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ABSTRACT

The human circadian pacemaker entrains to the 24 h day, but interindividual differences
in properties of the pacemaker, such as intrinsic period, affect chronotype and mediate
responses to challenges to the circadian system, like shift work and jet lag, and efficacy
of therapeutic interventions such as light therapy. Robust characterization of circadian
properties requires desynchronization of the circadian system from the rest-activity
cycle, and these forced desynchrony protocols are very time- and resource-intensive.
However, circadian protocols designed to derive the relationship between light intensity
and phase shift, which is inherently affected by intrinsic period, may be applied more
broadly. To exploit this relationship, we applied a mathematical model of the human
circadian pacemaker with a Markov-Chain Monte Carlo parameter estimation algorithm
to estimate the representative group intrinsic period for a group of participants using
their collective illuminance-response curve data. We first validated this methodology
using simulated illuminance-response curve data where the intrinsic period was known.
Over a physiological range of intrinsic periods, this method accurately estimated the
representative intrinsic period of the group. We also applied the method to previously
published experimental data describing the illuminance-response curve for a group of
healthy adult participants. We estimated the study participants’ representative group
intrinsic period to be 24.26 and 24.27 hours using uniform and normal priors,
respectively, consistent with estimates of the average intrinsic period of healthy adults
using forced desynchrony protocols. Our results establish an approach to estimate a
population’s representative intrinsic period from illuminance-response curve data,

thereby facilitating characterization of intrinsic period across a broader range of



participant populations than could be studied using forced desynchrony protocols.
Future applications of this approach may improve understanding of demographic

differences in intrinsic circadian period.

INTRODUCTION

Molecular clocks maintain an ~24 hour rhythm in the firing rate of neurons in the
suprachiasmatic nucleus (SCN) (Belle, Diekman et al. 2009, Welsh, Takahashi et al.
2010). The collective activity of these neurons gives rise to a circadian rhythm that acts
as a pacemaker to coordinate biological rhythms throughout the body (Saper, Scammell
et al. 2005). The properties of this pacemaker, including its intrinsic period and
amplitude, affect an individual’s phase of entrainment (Aschoff and Pohl 1978, Wright,
Gronfier et al. 2005, Granada, Bordyugov et al. 2013, Bordyugov, Abraham et al. 2015)
and are thought to determine chronotype, a measure of an individual’s
morningness/eveningness (Roenneberg, Wirz-Justice et al. 2003). In addition, these
properties affect susceptibility to jet lag (Eastman, Tomaka et al. 2016), ability to
tolerate shift work (Eastman, Tomaka et al. 2016) , and response to circadian-based
therapeutic interventions such as light therapy (Gooley 2008). Furthermore, circadian
properties may have implications for societal constructs such as appropriate work hours
(Landrigan, Czeisler et al. 2007) and school start times (Carskadon, Acebo et al. 2004,

Danner and Phillips 2008, Dunster, de la Iglesia et al. 2018).



Forced desynchrony (FD) protocols represent the gold-standard methodology for
assessing an individual’s intrinsic circadian period. In these protocols, circadian
rhythmicity is desynchronized from sleep/wake behavior by imposing a regular light:dark
(LD) cycle that is outside the range of entrainment of the circadian pacemaker. A
marker of free-running circadian period, usually salivary or plasma melatonin or core
body temperature, is used to estimate the pacemaker’s intrinsic period, t (Carskadon,
Labyak et al. 1999, Czeisler, Duffy et al. 1999). Using FD protocols, t has been
estimated to be 24.18 + 0.04h (mean £ SEM) in healthy young men (Czeisler, Duffy et
al. 1999), but the intrinsic period can vary based on many different factors including
age, sex, and race/ethnicity (Carskadon, Labyak et al. 1999, Smith, Burgess et al. 2009,
Duffy, Cain et al. 2011, Eastman, Molina et al. 2012, Eastman, Suh et al. 2015). In
healthy adults, intrinsic circadian has been estimated to range from 23.5 hto 24.9 h

(Smith, Burgess et al. 2009, Duffy, Cain et al. 2011).

FD protocols are highly time- and resource-intensive with accurate assessments
requiring an extended day FD protocol of at least 20 days (Klerman, Dijk et al. 1996) or
an ultradian FD protocol of at least 10 days (Stack, Barker et al. 2017). These
constraints limit the applicability of FD protocols and may prevent experimental
assessment of t in demographic populations such as young children or individuals
diagnosed with conditions that could be exacerbated by induced desynchrony of sleep
and circadian rhythms. Indeed, assessment of 7 is rarely performed when it is not a
primary outcome of an experiment. However, t likely affects other measures of the

circadian system such as phase response curves (PRCs) to light (Minors, Waterhouse



et al. 1991, Khalsa, Jewett et al. 2003, Revell, Molina et al. 2012), PRCs to other
behavioral (Buxton, Frank et al. 1997) or pharmacological factors (Lewy, Bauer et al.
1998, Burgess, Revell et al. 2010), phase of entrainment (Aschoff and Pohl 1978,
Wright, Gronfier et al. 2005, Granada, Bordyugov et al. 2013, Bordyugov, Abraham et
al. 2015), and illuminance dose-response curves (Zeitzer, Dijk et al. 2000, Duffy, Zeitzer
et al. 2007). PRCs and illuminance-response curves are typically constructed using
group data in which each point corresponds to a different participant. Therefore, the
data collectively reflect the intrinsic periods of all of the participants in the group. In this
study, we sought to exploit this z—dependence to develop methodology to mine
circadian measures that depend on t for novel information about a representative

intrinsic circadian period that best represents the circadian profile of the group.

To relate experimental data to properties of the human circadian pacemaker, we used a
mathematical model developed by Forger and colleagues (Forger, Jewett et al. 1999).
This human circadian pacemaker model, based on a modified van der Pol oscillator,
incorporates many key features of circadian pacemaker dynamics including phase and
amplitude responses to light and Aschoff’s rule, the observation that higher light
intensities produce shorter circadian periods in diurnal species (Aschoff 1960, Forger,
Jewett et al. 1999). Furthermore, the intrinsic period, 7, is an explicit parameter of this
circadian pacemaker model and represents the period of the pacemaker observed in
total darkness. Under typical 24-h light:dark (LD) cycles, the oscillator is entrained to the
LD cycle and produces an exactly 24-h period. The carefully calibrated light responses

of this model have contributed to its widespread use to investigate and simulate many



different circadian characteristics (Phillips, Chen et al. 2010, Fleshner, Booth et al.

2011, Stack, Barker et al. 2017, Diekman and Bose 2018).

Using this model in conjunction with Markov Chain Monte Carlo (MCMC) parameter
estimation methods, we aimed to develop methodology to estimate a representative
group 7 from illuminance-response curve data. We chose to focus on MCMC-based
parameter estimation because it offers greater flexibility for extensions of this approach
involving estimation of multiple parameters or different types of circadian data.
Furthermore, the MCMC approach allows for error in the data, and the posterior
distributions of the estimated parameters generated by MCMC provide a natural
interpretation of the precision of these parameters. To validate the MCMC approach,
results were first obtained for synthetic data for which 7 values were known. We
simulated phase shift data by implementing a published illuminance-response curve
protocol (Zeitzer, Dijk et al. 2000) using a human circadian pacemaker model (Forger,
Jewett et al. 1999) with known 7 values. By applying MCMC parameter estimation to the
simulated data, we calculated a posterior distribution of representative intrinsic periods
to compare with the known 7 values used to generate the synthetic data. We also
applied this method to previously published experimental data (Zeitzer, Dijk et al. 2000)
to determine the representative period of the participants in an experimental

illuminance-response curve study involving healthy adults.

METHODS



Human Circadian Pacemaker Model

A mathematical model of the human circadian pacemaker developed by Forger and
colleagues was used to perform all simulations. The model is a modified van der Pol
oscillator that consists of Process P and Process L (Forger, Jewett et al. 1999). Process
P describes the oscillator representing the circadian pacemaker, and Process L
represents the processing of external light and includes a phase-dependent sensitivity
modulation. The equations associated with the two components of the model are as

follows:
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External light, /(t), enters the system through equation a(I) which represents the drive
rate. The variable n models phototransduction, and both n and a(I) contribute to the
output drive B which then feeds into the sensitivity modulation B. The sensitivity
modulation dictates how light from Process L interacts with Process P, thereby
introducing phase-dependence into the light effect. In Process P, X represents
endogenous circadian body temperature and X, is a complementary variable.
Therefore, minimums of X correspond to minimum core body temperature (CBT,,;,), an

experimental marker of circadian phase.

Kronauer and colleagues established baseline parameters of this circadian pacemaker
model, including , a,, and g, by fitting the model to experimental data collected from
healthy adults (Forger, Jewett et al. 1999, Kronauer, Forger et al. 1999). The intrinsic
circadian period, 7, represents the intrinsic period of the circadian oscillator in constant
darkness. The model incorporates the effects of Aschoff’s rule on the circadian system
such that the period of the oscillation decreases with increasing light exposure.
Standard published parameter values (Forger, Jewett et al. 1999, Kronauer, Forger et
al. 1999, Kronauer, Forger et al. 2000), summarized in Table 1, were used for all

simulations with the exception of the intrinsic period, 7, which was allowed to vary.

Experimental illuminance-response curve protocol

The illuminance-response curve protocol design and the experimental data used as a

test case for the method were previously published in a study by Zeitzer and colleagues



designed to quantify the sensitivity of the human circadian pacemaker to nocturnal light

(Zeitzer, Dijk et al. 2000). In this study, 23 healthy adults ages 18-44 participated in the

9-day in-lab protocol. During the nocturnal light exposure, each participant was exposed
to a different light intensity. Phase delay and percent melatonin suppression were

measured in order to construct illuminance-response curves of these measures.

The study protocol was as follows: for two weeks prior to the 9-day illuminance-
response curve, protocol participants maintained a consistent 16:8 LD schedule (Figure
1). Following three baseline days in the lab, they underwent an ~50 h constant routine
at 15 lux where initial phase of the circadian system was assessed in the lab using
minimum core body temperature (CBT,,;,)- Study participants then experienced 8 h of
darkness followed by 16 h of light centered about a 6.5 h light pulse. Each participant
experienced a different light intensity ranging from 2.56 lux to 9106 lux. Individualized
exact constant routine duration was chosen so that the light pulse began 6.75 h before
predicted CBT,,;, and ended 0.25 h before CBT,,;,. The timing of light exposure was
anchored to CBT,,;, to control for the circadian phase of light exposure. During the
remainder of the 16 h, the participants experienced dim light (<15 lux). Following
another 8 h of darkness, they underwent a second ~30 h constant routine to find CBT,,;,,
and allow calculation of the phase shift in melatonin rhythm induced by the light

exposure. Participants then slept for 8 h and were discharged upon waking on day 9.

Simulating the experimental illuminance-response curve protocol
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The simulated protocol was designed to mimic the experimental protocol described in
the previous subsection. Before beginning the simulated illuminance-response curve
protocol, the model simulated circadian phase for two weeks on a consistent 16:8 h LD
schedule with a light level of 150 lux from 0800 to 0000 and a light level of 0 lux from
0000 to 0800. During the simulated in-lab portion of the protocol, light during the light
period of the baseline days was set to 150 lux; dim light was set to 10 lux for the
synthetic data and set to each participant’'s measured light intensity (<15 lux) for
experimental data; experimental light exposure was individualized and set to a light
intensity ranging from 2.56 lux to 9106 lux; and dark periods were set to 0 lux (Figure
1). To determine the appropriate duration of the constant routine in the simulated
protocol, we first ran a preliminary simulation of the two week consistent schedule and a
56-h constant routine. Using these results, we determined CBT,,;, and calculated the
constant routine duration necessary to time the light pulse to begin 6.75 h before
CBTpin and end 0.25 h before CBT,,;,. Using this newly calculated constant routine
duration to ensure accurate timing of light exposure, we simulated the full protocol with
appropriate nocturnal light exposure and computed light-induced phase shifts as the
difference between CBT,,;, during the first constant routine and CBT,,;, during the

second constant routine.

Model equations were implemented in MATLAB (Mathworks, Natick, MA) and solved
numerically using the built-in MATLAB solver ode45 with a relative error tolerance of
1e-9 and an absolute error tolerance of 1e-10. The built-in MATLAB Signal Processing

Toolbox function findpeaks was used to detect minima of X to compute phase shifts.
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Markov Chain Monte Carlo algorithm and simulations

We implemented a Markov Chain Monte Carlo (MCMC) method to estimate the
representative intrinsic period, t, for a given illuminance-response curve using the
Metropolis algorithm. The goal of MCMC is to determine the posterior distribution, the
probability of the parameter(s) given data P(u|D), using Bayes’ Theorem which relates
P(u|D) to the probability of the data given the parameters, P(D|u), and the probability of

the data, P(u):

P(u|D)ec P(D|p) * P(p).

The prior distribution, P(u), may include assumptions about what the distribution of the
parameter(s) is likely to be. For the application of MCMC to illuminance-response data
to determine representative intrinsic period t, Bayes’ theorem relates intrinsic period to
phase shifts as follows:

P(t|PS)c P(t|PS) * P(7)

where PS is a vector of phase shifts. Phase shift data (PS) were simulated using the
same light intensities as the experimental data. Each data point was assumed to be
normally distributed with a mean of the measured phase shift and a 0.5 h standard
deviation. This standard deviation was chosen to balance the percent of accepted
samples with the accuracy of the estimated representative intrinsic periods. The

Metropolis algorithm was implemented in MATLAB and completed 10,000 iterations per
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MCMC run. MCMC runs were started from different initial chain values (23.8, 24.1, and
24.7 h) to verify that the starting point of the chain did not affect the estimated
distributions. All densities are presented with a 5% burn-in, i.e., the first 500 iterations

are not included in the analyses and metrics.

MCMC and illuminance-response curve test cases

To validate the MCMC approach, we produced synthetic data sets with phase shifts
using model simulations in which the generative single t or multiple ts were known.
Two different cases of synthetic data were considered. The first test case was the single
T illuminance-response curve where all data points on the illuminance-response curve
were generated using one t value. We simulated single t illuminance-response curves
for t = 23.7, 24.2, 24.6, and 24.9 h. We also considered multi- 7 illuminance-response
curves where synthetic data were generated using a collection of 23 s drawn from
normal distributions with means of 23.7, 24.2, and 24.6 h and various standard
deviations. The single 7 illuminance-response curves represent an idealized case in
which all phase shifts reflect the same t. By contrast, the multi- T illuminance-response
curves are consistent with experimentally-generated illuminance-response curves in

which each point represents the phase shift of a different individual.

To generate synthetic data using known ts, the circadian pacemaker model simulated

the experimental illuminance-response curve protocol across the range of light

intensities. Phase shifts were calculated for each illuminance level and then used to
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specify the phase shift data for the Metropolis algorithm. The algorithm requires
specifying a standard deviation for the data to account for potential error in the data
from factors such as errors in melatonin assay, alignment of phase angle, and light
intensity delivered. After experimenting with different standard deviations in the
synthetic data, we determined that a standard deviation of 0.5 h balanced the percent of
accepted samples with good agreement between data and representative period.
Therefore, a standard deviation of 0.5 h was used for all simulated phase shift data. For
all runs with simulated illuminance-response curve data the prior was selected to be
U(23.5,25) to reflect the range of s found for healthy adults (Smith, Burgess et al.
2009, Duffy, Cain et al. 2011). After the algorithm completed 10,000 iterations, the
known t value or distribution was compared to the results from the algorithm with a 5%

burn-in.

Using previously published light intensities and phase shifts (Zeitzer, Dijk et al. 2000),
we used this MCMC method to estimate the distribution of the representative intrinsic
period of the group of 23 healthy adults who participated in the protocol. Each data point
was assumed to be normally distributed with a mean set to the participant’'s measured
phase shift and a standard deviation of 0.5 h. This standard deviation was implemented
based on results using the synthetic data as described above. We estimated the
representative intrinsic period for this collection of experimental data using two different
priors. We considered both a uniform prior (U(23.5,25)) that imposes minimal

assumptions on the parameter t, and, conversely, we considered a normal prior
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(N(24.2,0.2%)) that assumes that the population 7 is drawn from the established

distribution of healthy adult intrinsic periods.

For all test cases, we completed twelve simulations consisting of four runs from each of
the three initial chain values(23.8, 24.1, and 24.7 h). We averaged the estimated
intrinsic period over all twelve simulations to obtain the representative 7 value for the
data set. In addition, we computed the standard deviation, the credible interval, and the

percent of accepted samples for each of the twelve MCMC runs.

The MCMC approach provides a flexible method for estimating representative intrinsic
period; however, given the structure of the illuminance-response curve data, simpler
regression approaches may also be used. To compare MCMC estimates to estimates
obtained using other parameter estimation approaches, we implemented a standard
minimization and regression method using three different cost functions. Additional

details regarding this approach are available in the Online Supplementary Material.

Results

Structure of illuminance-response curve and ts

The structure of the simulated illuminance-response curve depends on t. When the

illuminance-response curves were simulated with different t values, a stacked structure

of curves was generated where increasing t values produced larger phase delays
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(negative phase shifts) compared to curves generated with smaller t values (Figure 2).
Additionally, these simulations illustrated the range of phase shift values that are
produced by this model over the given range of t values and light intensities. Although
phase shifts are not unique functions of t values and light intensities due to
compensations between variables, the structure of the oscillator constrains the

interactions between these parameters (Figure 2B).

Single t illuminance-response curves

The application of the Metropolis algorithm to the simulated single 7 illuminance
response curves produced representative T values almost exactly equal to the t value
used to generate the single 7 illuminance response curve data. These curves were
simulated with synthetic ts equal to 23.7, 24.2, 24.6, and 24.9 h, respectively. The
posteriors were very similar to the sample means with agreement up to two significant
figures for each estimated 7 and standard deviations less than 0.05 h for all MCMC runs
independent of initial chain value (Tables 2 and S2). This agreement was also evident
in the kernel densities which generally overlapped for all twelve runs (Figure 3).
Additionally, means from individual runs and the means obtained by averaging over all
twelve runs were within 0.01 of the t value that was used to generate each phase shift
data set, the credible intervals were less than 0.2 h, and the credible intervals contained
the generative 7 values (Tables S2, and S3). The average percent of accepted samples

ranged from 41% to just over 45% for all initial chain values and all the data sets.
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Similar estimated intrinsic periods were obtained using standard optimization

approaches (Table S1).

Multi-t illuminance-response curves

Multi- 7 illuminance response curves were simulated with ts drawn from N(23.7,0.22),
N(24.2,0.2%), N(24.2,0.4%), and N(24.6,0.2%) distributions. As with the single t case, the
estimated representative t value obtained from the posterior distribution was almost
exactly equal to the mean of the distribution from which the ts were drawn, even when
the standard deviation in the data was increased. Over twelve runs with three initial
chain values (four runs per initial chain value), the posterior distributions were very
similar to the sample means agreeing up to two significant figures for each simulated
data set with standard deviations less than 0.05h (Table S4). Similarly, we observed
overlapping density plots of the kernel distributions of the runs indicating close
agreement of these distributions and minimal dependence on initial chain values
(Figure 4). Furthermore, the overall average means of all runs were within 0.02 h of the
mean of the distribution of the 7s for each data set and had small standard deviations
(Table 2). The credible intervals generated from the runs were narrow and captured the
means of the distributions used to generate the synthetic data (Table S5). The average
percent of accepted samples ranged from 42% to 46% for all initial chain values and
data sets. For the multi- 7 illuminance response curves, similar estimated intrinsic

periods were obtained using regression approaches (Table S1).
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Although this approach robustly identified the means of the distributions from which the
ts were drawn to simulate the data, the standard deviations of the posterior distributions
did not correspond to the standard deviations of these distributions. For example, when
T values were drawn from N (24.2,0.22) and N(24.2,0.42) distributions, respectively, the
average standard deviations of the posteriors were nearly identical (Tables 2 and S4),
and the density plots were very similar (Figures 4B and 4C). Therefore, although the
mean of the posterior distribution provides a representative intrinsic period for the group
of participants, the posterior distribution may not capture all of the variability present in

the data.

Experimental illuminance-response curve data

Applying MCMC to the experimental illuminance-response curve data resulted in
estimates of representative intrinsic period that were close to the experimentally-
determined average healthy adult intrinsic period of 24.2 h independent of prior. With
uniform priors, estimated mean 7 values were 24.27 h for all runs and initial chain
values (Tables 3 and S6; Figure 5). With normal priors, the estimated mean t values
were 24.26 h for all runs and initial chain values (Tables 3 and S6; Figure 5). All of the
computed average 95% credible intervals contained 24.2 h (Tables 3 and S7). The
percent of accepted samples was between 42.5% and 44.5% with the uniform prior and
between 42% and 44% with the normal prior for all runs (Table 3). The density plots for

the posterior distributions were very similar and did not depend on the choice of uniform
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or normal prior (Figure 5). The illuminance-response curves generated with the
representative intrinsic periods drawn from the posteriors determined using MCMC with
either a uniform (Figure 5B) or normal (Figure 5D) prior provided good agreement with
the experimentally determined illuminance-response curve though there was less
variability in the simulated illuminance-response curves compared to the experimentally-
determined illuminance-response curve. Estimated intrinsic periods obtained using
standard optimization approaches varied from the MCMC estimates based on the cost
function used, but all estimates were within £ 0.1h of the estimates obtained using

MCMC (Table S1).

Discussion

Intrinsic period affects simulated illuminance-response curves

The intrinsic period of the circadian pacemaker, 7, affects the shape of illuminance-
response curves simulated using distinct T values, and this structure may be exploited
to estimate a representative t from illuminance-response curve data. As intrinsic period
increases, the phase shifts become more negative across light intensities while
maintaining a similar curve shape. Thus, there are distinct illuminance-response curves
for each t value with no intersections between curves. These features of illuminance-
response curves associated with varying t values demonstrate that this type of data is a

good candidate for identifying t using parameter estimation techniques. In practice,
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illuminance-response curves are generated using data from multiple participants and
reflect each individual’s circadian features. It is important to interpret the estimated
representative group intrinsic period in this context and to recognize that this approach
does not provide information about an individual’s intrinsic period, but, instead identifies

a representative intrinsic period for a group of study participants.

llluminance-response curve test cases

We validated this methodology by applying the Metropolis algorithm to both single t and
multi-t llluminance-response curve synthetic data sets. Simulated phase shift data were
generated using a single 7 value or collection of t values drawn from a normal
distribution. For both test cases, our method produced estimates of representative
intrinsic period that were very close to the known 7 value or mean t value, respectively.
To facilitate comparisons between runs, we estimated 7 with six significant figures.
However, this is likely beyond the level of precision of t estimates obtained
experimentally using FD protocols (Czeisler, Duffy et al. 1999). Notably, our estimates
of representative group intrinsic period were obtained using an uninformative prior.
Although a more informative prior may be preferable when a priori information about the
parameters is available, our results suggest that it is not necessary to impose

assumptions on the prior to obtain accurate estimates for this problem.

The MCMC implementation was robust with respect to a range of implementation

metrics. Over multiple trials, estimates of representative intrinsic periods have average
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standard deviations of less than 0.05 h, narrow 95% credible intervals, and similar
kernel density plots. There was no evidence in any of the metrics that the mean
estimates of T were influenced by the initial chain value or assumptions on the prior.
The average percent of accepted samples was between 41% and 46%, an acceptable
range for MCMC methods (Banerjee, Carlin et al. 2003). Overall, these results support
the applicability of MCMC methods to accurately estimate the representative intrinsic
period of a group of study participants, given appropriate illuminance-response curve

data.

Application to experimental data

When applied to the illuminance-response curve data from 23 healthy adult participants,
this method predicted a representative intrinsic period consistent with the mean t
reported for this population (Czeisler, Duffy et al. 1999). Specifically, the mean t of
24.18 £ 0.04h estimated in a healthy young adult population (Czeisler, Duffy et al. 1999)
is very close to the group t of the illuminance-response curve study participants which
was estimated to be 24.27 or 24.26h using uniform or normal priors, respectively. The
similarity of these estimates of representative group t suggests that, for these data, a
relatively uninformative prior (like U(23.5,25)) produces similar results compared to a
more informative prior (like N(24.2,0.2%)). Therefore, as discussed in the context of the
synthetic data, although a more informative prior may be preferable when a priori
information about the parameters is available, our results suggest that an uninformative

prior may be sufficient. This flexibility is an important feature for broader application of
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the method to illuminance-response data from study populations where there are no

previous estimates of intrinsic circadian period.

As with the synthetic data, all metrics indicated that the MCMC implementation was
robust. The mean estimates of representative t, percent of accepted samples, and
credible intervals were reasonable, were similar across runs, and were not affected by
initial chain values. Although the estimates obtained with the MCMC approach were
consistent with results obtained using standard parameter optimization methods.
Overall, these results suggest that this method applied to illuminance-response curve
data can be used to determine a reasonable estimate of the representative intrinsic

period for a group of study participants.

Limitations

Mathematical models are powerful tools for interpreting data, making predictions, and
informing experimental protocol design. However, models have underlying assumptions
that may introduce model dependence in simulation results. The Forger circadian
pacemaker model was selected for this study because it includes light processing, it has
been fitted to healthy adult data, it has been widely used for many applications, and it
includes 7 as an explicit parameter. Furthermore, the model was calibrated using data
from populations generally consistent with our study population. However, applications
of this model to describe light sensitivity or other circadian features in demographic

populations in which there is evidence for potential variation in multiple parameters may
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require multiple parameter estimates. For example, differences in light sensitivity may
occur in early childhood (Higuchi, Nagafuchi et al. 2014), adolescence (Crowley, Cain et
al. 2015), or with age (Duffy, Zeitzer et al. 2007) and may alter Process L, thereby
affecting the relationship between illuminance-response curve data and intrinsic
circadian period. The flexibility to estimate multiple parameters given various circadian
data types represents an advantage of the MCMC approach. In future work, a multi-
parameter MCMC approach could be used to investigate the relationship of multiple
parameters (e.g., parameters affecting light sensitivity and intrinsic period) to

illuminance-response curve data.

Although this method reliably detected the mean t used to generate the multi- ¢
simulated illuminance-response curves, the standard deviations of the posterior
distributions of t did not reflect the standard deviations of the t values used to generate
the synthetic data. This result suggests that group = estimates will be robust to individual
outliers, however, it also indicates that the posterior distribution does not describe the
variability of the intrinsic periods present within the participant group contributing to the
illuminance-response curve data. Similarly, the illuminance-response curves simulated
from posterior distributions derived from experimental data showed less variability
compared to the experimentally-determined illuminance response curves. This aspect of
the MCMC approach limits the interpretation of the representative t for potentially
heterogeneous populations. Recent work has highlighted interindividual differences in
the sensitivity of the human circadian clock to evening light as measured by dose-

response curves in melatonin suppression (Phillips, Vidafar et al. 2019), but less is
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known about interindividual differences in phase shifting responses. Future work is
needed to determine the interindividual variability present in phase shifts of the
circadian clock in response to light exposure and the implications of this variability for

illuminance-response curves constructed from ensemble data.

Conclusions and implications

We have developed a method to estimate the representative intrinsic period, 7, of a
group of study participants using a mathematical model of the human circadian
pacemaker, the Metropolis algorithm, and illuminance-response curve data. We have
validated this method using synthetic data and implemented it to estimate
representative intrinsic period from experimental data collected from healthy adults.
Applying this approach to illuminance-response curve data from other populations, such
as children or adults with circadian disorders, who are not good candidates for FD
protocols, could contribute to understanding circadian properties in these populations.
Furthermore, because illuminance-response curves collectively represent phase shifts
from a group of individuals, this analysis yields novel insights about the representative
intrinsic circadian period of a population using existing data that reflect other circadian
features of the individuals. Future work could extend this approach to other types of
circadian data including PRCs or phase of entrainment. Improved understanding of
circadian properties of a population may facilitate interpretation of existing data and

inform circadian-based interventions ranging from light therapy to school start times.
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