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ABSTRACT 

The human circadian pacemaker entrains to the 24 h day, but interindividual differences 

in properties of the pacemaker, such as intrinsic period, affect chronotype and mediate 

responses to challenges to the circadian system, like shift work and jet lag, and efficacy 

of therapeutic interventions such as light therapy. Robust characterization of circadian 

properties requires desynchronization of the circadian system from the rest-activity 

cycle, and these forced desynchrony protocols are very time- and resource-intensive. 

However, circadian protocols designed to derive the relationship between light intensity 

and phase shift, which is inherently affected by intrinsic period, may be applied more 

broadly. To exploit this relationship, we applied a mathematical model of the human 

circadian pacemaker with a Markov-Chain Monte Carlo parameter estimation algorithm 

to estimate the representative group intrinsic period for a group of participants using 

their collective illuminance-response curve data. We first validated this methodology 

using simulated illuminance-response curve data where the intrinsic period was known. 

Over a physiological range of intrinsic periods, this method accurately estimated the 

representative intrinsic period of the group. We also applied the method to previously 

published experimental data describing the illuminance-response curve for a group of 

healthy adult participants. We estimated the study participants’ representative group 

intrinsic period to be 24.26 and 24.27 hours using uniform and normal priors, 

respectively, consistent with estimates of the average intrinsic period of healthy adults 

using forced desynchrony protocols. Our results establish an approach to estimate a 

population’s representative intrinsic period from illuminance-response curve data, 

thereby facilitating characterization of intrinsic period across a broader range of 
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participant populations than could be studied using forced desynchrony protocols. 

Future applications of this approach may improve understanding of demographic 

differences in intrinsic circadian period. 

 

INTRODUCTION 

 

Molecular clocks maintain an ~24 hour rhythm in the firing rate of neurons in the 

suprachiasmatic nucleus (SCN) (Belle, Diekman et al. 2009, Welsh, Takahashi et al. 

2010). The collective activity of these neurons gives rise to a circadian rhythm that acts 

as a pacemaker to coordinate biological rhythms throughout the body (Saper, Scammell 

et al. 2005). The properties of this pacemaker, including its intrinsic period and 

amplitude, affect an individual’s phase of entrainment (Aschoff and Pohl 1978, Wright, 

Gronfier et al. 2005, Granada, Bordyugov et al. 2013, Bordyugov, Abraham et al. 2015) 

and are thought to determine chronotype, a measure of an individual’s 

morningness/eveningness (Roenneberg, Wirz-Justice et al. 2003). In addition, these 

properties affect susceptibility to jet lag (Eastman, Tomaka et al. 2016), ability to 

tolerate shift work (Eastman, Tomaka et al. 2016) , and response to circadian-based 

therapeutic interventions such as light therapy (Gooley 2008). Furthermore, circadian 

properties may have implications for societal constructs such as appropriate work hours 

(Landrigan, Czeisler et al. 2007) and school start times (Carskadon, Acebo et al. 2004, 

Danner and Phillips 2008, Dunster, de la Iglesia et al. 2018).  
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Forced desynchrony (FD) protocols represent the gold-standard methodology for 

assessing an individual’s intrinsic circadian period. In these protocols, circadian 

rhythmicity is desynchronized from sleep/wake behavior by imposing a regular light:dark 

(LD) cycle that is outside the range of entrainment of the circadian pacemaker. A 

marker of free-running circadian period, usually salivary or plasma melatonin or core 

body temperature, is used to estimate the pacemaker’s intrinsic period, 𝜏 (Carskadon, 

Labyak et al. 1999, Czeisler, Duffy et al. 1999). Using FD protocols, 𝜏 has been 

estimated to be 24.18 ± 0.04h (mean ± SEM) in healthy young men (Czeisler, Duffy et 

al. 1999), but the intrinsic period can vary based on many different factors including 

age, sex, and race/ethnicity (Carskadon, Labyak et al. 1999, Smith, Burgess et al. 2009, 

Duffy, Cain et al. 2011, Eastman, Molina et al. 2012, Eastman, Suh et al. 2015). In 

healthy adults, intrinsic circadian has been estimated to range from 23.5 h to 24.9 h 

(Smith, Burgess et al. 2009, Duffy, Cain et al. 2011).  

 

FD protocols are highly time- and resource-intensive with accurate assessments 

requiring an extended day FD protocol of at least 20 days (Klerman, Dijk et al. 1996) or 

an ultradian FD protocol of at least 10 days (Stack, Barker et al. 2017). These 

constraints limit the applicability of FD protocols and may prevent experimental 

assessment of 𝜏 in demographic populations such as young children or individuals 

diagnosed with conditions that could be exacerbated by induced desynchrony of sleep 

and circadian rhythms. Indeed, assessment of 𝜏 is rarely performed when it is not a 

primary outcome of an experiment. However, 𝜏 likely affects other measures of the 

circadian system such as phase response curves (PRCs) to light (Minors, Waterhouse 
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et al. 1991, Khalsa, Jewett et al. 2003, Revell, Molina et al. 2012), PRCs to other 

behavioral (Buxton, Frank et al. 1997) or pharmacological factors (Lewy, Bauer et al. 

1998, Burgess, Revell et al. 2010), phase of entrainment (Aschoff and Pohl 1978, 

Wright, Gronfier et al. 2005, Granada, Bordyugov et al. 2013, Bordyugov, Abraham et 

al. 2015), and illuminance dose-response curves (Zeitzer, Dijk et al. 2000, Duffy, Zeitzer 

et al. 2007). PRCs and illuminance-response curves are typically constructed using 

group data in which each point corresponds to a different participant. Therefore, the 

data collectively reflect the intrinsic periods of all of the participants in the group. In this 

study, we sought to exploit this 𝜏–dependence to develop methodology to mine 

circadian measures that depend on 𝜏 for novel information about a representative 

intrinsic circadian period that best represents the circadian profile of the group. 

 

To relate experimental data to properties of the human circadian pacemaker, we used a 

mathematical model developed by Forger and colleagues (Forger, Jewett et al. 1999). 

This human circadian pacemaker model, based on a modified van der Pol oscillator, 

incorporates many key features of circadian pacemaker dynamics including phase and 

amplitude responses to light and Aschoff’s rule, the observation that higher light 

intensities produce shorter circadian periods in diurnal species (Aschoff 1960, Forger, 

Jewett et al. 1999). Furthermore, the intrinsic period, 𝜏, is an explicit parameter of this 

circadian pacemaker model and represents the period of the pacemaker observed in 

total darkness. Under typical 24-h light:dark (LD) cycles, the oscillator is entrained to the 

LD cycle and produces an exactly 24-h period. The carefully calibrated light responses 

of this model have contributed to its widespread use to investigate and simulate many 
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different circadian characteristics (Phillips, Chen et al. 2010, Fleshner, Booth et al. 

2011, Stack, Barker et al. 2017, Diekman and Bose 2018). 

 

Using this model in conjunction with Markov Chain Monte Carlo (MCMC) parameter 

estimation methods, we aimed to develop methodology to estimate a representative 

group 𝜏 from illuminance-response curve data. We chose to focus on MCMC-based 

parameter estimation because it offers greater flexibility for extensions of this approach 

involving estimation of multiple parameters or different types of circadian data. 

Furthermore, the MCMC approach allows for error in the data, and the posterior 

distributions of the estimated parameters generated by MCMC provide a natural 

interpretation of the precision of these parameters. To validate the MCMC approach, 

results were first obtained for synthetic data for which 𝜏 values were known. We 

simulated phase shift data by implementing a published illuminance-response curve 

protocol (Zeitzer, Dijk et al. 2000) using a human circadian pacemaker model (Forger, 

Jewett et al. 1999) with known 𝜏 values. By applying MCMC parameter estimation to the 

simulated data, we calculated a posterior distribution of representative intrinsic periods 

to compare with the known 𝜏 values used to generate the synthetic data. We also 

applied this method to previously published experimental data (Zeitzer, Dijk et al. 2000) 

to determine the representative period of the participants in an experimental 

illuminance-response curve study involving healthy adults. 

 

METHODS 
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Human Circadian Pacemaker Model 

 

A mathematical model of the human circadian pacemaker developed by Forger and 

colleagues was used to perform all simulations. The model is a modified van der Pol 

oscillator that consists of Process P and Process L (Forger, Jewett et al. 1999). Process 

P describes the oscillator representing the circadian pacemaker, and Process L 

represents the processing of external light and includes a phase-dependent sensitivity 

modulation. The equations associated with the two components of the model are as 

follows: 

 

Process P 
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Sensitivity Modulation 

𝐵 = 𝐵J(1 − 𝑠M𝑋)(1 − 𝑠>𝑋+). 
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External light, I(t), enters the system through equation	𝛼(𝐼) which represents the drive 

rate. The variable 𝑛 models phototransduction, and both 𝑛 and 𝛼(𝐼) contribute to the 

output drive 𝐵J  which then feeds into the sensitivity modulation 𝐵. The sensitivity 

modulation dictates how light from Process L interacts with Process P, thereby 

introducing phase-dependence into the light effect. In Process P, 𝑋 represents 

endogenous circadian body temperature and 𝑋+ is a complementary variable. 

Therefore, minimums of 𝑋 correspond to minimum core body temperature (𝐶𝐵𝑇PQR), an 

experimental marker of circadian phase.  

 

Kronauer and colleagues established baseline parameters of this circadian pacemaker 

model, including 𝜏, 𝛼D, and 𝛽, by fitting the model to experimental data collected from 

healthy adults (Forger, Jewett et al. 1999, Kronauer, Forger et al. 1999). The intrinsic 

circadian period, 𝜏, represents the intrinsic period of the circadian oscillator in constant 

darkness. The model incorporates the effects of Aschoff’s rule on the circadian system 

such that the period of the oscillation decreases with increasing light exposure. 

Standard published parameter values (Forger, Jewett et al. 1999, Kronauer, Forger et 

al. 1999, Kronauer, Forger et al. 2000), summarized in Table 1, were used for all 

simulations with the exception of the intrinsic period, 𝜏, which was allowed to vary. 

 

Experimental illuminance-response curve protocol 

 

The illuminance-response curve protocol design and the experimental data used as a 

test case for the method were previously published in a study by Zeitzer and colleagues 
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designed to quantify the sensitivity of the human circadian pacemaker to nocturnal light 

(Zeitzer, Dijk et al. 2000). In this study, 23 healthy adults ages 18-44 participated in the 

9-day in-lab protocol. During the nocturnal light exposure, each participant was exposed 

to a different light intensity. Phase delay and percent melatonin suppression were 

measured in order to construct illuminance-response curves of these measures.  

 

The study protocol was as follows: for two weeks prior to the 9-day illuminance-

response curve, protocol participants maintained a consistent 16:8 LD schedule (Figure 

1). Following three baseline days in the lab, they underwent an ~50 h constant routine 

at 15 lux where initial phase of the circadian system was assessed in the lab using 

minimum core body temperature (𝐶𝐵𝑇PQR). Study participants then experienced 8 h of 

darkness followed by 16 h of light centered about a 6.5 h light pulse. Each participant 

experienced a different light intensity ranging from 2.56 lux to 9106 lux. Individualized 

exact constant routine duration was chosen so that the light pulse began 6.75 h before 

predicted 𝐶𝐵𝑇PQR and ended 0.25 h before 𝐶𝐵𝑇PQR. The timing of light exposure was 

anchored to 𝐶𝐵𝑇PQR to control for the circadian phase of light exposure. During the 

remainder of the 16 h, the participants experienced dim light (<15 lux). Following 

another 8 h of darkness, they underwent a second ~30 h constant routine to find 𝐶𝐵𝑇PQR 

and allow calculation of the phase shift in melatonin rhythm induced by the light 

exposure. Participants then slept for 8 h and were discharged upon waking on day 9. 

 

Simulating the experimental illuminance-response curve protocol 
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The simulated protocol was designed to mimic the experimental protocol described in 

the previous subsection. Before beginning the simulated illuminance-response curve 

protocol, the model simulated circadian phase for two weeks on a consistent 16:8 h LD 

schedule with a light level of 150 lux from 0800 to 0000 and a light level of 0 lux from 

0000 to 0800. During the simulated in-lab portion of the protocol, light during the light 

period of the baseline days was set to 150 lux; dim light was set to 10 lux for the 

synthetic data and set to each participant’s measured light intensity (<15 lux) for 

experimental data; experimental light exposure was individualized and set to a light 

intensity ranging from 2.56 lux to 9106 lux; and dark periods were set to 0 lux (Figure 

1). To determine the appropriate duration of the constant routine in the simulated 

protocol, we first ran a preliminary simulation of the two week consistent schedule and a 

56-h constant routine. Using these results, we determined 𝐶𝐵𝑇PQR and calculated the 

constant routine duration necessary to time the light pulse to begin 6.75 h before 

𝐶𝐵𝑇PQR and end 0.25 h before 𝐶𝐵𝑇PQR. Using this newly calculated constant routine 

duration to ensure accurate timing of light exposure, we simulated the full protocol with 

appropriate nocturnal light exposure and computed light-induced phase shifts as the 

difference between 𝐶𝐵𝑇PQR during the first constant routine and 𝐶𝐵𝑇PQR during the 

second constant routine. 

 

Model equations were implemented in MATLAB (Mathworks, Natick, MA) and solved 

numerically using the built-in MATLAB solver ode45 with a relative error tolerance of 

1e-9 and an absolute error tolerance of 1e-10. The built-in MATLAB Signal Processing 

Toolbox function findpeaks was used to detect minima of 𝑋 to compute phase shifts. 
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Markov Chain Monte Carlo algorithm and simulations 

 

We implemented a Markov Chain Monte Carlo (MCMC) method to estimate the 

representative intrinsic period, 𝜏, for a given illuminance-response curve using the 

Metropolis algorithm. The goal of MCMC is to determine the posterior distribution, the 

probability of the parameter(s) given data 𝑃(𝜇|𝐷), using Bayes’ Theorem which relates 

𝑃(𝜇|𝐷) to the probability of the data given the parameters, 𝑃(𝐷|𝜇), and the probability of 

the data, 𝑃(𝜇): 

𝑃(𝜇|𝐷)µ	𝑃(𝐷|𝜇) ∗ 𝑃(𝜇). 

 

The prior distribution, 𝑃(𝜇), may include assumptions about what the distribution of the 

parameter(s) is likely to be. For the application of MCMC to illuminance-response data 

to determine representative intrinsic period 𝜏, Bayes’ theorem relates intrinsic period to 

phase shifts as follows: 

𝑃(𝜏|𝑷𝑺)µ	𝑃(𝜏|𝑷𝑺) ∗ 𝑃(𝜏) 

 

where 𝑷𝑺 is a vector of phase shifts. Phase shift data (𝑷𝑺) were simulated using the 

same light intensities as the experimental data. Each data point was assumed to be 

normally distributed with a mean of the measured phase shift and a 0.5 h standard 

deviation. This standard deviation was chosen to balance the percent of accepted 

samples with the accuracy of the estimated representative intrinsic periods. The 

Metropolis algorithm was implemented in MATLAB and completed 10,000 iterations per 
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MCMC run. MCMC runs were started from different initial chain values (23.8, 24.1, and 

24.7 h) to verify that the starting point of the chain did not affect the estimated 

distributions. All densities are presented with a 5% burn-in, i.e., the first 500 iterations 

are not included in the analyses and metrics.  

  

MCMC and illuminance-response curve test cases 

 

To validate the MCMC approach, we produced synthetic data sets with phase shifts 

using model simulations in which the generative single 𝜏 or multiple 𝜏s were known. 

Two different cases of synthetic data were considered. The first test case was the single 

𝜏 illuminance-response curve where all data points on the illuminance-response curve 

were generated using one 𝜏 value. We simulated single 𝜏 illuminance-response curves 

for 𝜏 = 23.7, 24.2, 24.6, and 24.9 h. We also considered multi-	𝜏 illuminance-response 

curves where synthetic data were generated using a collection of 23 𝜏s drawn from 

normal distributions with means of 23.7, 24.2, and 24.6 h and various standard 

deviations. The single	𝜏 illuminance-response curves represent an idealized case in 

which all phase shifts reflect the same 𝜏. By contrast, the multi-	𝜏 illuminance-response 

curves are consistent with experimentally-generated illuminance-response curves in 

which each point represents the phase shift of a different individual. 

 

To generate synthetic data using known 𝜏s, the circadian pacemaker model simulated 

the experimental illuminance-response curve protocol across the range of light 

intensities. Phase shifts were calculated for each illuminance level and then used to 
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specify the phase shift data for the Metropolis algorithm. The algorithm requires 

specifying a standard deviation for the data to account for potential error in the data 

from factors such as errors in melatonin assay, alignment of phase angle, and light 

intensity delivered. After experimenting with different standard deviations in the 

synthetic data, we determined that a standard deviation of 0.5 h balanced the percent of 

accepted samples with good agreement between data and representative period. 

Therefore, a standard deviation of 0.5 h was used for all simulated phase shift data. For 

all runs with simulated illuminance-response curve data the prior was selected to be 

𝑈(23.5, 25) to reflect the range of 𝜏s found for healthy adults (Smith, Burgess et al. 

2009, Duffy, Cain et al. 2011). After the algorithm completed 10,000 iterations, the 

known 𝜏 value or distribution was compared to the results from the algorithm with a 5% 

burn-in. 

 

Using previously published light intensities and phase shifts (Zeitzer, Dijk et al. 2000), 

we used this MCMC method to estimate the distribution of the representative intrinsic 

period of the group of 23 healthy adults who participated in the protocol. Each data point 

was assumed to be normally distributed with a mean set to the participant’s measured 

phase shift and a standard deviation of 0.5 h. This standard deviation was implemented 

based on results using the synthetic data as described above. We estimated the 

representative intrinsic period for this collection of experimental data using two different 

priors. We considered both a uniform prior (𝑈(23.5, 25)) that imposes minimal 

assumptions on the parameter 𝜏, and, conversely, we considered a normal prior 
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(𝑁(24.2, 0.2>)) that assumes that the population 𝜏 is drawn from the established 

distribution of healthy adult intrinsic periods.  

 

For all test cases, we completed twelve simulations consisting of four runs from each of 

the three initial chain values(23.8, 24.1, and 24.7 h). We averaged the estimated 

intrinsic period over all twelve simulations to obtain the representative 𝜏 value for the 

data set. In addition, we computed the standard deviation, the credible interval, and the 

percent of accepted samples for each of the twelve MCMC runs.  

 

The MCMC approach provides a flexible method for estimating representative intrinsic 

period; however, given the structure of the illuminance-response curve data, simpler 

regression approaches may also be used. To compare MCMC estimates to estimates 

obtained using other parameter estimation approaches, we implemented a standard 

minimization and regression method using three different cost functions. Additional 

details regarding this approach are available in the Online Supplementary Material. 

 

Results  

 

Structure of illuminance-response curve and 𝜏s 

 

The structure of the simulated illuminance-response curve depends on 𝜏. When the 

illuminance-response curves were simulated with different 𝜏 values, a stacked structure 

of curves was generated where increasing 𝜏 values produced larger phase delays 
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(negative phase shifts) compared to curves generated with smaller 𝜏 values (Figure 2). 

Additionally, these simulations illustrated the range of phase shift values that are 

produced by this model over the given range of 𝜏 values and light intensities. Although 

phase shifts are not unique functions of 𝜏 values and light intensities due to 

compensations between variables, the structure of the oscillator constrains the 

interactions between these parameters (Figure 2B). 

 

Single 𝜏 illuminance-response curves 

 

The application of the Metropolis algorithm to the simulated single	𝜏 illuminance 

response curves produced representative	𝜏 values almost exactly equal to the	𝜏 value 

used to generate the single	𝜏 illuminance response curve data. These curves were 

simulated with synthetic 𝜏s equal to 23.7, 24.2, 24.6, and 24.9 h, respectively. The 

posteriors were very similar to the sample means with agreement up to two significant 

figures for each estimated 𝜏 and standard deviations less than 0.05 h for all MCMC runs 

independent of initial chain value (Tables 2 and S2). This agreement was also evident 

in the kernel densities which generally overlapped for all twelve runs (Figure 3). 

Additionally, means from individual runs and the means obtained by averaging over all 

twelve runs were within 0.01 of the 𝜏 value that was used to generate each phase shift 

data set, the credible intervals were less than 0.2 h, and the credible intervals contained 

the generative 𝜏 values (Tables S2, and S3). The average percent of accepted samples 

ranged from 41% to just over 45% for all initial chain values and all the data sets. 
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Similar estimated intrinsic periods were obtained using standard optimization 

approaches (Table S1). 

 

Multi-𝜏 illuminance-response curves 

 

Multi-	𝜏 illuminance response curves were simulated with 𝜏s drawn from 𝑁(23.7, 0.2>), 

𝑁(24.2, 0.2>), 𝑁(24.2, 0.4>), and	𝑁(24.6, 0.2>) distributions. As with the single 𝜏 case, the 

estimated representative 𝜏 value obtained from the posterior distribution was almost 

exactly equal to the mean of the distribution from which the 𝜏s were drawn, even when 

the standard deviation in the data was increased. Over twelve runs with three initial 

chain values (four runs per initial chain value), the posterior distributions were very 

similar to the sample means agreeing up to two significant figures for each simulated 

data set with standard deviations less than 0.05h (Table S4). Similarly, we observed 

overlapping density plots of the kernel distributions of the runs indicating close 

agreement of these distributions and minimal dependence on initial chain values 

(Figure 4).  Furthermore, the overall average means of all runs were within 0.02 h of the 

mean of the distribution of the 𝜏s for each data set and had small standard deviations 

(Table 2). The credible intervals generated from the runs were narrow and captured the 

means of the distributions used to generate the synthetic data (Table S5). The average 

percent of accepted samples ranged from 42% to 46% for all initial chain values and 

data sets. For the multi-	𝜏 illuminance response curves, similar estimated intrinsic 

periods were obtained using regression approaches (Table S1). 
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Although this approach robustly identified the means of the distributions from which the 

𝜏s were drawn to simulate the data, the standard deviations of the posterior distributions 

did not correspond to the standard deviations of these distributions. For example, when 

τ values were drawn from 𝑁(24.2, 0.2>) and 𝑁(24.2, 0.4>) distributions, respectively, the 

average standard deviations of the posteriors were nearly identical (Tables 2 and S4), 

and the density plots were very similar (Figures 4B and 4C). Therefore, although the 

mean of the posterior distribution provides a representative intrinsic period for the group 

of participants, the posterior distribution may not capture all of the variability present in 

the data. 

 

Experimental illuminance-response curve data  

 

Applying MCMC to the experimental illuminance-response curve data resulted in 

estimates of representative intrinsic period that were close to the experimentally-

determined average healthy adult intrinsic period of 24.2 h independent of prior. With 

uniform priors, estimated mean 𝜏 values were 24.27 h for all runs and initial chain 

values (Tables 3 and S6; Figure 5). With normal priors, the estimated mean 𝜏 values 

were 24.26 h for all runs and initial chain values (Tables 3 and S6; Figure 5). All of the 

computed average 95% credible intervals contained 24.2 h (Tables 3 and S7). The 

percent of accepted samples was between 42.5% and 44.5% with the uniform prior and 

between 42% and 44% with the normal prior for all runs (Table 3). The density plots for 

the posterior distributions were very similar and did not depend on the choice of uniform 



 19 

or normal prior (Figure 5). The illuminance-response curves generated with the 

representative intrinsic periods drawn from the posteriors determined using MCMC with 

either a uniform (Figure 5B) or normal (Figure 5D) prior provided good agreement with 

the experimentally determined illuminance-response curve though there was less 

variability in the simulated illuminance-response curves compared to the experimentally-

determined illuminance-response curve. Estimated intrinsic periods obtained using 

standard optimization approaches varied from the MCMC estimates based on the cost 

function used, but all estimates were within ± 0.1h of the estimates obtained using 

MCMC (Table S1). 

 

 

Discussion 

 

Intrinsic period affects simulated illuminance-response curves 

 

The intrinsic period of the circadian pacemaker, 𝜏, affects the shape of illuminance-

response curves simulated using distinct 𝜏 values, and this structure may be exploited 

to estimate a representative 𝜏 from illuminance-response curve data. As intrinsic period 

increases, the phase shifts become more negative across light intensities while 

maintaining a similar curve shape. Thus, there are distinct illuminance-response curves 

for each τ value with no intersections between curves. These features of illuminance-

response curves associated with varying τ values demonstrate that this type of data is a 

good candidate for identifying 𝜏 using parameter estimation techniques. In practice, 
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illuminance-response curves are generated using data from multiple participants and 

reflect each individual’s circadian features. It is important to interpret the estimated 

representative group intrinsic period in this context and to recognize that this approach 

does not provide information about an individual’s intrinsic period, but, instead identifies 

a representative intrinsic period for a group of study participants.  

 

Illuminance-response curve test cases 

 

We validated this methodology by applying the Metropolis algorithm to both single τ and 

multi-τ Illuminance-response curve synthetic data sets. Simulated phase shift data were 

generated using a single 𝜏 value or collection of 𝜏 values drawn from a normal 

distribution. For both test cases, our method produced estimates of representative 

intrinsic period that were very close to the known 𝜏 value or mean 𝜏 value, respectively. 

To facilitate comparisons between runs, we estimated 𝜏 with six significant figures. 

However, this is likely beyond the level of precision of 𝜏 estimates obtained 

experimentally using FD protocols (Czeisler, Duffy et al. 1999). Notably, our estimates 

of representative group intrinsic period were obtained using an uninformative prior. 

Although a more informative prior may be preferable when a priori information about the 

parameters is available, our results suggest that it is not necessary to impose 

assumptions on the prior to obtain accurate estimates for this problem.  

 

The MCMC implementation was robust with respect to a range of implementation 

metrics. Over multiple trials, estimates of representative intrinsic periods have average 
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standard deviations of less than 0.05 h, narrow 95% credible intervals, and similar 

kernel density plots. There was no evidence in any of the metrics that the mean 

estimates of 𝜏 were influenced by the initial chain value or assumptions on the prior. 

The average percent of accepted samples was between 41% and 46%, an acceptable 

range for MCMC methods (Banerjee, Carlin et al. 2003). Overall, these results support 

the applicability of MCMC methods to accurately estimate the representative intrinsic 

period of a group of study participants, given appropriate illuminance-response curve 

data.   

 

Application to experimental data 

 

When applied to the illuminance-response curve data from 23 healthy adult participants, 

this method predicted a representative intrinsic period consistent with the mean τ 

reported for this population (Czeisler, Duffy et al. 1999). Specifically, the mean τ of 

24.18 ± 0.04h estimated in a healthy young adult population (Czeisler, Duffy et al. 1999) 

is very close to the group τ of the illuminance-response curve study participants which 

was estimated to be 24.27 or 24.26h using uniform or normal priors, respectively. The 

similarity of these estimates of representative group 𝜏 suggests that, for these data, a 

relatively uninformative prior (like 𝑈(23.5, 25)) produces similar results compared to a 

more informative prior (like 𝑁(24.2, 0.2>)). Therefore, as discussed in the context of the 

synthetic data, although a more informative prior may be preferable when a priori 

information about the parameters is available, our results suggest that an uninformative 

prior may be sufficient. This flexibility is an important feature for broader application of 
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the method to illuminance-response data from study populations where there are no 

previous estimates of intrinsic circadian period.  

 

As with the synthetic data, all metrics indicated that the MCMC implementation was 

robust. The mean estimates of representative 𝜏, percent of accepted samples, and 

credible intervals were reasonable, were similar across runs, and were not affected by 

initial chain values. Although the estimates obtained with the MCMC approach were 

consistent with results obtained using standard parameter optimization methods. 

Overall, these results suggest that this method applied to illuminance-response curve 

data can be used to determine a reasonable estimate of the representative intrinsic 

period for a group of study participants.  

 

Limitations 

 

Mathematical models are powerful tools for interpreting data, making predictions, and 

informing experimental protocol design. However, models have underlying assumptions 

that may introduce model dependence in simulation results. The Forger circadian 

pacemaker model was selected for this study because it includes light processing, it has 

been fitted to healthy adult data, it has been widely used for many applications, and it 

includes 𝜏 as an explicit parameter. Furthermore, the model was calibrated using data 

from populations generally consistent with our study population. However, applications 

of this model to describe light sensitivity or other circadian features in demographic 

populations in which there is evidence for potential variation in multiple parameters may 
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require multiple parameter estimates. For example, differences in light sensitivity may 

occur in early childhood (Higuchi, Nagafuchi et al. 2014), adolescence (Crowley, Cain et 

al. 2015), or with age (Duffy, Zeitzer et al. 2007) and may alter Process L, thereby 

affecting the relationship between illuminance-response curve data and intrinsic 

circadian period. The flexibility to estimate multiple parameters given various circadian 

data types represents an advantage of the MCMC approach. In future work, a multi-

parameter MCMC approach could be used to investigate the relationship of multiple 

parameters (e.g., parameters affecting light sensitivity and intrinsic period) to 

illuminance-response curve data. 

 

Although this method reliably detected the mean 𝜏 used to generate the multi-	𝜏 

simulated illuminance-response curves, the standard deviations of the posterior 

distributions of 𝜏 did not reflect the standard deviations of the 𝜏 values used to generate 

the synthetic data. This result suggests that group	𝜏 estimates will be robust to individual 

outliers, however, it also indicates that the posterior distribution does not describe the 

variability of the intrinsic periods present within the participant group contributing to the 

illuminance-response curve data. Similarly, the illuminance-response curves simulated 

from posterior distributions derived from experimental data showed less variability 

compared to the experimentally-determined illuminance response curves. This aspect of 

the MCMC approach limits the interpretation of the representative	𝜏 for potentially 

heterogeneous populations. Recent work has highlighted interindividual differences in 

the sensitivity of the human circadian clock to evening light as measured by dose-

response curves in melatonin suppression (Phillips, Vidafar et al. 2019), but less is 
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known about interindividual differences in phase shifting responses. Future work is 

needed to determine the interindividual variability present in phase shifts of the 

circadian clock in response to light exposure and the implications of this variability for 

illuminance-response curves constructed from ensemble data. 

 

Conclusions and implications 

 

We have developed a method to estimate the representative intrinsic period, 𝜏, of a 

group of study participants using a mathematical model of the human circadian 

pacemaker, the Metropolis algorithm, and illuminance-response curve data. We have 

validated this method using synthetic data and implemented it to estimate 

representative intrinsic period from experimental data collected from healthy adults. 

Applying this approach to illuminance-response curve data from other populations, such 

as children or adults with circadian disorders, who are not good candidates for FD 

protocols, could contribute to understanding circadian properties in these populations. 

Furthermore, because illuminance-response curves collectively represent phase shifts 

from a group of individuals, this analysis yields novel insights about the representative 

intrinsic circadian period of a population using existing data that reflect other circadian 

features of the individuals. Future work could extend this approach to other types of 

circadian data including PRCs or phase of entrainment. Improved understanding of 

circadian properties of a population may facilitate interpretation of existing data and 

inform circadian-based interventions ranging from light therapy to school start times.  
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