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Abstract—Bluetooth Low Energy (BLE) is a widely adopted
wireless communication technology in the Internet of Things
(IoT). BLE offers secure communication through a set of pairing
strategies. However, these pairing strategies are obsolete in the
context of IoT. The security of BLE based devices relies on
physical security, but a BLE enabled IoT device may be deployed
in a public environment without physical security. Attackers who
can physically access a BLE-based device will be able to pair with
it and may control it thereafter. Therefore, manufacturers may
implement extra authentication mechanisms at the application
layer to address this issue. In this paper, we design and implement
a BLE Security Scan (BLESS) framework to identify those BLE
apps that do not implement encryption or authentication at
the application layer. Taint analysis is used to track if BLE
apps use nonces and cryptographic keys, which are critical to
cryptographic protocols. We scan 1073 BLE apps and find that
93% of them are not secure. To mitigate this problem, we propose
and implement an application-level defense with a low-cost $0.55
crypto co-processor using public key cryptography.

Index Terms—Bluetooth Low Energy, IoT Security, BLE at-
tacks, Reverse Engineering, BLE Security Scanning.

I. INTRODUCTION

We have entered the age of Internet of Things (IoT), featur-
ing various applications, such as smart healthcare, smart home,
and smart city. As a promising wireless network technology,
Bluetooth Low Energy (BLE) has positioned itself as one of
the key enabling technologies in the IoT [1], [2]. Compared
to the Bluetooth Classic, BLE maintains a larger coverage
area while considerably reducing power consumption, which
ideally meets requirements of IoT.

BLE achieves its communication security through a set
of pairing strategies at the link layer, including Just Works,
Passkey-entry, Numeric Comparison and Out of Band (OOB).
A typical BLE application scenario is that the owner of two
BLE devices pairs them together wirelessly through Bluetooth
and wants to defeat the man-in-the-middle (MITM) attack. The
Passkey-Entry and Numerical Comparison pairing protocols
ensure the owner that he/she is pairing the two devices he/she
sees and there are no MITM attacks.

However, the threat model of BLE pairing strategies is
obsolete in the era of IoT. An implicit assumption for secure

BLE pairing is that the owner owns the two pairing devices
and the physical security of these devices is ensured. However,
a BLE enabled IoT device may be deployed in a public
environment. An attacker may access and pair with such a
device. Therefore, a secure pairing strategy such as Passkey-
entry and Numerical Comparison does not prevent the attacker
from pairing with the victim device [3].

Given that the link layer BLE pairing strategies are obsolete
[3], IoT vendors may resort to the application layer mecha-
nisms for authentication. We carefully review the state-of-the-
art of authentication protocols [4]-[7] and conclude a secure
authentication protocol must involve cryptographic keys for
encryption and nonces for message freshness. Without encryp-
tion, the communication is subject to eavesdropping. Without
nonces, the communication is subject to replay attacks.

In this paper, we propose the BLE application Security
Scanning tool (BLESS) to study the security practices of BLE
products. BLESS scans a BLE app and checks if it uses
cryptographic keys and nonces. If an app does not involve
cryptographic keys or nonces, it is not considered secure. The
challenge is how to identify if cryptographic keys or nonces
are used by the BLE apps and the corresponding protocols.
The intuition of BLESS is that data flows, and their sources
and sinks can be used to identify the involvement of nonce
and keys. For example, a key can be derived from the input
of a user within an app. The app saves it onto its own disk for
further usage and distributes it to a peer device. Nonces such
as random numbers are often used in a challenge-response
protocol with back and forth message exchanges. By utilizing
these features, we use taint analysis [8], [9] to track data flows,
sources and sinks. If an app does not have such features, the
app does not use keys or nonces. We then determine that the
app does not implement an application layer authentication
protocol, and is not secure.

To validate our tool, we performed several case studies of
BLE products, including popular blood pressure monitors from
Smart Pulsewave and BP3L at Amazon. These two products
are denoted as insecure by our tool. Specifically, without keys
and nonces, blood pressure monitors from Smart Pulsewave
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are subject to eavesdropping and replay attacks. The BP3L
blood pressure monitor uses a hard-coded key and is subject
to spoofing attacks. Anybody who extracts the hard-coded key
from the app can pretend to be the blood pressure monitor and
bypass the authentication of the app. This allows us to forge
the blood pressure reading data sent by the blood pressure
monitor. Due to the fake blood pressure reading, a patient’s life
may be in danger for medication mistakes and wrong medical
treatment accordingly.

The major contributions of this paper can be summarized
as follows.

1) We design and implement BLESS. To the best of our
knowledge, we are the first to use taint analysis to
determine whether an app implements an application
layer authentication protocol.

2) We apply BLESS to BLE apps, although it can be used
in other contexts (e.g., Wi-Fi, Zigbee and so forth).We
obtain 1073 BLE apps from androzoo [10] and find
that 76% of the apps do not implement authentication
protocols, and 93% are not secure.

3) The recent advance of hardware allows us to implement
an application level authentication protocol with a low-
cost $0.55 crypto coprocessor, ATECC608A, based on
public key cryptography. We evaluate its performance
and show its feasibility in IoT BLE applications.

The rest of the paper is organized as follows. We begin with

a brief introduction to BLE in Section II. Section III presents
the design and implementation of BLESS. In Section IV, we
preform case studies to validate our design. Section V presents
our countermeasures. Section VI evaluates the performance of
BLESS and our countermeasures. We study related works in
Section VII and conclude the paper in Section VIII.

II. BLUETOOTH LOW ENERGY

This section provides a brief introduction to BLE. We first
present how two BLE devices are connected. Afterwards,
we introduce how the pairing process occurs between them.
Finally, we show how data is organized and accessed by BLE
devices through Attribute Protocol (ATT) and the Generic
Attribute Profile (GATT).

A. Connection Setup

We take the connection setup procedure between a smart-
phone and a smart lock as an example. An app on the
smartphone is designed to communicate with the smart lock.
First, the smart lock broadcasts advertising packets which
indicate that the smart lock is connectable. The app on the
smartphone receives these advertising packets, and then sends
a scan request to the smart lock to get more information from
it. Afterwards, the lock responds with a scan response packet.
The advertising packets and the scan response packet include
the basic information of the smart lock, such as the device
name, primary service description, and so forth. Based on
the information above, the app on the smartphone can decide
whether the smart lock is the device of interest. If so, the
app on the smartphone sends the connect request, and the

connection is established. According to BLE specifications,
the device which sends the connect request is called master
device, while its peered device is called slave device.

B. Pairing Process

In BLE, two parties can communicate in plaintext with
each other. They may also go through the pairing process to
negotiate keys and encrypt the communication at the link layer.

Pairing involves three phases. In the first phase, the two de-
vices exchange their pairing features. Based on these features,
a suitable pairing method can be adopted for the next phase.
In the second phase, the two devices agree on a long term
key (LTK) for future link encryption. In such a way, every
time they want to communicate with each other, the pairing
process will not be repeated. There are four pairing methods
provided by BLE as of now, including Just Works, Passkey
Entry, Numeric Comparison (Only for BLE version 4.2 and
beyond) and Out of Band. Among them, Just Works is subject
to MITM attacks [11], while others can defend against such
an attack. Therefore, the generated key also has two security
properties, namely authenticated-and-MITM-protection and
unauthenticated-and-no-MITM-protection. In the third phase,
an Identity Resolution Key (IRK) and Connection Signature
Resolving Key (CSRK) are generated from one device (either
the master or the slave) and distributed to the other. These two
keys are used for signature generation/verification and identity
resolution other than encryption.

Pairing fails to provide adequate authentication at the ap-
plication layer for a BLE device and an app installed on a
smartphone, which is widely discussed in [12]-[14]. In their
efforts, a malicious app is installed together with a victim
app on the same smartphone. The victim app sets up an LTK
with its peer device via the pairing process. However, due to
design flaws of mobile systems, this LTK can be accessed by
all apps installed on the smartphone, including a malicious
one. Therefore, the malicious app can manipulate data on the
peer device of victim app without any changes. Moreover,
pairing is designed to build a secure channel between the
two devices that a user sees and intentionally pairs. Therefore,
anyone who gets physical access to the device can pair with
it. However, this is not enough in the context of IoT. For
example, smart locks can be placed outside. Thus, without the
owner’s supervision, anybody can pair with such a smart lock
and unlock it. The only way to avoid the attacks above is to
implement authentication at the application layer instead of
solely relying on the pairing process at the link layer.

C. ATT and GATT

Attribute Protocol (ATT) defines how data will be organized
and accessed on BLE devices. Specifically, data is organized in
the format of attributes with four properties, including handle,
universally unique identifier (UUID), value, and permission.
”Handle” is assigned uniquely to a given device for identifying
a specific attribute. UUID refers to the data type. Permis-
sions specify whether and how the value can be accessed
by other devices. Examples of permission include read/write,
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encrypted read/write, authenticated read/write and authorized
read/write. The read/write attribute can be accessed freely,
while encrypted read/write can be accessed only when the link
is encrypted. The authenticated read/write attribute can only be
accessed when the link is encrypted by a key with the property
of authenticated-and-MITM-protection (when Passkey-Entry,
Numeric Comparison or OOB is applied). However, how the
authorized read/write attribute can be accessed is not specified
in BLE specifications as of now.

Generic Attribute Profile (GATT) is built upon ATT. It
organizes attributes into services. GATT allows the devices
to exchange arbitrary data in the format of attributes. By use
of GATT, two peer devices can interact in a Client-Server
Architecture. The device holding many attributes with data
is the server, while the other device requesting data from the
server is the client. Services may include other services as their
building blocks. The major service that contains subordinate
services is called the primary service, while the auxiliary ones
refer to the secondary services.

III. BLESS: BLE APP SECURITY SCANNING

In this section, we first present the assumption of our
security scanning procedure. We then introduce the scanning
strategy to identify encryption and authentication in BLE
apps. Afterwards, we introduce implementation details of the
scanning strategy.

A. Assumption

We assume that an app does not rely on BLE pairing for se-
curity given BLE’s vulnerabilities. Recall that an attacker can
pair with a victim BLE device that is deployed in public. The
attacker may also install malware on a victim’s smartphone
and deploy co-located attacks [12]-[14]. Therefore, a BLE
app shall use BLE only as a wireless communication venue
and implement security patterns at the application layer. The
BLE app implements encryption for confidentiality and two
types of cryptography based authentication services: integrity
authentication for verifying data integrity and source authen-
tication for verifying the user identity. For example, password
based source authentication can be used to verify the user,
while encryption can be applied to protect the transmission of
the password via the BLE wireless channel. We assume that
an attacker is not present during the bootstrapping process.

B. Pattern of Keys and Nonces

A secure authentication protocol must involve keys to ensure
confidentiality and the integrity of data transmission. Nonces
are needed to ensure the freshness of messages. If no key or
nonce is used in an app, the app is not considered secure. When
keys and nonces are used in cryptographic protocols, their use
follows specific patterns of data flows. BLESS is designed to
identify apps which utilize insecure data flow patterns.

We now introduce patterns of keys. In a cryptographic
protocol implemented by BLE apps, a master key must be
shared with both sides (e.g., a smartphone and a device)
through BLE communication. The master key can be used

to generate other keys such as session keys and will be saved
onto storage for future use. A master key can be a user-defined
key, smartphone-defined key, or device-defined key. Note that
in all instances, both the smartphone and peer device store the
master key for future use.

o A user-defined master key is generated from a user, stored
on the smartphone, and shared with the peer device.

o A smartphone-defined master key is generated from a
random number generator, stored on the smartphone, and
shared with the peer device.

o A device-defined master key is generated from the peer
device, stored on the device, and shared with the smart-
phone.

We now introduce patterns of nonces. In a cryptographic
protocol, a nonce is usually generated by a device and a
smartphone, and exchanged by both sides for the purpose of
guaranteeing the freshness of messages and fighting against
replay attacks. There are three type of nonces:

o Random number: A random number can be generated by
a smartphone or its peer device. It is sent from one side
to the other, and will go back to the original device as
in the challenge-response protocol. It is not saved onto
storage.

e Sequence number: A sequence number increments its
value every time it is used. A limitation of this is that
the sequence number will eventually reach its maximum
value and wrap around. Therefore, for message freshness,
a rekeying process will use a random number to gener-
ate a session key which secures the sequence number.
Therefore, for a secure cryptographic protocol, sequence
numbers must always involve an element of randomness.

o Time-stamp: A time stamp is generated from a date and
time function. This value is guaranteed to always be
unique when it is generated, as long as the source of
the time stamp is reliable.

C. Our Solutions

Based on the patterns introduced in Section III-B, we can
conduct taint analysis to check if keys or nonces are involved
in an authentication protocol. Taint analysis can build a data
flow from a specific entry point, known as the source, to a spe-
cific exit point, known as the sink. Particularly, we can identify
a key or a nonce based on the sources and sinks of data flows.
To this end, we taint the functions that may generate a key or a
nonce as sources, and taint the BLE communication APIs and
data storage APIs as sinks. We taint BLE communication APIs
since authentication only occurs when the BLE app and its
peer device exchange data. These BLE communication APIs
will not change, even if heavy obfuscation is adopted. For
example, the writeCharacteristic(.) function will write a byte
array into the device, while readCharacteristic(.) will obtain
data from the device. The callback function onLeScan(.) can
collect information from the scan responses and advertisement
packets. We taint data storage APIs because a key can be saved
onto disk after generation.
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Algorithm 1: Key/Nonce searching algorithm

Algorithm 2: Path analysis algorithm

Data: Paths <= Taint paths get from the app
Result: KeySet, NonceSet <= collected keys and nonce
from the application

initialization:

RandomSet = ¢; KeySet = ¢;

static APKInfo {

shareDeviceData=false; sharePhoneData=false;
shareUserInput=false; saveUserInput=false;
saveDeviceData=false; savePhoneData=false;
Sequence=false; Timestamp=false;

b

while foreach path in Paths do
| analysisPath(path, APKInfo);

end

if APKInfo.sharePhoneData then

if APKInfo.savePhoneData then
| KeySet.add(K eyphone);

else
| nonceSet.add(Randpnone)

end

end

if APKInfo.shareUserInput then

if APKInfo.saveUserInput then
| KeySet.add(Keyyser):

end

end

if APKInfo.shareDeviceData then
| nonceSet.add(Randgeyice)
end

if APKInfo.saveDeviceData then
‘ Keyset-add(Keydevice);

end

if APKInfo.Sequence then
| nonceSet.add(Sequence)

end
if APKInfo.Timestamp then
| nonceSet.add(T'imestamp)
end
return KeySet, nonceSet;

A running example: To better understand our approach,
we take the Ultraloq smart lock as a running example. The
Ultraloq is a Bluetooth-enabled smart lock that enables a
user to control the lock remotely on a smartphone. In its
authentication protocol, a key and a random number are used
to secure the communication. To generate a key, the owner
of the lock is required to set a password. The password is
hashed and saved to the smartphone’s disk. The smartphone
then shares the hashed password with the smart lock. The
hashed password will be used as a master key in further
communications. To ensure the freshness of messages, the lock
also performs a challenge-response protocol each time the app
sends a command. For example, when the user tries to open

Data: path,APKInfo

initialization:

source=path.get_BLE_related_Source();

sink=path.get BLE_related_Sink();

if source.fromDevice() and sink.toDevice() then
| APKInfo.shareDeviceData=true;

end

if source.fromDevice() and sink.saveToDisk() then
| APKInfo.saveDeviceData=true;

end

if source.fromDisk() and sink.toDevice() then
| APKInfo.Sequence=true;

end

if source.readTime() and sink.toDevice() then
| APKInfo.Timestamp=true;

end

if source.fromPhone() and sink.saveToDisk() then
| APKInfo.savePhoneData=true;

end

if source.fromPhone() and sink.toDevice() then
| APKInfo.sharePhoneData=true;

end

if source.fromUser() and sink.toDevice() then
| APKInfo.shareUserInput=true;

end

if source.fromUser() and sink.savetoDisk() then
| APKInfo.saveUserInput=true;

end

his door, the smart lock first sends the app a random number
as a challenge. The app receives the challenge, and feeds
the hashed password along, the control command, and the
challenge into an encryption function to generate a response.
Afterward, the app sends the response to the smart lock. The
smart lock will unlock the door accordingly, when the random
number and the pre-shared key are matched.

We first demonstrate how to determine if the app uses a key.
We taint the sources and sinks respectively. We determine that
there are two possible paths in total: (i) a path whose source
is a function that can collect user inputs and whose sink is a
function that can write data into a BLE device, which indicates
that a value is generated from a user’s input and shared with
the peer device; (ii) a path whose source is a function that
can collect user inputs and whose sink is a function that can
save the value to the smartphone’s storage, which indicates
that a value is generated from a user’s input and saved. If
the above paths are identified, we can know that a key may
be adopted in authentication. We then demonstrate how to
determine if the app uses a random number in this case. We
taint the sources and sinks respectively. In this case, the taint
path has the following feature: The source of the path is a BLE
data reading function, while the sink of the path is a BLE data
writing function. This indicates that the device sends a value to
the smartphone, and then the smartphone sends it back after
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some processing. This is a typical case of using a random
number to perform the challenge-response.

The above example is one possible case which demonstrates
our approach. We introduce algorithms that identify all the
possible paths automatically and evaluate the security of apps.
Algorithm 1 traverses all data paths and returns a set of
identified keys and nonces in an application. APKInfo is
a set of Boolean values which stores specific behaviors of the
app, based on the source and sink of a data flow. For instance,
APKInfo.shareDeviceData is set to true if the source and
sink of a data path are identified as the peer device, since this
indicates that a message (e.g., a random number) flows from
the peer device, to the smartphone, back to the peer device.
Algorithm 2 is invoked by Algorithm 1 to evaluate each taint
path from sources to sinks in order to construct APKInfo.
Moreover, to determine whether an app is secure, we introduce
Algorithm 3. Specifically, after taint analysis, there are 4 cases
in total: (i) An app that does not use either a key or a nonce
is not secure. Its communication is subject to replay attacks
and fails to ensure data integrity. (ii) An app not using a key
fails to ensure the data integrity, and suffers from spoofing
attacks and eavesdropping attacks. (iii) An app that does not
use nonces will suffer from replay attacks. (iv) An app that
uses keys and nonces is potentially secure from these attacks.
However, security cannot be guaranteed, since an app may use
the key or nonce in an insecure way.

Algorithm 3: Vulnerabilities Detection algorithm
Data: Paths <= Taint paths get from the app
Result: VulSet <= Vulnerabilities
if KeySet == ¢ and NonceSet == ¢ then

VulSet.add(V ulrepiay);
VulSet.add(V ulpnointegrity):
else
if KeySet # ¢ and NonceSet == ¢ then
| VulSet.add(Vulyepiay);
else
if KeySet == ¢ and NonceSet # ¢ then
‘ VulSet.add(VulnointegTity);
end
end
end

return VulSet;

D. Implementation

BLESS extends the Amandroid framework [9], which pro-
vides prerequisites for taint analysis. We use this framework
because it can handle Inter-Component Communication (ICC).
ICC is a mechanism that allows different components (e.g.,
“activities””) to communicate with each other. BLE apps often
involve ICC. For example, a BLE app may obtain data from
advertisement packets in scanning Activity and pass it to
controlling Activity. The tool must be equipped to handle ICC,
otherwise it will invoke false positives, where secure apps are

mistakenly identified as insecure. Particularly, by customizing
the profile “TaintSourcesAndSinks” in Amandroid, we are
able to fully trace the taint path of interest. After identifying
all these paths, we apply the algorithms in Section III-C to
evaluate the security of an app.

Tainting Sources: A taint source can be either of the
following cases: a source from a user, a source from a
smartphone, and a source from a device. To identify a source
from a user, the API getEditText() is tainted, which allows us
to focus on the data from user inputs. To identify a source
from a smartphone, (i) we taint functions that can gener-
ate a random value, such as java.util. Random.nextBytes and
Jjava.util. Random.nextLong; (ii) we taint functions that can get
the current system time such as System.currentTimeMillis();
(iii) we taint functions that can read data from storage, in-
cluding file reading functions like FileReader.read(), database
operation functions such as Cursor.getString(), and profile op-
eration functions such as SharedPreferences.getString(). Note
that smartphone defined keys, random values, serial numbers
and time-stamps may be generated from (i) and (ii). To
identify a source from a device, (i) we taint functions that
can read data from device services, such as getValue() and
gattCharacteristic, which indicate that the source is from a
device’s GATT Services; (ii) we taint functions that can read
data from advertisement packets and scan response packets,
since these packets may offer random numbers. Different
from framework APIs, the android system uses the callback
OnLeScan() to handle the advertisement packets. The par-
ents of these callback functions may be located in different
packages and classes. To taint advertisement packets, we have
implemented our own subclass that extends the class Android-
SourceAndSinkManager in their framework and overwrites the
function isCallbackSource(). The framework can then filter
these sources while performing the analysis.

Tainting Sinks : A taint sink can be either of the following:
(i) a sink that relates to data storage on the smartphone, i.e.,
functions that can write data to a smartphone’s storage, such
as FileWriter.write() and SQLiteDatabase.insert(); (ii) a sink
that relates to writing data onto a peer device, i.e., functions
that can write out the data through BLE, such as setValue().

IV. SECURITY ANALYSIS OF BLE-ENABLED
APPLICATIONS

In this section, we perform security analysis of BLE-enabled
applications to validate our tool. Two examples are presented
in this section, including blood pressure monitors from BP3L
and Smart Pluswave. Both devices are denoted as insecure
since the Pluswave does not use a key or a nonce, and the
BP3L does not involve a key.

A. Analysis Procedure

Our manual analysis is to reverse engineer the communi-
cation protocols of BLE-enabled products for protocol vul-
nerability assessment. To understand details like specific pa-
rameters and control commands in authentication traffic, we
can perform static analysis and dynamic debugging of the
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app. Specifically, static analysis is used to identify the authen-
tication protocol adopted by the application, while dynamic
analysis is used to identify the authentication parameters (e.g.
a key) used in authentication protocol.

1) Static analysis: An attacker may want to obtain the
source code and understand the details of the authentication
protocol. We employ APKTool [15] to obtain Smali code from
an Android Package (APK) and use Smali2Jar to convert
Smali code into the Java format. If this conversion fails, We
read Smali code directly. Heavy obfuscation [16] may be
employed to defend against reverse engineering of an app.
Direct use of Android APK decompilers does not work against
obfuscation. Therefore, we adopt source code instrumentation
[17] to explore the workflow, inputs, temporary values and
outputs of interest. Source code instrumentation also enables
us to directly use some functions as the building blocks of our
customized app for testing and attacking. When performing
static analysis of an app, we mainly focus on the functions
that communicate with the peer BLE device. Tracing these
functions can reveal the core engine of the authentication
protocol, such as how a command is generated, and how an
app resolves an authentication message from the device.

2) Dynamic Analysis: Static analysis is not omnipotent
since it cannot trace the outputs generated by different inputs.
In other words, static analysis may not observe the impact of
various parameters on the authentication process. Therefore,
we resort to dynamic debugging to address this issue. We use
the hook technology to trace each authentication parameter
(e.g., a random number) of an app. Xposed [18] is a popular
hook framework which can record, modify and replay the
inputs and outputs of a function. We use Xposed to write our
own code in order to observe the changes of the workflow,
as well as the variation of the authentication parameters. For
example, hooking the function writeCharacteristic enables
us to observe how the write commands, which are sent by
the app, change in different contexts. Hooking the function
readCharacteristic allows us to obtain the value of an attribute
set by the device.

B. Case Studies

With the analytic techniques above, we now present the
discovered attacks that are able to compromise blood pressure
monitors from Pluswave and BP3L. From these attacks, we
can observe that our tool can detect the vulnerabilities of apps
effectively.

1) Smart Pluswave: According to our analysis, the blood
pressure monitor from Smart Pluswave does not use a key or a
nonce to implement authentication. The confirm this, we first
launch a spoofing attack by creating a fake device that acts as
the original blood pressure monitor. Therefore, the smartphone
app will send all its authentication data and control command
to our fake device. For example, we discover that the byte
array ~cc80020301030003” is an encoded command that is
used to start the measurement. When the user is off-line, we
can launch a replay attack by re-sending the encoded control

command and authentication data. In this way, we can take
control of the blood pressure monitor.

2) BP3L Blood Pressure Monitor: We now demonstrate
how we can compromise the Blood Pressure Monitor from
BP3L. According our experiment, the BP3L does not use a
key to secure communication. We first present the workflow
of the blood pressure monitor. At first, the device broadcasts
the basic information, including the manufacturer data and
device name. The smartphone receives the data and checks
if the device belongs to the specific vendor. Authentication is
then performed. Specifically, the device and the smartphone
use the challenge-response protocol with a fixed key value
to perform authentication. When the authentication is done,
the application receives a fixed confirmation message from
the device, indicating that the smartphone and blood pressure
monitor are ready to communicate. The blood pressure monitor
will encrypt a measurement and send the encrypted data to the
smartphone. The smartphone will decrypt it with a function
named deciphering and show the data to the user. The key used
to encrypt and decrypt the data is generated from a function
getKey, which uses the hardware version number of the device
as its input. As long as the hardware version number does not
change, then getKey will produce a fixed key.

We can deploy a spoofing attack on the blood pressure
app without any changes. Specifically, we create a fake blood
pressure monitor that acts as the original one. In the original
authentication process, the monitor sends the smartphone a
confirmation message to show that the monitor is authenti-
cated. Since the confirmation message is fixed, our fake blood
pressure monitor can send the message to the smartphone. In
this way, we bypass the authentication process. Afterwards,
we re-write an encryption function based on the source code,
then feed the function the key and the fake blood pressure
measurement to generate the cipher text. We send the gen-
erated cipher text to the smartphone to deploy the fake data
injection attack.

It can be observed that there are two fixed keys in the case
of BP3L. One key is used to perform the challenge-response
protocol, while the other is used to encrypt the measurement
from the blood pressure monitor. However, these two keys fail
to ensure data integrity, since they can easily be extracted by
an attacker. This case study indicates that it is not sufficient to
only detect apps without keys. An app that uses a fixed key,
which is not secure, should also fall into the same category.
Moreover, an attacker can control a victim device as long as
an official app is installed on his smartphone.

V. COUNTERMEASURE

As discussed earlier, we assume that an attacker is not
present during the bootstrapping process. However, if an
attacker can perform the sniffing process at the initiation of
password setting, he can obtain the key and control the smart
device freely. In this regard, we present an application level
defense that enhances the security of BLE based apps.
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ATBTLC1000-MR ATECC608A

SAMD21

A. Application Level Defense

We design a cost-effective defense measure on the applica-
tion level using public key cryptography so that two intended
devices can communicate securely and defeat downgrade
and MITM attacks [19]. Fig. 1 illustrates the prototype. An
Android app is developed on a Samsung Galaxy 8 smartphone.
The peer BLE device is Microchip’s Atmel Samd21 develop-
ment board in Fig. 1 and uses Microchip’s low-cost ($0.55)
crypto coprocessor ATECC608A [20], which has protected
storage for 16 Keys, and supports ECDH, AES-128, HMAC
and Elliptic Curve Digital Signature Algorithm (ECDSA) [21].

Fig. 2 shows the principle of our application level de-
fense. We do not require a specific pairing protocol for the
smartphone and the peer device, which can communicate in
plaintext. During the bootstrapping phase, the smartphone gets
the public key of the peer device; for example, the smartphone
may scan a QR code printed on a tamper-evident [22] label on
the device. The QR code includes the public key of the device.
With the genuine public key of the device, the smartphone app
can then use ECDH and create a TLS-like secure tunnel with
the device. The owner of the device can set up a password so
that anybody who knows the password can access the device.
Later, communication between the smartphone and the peer
device is protected with the secure tunnel.

B. Implementation of Application Level Defense

We implement our defense on the Microchip Atmel
SAMD21 microcontroller (MCU) to show its feasibility. We
use the ATBTLC1000-MR Extension Boards to enable the
MCU to talk with a smartphone through BLE. ATECC608A
is introduced to perform the cryptographic operation. Note
that developers can implement this solution on any viable
hardware, and we find ATECC608A is very powerful and
implements all crypto functions needed for TLS. ATECC608A
has secure hardware-based key storage for up to 16 Keys. It
implements hardware acceleration of ECC algorithms, AES
and HMAC.

Smartphone

@ Scan the certificate of device

(@) Start authenticated ECDH
-t

A |

@ Start challenge-response protocol
g
@ Set the password

® Start encrypted communication

gt

\/

Fig. 2: The principle of our defense

<l v Y

Before we use ATECC608A, we need to configure it. This
can be done by using the software Atmel Crypto Evaluation
Studio [23]. The configuration can also be programmed. Each
key slot of ATECC608A stores one key, and the function of
each key must be configured too. For example, one key can be
used to perform the AES encryption/decryption when we set
the AES encryption/decryption flag true. Once configured and
locked, the key will be physically burned into ATECC608A
and can never be changed or read by code outside of the chip.

We can also load ephemeral keys into ATECC608A. For
example, a session key is generated from the chip’s ECDH
function, and returned to the calling function of the BLE
device application. We then need to load this session key into
the chip to use the AES encryption/decryption functionality.

VI. EVALUATION
A. Security of BLE-enabled Apps

To study the security of BLE based IoT applications on the
market, we apply BLESS to scan 1073 BLE apps. All apps are
collected from the androzoo database [10], which consists of
8,054,736 different APKs. Androzoo provides a set of Restful
APIs [24] for researchers to query apps of interest. To filter the
BLE based apps, we set the query condition with BLE based
functions (such as connectGatt and onLeScan) and permissions
(e.g., android.permission.bluetooth).

Figure 3 shows the results of security scanning. We can
see that only 7% of the apps use both keys and nonces
according to our analysis, while 79% of them do not use
any keys, and 90% of them do not use any nonces. This is
overwhelmingly negative, as most of the apps fail to defend
against replay attacks. According to the analysis performed on
different versions of apps, we find that vendors indeed improve
their countermeasures over time. For example, i-SENS’ Blood
Glucose monitor [25] only uses a nonce value to protect
the device before version 2.7. Then, the user-defined key is
introduced in version 2.7 and beyond.
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TABLE I: Accuracy Comparison

Tool Secure Apps | Insecure Apps | Throw Errors
BLESS 75 (86%) 100 (100%) 0 (0%)
BLECryptracer 7 (10.7%) 94 (94%) 6 (6%)

Figures 4 and 5 show the proportion of keys/nonces of
different types used by BLE apps. We can observe that user-
defined keys are more widely used than smartphone-defined
keys or device-defined keys. The user-defined key is more
feasible when compared with others. As long as the user
remembers his/her password, he/she can always perform the
authentication process without resetting a device or backing
up configurations. We also find that developers prefer to let
the device generate nonces, which will let the device verify
commands sent from the smartphone. This is because the
smartphone is a master device which controls its peer device.
Replay attack usually occurs when the smartphone sends
a command to its peer device; in a BLE application, the
peer device does not typically send control commands to the
smartphone.

B. BLESS vs. BLECryptracer

BLECryptracer is a BLE security detection tool introduced
by Sivakumaran et al. [14]. The key insight of their tool is to
identify the cryptographic API existing in BLE Apps. That is, a
BLE app is considered secure if and only if cryptographic APIs
are detected. In this section, we will perform a comparison
between BLESS and BLECryptracer in terms of accuracy.
There is no dataset of wild BLE apps that are considered

Fig. 7: Time for AES and HMAC

Fig. 8: Time for ECDSA/ECDH

as secure. Therefore, we must manually check the security
of 75 apps that are denoted as secure by BLESS in section
VI-A. The principles used for manual analysis is whether
the app has a key and a nonce. 65 of these apps are secure
according to our manual analysis, which means that BLESS
identified 10 false negatives in its analysis. Then, we use
BLECryptracer to perform a similar detection process. Table
I shows the results. It can be observed that BLECryptracer
can only detect 7 secure apps, since these secure apps contain
Java Cryptography Architecture, such as the java.security and
javax.crypto. Their tool will fail when an app implements a
customized cryptographic algorithm. For example, the smart
lock Ultraloq uses customized cryptographic algorithm and
denoted as insecure by BLECryptracer.

Similarly, there is no dataset of wild BLE apps that are
considered insecure. We manually checked 100 apps that
are denoted as insecure by BLESS in Section VI-A as our
testing dataset. It can be observed from Table I that 94 apps
are denoted as insecure by the BLECryptracer. Furthermore,
there are 6 apps that can not be analyzed by BLECryp-
tracer. BLECryptracer throws errors when processing these
apps. Although we can not see much difference from this
experiment, we argue that BLESS has advanced features
when compared with BLECryptracer: (i) As demonstrated in
section V, our tool can handle an app that uses a fixed key,
while BLECryptracer can not. Therefore, BLECryptracer may
report a false alert when dealing with such apps. In their
paper, the authors introduce another tool named CogniCrypt
to identify this case. (ii) Their tool does not take nonces into
consideration, which is not comprehensive. (iii) Their tool does
not take the data exchanged via advertisement packets into
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consideration. This is also not comprehensive, since an app
may receive keys or nonces from advertisement packets. An
app named ‘“com.flyjiang.dongha.activity” uses advertisement
packets to receive a random number from its peer device.

C. Application Layer Defense with ATECC608A

1) Command execution time: Fig. 6 shows the time for
executing a command on Microchip’s Atmel Samd21 devel-
opment board with ARM’s Cortex-M0+ MCU operating at 32
MHz. We evaluate two metrics: (i) the time for decrypting
a received command with integrity checking; (ii) the time
for performing the authenticated ECDH with ECDSA. We
run each test 50 times. It can be observed that the average
runtime for decrypting a received command and performing
the authenticated ECDH is 15 ms and 150 ms, respectively.

2) Crypographic operation performance: Figs. 7 and
8 show the cryptographic operation performance of
ATECCO608A on Samd2l. Fig. 7 gives the time for AES
encryption/decryption and HMAC. Fig. 8 gives the time for
performing ECDH/ECDSA. The input of AES and HMAC is
1 block (16 bytes), and the input of ECDSA is 2 blocks (32
bytes). We run each operation 50 times. The average time of
AES encryption and decryption on ATECC60S8 is around 9
ms. The average time of performing HMAC is around 6 ms.
The average time for performing ECDSA alone by the device
is around 100 ms. The average time measured at the device
side for performing ECDH alone without ECDSA is around
57 ms. The data is consistent with the performance data for
the authenticated ECDH with ECDSA together. Fig. 8 also
provides the average time for verifying the ECDSA signature
at the device, which is around 50 ms. Note that the device
does not need to perform this ECDSA signature verification
in our context, although it can be used in other applications.

VII. RELATED WORK

In this section, we review the most relevant works. From
the discussion in previous sections, it can be observed that our
work in this paper is quite different from other related works.
Our work presents a novel security scanning tool for BLE
enabled applications. In addition, we include relevant attack
examples and hardware based countermeasures.

We first present Bluetooth sniffing tools and focus on the
open source tools. FTS4BT Bluetooth protocol analyzer and
packet sniffer is a commercial tool and often costs tens
of thousands of dollars [26]. Michael Ossmann presented
Ubertooth One, the first open-source low-cost Bluetooth test
tool, at Shmoocon 2011 [27]. In 2013, Mike Ryan built a BLE
sniffer on Ubertooth and demonstrated that the passkey pairing
method for LE legacy connections was not secure. He devel-
oped a tool, crackle, which is able to crack such connections
[28]. The Adafruit Bluefruit LE sniffer was introduced in 2014
[29]. BlueEar was built upon Ubertooth in 2016 [30] and able
to sniff the traffic of Bluetooth Classic.

We now review recent survey papers related to BLE security.
Hui Jun Tay et al. presented a survey of the vulnerabilities in
the BLE beacons [31] and provided an overview of the current

state of iBeacon security by summarizing three vulnerabilities
(spoofing, DOS, and Hijack) in beacon platforms, and citing
specific case studies. Hassan et al. summarized major security
threats in Bluetooth Classic and BLE communication and
discussed mitigation techniques [32]. Celebucki et al. [33]
presented security features and shortcomings of BLE, Zig-
bee, and Z-Wave protocol. As for BLE, they pointed out that
devices utilizing the legacy mode pairing were vulnerable to
MITM attacks during the pairing process.

We now review related work on specific BLE attacks. Ryan
et al. [28] showed a method that can brute fore the encryption
of the BLE link layer. Jasek et al. [34] discovered a set of
attacks between an mobile app and its peer devices. Their
attack vectors include replay attack and brute force attack.
Zegeye et al. cracked the BLE temporary key used in the
pairing process by using the brute-force attack [35], which
extended the attack in [28]. All these works do not involve a
framework to detect the proposed attacks. Pallavi Sivakumaran
et al [14] presented the Co-located attack, through which a
malware can access the sensitive data on its peer device.
In their work, they also proposed a detection framework.
However, their detection framework determined whether an
app is secure by testing the involvement of cryptographic
operations. As discussed earlier, this may cause false alerts.

We now review related work on BLE security enhancement.
Muhammad Naveed et al. [12] developed an OS-level protec-
tion mechanism to identify the binding relationship between
an app and a device, and then used the relationship as the
security policy. Giwon Kwon et al. [36] proposed a security
method that can increase the length of the temporary key
(TK) in BLE pairing, which could thwart the TK brute-
force attack presented by Mike Ryan. Thrinatha [37] presented
a countermeasure of MITM attacks by applying the anti-
jamming techniques to the SSP model.

VIII. CONCLUSION

In the era of IoT, a BLE app should implement authentica-
tion protocols at the application layer since BLE devices may
be deployed in public, and anybody may pair with it and use it.
In this paper, we design a BLE security scanning tool (BLESS)
to examine the security and identify the vulnerabilities of
Android BLE apps. We use taint analysis to identify keys and
nonces by exploring their data flow patterns. We find that at
least 93% of these apps are not secure. To defend against those
attacks, we propose and implement a practical application
layer defense protocol with a low-cost ($0.55) crypto co-
processor ATECC608A for authentication and authorization.
Extensive evaluation is performed to validate the application
level defense measure.
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