
Building a Low-Cost and State-of-the-Art
IoT Security Hands-On Laboratory

Bryan Pearson1, Lan Luo1, Cliff Zou1(B), Jacob Crain2, Yier Jin2,
and Xinwen Fu1,3

1 University of Central Florida, Orlando, FL 32816, USA
{bpearson,lukachan}@Knights.ucf.edu, czou@cs.ucf.edu

2 University of Florida, Gainesville, FL 32611, USA
jcrain@ufl.edu, yier.jin@ece.ufl.edu

3 University of Massachusetts Lowell, Lowell, MA 01854, USA
xinwnefu@cs.uml.edu

Abstract. The popularity of IoT has raised grave security and privacy
concerns. The huge IoT botnets Mirai and Reaper were built on compro-
mised IoT devices. In this paper, we propose to develop a low-cost plat-
form with an industrial grade microcontroller (MCU) ESP32 equipped
with a crypto co-processor ATECC608A and create teaching materials
including labs and case studies for IoT security education. MCUs have
broad applications in IoT. Sensor nodes in various smart systems such as
smart home, smart health and smart grid can use MCUs to process com-
mands and perform automatic control. We will develop effective, engag-
ing and novel teaching materials on IoT hardware security, operating
system/firmware/software security, network security, and data security
with the low-cost IoT kit and IDE. The teaching materials will contribute
to the Cybersecurity Workforce Development Initiative led by NICE and
help respond to a dynamic and rapidly developing array of cyber threats
including those resulting from IoT.

Keywords: IoT · Microcontroller · Teaching materials

1 Introduction

Internet of Things (IoT) interconnects everything including physical and virtual
objects together through communication protocols. IoT has broad applications
in digital healthcare, smart cities, transportation, agriculture, logistics and many
other domains. The global IoT market is booming. According to Forbes [13], the
IoT Market will reach $520B by 2021.

1.1 Need for Promoting Education in IoT Security

The popularity of IoT has raised grave concerns about security and privacy.
When medical devices are connected to the Internet, compromised medical
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Casaca et al. (Eds.): IFIPIoT 2019, IFIP AICT 574, pp. 289–306, 2020.
https://doi.org/10.1007/978-3-030-43605-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43605-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-43605-6_17

290 B. Pearson et al.

devices may endanger the life of patients. Hacked autonomous cars may crash.
Hackers exploited default passwords and user names of webcams and other IoT
devices and deployed the Mirai botnet [11]. The huge botnet was then used
to conduct the distributed denial-of-service (DDoS) attack against Dyn DNS
servers. The IoT reaper botnet was discovered in 2017 and it exploited newly
found vulnerable IoT devices [9].

We have also disclosed various vulnerabilities of IoT products on market.
We exploited hardware vulnerabilities of the Nest Thermostat, which aims to
learn a user’s heating and cooling habits to help optimize scheduling and power
usage [23]. The hardware architecture of Nest lacked proper protection, allowing
attackers to install malicious software into the unit. Through a USB connec-
tion, we demonstrated how the firmware verification done by the Nest software
stack can be bypassed, providing the means to completely alter the behavior
of the unit. Any information stored within the unit was then exposed too. We
performed a comprehensive analysis of PurpleAir, a popular low-cost air quality
sensor [28]. PurpleAir has one of the largest operational low-cost sensor net-
works worldwide, being used by individuals and non-profit and governmental
agencies for community air quality monitoring. Multiple security vulnerabilities
are identified in PurpleAir, including plaintext communication, weak authen-
tication mechanisms, and lack of data integrity measures. By exploiting these
vulnerabilities, attackers can impersonate any victim PurpleAir sensor and pol-
lute its data using fabricated data. This is the first security analysis of low-cost
and connected air quality monitoring systems. The researchers have been work-
ing with PurpleAir to patch their system.

IoT security should be addressed from five aspects [25], including hardware
security, operating system (OS)/firmware security, software application security,
secure networking protocols and data security. Different IoT systems have differ-
ent requirements. In this paper, we propose to develop a low-cost platform with
the industrial grade microcontroller (MCU) ESP32 [20] and crypto co-processor
ATECC608A [30] for IoT security education. While CPUs are more versatile and
powerful, MCUs are often used in sensor nodes in various smart systems such
as smart home, smart health and smart grid to process commands and provide
automatic control.

We will often take an Internet enabled air quality monitoring system as a case
study to demonstrate security requirements of an IoT system, and we believe that
other IoT systems shall share similar attributes. A secure environmental monitor-
ing system should have hardware security and be able to prevent attackers from
reading and changing the data on the device, particularly when the attacker has
physical access to the device. Hardware security is a great challenge. For example,
advanced attackers may manipulate the flash directly through its I/O interface.
The IoT device should have system and firmware security so that it can detect
the change of its firmware and protect the overall system. To further protect the
firmware and sensitive data stored on the flash, data security through strategies
such as flash and file encryption shall be adopted. Secure firmware upgrade of IoT
systems is also key to the longevity of an IoT system, since no one can guarantee

Building a Low-Cost and State-of-the-Art IoT Security 291

that a software has no bugs, and security and functionality patches are always
expected.

Network security is required to secure network traffic to and from an IoT
device, for example, through SSL/TLS (which will be referred to as TLS for
simplicity) to establish mutual authentication, communication encryption and
integrity between the device and a server. Mutual authentication is critical for
any IoT system. Those systems without mutual authentication often have various
vulnerabilities [15,24,25,31,32]. Without device authentication, a fake device
may obtain security credentials from the server or a smartphone app. Without
server/user authentication, a fake server or user can cheat on the device and
collect sensitive information. Certificate based mutual authentication based on
public key crypto is often the most feasible and simple implementation of mutual
authentication. In TLS certificate-based mutual authentication, a client verifies
the server’s certificate and identity while the server performs similar operations
to authenticate the client.

From the discussion above, we can see that there is an urgent need of pro-
moting education in IoT security and privacy given that IoT will be ubiquitous
and its security should be systematically addressed from the perspective of the
hardware, system/firmware, software, networking and data security.

1.2 Need for Low-Cost and High-Quality Hardware Platforms
for IoT Security Education

We propose a low-cost platform with the industrial grade microcontroller ESP32
[20] equipped with a crypto co-processor ATECC608A for IoT security educa-
tion. A low-cost platform will be easy for dissemination so that schools with
low budget can afford it. Pedagogical theories support the use of industry grade
hardware platforms for IoT security education. Kaylene Williams and Caroline
Williams list various ingredients that can improve student motivation, including
student and content [37]. The student ingredient suggests students should be able
to connect education results to their future career and even entrepreneurship.
The content ingredient requires the content to be accurate, timely, useful, and
relevant to students in their life. The hands-on labs and case studies developed
in this paper on secure IoT systems are novel, timely and relevant to real life.
The platform shall create an environment that students may connect knowledge
learned from the school to the industry. With such teaching materials, students
will be able to produce practical prototypes such as secure environmental mon-
itoring sensors and generate an impact on the society through innovation. Such
an environment will motivate students to learn.

There is also a strong interest among students to learn IoT security and
privacy. This is demonstrated by two preliminary surveys performed by us: one
tutorial on IoT security at Design Automation Conference (DAC) 2018 and the
other from an IoT security and privacy class offered in Fall 2018 at UCF. The
survey results from 51 responses in Table 1 reveal that 94.1% of the students do
not know how to hack IoT hardware at all or only know somewhat. We cannot
expect these students to know how to secure the IoT hardware. 94.1% of the

292 B. Pearson et al.

students do not know how to perform traffic analysis of IoT traffic at all or know
only somewhat. These students will not be able to perform risk assessment of IoT
communication protocols. 89.2% of the students either strongly agree or agree
that it is necessary to learn IoT security through hands-on exercises. Overall,
the preliminary surveys demonstrated the need and urgency to develop effective
education materials to equip the future workforce with adequate knowledge and
expertise in IoT security and privacy.

Table 1. Survey on the need for transiting research in IoT security into education

Question Answer

1. Do you know how to hack hardware of IoT
devices through its debugging ports or other
hardware interfaces?

68.6% No, 25.5% Somewhat,
5.9% A lot

2. Do you know how to analyze network traffic
from IoT devices or the app controlling the
devices?

62.7% No, 31.4% Somewhat,
5.9% A lot

3. It is necessary to learn IoT security through
hands-on exercises

61.7% Strongly agree, 27.5%
Agree

We have following major objectives. Please note: the term “laboratory” in
this paper refers to the actual physical laboratory, and the term “lab” refers
to a student assignment or project that plays with the IoT kit to learn specific
knowledge and skills. While we focus on IoT security, privacy is often mentioned
since encrypting data and communication is part of privacy.

Objective 1: Design an affordable low-cost IoT kit with an Integrated Devel-
opment Environment (IDE) so that schools with low budget can afford such a
laboratory on IoT security and privacy education. Given that the kit is small, a
physical laboratory may not be necessary. Students can take home the kit in a
box and perform the teaching labs and case studies.

Objective 2: Design a suite of teaching labs and case studies using the low-cost
IoT kit so that students can learn the state-of-the-art techniques to secure IoT
devices. We will design teaching modules covering hardware security, operating
system/firmware/software security, network security, and data security. Please
note that given the broad areas of IoT security, we focus on those unique and
important security features offered by the low-cost IoT kit and do not intend
to cover every security topic. For example, in the threat model of an individual
defense measure, we will not consider the following physical attacks on hardware
platforms: power/electromagnetic side channel attacks [33], laser voltage probing
(LVP) based non-destructive reverse engineering [26,27], focused ion beam (FIB)
based destructive reverse engineering [36], and other circuit level vulnerabilities.
The corresponding solutions to these attacks will lead to the redesign of the
microcontrollers and microprocessors. These topics are out of the scope of this

Building a Low-Cost and State-of-the-Art IoT Security 293

paper. The hardware security labs in this paper will address those caused by
illegal access to input/output pins. For software security, secure boot can detect
the change of the software. We will not cover dynamic security measures such as
intrusion detection. However, the covered secure measures will be able to defeat
most serious IoT attacks discovered so far.

Objective 3: Integrate the developed IoT teaching labs and case studes into
related courses.

2 A Capable and Low-Cost IoT Laboratory

We now introduce the low-cost IoT development kit, the laboratory setup and
the integrated development environment (IDE) to use the kit. Such an IoT devel-
opment kit can be less than $10. For hardware security teaching labs, students
need the JTAG debugger and bus pirate, each of which costs around $30. Other
laboratory supplies and materials including multimeters and soldering kits are
of low cost too.

2.1 Low-Cost IoT Development Kit and Laboratory

We will design a very low-cost and affordable IoT development kit, as illus-
trated in Fig. 1. It includes a capable industrial grade microcontroller (MCU) –
ESP32 development board ($10.99 at Amazon; $4.27 at AliExpress), a crypto
co-processor – ATECC608A ($0.86/unit at DigiKey in pack of 25, $0.55/unit at
Microchip in pack of 5000), a temperature and humidity sensor – DHT11 ($2.00
at Amazon; $0.83 at AliExpress), a small breadboard ($1.60 at Amazon; $0.90 at
AliExpress), a USB to Micro USB cable ($2.00/unit in pack of 5 at Amazon; less
than $1.00 at AliExpress) and a few jump wires (less than $1.00). A computer is
required to program the MCU and it is assumed that students have computers
such as laptops or the school provided computers. If the right seller is chosen,
the low cost IoT development kit costs only $8.55, less than $10.

For the hardware security teaching modules, A JTAG debugger ($29.95 at
Amazon) is needed to connect to the JTAG interface of ESP32. A Bus Pirate
($29.95 at Amazon) is needed to play with the UART interface and the flash
SPI interface. A pair of JTAG debugger and bus pirate costs $59.90.

Figure 2 shows the laboratory setting. If an institution does not have space,
there is no need of a physical laboratory. Since the components are small, a
small box can hold all the components. A guided lab can be executed in a
classroom and lab work can also be performed at home. The laboratory may
need soldering iron kits to solder pin headers onto an ESP32 development board,
an ATECC608A onto a breakout board, or pin headers onto breakout boards.
Multimeters can be used to assist the hardware labs while they are not necessary.
One set of soldering kit and multimeter costs only $15.64 at AliExpress. IoT
devices must be connected to the Internet and the data from the IoT devices can
be saved on a server. ESP32 supports WPA2 Personal or Enterprise, and can be
connected to an isolated private network, a campus WiFi network or the widely

294 B. Pearson et al.

Fig. 1. Single IoT platform

deployed eduroam [29]. Amazon AWS IoT [10] provides a free tier of services
including IoT core, database and storage. ESP32 devices can be connected to
an open source MQTT (Message Queuing Telemetry Transport) server such as
Mosquitto [3], which can use a MySql database to save data. A generic computer
can run such a MQTT server and MySql database.

Fig. 2. IoT laboratory

2.2 Creating an Integrated Development Environment (IDE)
for IoT Security Education

Hardware is only part of an IoT system. We plan to create a unified IoT
IDE (integrated development environment) for the IoT development kit in
Fig. 1, which will be used for teaching modules on IoT hardware security,
system/firmware/software security, networking security and data security. The

Building a Low-Cost and State-of-the-Art IoT Security 295

native programming environment of ESP32 is Espressif IoT Development Frame-
work (esp-idf) [18], which is a command line based environment. The ESP32
community has migrated the esp-idf into the Arduino core [16] for the ESP32
WiFi and Bluetooth chip so that the Arduino IDE [1] can be used to compile
an ESP32 application, flash it into the chip, and monitor debugging messages
from ESP32 through a serial port. The Arduino community developers have also
developed various libraries such as one for the temperature and humidity sensor
DHT11. However, the Arduino IDE has no debug capabilities, and lacks support
for multiple files on a project. The alternative is the Eclipse IDE [17], which is
integrated with esp-idf and supports JTAG, OpenOCD [6] and GDB debugging
[35].

Once the IDE is chosen, we will ensure that the IDE supports the developed
teaching modules on configuring ESP32’s secure features such as secure boot
and programming labs with crypto libraries. (i) Configuring ESP32’s secure fea-
tures. Currently, the configuration is performed at the command line. We plan
to develop a GUI for such configuration. (ii) Programming with crypto libraries.
We must carefully choose the crypto library, which shall support secure fea-
tures of both ESP32 and ATECC608A. There are two choices, mbedssl [7] and
WolfSSL [8]. ESP32 is shipped with mbedssl and provides an API interface for
TLS [19]. WolfSSL is ported to ESP32 and is compatible with Microchip’s Cryp-
toAuthLib, a crypto library that supports ATECC608A. Whenever needed, we
will extend the crypto library and ensure that the chosen library will support
the functionalities of ECC, HMAC and AES of ATECC608A, and can connect
to Mosquitto, AWS IoT and other MQTT brokers via TLS.

Since an institution may prefer a private network for all the teaching labs and
does not want to use AWS IoT, we plan to extend the open source MQTT project
Mosquitto with the database capability and mutual authentication. There are
two issues with Mosquitto. The default configuration of Mosquitto does not
incorporate MySql. We will extend Mosquitto so that IoT devices can send data
to the server, which stores data into a MySql database. The second issue with
Mosquitto is its current implementation of SSL/TLS mutual authentication is
problematic. In the client authentication, the server verifies the client’s certificate
and checks if the subject fields of the client certificate include the client’s IP.
This will tie the client to that IP. This strategy is not flexible and practical.
We will adopt the certificate based client authentication used by SSH and AWS
IoT for Mosquitto. That is, the client certificate will be stored at the Mosquitto
server for the purpose of authentication.

3 Developing Teaching Labs for IoT Security

We now introduce teaching labs and case studies that will be developed for stu-
dents to master hardware security, secure key storage, secure boot, data security,
network security, secure firmware upgrade and crypto co-processor based on the
IoT kit in Fig. 1 and the IDE that we will adopt and extend.

296 B. Pearson et al.

3.1 Developing Teaching Modules on Hardware Security

We first introduce hardware security capabilities of ESP32 and then discuss
corresponding teaching modules on hardware security based on ESP32.

Hardware Security on ESP32. The first step to accomplishing hardware
security is to disable I/O ports that may be present on the device. In the case
of ESP32, we must disable the JTAG and UART interfaces, since they provide
venues for attackers to read and write on the ESP32.

The Joint Test Action Group (JTAG) formalizes a series of standards for
boundary scanning and debugging a chip. With JTAG, the programmer can test
each component of the chip separately to verify it is connected and functioning
correctly. The Open On-Chip Debugger (OpenOCD) is an open-source project
and can interact with the JTAG interface in a GNU Debugger (GDB) envi-
ronment. OpenOCD was extended to add support for the ESP32 JTAG chain.
Programmers can use GDB to communicate with OpenOCD, providing com-
plete flash access of the ESP32. It is possible to read and write to any byte
of memory, including registers and instruction flow through the JTAG chain.
To disable JTAG, the corresponding eFuse value of ESP32 should be set to 1.
The ESP32’s eFuse is a 1024-bit partition of one-time programmable memory,
separated into four 256-bit blocks. Upon setting a value, hardware “fuses” are
burned, rendering these values irreversible.

Universal Asynchronous Receiver/Transmitter (UART) is a circuit which
allows two devices to communicate over a serial connection. Both devices in
a UART connection can either transmit or receive bytes of data. Using a serial
register, UART will convert this data either from serial to parallel or vice versa,
depending on whether the data is being transmitted or received. Unlike JTAG,
which can debug devices, UART is often used for communication. The primary
purpose of UART with respect to the ESP32 is to upload an application or
firmware to the flash. Other possibilities with UART include monitoring output
from the console, and reading or modifying direct memory addresses. The UART
bootloader is implemented through an external interface known as esptool. If
flash content is encrypted by the encryption key stored in the eFuse, then the
UART bootloader will transparently decrypt this content before reaching the
serial monitor. Similarly, the UART bootloader will transparently encrypt data
when flashing it via esptool. To disable the insecure properties of the UART
bootloader, we must set proper eFuse values. Afterwards, the UART bootloader
cannot read or write to the encrypted flash.

Teaching Modules on Hardware Security on ESP32. We will develop
JTAG ethical hacking lab, JTAG defense lab, UART ethical hacking lab, UART
defense lab, and flash ethical hacking lab.

JTAG hacking lab. Access to a full JTAG chain allows access to all portions
of an integrated circuit, some debugging configurations notwithstanding [21]. In
this lab, students will learn the different signals that appear on a JTAG port as

Building a Low-Cost and State-of-the-Art IoT Security 297

well as their usage. Students will also be introduced to the standard JTAG state
machine, as well as how systems are designed to utilize it. Then students will
proceed to identify the JTAG pins of the ESP32 and connect a debug probe to it.
We will then provide the students with tools to build the OpenOCD debug bridge
and the GNU Debugger (GDB) for the target platform. In doing so, students
will get experience on finding and constructing their own debug environment for
reverse engineering platforms. With OpenOCD and GDB, students will attempt
to reverse engineer a binary provided by the lab instructor. Students will learn
to utilize the Python facilities provided by GDB to develop their own plug-ins
to facilitate the task at hand. As part of this lab, students will learn to view and
modify CPU registers, as well as bypassing the local authentication mechanism
provided by the binary. Furthermore, through the JTAG interface, students will
modify the contents of memory as the binary runs as to modify its behavior and
extract runtime secrets such as ephemeral keys used by the binary to establish
secure communications with a remote server. Lastly, students will utilize the
JTAG interface to permanently modify the binary within the device introducing
a backdoor to allow bypassing local authentication as well as leaking credentials.

JTAG defense lab. The JTAG chain has to be disabled in a final commercial
product given that attackers may exploit it to interrupt the microcontroller or
access sensitive data on the flash. In this lab, students will learn how to disable
the JTAG chain by setting JTAG DISABLE of the ESP32 to 1. Students will
use the debug probe again and test if they can still manipulate the chip after
JTAG DISABLE is set as 1. One thing to note is once JTAG is disabled, it
cannot be enabled again since the eFuse is physically burned. Therefore, if the
ESP32 will be reused, the JTAG defense lab cannot be truly performed and
students should only discuss the principle of disabling the JTAG.

UART hacking lab. For this lab, students will be introduced to communica-
tions through UART. The lab will center around using a specially crafted binary
provided by the instructor. Students will identify the UART lines of the ESP32
microcontroller and capture data generated by the binary using a cheap signal
analyzer such as the Bus Pirate [34]. The students will learn to decode UART
frames, as well as to compute the BAUD rate being utilized by the device. With
the computed BAUD rate, students will capture all incoming frames and exam-
ine the received data for any possible hints on device operation. Students will
then interact with the device through a serial terminal emulator, allowing them
to dynamically send and receive data from the device. Utilizing Python and the
pyserial library, students will then develop a framework to automatically send
and retrieve data from the device through UART. The binary will be designed to
contain a way to locally authenticate a debug mechanism through its serial port.
This is done in a semblance of devices that use the UART as a debug method.
Students will utilize this opportunity to brute force the debug authentication cre-
dentials, or to perform other styles of attack (such as dictionary attacks) against
the authentication prompt. Once authenticated, students will proceed to extract
secrets from the device, such as wireless network credentials. Lastly, students
will utilize the UART to communicate with the ESP32 Boot ROM code and

298 B. Pearson et al.

extract portions of the binary which reside in the on-board flash containing the
authentication credentials, modify them, and write them back to the on-board
flash utilizing the Boot ROM code.

UART defense lab. The UART has to be either disabled or protected through
a strong authentication mechanism in the final commercial product given that
attackers may exploit it to access sensitive data on the device. In this lab, stu-
dents will explore the option to secure the UART. In events where the UART
exposes sensitive device information, students will learn ways to securely authen-
ticate with the device to allow access such as timed “knocks”, and signed mes-
sages. Students will also investigate the option of adding cooldowns after failed
authentication attempts and study how it affects the security and usability of the
device. The second option is to disable the UART in production devices when it
is no longer needed, or to limit its functionality. Students will play with the
three eFuse values DISABLE DL ENCRYPT, DISABLE DL DECRYPT and
DISABLE DL CACHE, and study the impact. One thing to note is once UART
is disabled, it cannot be enabled again since the eFuse is physically burned.
Therefore, if the ESP32 will be reused, the UART defense lab cannot be truly
performed and students should only discuss the principle of disabling the UART
through setting the eFuses.

Flash ethical hacking lab. The ESP32 has multiple SPI channels, with chan-
nel 0 dedicated to mapping the external serial flash to memory, and channel 1
for performing writes to this flash. In this lab, students will be provided with a
binary by the instructor to be placed in their boards. Students will then probe
the SPI lanes and identify read transactions using a cheap signal analyzer such
as the Bus Pirate when the device is in operation, identifying the underlying
instruction stream being executed by the microcontroller. Students will then
interact with the device to allow it to fetch an encrypted secret from the exter-
nal flash memory. Students will then use the captured instruction stream to
decode the secret in order to further their interaction with the device. Students
will then use a secret of their own and encrypt it with the binary’s algorithm and
write it back to flash memory using a cheap programmer such as the aforemen-
tioned Bus Pirate. The lab shows the students why flash encryption is needed
to protect sensitive data stored in the flash.

3.2 Developing Teaching Modules on Secure Key Storage on ESP32

We first introduce the hardware based secure key storage and then discuss teach-
ing modules on secure key storage on ESP32. Secure key storage is part of
ESP32 features securing the system and flash firmware (including the applica-
tion/software) from unauthorized access. ESP32 uses FreeRTOS to manage the
hardware components and run a user task/application [4].

Secure Key Storage on ESP32. Simply encrypting the data will not guar-
antee that an IoT system is secure. We must also securely store the encryption
keys, so that only trusted systems can access it when needed, and even a soft-
ware malware that has hacked into the system cannot access the keys. That is,

Building a Low-Cost and State-of-the-Art IoT Security 299

secure key storage protects secret keys from being externally revealed or modi-
fied. The ESP32’s eFuse allows for secure key storage. Recall this eFuse contains
four 256-bit blocks. Block 0 is reserved for the MAC address, SPI configurations,
and related security settings. Blocks 1 and 2 are actually used for key storage —
block 1 stores the flash encryption key, while block 2 stores the secure boot key.
Both keys are 256 bits and generated using an internal Random Number Gen-
erator (RNG) hardware accelerated algorithm. Block 3 is undefined by default,
but a programmer may use it to store application-specific encryption keys.

Teaching Modules on Secure Key Storage. Secure key storage lab. In this
lab, students will learn how to utilize the secure key storage and understand
the importance of keeping the secret. ESP32 allows pre-generation of a flash
encryption key on a host computer, which can be used to burn this key into
its eFuse. This approach is recommended for the development phase. Students
will be required to use the given flash encryption key to decrypt encrypted data,
which may contain sensitive data such as WiFi credentials. However, when the
key is kept secret, secure key storage will not leak the key even if a malware gets
inside the device. Students will also learn how to enable the secure key storage
for the production phase.

3.3 Developing Teaching Modules on System/Firmware Security

We first introduce secure boot, which is part of ESP32 features securing the
system and flash firmware from unauthorized access. We then discuss teaching
modules on secure boot on ESP32.

Secure Boot on ESP32. ESP32 uses hardware-based secure key storage and
secures the booting of the firmware. Secure boot requires all components of
the firmware be signed and verified before executing [22]. If either the software
bootloader or the application firmware is modified, the device will refuse to boot.
Once properly configured, two keys are necessary to enable secure boot. The first
key is a 256-bit secure bootloader key and allows the ROM bootloader to validate
the software bootloader. The second key is the secure boot signing key, generated
with ECDSA with the NIST256p curve. The manufacturer will generate the
ECDSA keypair. The signing key is used to generate image signatures, so it must
be available to the manufacturer. The software bootloader and the application
are validated via a “chain of trust” model.

Teaching Module on Secure Boot. Secure boot lab. The lab has two parts,
attack and defense. As introduced above, if secure boot is not enabled, it is
possible that an attacker can change the binary code without being detected. In
the attack part of this lab, secure boot is not enabled on ESP32. Students will be
required to retrieve the binary code from the flash, reverse engineer the binary
code, and change the logic of the code. For example, students will be required

300 B. Pearson et al.

to change the binary of an air quality monitoring sensor and send fake data to
a server. Data integrity is critical for air quality monitoring since air pollution
may incur public outcry. In the defense part, students are required to enable
secure boot. Students will perform the attack again and observe if secure boot
can detect the change of the binary of the device. Secure boot is a critical part
of building a trustworthy IoT device.

3.4 Developing Teaching Modules on Data Security

Data Security on ESP32. ESP32 can encrypt the entire flash using a secure
AES-256 key. The AES key is stored in block 1 of the eFuse. Once written to the
eFuse, the read and write bits for the key are set to prevent anyone from read-
ing or modifying the key. When flash encryption is enabled, application-based
flash partitions, i.e., factory and over-the-air (OTA) partitions, are encrypted by
default. From there, decryption can only occur at runtime via the flash controller.
The flash controller is a hardware component that can perform the following
two runtime operations using the AES key: (i) Decryption of memory-mapped
read accesses to flash; and (ii) Encryption of memory-mapped write accesses to
flash. It is also possible to encrypt other flash partitions by manually setting
an “encrypt” flag for a partition. This requires generating a custom partition
table rather than using the default table (which only encrypts factory and OTA
partitions).

Teaching Modules on Data Security on ESP32. Data security lab. From
the flash ethical hacking lab or as instructed by the lecturer, students have
learned that attackers can read the content of the flash on a device from the
flash’s interface (such as SPI). In this lab, students will be guided to enable flash
encryption of ESP32 to defeat such flash attacks. Students will understand how
a system works with an encrypted flash seamlessly.

3.5 Developing Teaching Modules on Network Security on ESP32

We will first introduce ESP32’s security features for network security and then
discuss the teaching labs.

Network Security on ESP32. The challenge to implement TLS on an IoT
device is often the cost and efficiency of implementing the public key based
cryptographic functionalities. As discussed above, the hardware and cost may
no longer be the bottleneck. ESP32 has cryptographic hardware acceleration
for RSA and Random Number Generator (RNG). Our extensive experiments
show that the performance of TLS on ESP32 is satisfactory in various appli-
cation domains. ESP32 also has cryptographic hardware acceleration for AES
and SHA2 so that TLS can be fully implemented. AES encryption can be
implemented for communication secrecy and HMAC will achieve communica-
tion integrity.

Building a Low-Cost and State-of-the-Art IoT Security 301

Teaching Modules on Network Security on ESP32. We will develop two
teaching labs including network attack lab and network defense lab.

Network attack lab. In this lab, students will use mitmproxy [5] to per-
form traffic analysis of IoT networking traffic. Mitmproxy is a man-in-the-middle
proxy between an http(s) client and a server. It can intercept, modify, replay and
save http/s traffic. Students will use mitmproxy to decrypt https traffic between
a target IoT device and a server to understand its protocol. Students will set
up mitmproxy at a computer. Mitmproxy pretends to be the IoT device for the
server because the server normally does not check the identity of the IoT device.
Mitmproxy can pretend to be the server for the IoT device too. However, the
client normally checks the authenticity of the server by verifying the server’s cer-
tificate. In this case, the mitmproxy will behave as a fake certificate authority
(CA), generate a fake server certificate and send it to the client. Students will
have to replace the original CA’s certificate on the device with the fake CA’s
certificate so that the fake server certificate can be authenticated, the binary
code can run and the mitmproxy can observe the communicating traffic between
the server and client to figure out the communication protocol between them.

Network defense lab. Students are required to program and use SSL/TLS
with RSA acceleration to secure network connection to a MQTT server, either
Mosquitto or AWS IoT. Mutual authentication between the IoT device and the
server will be required. This requires the client have a private key stored locally.
Students will learn how to generate the public key pair with openssl or Amazon
AWS IoT. Students will understand the issue with the private key hardcoded
into the IoT application, given ESP32 does not provide secure key storage for
RSA private keys. That is, if a malware gets into the device through means such
as buffer overflow vulnerabilities, the malware may steal the private key and
then a fake device can be created to impersonate the original device. This shows
the necessity of both secure key storage and hardware acceleration of RSA.

3.6 Developing Teaching Modules on Secure Firmware Upgrade

We will first introduce ESP32’s security features for secure firmware upgrade,
i.e., secure Over-the-Air update (OTA), and then discuss the teaching labs.

3.7 Secure Over-the-Air Updates (OTA) on ESP32

OTA is a process in which the MCU fetches a new image from a remote location,
stores this image in the flash, and loads it on successive reboots. OTA updates
are seamless and transparent, and many devices can be updated concurrently.
The drawbacks are that wireless updates introduce additional attack vectors
that must be avoided. The ESP32 offers native library support for https OTA
updates. ESP32’s partition table includes OTA partitions, which store potential
firmware for the ESP32. The otadata partition points to the newer firmware.
Upon downloading a new update, the unused partition will be overridden, leaving
the current firmware untouched. If the update fails, the device will revert to the

302 B. Pearson et al.

previous application. If it succeeds, the system is updated to point to the correct
partition, and the system reboots to the new firmware.

Teaching Modules on Secure Over-the-Air Updates (OTA) on ESP32.
We will develop OTA attack lab and OTA defense lab.

OTA attack lab. Students are required to attack a device without secure OTA
firmware upgrade and change the firmware. There are two cases students will
experiment on. In the first case, the device does not employ secure firmware
upgrade and allows arbitrary firmware upgrade. Apparently, this allows the
attacker to change the whole system arbitrarily. In the second case, the secure
OTA is enabled, but it does not check the version number of the upgrade. There-
fore, an old firmware with vulnerabilities can be upgraded into the device.

Secure OTA lab. Students will experiment on two alternatives of upgrading.
In the first case, https will be used for secure OTA firmware upgrade. This
is convenient since the manufacturers may utilize this strategy to push a new
firmware into individual devices. In the second case, WiFi or Bluewooth of ESP32
will be used for secure firmware upgrade. This requires users to perform the
upgrade from their smart devices such as smartphone or computers. The users
first download the new firmware from the manufacturer and then perform the
secure firmware upgrade locally.

3.8 Developing Teaching Modules on Crypto Co-processor

ESP32 does not have ECC hardware acceleration and does not provide secure
key storage for its RSA hardware acceleration. It can cause problems when
a malware breaks into the system and steals the private key hardcoded in
the firmware. We will first introduce the very low-cost crypto coprocessor,
Microchip’s ATECC608A, which can address these issues, and then discuss the
teaching lab.

Microchip’s ATECC608A. Microchip’s ATECC608A is a cryptographic
coprocessor with secure hardware based key storage. It can store 16 keys, and
supports ECDSA, ECDH, SHA-256 & HMAC, AES-128 and other features.
Communicating with ATECC608A is performed through either a GPIO (general-
purpose input/output) pin or a standard Inter-Integrated Circuit (I2C) interface,
which is a widely supported serial protocol.

There are two reasons why we want to use a crypto coprocessor with ESP32.
First, an old MCU may not have modern support of secure boot, flash/file
encryption and hardware crypto acceleration. ATECC608A can be used to secure
those MCUs and other processors. ATECC608A can be used with ESP32 to
implement those features. Second, ESP32 does not have ECC hardware accelera-
tion while ATECC608A has. Therefore, the use of ATECC608A will boost ESP32
for its SSL/TLS implementation. Software implementation of ECC will hardcode
the ECC private key into the software. A malware that gets into the device will
be able to read it and use it to impersonate the device. With ATECC608A, the

Building a Low-Cost and State-of-the-Art IoT Security 303

ECC private key can be burned into ATECC608A’s hardware secure storage and
will never leave the chip. Even the malware will not be able to get it. It will be
also good for students to compare the performance of different implementations
of SSL/TLS with RSA and ECC.

Teaching Modules on Microchip ATECC608A. Mutual authentication
lab with ATECC608A: One weakness of ESP32 is it does not provide secure
key storage for the RSA private key used for SSL/TLS. Even if flash encryption
is used, malware that gets into the device will be able to read the private key.
In this lab, students are required to generate the ECC key pair and burn the
ECC private key into the ATECC608A chip. Since ATECC608A performs the
crypto operation inside the chip itself and the private key never leaves the chip,
a malware inside the device will not be able to read the private key. Students
will be required to connect the ATECC608A enabled device to a MQTT server
or AWS IoT through SSL/TLS.

3.9 Developing Case Studies

Case studies show how a theory or concept is applied to real situations. This
method requires critical thinking and analysis, allows students to synthesize
course contents, encourages active learning, provides an opportunity for devel-
opment of key skills such as communication, teamwork and problem solving, and
increases the students’ enjoyment of the topic and hence their desire to learn.

Attack Case: Vulnerabilities of Air Quality Monitoring Networks. We
will use the exploit of PurpleAir as a case study [14]. PurpleAir sensors are based
on an early version of ESP32 - ESP8266, which does not have security features
of ESP32. The measurements of air quality metrics such as PM2.5 are sent to
PurpleAir’s servers, which show the air quality measurements on Google Map.
We explored the system architecture and its communication protocols based
on traffic analysis using mitmproxy [14], which is an https proxy tool. We find
that the system adopts unencrypted communication and uses MAC addresses
to identify sensors in the sensor data sent to the servers. This practice allows
us to “pollute” sensor data by conducting a man-in-the-middle (MITM) attack
or by sending fabricated data along with a victim sensor’s MAC address to the
servers. The servers also allow us to check if a specific MAC address exists in
the system. This enables us to enumerate all valid MAC addresses of PurpleAir
sensors and potentially pollute data from every sensor deployed globally.

We plan to replicate the vulnerabilities of PurpleAir and implement such a
vulnerable system on ESP32. Students can play with the system and experiment
on man-in-the-middle attack, spoofing attack, device scanning attack, and other
ethical hack labs presented in this paper.

304 B. Pearson et al.

Defense Case: Secure Air Quality Monitoring Networks. In this case,
students will be required to design a secure air quality sensor and monitoring
network and evaluate the pros and cons of various secure measures.

Secure boot should be used to prevent the manipulation of the firmware of
the sensor. With secure boot, if the firmware is changed, the sensor will not boot.
Such a firmware is trustworthy to some extent. Flash encryption should be used
to protect sensitive data on the flash, including the WiFi credentials. Certificate
based mutual authentication with TLS should be used to defeat the MITM
attacks and protect the communication. The mutual authentication renders the
MITM attack invalid and the hash of the sensor’s public key can be adopted as
the device ID if needed.

Secure storage should be used to store the sensor’s private key so that the
adversary cannot obtain the private key. Students should realize that a per-
device private key is needed. Otherwise, if all devices use the same private key
and it is compromised, all these devices will be affected. The location of the
sensor can be obtained from either a GPS module on the sensor or WiFi local-
ization. A GPS module can be problematic since a dedicated adversary may
replace the GPS module with an artificial one. In addition, the GPS may not
work inside buildings. The WiFi localization may be more appropriate since the
trusted firmware will retrieve the WiFi information for the purpose of localiza-
tion. However, students should realize that attackers may deploy rogue access
points to mislead the WiFi localization strategy. The server may also validate
the reported location from the device via the IP location service [12], which finds
the geolocation of a sensor from the IP address of the sensor while the accuracy
of the IP location service is limited [2]. Secure firmware upgrade is needed in
case that vulnerabilities are found in the system.

4 Conclusion

In this paper, we propose to develop effective, engaging and novel teaching mate-
rials on IoT hardware security, operating system/firmware/software security, net-
work security, and data security with the low-cost IoT kit and IDE. Achieving the
proposed objectives will lead to an increased capacity in producing cybersecurity
professionals. This will be demonstrated by the outcomes in the following two
aspects. Curricula: (i) New IoT platforms for cybersecurity education, (ii) trans-
ferable modules that will be developed and incorporated into curricula at the
participating institutions, and (iii) increased IoT security components in inter-
disciplinary courses. Students: (i) Increased student interest in cybersecurity, (ii)
improved knowledge and skills in IoT security, (iii) increased exposure of minor-
ity students to IoT and cyber security, (iv) increased employment perspective
of students in cyber security, (v) increased number of students in IoT security
research, (vi) increased student publications, and (vii) increased collaboration
among students in the participating institutes.

Acknowledgements. This work was supported in part by NSF grants 1915780,
1931871, 1916175, 1802701 and 1643835. Mr. Jacob Crain is supported through the

Building a Low-Cost and State-of-the-Art IoT Security 305

REU Supplement of the NSF project (NSF 1802701). Any opinions, findings, con-
clusions, and recommendations in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

References

1. Arduino IDE. https://www.arduino.cc/en/Main/Software. Accessed Nov 2018
2. Center for applied Internet data analysis. Internet protocol address (IP) geoloca-

tion bibliography. http://www.caida.org/projects/cybersecurity/geolocation/bib/.
Accessed Nov 2018

3. Eclipse Mosquitto, an open source MQTT broker. https://mosquitto.org/.
Accessed Nov 2018

4. Hello world with ESP32 explained. https://exploreembedded.com/wiki/Hello
World with ESP32 Explained. Accessed Nov 2018

5. mitmproxy is a free and open source interactive https proxy. https://mitmproxy.
org/. Accessed Nov 2018

6. Open on-chip debugger. http://openocd.org/. Accessed Nov 2018
7. Readme for mbed tls. https://github.com/ARMmbed/mbedtls/tree/master.

Accessed Nov 2018
8. WolfSSL introduction. https://github.com/espressif/esp-wolfssl. Accessed Nov

2018
9. The secretary of commerce and the secretary of homeland security, a report to

the president on enhancing the resilience of the Internet and communications
ecosystem against botnets and other automated, distributed threats (January
2018). https://www.ntia.doc.gov/files/ntia/publications/eo 13800 botnet report
for public comment.pdf

10. Amazon Web Services Inc.: AWS IoT. https://aws.amazon.com/iot/. Accessed Nov
2018

11. Antonakakis, M., et al.: Understanding the Mirai botnet. In: Proceedings of the
26th USENIX Security Symposium (Security) (2017)

12. Brand Media, Inc.: Where is geolocation of an IP address? https://www.iplocation.
net/. Accessed Nov 2018

13. Columbus, L.: IoT market predicted to double by 2021, reaching $520b (August
2018). https://www.forbes.com/sites/louiscolumbus/2018/08/16/iot-market-pred
icted-to-double-by-2021-reaching-520b/

14. Cortesi, A., Hils, M., Kriechbaumer, T.: mitmproxy: A free and open source inter-
active https proxy. https://mitmproxy.org/. Accessed Nov 2018

15. Dhanjani, N.: Security evaluation of the philips hue personal wireless lighting
system (2013). http://www.dhanjani.com/docs/HackingLighbulbsHueDhanjani
202013.pdf

16. Espressif: Arduino core for ESP32 WiFi chip. https://github.com/espressif/
arduino-esp32. Accessed Nov 2018

17. Espressif: Build and flash with Eclipse IDE. https://dl.espressif.com/doc/esp-idf/
latest/get-started/eclipse-setup.html. Accessed Nov 2018

18. Espressif: ESP-IDF programming guide. https://docs.espressif.com/projects/esp-
idf/en/latest/. Accessed Nov 2018

19. Espressif: ESP-TLS. https://docs.espressif.com/projects/esp-idf/en/latest/api-
reference/protocols/esp tls.html. Accessed Nov 2018

20. Espressif: ESP32 overview. https://www.espressif.com/en/products/hardware/
esp32/overview. Accessed Nov 2018

https://www.arduino.cc/en/Main/Software
http://www.caida.org/projects/cybersecurity/geolocation/bib/
https://mosquitto.org/
https://exploreembedded.com/wiki/Hello_World_with_ESP32_Explained
https://exploreembedded.com/wiki/Hello_World_with_ESP32_Explained
https://mitmproxy.org/
https://mitmproxy.org/
http://openocd.org/
https://github.com/ARMmbed/mbedtls/tree/master
https://github.com/espressif/esp-wolfssl
https://www.ntia.doc.gov/files/ntia/publications/eo_13800_botnet_report_for_public_comment.pdf
https://www.ntia.doc.gov/files/ntia/publications/eo_13800_botnet_report_for_public_comment.pdf
https://aws.amazon.com/iot/
https://www.iplocation.net/
https://www.iplocation.net/
https://www.forbes.com/sites/louiscolumbus/2018/08/16/iot-market-predicted-to-double-by-2021-reaching-520b/
https://www.forbes.com/sites/louiscolumbus/2018/08/16/iot-market-predicted-to-double-by-2021-reaching-520b/
https://mitmproxy.org/
http://www.dhanjani.com/docs/Hacking Lighbulbs Hue Dhanjani202013.pdf
http://www.dhanjani.com/docs/Hacking Lighbulbs Hue Dhanjani202013.pdf
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://dl.espressif.com/doc/esp-idf/latest/get-started/eclipse-setup.html
https://dl.espressif.com/doc/esp-idf/latest/get-started/eclipse-setup.html
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_tls.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_tls.html
https://www.espressif.com/en/products/hardware/esp32/overview
https://www.espressif.com/en/products/hardware/esp32/overview

306 B. Pearson et al.

21. Espressif: JTAG debugging. https://docs.espressif.com/projects/esp-idf/en/
latest/api-guides/jtag-debugging/. Accessed Nov 2018

22. Espressif: Secure boot. https://docs.espressif.com/projects/esp-idf/en/latest/
security/secure-boot.html. Accessed Nov 2018

23. Jin, Y., Hernandez, G., Buentello, D.: Smart nest thermostat: a smart spy in your
home. In: Proceedings of the Black Hat USA (2014)

24. Ling, Z., Luo, J., Xu, Y., Gao, C., Wu, K., Fu, X.: Security vulnerabilities of
Internet of Things: a case study of the smart plug system. IEEE Internet Things
J (IoT-J) 4(6), 1899–1909 (2017)

25. Ling, Z., Liu, K., Xu, Y., Jin, Y., Fu, X.: An end-to-end view of IoT security and
privacy. In: Proceedings of the 60th IEEE Global Communications Conference
(Globecom) (December 2017)

26. Lohrke, H., Tajik, S., Boit, C., Seifert, J.-P.: No place to hide: contactless probing
of secret data on FPGAs. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016.
LNCS, vol. 9813, pp. 147–167. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53140-2 8

27. Lohrke, H., Tajik, S., Krachenfels, T., Boit, C., Seifert, J.P.: Key extraction using
thermal laser stimulation. Proc. IACR Trans. Cryptogr. Hardw. Embed. Syst. 3,
573–595 (2018)

28. Luo, L., Zhang, Y., Pearson, B., Ling, Z., Yu, H., Fu, X.: On the security and data
integrity of low-cost sensor networks for air quality monitoring. Sensors 18(12),
4451 (2018)

29. martinius96: ESP32-eduroam. https://github.com/martinius96/ESP32-Eduroam.
Accessed Nov 2018

30. Microchip Technology Inc.: ATECC608A. https://www.microchip.com/wwwprodu
cts/en/ATECC608A. Accessed Nov 2018

31. Molina, J.: Learn how to control every room at a luxury hotel remotely. In: Pro-
ceedings of DEFCON (2014)

32. Obermaier, J., Hutle, M.: Analyzing the security and privacy of cloud-based video
surveillance systems. In: Proceedings of the 2nd ACM International Workshop on
IoT Privacy, Trust, and Security (IoTPTS) (2016)

33. Park, J., Xu, X., Jin, Y., Forte, D., Tehranipoor, M.: Power-based side-channel
instruction-level disassembler. In: Proceedings of the 55th ACM/ESDA/IEEE
Design Automation Conference (DAC) (2018)

34. sylvainpelissier: JTAG debugging with bus pirate and OpenOCD (May 2014).
https://research.kudelskisecurity.com/2014/05/01/jtag-debugging-made-easy-
with-bus-pirate-and-openocd/

35. tedwood: Using eclipse with OpenOCD to build and debug ESP32 (Apr 2017).
https://www.esp32.com/viewtopic.php?t=336&start=10

36. Vasile, M.J., Niu, Z., Nassar, R., Zhang, W., Liu, S.: Focused ion beam milling:
depth control for three-dimensional microfabrication. J. Vac. Sci. Technol. B Micro-
electron. Nanometer Struct. Process. Meas. Phenom. 15(6), 2350–2354 (1997)

37. Williams, K.C., Williams, C.C.: Five key ingredients for improving student moti-
vation. Res. High. Educ. J. 18(12), 104–122 (2011)

https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/jtag-debugging/
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/jtag-debugging/
https://docs.espressif.com/projects/esp-idf/en/latest/security/secure-boot.html
https://docs.espressif.com/projects/esp-idf/en/latest/security/secure-boot.html
https://doi.org/10.1007/978-3-662-53140-2_8
https://doi.org/10.1007/978-3-662-53140-2_8
https://github.com/martinius96/ESP32-Eduroam
https://www.microchip.com/wwwproducts/en/ATECC608A
https://www.microchip.com/wwwproducts/en/ATECC608A
https://research.kudelskisecurity.com/2014/05/01/jtag-debugging-made-easy-with-bus-pirate-and-openocd/
https://research.kudelskisecurity.com/2014/05/01/jtag-debugging-made-easy-with-bus-pirate-and-openocd/
https://www.esp32.com/viewtopic.php?t=336&start=10

	Building a Low-Cost and State-of-the-Art IoT Security Hands-On Laboratory
	1 Introduction
	1.1 Need for Promoting Education in IoT Security
	1.2 Need for Low-Cost and High-Quality Hardware Platforms for IoT Security Education

	2 A Capable and Low-Cost IoT Laboratory
	2.1 Low-Cost IoT Development Kit and Laboratory
	2.2 Creating an Integrated Development Environment (IDE) for IoT Security Education

	3 Developing Teaching Labs for IoT Security
	3.1 Developing Teaching Modules on Hardware Security
	3.2 Developing Teaching Modules on Secure Key Storage on ESP32
	3.3 Developing Teaching Modules on System/Firmware Security
	3.4 Developing Teaching Modules on Data Security
	3.5 Developing Teaching Modules on Network Security on ESP32
	3.6 Developing Teaching Modules on Secure Firmware Upgrade
	3.7 Secure Over-the-Air Updates (OTA) on ESP32
	3.8 Developing Teaching Modules on Crypto Co-processor
	3.9 Developing Case Studies

	4 Conclusion
	References

