the values are non-
zero, there is a faster decline in C. Further, it was seen that at 1.=5e-8, C remains high regardless
of the values of y. and y,,, but if A.=5¢-7, C decreases significantly at low values of y, and y,,.

To describe pancreatic cancer progression under therapy, Chen et al. [60] used a cell-
based mathematical modeling approach (Figure 3). The model is based on the following key
simplifications: considers only three cell phenotypes (epithelial cells, cancer cells, and T-

lymphocytes), considers two possible states for each cell (dead or viable), and assumes a uniform



collagen density for the desmoplastic stroma. The migration of epithelial and cancer cells was
modeled using the strain energy density, the total repulsive force, and random walks. T-
lymphocytes migration modeling took into account chemotaxis, mechanical repulsion, random
walk, and small range impingement. The probability of cell division, mutation, and death was
simulated with stochastic processes. A two-dimensional orientation is created to simulate the
changes in migration of the T-lymphocytes due to the orientation of the desmoplastic ECM.
Treatment injection is modeled as a source point with a diffusive behavior afterwards. Monte
Carlo simulations were used to investigate the propagation of uncertainties in the parameters and
after each simulation is completed, the final fraction of cancer cells is calculated as an evaluation
criterion for cancer development. The authors used the model to compare the effectiveness of
PEGPH20 and gemcitabine therapy at different stages of diagnosis. It was observed that the final
fraction of cancer cells is dependent on the fraction of cancer cells on which the treatments is
initiated. This model can be used for testing treatment efficacy and could be used to design drug

dosage regimen.
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Figure 3. Schematic of model domain showing epithelial cells, cancer cells, T-lymphocytes, and
extracellular matrix in blue, red, black, and gray colors, respectively. Black asterisk represents

the site of drug injection. Reproduced with permission from Chen ef al. [60].

The kinetic model constructed by Roy ef al. [61] consists of a system of 47 ODEs that
intended to describe the metabolic network dynamics involved in glycolysis, glutaminolysis,
tricarboxylic acid cycle (TCA), and the pentose phosphate pathway (PPP) in PDAC. It is based
on a priori knowledge of the 46 metabolites involved in the different pathways and the 53
reactions and interactions between them. Each metabolite concentration change rate is
represented by one ODE and the final ODE describes the time evolution of the number of cancer
cells. Each metabolite’s initial concentration had the possibility to vary within a specific range;
Latin Hypercube Sampling was applied to efficiently explore the entire spectrum of possibilities.
In order to obtain the parameters for the model, only the reaction velocities and the growth
parameters were fitted into the training data, and the rest of them used literature values. To
validate the model, the authors used available experimental measurements for cell proliferation
under conditions of nutrient deprivation. To test the robustness of the model they performed
Monte Carlo analysis on the increase in number of cancer cells for varying metabolite initial
conditions. The result of these simulations indicate that cell proliferation is sensitive to the initial
metabolite concentrations. This model predicts a nonlinear influence of glucose and glutamine
availability on cell proliferation and a stronger dependency of the number of pancreatic cells
with glutamine availability, as compared to glucose. By predicting the dynamic reaction fluxes
under varying conditions, the model is also able to provide insight into the metabolic phenotype
of the pancreatic cancer cells. Additionally, the model has the capability of predicting system-

level response to various metabolic perturbations and novel strategies to reduce cell proliferation.



Using this model, the authors were able to show the importance of targeting the PPP, TCA cycle,
and mitochondrial-cytoplasmic shuttle reactions for regulating tumor metabolism.

Using a priori knowledge of signaling pathways in pancreatic cancer, Gong et al. [62]
developed a Boolean network model to study the interplay between tumor growth, cell cycle
arrest, and apoptosis. The major signaling pathways included were: the Hedgehog, WNT, KRAS,
RB-E2F, NF«kB, p53, TGFp, and apoptosis pathways. The input signals for the model represent
different growth factors; the output signals are apoptosis, proliferation, and cell arrest. Each node
in the model represents a protein or lipid in the signaling pathway, and it has two states: ON (1)
or OFF (0). The time evolution of each node state is described by a Boolean transfer function
that depends on the neighbor’s node state. The total Boolean network consisted of 61 nodes,
which included 7 input nodes and 3 output nodes. Symbolic Model Checking was used to verify
that the model satisfies temporal logic properties related to cell fate, cell cycle, and oscillations.
In order to use it, the model’s intended behaviors were expressed as Computation Tree Logic
formulas. Some results that the model provides are: (i) inhibition of apoptosis and cell cycle
arrest are not unavoidable and permanent, (ii) apoptosis can be activated even when p53 is not,

(i11) an initial overexpression of TGFP or PIP3 always leads to oscillations in the expression

level of NF«kB’s. The model results present new interesting properties for future testing.

Mathematical models for PDAC diagnosis and prognosis

Imaging-based diagnosis and prognosis

The metastatic potential of PDAC has been found to be controlled by the stroma around the
tumor, hence certain characteristics of the stroma may serve as measurable biomarkers to assess

PDAC aggresiveness. To investigate this, Koay et al. used quantitative computed tomography



(CT) imaging on preoperative tumors to measure the “delta” value at the tumor-normal tissue
interface [63]. The “delta” value is defined as the difference between the mean Hounsfield unit
value of the tumor contour and the normal tissue contour at the interface. The “delta”
measurement was used for a binary classification of patients into high-delta and low-delta that
correlated with more aggressive and less aggressive disease, respectively. High-delta patients
also demonstrated poorer response to therapy than low-delta patients. To investigate the
biophysical mechanisms leading to the morphological differences in PDAC tumors, they
developed a mathematical model of macroscopic tumor progression that accounts for cell
proliferation and cell migration. The model is based on a multicomponent mixture modeling
framework that accounts for the tumor and healthy tissue comprising of a mixture of viable and
dead cells with volume fractions ¢y and ¢p, respectively. The mass balance equation describing

the temporal evolution of ¢y or ¢p is:

V- () = -V J; +Si. i=V,D 3)
where, u; is the velocity, J; is a flux, and S; is a source term accounting for cell proliferation and
death. The model is used to numerically simulate tumors with cell proliferation rate (Ap) lower
than cell migration rate (Ay), and tumors with the opposite behavior. The stability parameter
A = Ap /Ay characterizes the stability of the tumor-host tissue interface, and as shown in Figure
4, low A values show tumor intermingling with stroma, which is representative of low-mode
instability that manifests as finger-like projections, and high A produces simulations of tumors
with distinct tumor-stroma interface. The simulation results were analogous to macroscopic

features observed in patient CT scans (Figure 4a,c). Thus, using the mathematical model they

explain the observed phenomena of high- and low-delta tumors, and provide a tool based on



standard CT scans that can be used pre-treatment to predict disease prognosis and thus tailor

patient-specific treatments.

Figure 4. a,c) Tumor images from CT scans (circled in red) showing high-delta (a) and low-
delta (¢) tumors, and b,d) corresponding simulations of the mathematical model showing distinct
tumor-healthy tissue interface patterns that explain the CT scan observations. Values of the
stability parameter A used for simulations are shown in the inset. Reproduced with permission

from Koay et al. [63].

To improve the diagnosis of PDAC and be able to accurately differentiate between cancerous
and non-cancerous pancreatic lesions, Bali et al. [64] used quantitative parameters obtained
from mathematical modeling of dynamic contrast enhanced magnetic resonance imaging (DCE
MRI) data to correlate with fibrosis content and microvascular density (MVD) in the lesions.
They used one-compartment and two-compartment pharmacokinetic models to fit to the contrast
enhancement kinetics data obtained from DCE MRI, in order to estimate mechanistic parameters
that characterize the transport properties of the contrast agent in the lesions. Contrast
enhancement kinetics is modeled using the following equations:

One compartment model:

Ktrans(t_tl)

Cr(t) = K" [T Coe(tDe” 7 dt’ 4)



where, Ct and C,. represent the concentration of contrast agent in tissue interstitium and

K'ans is the mass transfer rate constant representing the

abdominal aorta, respectively;
transvascular transfer of contrast agent; and f is the volume fraction of tissue available to the

contrast agent (includes, plasma and extravascular extracellular space).

Two compartment model:

Ktrans (t—t,)

" _KTIE-t)
Cr(t) = KT [[Care(tDe ¥ dt’ + vCar(t) )
where, v, and v; represent the tissue volume fraction occupied by plasma and extravascular

extracellular space, respectively. The two-compartment model is permeability-limited, while the

K'™ans parameter in the one

one compartment model is perfusion-limited. As a result, the
compartment model is a measure of tissue perfusion, rather than of tissue permeability, and fits
the DCE MRI data for hypovascular lesions that have low tissue perfusion better than the two-

compartment model. Overall, the K*@" values were lower for malignant tumors than for benign

lesions and healthy tissue. Also, the two-compartment model revealed smaller values of v, for

hypovascular tumors and also for benign lesions and healthy pancreatic tissues. However, in
hypervascular tumors the two-compartment model provided better fits and larger values for the
v, parameter. Further, the estimates of model parameters showed significant correlation with
histopathological measures of fibrosis and MVD. K'™3"S estimates from the two models were
negatively correlated with fibrosis content in the lesion, whereas f and v; showed a positive
correlation with fibrosis content and MVD. This study thus demonstrates the application of DCE
MRI and pharmacokinetic modeling as a prognostic and diagnostic tool for pancreatic lesions.

A similar approach was employed by Liu et al. where they used two-compartment and
three-compartment pharmacokinetic models to estimate transport parameters from DCE MRI

data of PDAC patients to test the correlation with tumor fibrosis and vascularization [65]. The



analysis revealed significant correlations between the pharmacokinetic model parameters and
tumor characteristics like fibrosis and vascular density, further supporting the application of
integrated DCE MRI imaging with mathematical modeling for predictive applications in the
clinic.

Blood biomarker-based diagnosis

In order to improve early diagnosis of PDAC, a mathematical model was developed by Root et
al. to investigate the feasibility of application of blood-based biomarkers in PDAC detection
[66]. The model consists of a mass balance-based ODE that defines the blood concentration
kinetics of the biomarker by taking into account biomarker secretion into blood from normal and

cancerous cells, and its elimination (clearance) from the blood (Equation 6).

dB

L = FseVe(t) + Fsalh — KB() (©)
where, B represents blood biomarker concentration; f represents the fraction of biomarker
entering the blood from tumor or healthy tissue interstitium; s, and s, are the rates of shedding
or secretion of biomarker from the cancerous and normal cells, respectively; k is the rate of
excretion of the biomarker from blood; V. and V, represent the volume of tumor and healthy
tissue, respectively. V;, is assumed to be constant and . grows exponentially over time as defined
by the tumor growth equation: V.(t) = V,e9t. V, is the volume of primary tumor at diagnosis,
and g is the tumor growth rate constant.

Model simulations reveal that PDAC detection through a blood-based biomarker is feasible and

can help with detection almost a year and a half before the lower limit for detection through

imaging is reached, provided the biomarker production rate is moderately high.



Mathematical models of drug delivery in PDAC

The traditionally accepted predictor of therapeutic efficacy, i.e. plasma drug concentration
kinetics may not reflect the drug concentration kinetics in the vicinity of cancerous cells due to
the barriers to drug diffusion imposed by the dense extracellular matrix of PDAC. Thus, the
tumor microenvironment of PDAC plays a crucial role in the transport of drug molecules from
the tumor microvasculature to the cancerous cells. Further, due to patient- or tumor-specific
variability, a greater difference in the tumor site drug concentration may exist across patients,
thereby leading to differential therapy response to gold-standard treatment regimens in the
patient population. To investigate the role of mass transport properties of the PDAC
microenvironment in inducing therapeutic resistance to gemcitabine, Koay et al. conducted a
clinical trial on patients with resectable primary PDAC tumors that were administered
intraoperative gemcitabine infusion during curative-intent surgery [67]. Using integrated CT
imaging and mathematical modeling, they estimated transport parameters of the tissue and
assessed their correlation with incorporation of gemcitabine in the cellular DNA. Also, they
investigated the correlation of transport properties with response to neoadjuvant therapy (Figure
5). The mathematical model consists of an ODE that models the density kinetics of the contrast

agent in the tissue of interest:

ay -
& R(Yr\r{axe et —7) (7)

where, Y is the density of contrast in the tissue at time t, Y.y is the imposed density of contrast
in the vasculature, R is the transvascular mass transfer rate constant, and R. is the rate of
excretion of the contrast agent from blood. Following fitting of the model to CT data from
individual patient scans, the estimated transport parameter (normalized area under the curve

(AUCQ)) correlated inversely with gemcitabine incorporation into tumor DNA and with response



to therapy, indicating that better transport improves drug delivery and thus treatment outcome.
The study provides a clinical tool that can be used to assess the transport properties of PDAC and
other solid tumors and design treatment regimens accordingly. A follow up study on the same
patients was then conducted to understand intratumoral heterogeneity in gemcitabine transport,
which revealed significant differences in drug transport within a tumor and across the patient

population as determined by the drug transport model parameter estimates [68].
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Figure 5. A schematic showing the protocol for measurement of transport properties through CT
imaging. Abdominal CT scans at the precontrast, arterial phase, and portal venous phase are
obtained to acquire the contrast enhancement kinetics in the tumor and healthy pancreatic
regions. The mathematical model is then fit to the imaging data to obtain an estimate for the area

under the curve for both tumor and healthy regions. Reproduced with permission from Koay et
al. [67].



Conclusions

The challenges associated with early diagnosis and drug resistance in PDAC make it one of the
most lethal cancer types. For improved pathophysiological understanding of the disease,
development of novel biomarkers for early diagnosis, investigation of the effects of inter-
individual and intra-tumoral-heterogeneity, a multidisciplinary approach involving basic
research, imaging, and mathematical modeling holds the key to bring a significant change in the
state of affairs. In this review, we highlight such interdisciplinary studies that have performed to
model PDAC disease progression for testing therapy efficacy, develop biomarkers for early
diagnosis, and investigate drug delivery challenges due to pathological conditions in the tumor It
is essential to invest more efforts in the direction of personalized treatment through the

application of quantitative tools to overcome the status quo in the clinical management of PDAC.
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