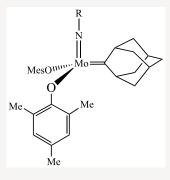
ORGANOMETALLICS

pubs.acs.org/Organometallics Article


Synthesis of Molybdenum Imido 2-Adamantylidene Complexes through $\boldsymbol{\alpha}$ Hydrogen Abstraction

Jordan W. Taylor, Richard R. Schrock,* and Charlene Tsay

ACCESS Metrics & More Article Recommendations * Supporting Information

ABSTRACT: Addition of 2-adamantyIMgBr in diethyl ether to Mo(NAr)₂(Cl)₂(DME) (Ar = 2,6-i-Pr₂C₆H₃) gave Mo(NAr)₂(2-Ad)₂ (2-Ad = 2-adamantyl, DME = 1,2-dimethoxyethane), from which Mo(NAr)(Adene)(OTf)₂(DME) (1, Adene = 2-adamantylidene) was prepared upon addition of triflic acid. Methods analogous to those that have been successful for synthesizing neopentylidene and neophylidene complexes were used to form Mo(NAr)(Adene)(OMes)₂ (2; Mes = 2,4,6-trimethylphenyl), [Mo(NAr)(Adene)(OC₆F₅)₂]₂ (3), Mo(NAr)(Adene)(OC₆F₅)₂(MeCN) (4), Mo(NAr)(Adene)(Cl)₂(bipy) (5; bipy = 2,2'bipyridine), Mo(NAr)(Adene)(Cl)(OHMT) (6; OHMT = 0-2,6-Mesityl₂C₆H₃), Mo(NAr)(Adene)(Cl)(OHMT)(t-BuCN) (6(t-BuCN)), and Mo(NAr)(Adene)(OHMT)(Pyr) (7; MO(NAr)(Adene)(Cl)₂(bipy) (8a), Mo(N-t-Bu)(Adene)(Cl)(OHMT)(THF) (8b), Mo(N-t-Bu)(Adene)(Cl)(OHMT)(t-BuCN) (8c), and Mo(N-t-Bu)(Adene)(OHMT)(Pyr)(THF) (8d). X-ray structural studies of 1-5, 6(t-BuCN), 7, 8a, 8c, and 8d suggest that one of the Adene β

protons is engaged in an agostic interaction with the metal when the electron count is less than 18. Preliminary olefin metathesis studies confirm that Adene complexes react with cyclooctene and 1-decene in the manner expected for high-oxidation-state Mo

alkylidene complexes.

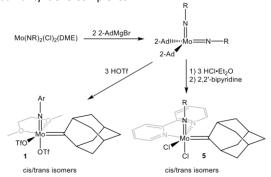
igh-oxidation-state alkylidene complexes have been synthesized largely through α hydrogen abstraction reactions in d⁰ transition metal complexes containing at least two alkyls that lack one or more β hydrogen atoms.¹ Neopentylidene or neophylidene complexes are most common. Some preferential abstractions of an α hydrogen instead of a β hydrogen in d⁰ alkyl complexes have been observed in some Ta triamidoamine compounds.² However, exclusively β proton abstractions take place instead of α abstractions outside the triamidoamine environment. d⁰ Alkylidenes that contain one or more β hydrogens are wellknown intermediates in olefin metathesis reactions initiated by

Mo and W complexes, 1,3 and no rearrangement of an alkylidene to an olefin through a β hydride process has been documented in high-oxidation-state alkylidene complexes.

Recently we showed that disubstituted d⁰ alkylidene (Mo = CMePh) complexes can be prepared in a reaction between CH₂DCMePh and Mo imido neopentylidene complexes. ⁴The question therefore arose as to whether some analogous disubstituted alkylidene could be prepared through a

selective α hydrogen abstraction reaction if the olefin formed through β hydrogen abstraction in that alkyl were highly disfavored. This process led us to consider preparing 2-adamantylidene 5 (Adene) complexes from 2-adamantyl (2-Ad) complexes as a consequence of the well-known resistance to formation of a CDC bond within an adamantyl cage. 6 Well-characterized 2adamantyl 7 and 2-adamantylidene 8 transition-metal complexes have been reported only relatively recently. What are proposed to be $Cr(2\text{-Ad})_4{}^9$ and $Fe(2\text{-Ad})_4{}^{10}$ have been reported, but their insolubility prevented their full characterization and confirmation.

A solution of 2-AdMgBr in diethyl ether was prepared from commercially available 2-AdZnBr and magnesium. After optimization of the literature procedures, 80–90% yields of 2-adamantylmagnesium bromide (2-AdMgBr) were obtained free of 2,2'-biadamantane and adamantane. Alkylation of Mo(NAr)2(Cl)2(DME) (Ar = 2,6-i-Pr2C6H3) with titrated solutions of 2-AdMgBr gave Mo(NAr)2(2-Ad)2 in 75% yield as a bright red-orange pentane-soluble solid, which upon addition of triflic acid in the presence of 1,2-dimethoxyethane gave Mo(NAr)(Adene)(OTf)2(DME) (1, Adene = 2-adamantylidene) in 71% yield as a yellow-orange solid (Scheme 1). Neopentylidene or neophylidene

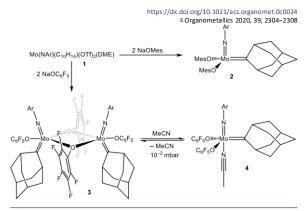

2304

bistriflate complexes are commonly prepared in this fashion. NMR spectra of 1 obtained at 22 °C revealed broadened resonances, but at -40 °C in CD₂Cl₂, resonances consistent with two isomers were present with an alkylidene resonance for the dominant isomer being observed at 365.6 ppm (Table 1); the alkylidene carbon

© 2020 American Chemical Society

Scheme 1. Syntheses of Bistriflate and Dichloride Mo Adamantylidene Complexes

R = tert-butyl, 2,6-diisopropylphenyl; Ar = 2,6-diisopropylphenyl


resonance for the second isomer was not detected in this spectrum.

The X-ray structure of 1 (see SI) revealed two crystallographically distinct molecules in the asymmetric unit that are essentially equivalent with slightly different Mo $\mathbb{Z}C_{\alpha}$ distances (1.944; 1.946 Å) and M- C_{α} - C_{β} angles (125.9° and 124.3° in one; 122.6° and 126.5° in the other). The imido and alkylidene ligands are cis to one another, as always observed in imido alkylidene complexes of this type, and the triflates are also cis to one another. The (small) difference between the two M- C_{α} - C_{β} angles in the adamantylidene is consistent with no agostic CH $_{\beta}$ interaction 11 in this 18 electron complex nor steric pressure that would result in a distortion of the alkylidene to give unequal M- C_{α} - C_{β} angles (see below).

Addition of two equivalents of NaOMes (Mes = 2,4,6trimethylphenyl) to 1 gave Mo(NAr)(Adene)(OMes)₂ (2) in 92% yield while addition of NaOC₆F₅ to 1 gave [Mo(NAr)(Adene)(OC₆F₅)₂]₂ (3) in 91% yield (Scheme 2). An X-ray structural study of 2 showed it to be a monomer (Figure 1), while 3 is a dimer (Figure 2) that contains bridging pentafluorophenoxides, as proposed for the analogous Mo½ CMePh complex.⁴ In 14e 2 and 16e 3, the two M-C_{α}-C_{β} angles differ by 26.2° and 20° (Table 1), consistent with an agostic CH_{β} interaction in each case. An agostic CH_{β} interaction alkylidene in related 14e and 16e M½CMePh complexes has been observed to give rise to Mo-C-C_{Me} and Mo-C-C_{Ph} angles in the alkylidene that differ by 30–36°.⁴ The smaller difference in the M-C_{α}-C_{β} angles in 2 and 3 Scheme 2. Syntheses of 2, 3, and 4 from 1

Received. April 10, 2020 Published: June 8, 2020

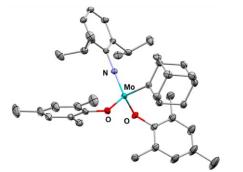


Figure 1. Thermal ellipsoid plot (50%) of 2. Unlabeled ellipsoids correspond to carbon. Solvent molecules and hydrogen atoms have been omitted for clarity.

suggests that the agostic interaction is weaker in an Adene than in a CMePh ligand.

Addition of acetonitrile to 3 gave $Mo(NAr)(Adene)(OC_6F_5)_2(MeCN)$ (4), an X-ray structural study of which showed it to be the expected five-coordinate monomer (Figure 3). Acetonitrile can be readily removed from 4 in vacuo (10^{-2} mbar) in the solid state.

The reaction between $Mo(NAr)_2(2-Ad)_2$ and 3 equiv of HCl followed by addition of 2,2'-bipyridine gave Mo(NAr)(Adene) (Cl)2(bipy) (5) in 82% yield. NMR studies at 22 °C were consistent with fluxional behavior on the NMR time scale, although cooling samples to -40 °C resolved resonances for two isomers with alkylidene resonances at 346.3 and 338.7 ppm. The X-ray structure of 5 (see SI for figure and details)

consisted of a single, cis-chloride isomer with minor differences in the $M-C_{\alpha}-C_{\beta}$ angles (Table 1), consistent with no significant agostic CH $_{\beta}$ interaction.

Compound 5 be can converted Mo(NAr)(Adene)(CI)(OHMT) (6; OHMT = 0-2.6-Mesityl₂C₆H₃), which can be isolated as a pivalonitrile adduct, Mo(NAr)(Adene)(Cl)(OHMT)(t-BuCN) (6(t-BuCN)), in 98% yield (Scheme 3). (A description of the structure of 6(t-BuCN) can be found in the SI.) Treatment of 6 with sodium pyrrolide led formation to

Table 1. Comparisons of Bond Lengths and Angles

	$MPC_{\alpha}(A)$		$M-C_{\alpha}-C_{\beta 1}$ (°)	$M-C_{\alpha}-C_{\beta 2}$	(°)	Δ (°)		δC_{α}
1 ^a	1.943(2)		125.9(1)		124.3(1	L)	1.6		365.6 ^{b,f}
2	1.885(2)	136.8(1)	110.6(1)	26.2	293.5				
3	1.88(1)	134(1)	114(1)	20	320.7 ^c				
4	1.907(1)	135.40(1)	112.25(9)	23.2	342.4 ^{d,f}				
5	1.995(2)	127.5(1)	122.0(1)	5.5	346.3 ^{b,f}				
6(t-BuCN) ^a	1.890(4)		132.9(3)		114.8(3	3)	18.1		343.1°
7	1.885(3)		136.4(2)		111.6(2)		24.8		318.4
8a ^a	1.947(5) 125.6(4	124.8(4)	0.8	336.2 ^e 8	c ^a 1.895(3)	133.4(2)	114.8(2)	18.6	336.0°

^aDistances and angles for one of two crystallographically distinct molecules in the asymmetric unit; − 40 °C in b CD₂Cl₂, c toluene-d₈; −20 °C in d CD₃CN, c CD₂Cl₂; f Major isomer in solution

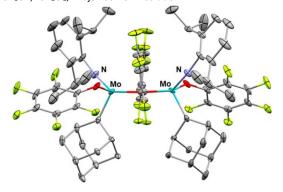


Figure 2. Thermal ellipsoid plot (30%) of 3. Unlabeled gray ellipsoids correspond to carbon, green to fluorine, and red to oxygen. Solvent molecules and hydrogen atoms have been omitted for clarity.

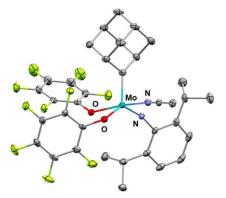


Figure 3. Thermal ellipsoid plot (30%) of 4. Unlabeled gray ellipsoids correspond to carbon and green to fluorine. Solvent molecules and hydrogen atoms have been omitted for clarity.

Mo(NAr)(Adene)(OHMT)(Pyr) (7), a structural study of which showed unequal M– C_{α} – C_{β} angles (Table 1) as found in the other complexes with formal electron counts <18e such as 2, 3, 4, and 6 (Figure 4).

Scheme 3. Syntheses of 6, 6(t-BuCN), and 7

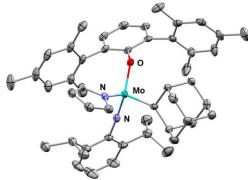


Figure 4. Thermal ellipsoid plot (30%) of 7. Unlabeled ellipsoids correspond to carbon atoms. Solvent molecules and hydrogen atoms have been omitted for clarity.

We were interested in extending imido 2-adamantylidene chemistry to complexes containing the less sterically demanding tert-butylimido ligand. Alkylation of Mo(N-tBu)₂(Cl)₂(DME) with 2-AdMgBr gave Mo(N-t-Bu)₂(2-Ad)₂, which was isolated in 91% yield as a yellow crystalline solid. Methods analogous to those just described for NAr complexes led to isolation Mo(N-t-Bu)(Adene)(Cl)₂(bipy) (8a) in 81% yield, Mo(N-t-Bu)(Adene)(Cl)(OHMT)(THF) (8b, 86% yield), Mo(N-t-Bu)(Adene)(Cl)(OHMT)(t-BuCN) (8c, 91% yield), and Mo(N-t-Bu)(Adene)(OHMT)(Pyr)(THF) (8d, 88% yield).

An X-ray structural study of 8a (see SI for details) showed the Adene ligand to be relatively undistorted (Table 1), while 8d (see SI and Figure 5) was found to have a structure

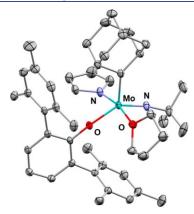


Figure 5. Thermal ellipsoid plot (50%) of 8d. Solvent molecules and hydrogen atoms have been omitted for clarity.

approximately halfway between a TBP and an SP core (τ^{12} = 0.44) and an alkylidene that is slightly distorted (Δ = 18.2°). A description of the structure of 8c can be found in the SI.

We have explored the baseline catalytic competence of Moadamantylidene complexes prepared here for the polymerization of cyclooctene and homocoupling of 1decene (see SI for details). ROMP of cyclooctene (~20 equiv) with Mo(NAr)(Adene)(Cl)(OHMT) (6) as the initiator in C₆D₆ was essentially complete on examination by proton NMR after 20 min, while ROMP of cyclooctene with Mo(NAr)(Adene)(Cl)(OHMT)(t-BuCN) (6(t-BuCN)) Mo(NAr)(Adene)(OHMT)(Pyr) (7) as initiators was complete within 2 h. ROMP experiments employing tert-butylimido Mo(N-t-Bu)(Adene)(CI)(OHMT)(THF) derivatives Mo(N-t-Bu)(Adene)(CI)(OHMT)(t-BuCN) (8c), and Mo(N-t-Bu)(Adene)(OHMT)(Pyr)(THF) (8d) were essentially complete on examination by proton NMR after 20 min with the exception of 8c, which required 2 h to go to completion. 1Decene (100 equiv) also was homocoupled by 8b, 8c, and 8d in uncapped vials (under N₂) to give a mixture of (E)- and (Z)-9-octadecene in >90% yields. The reactions initiated by 8b and 8d are fastest, being 97% and 93% complete in 20 min, respectively.

We conclude that high-oxidation-state Mo imido 2adamantylidene complexes are readily prepared through α hydrogen abstraction reactions analogous to those reported for the many neopentylidene and neophylidene complexes that have been prepared and studied 1 and that the method can be extended to t-butylimido complexes. All complexes that have <18e counts show a distorted 2-adamantylidene that is consistent with an agostic CH $_{\beta}$ interaction. Preliminary studies show that NAr 2-adamantylidene complexes are competent metathesis initiators for selected reactions. We look forward to more extensive synthetic, mechanistic, reactivity, and catalytic studies that involve 2-adamantylidene and other disubstituted alkylidene complexes.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.organomet.0c00244

Synthesis details and NMR data for all compounds and details of X-ray studies (PDF)

Accession Codes

CCDC 1994554–1994562 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Richard R. Schrock – Department of Chemistry, University of

California at Riverside, California 92521, United States; o orcid.org/0000-0001-5827-3552; Email: richard.schrock@ucr.edu

Authors

Jordan W. Taylor – Department of Chemistry, University of California at Riverside, California 92521, United States Charlene Tsay – Department of Chemistry, University of California at Riverside, California 92521, United States Complete contact information is available at:

https://pubs.acs.org/10.1021/acs.organomet.0c0024 4

Author Contributions

J.W.T. performed all synthetic work, while C.T. performed all X-ray structural studies.

Votes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the University of California at Riverside for financial support and to the National Science Foundation for providing funds toward purchase of an X-ray diffractometer (Grant CHE 1919677).

H44)(CI)(OHMT) 6

t-BuCN

REFERENCES

- (a) Schrock, R. R. Alkylidene Complexes of the Earlier Transition Metals. Braterman, P. R., Ed. Reactions of Coordinated Ligands; Plenum: New York, 1986; pp 221-283. (b) Schrock, R. R. High Oxidation State Multiple Metal-Carbon Bonds, Chem. Rev. 2002, 102, 145-180. (c) Schrock, R. R. Recent Advances in High Oxidation State Mo and W Imido Alkylidene Chemistry. Chem. Rev. 2009, 109, 3211-3226.
- (a) Freundlich, J. S.; Schrock, R. R.; Davis, W. M. Synthetic and Mechanistic Investigations of Trimethylsilyl-Substituted Triamidoamine Complexes of Tantalum that Contain Metal-Ligand Multiple Bonds. J. Am. Chem. Soc. 1996, 118, 3643-3655. (b) Freundlich, J. S.; Schrock, R. R.; Davis, W. M. Alkyl and Alkylidene Complexes of Tantalum that Contain a Triethylsilyl-Substituted Triamido-Amine Ligand. Organometallics 1996, 15, 2777-2783. (c) Freundlich, J.; Schrock, R. R.; Cummins, C. C.; Davis, W. M. Organometallic Complexes of Tantalum That Contain the Triamidoamine Ligand, [(Me₃SiNCH₂CH₂)₃N]₃-, Including an Ethylidene Complex Formed via a Phosphine-Catalyzed Rearrangement of an Ethylene Complex. J. Am. Chem. Soc. 1994, 116, 6476-6477.
- Schrock, R. R.; Hoveyda, A. H. Discovery and Development of Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient Olefin Metathesis Catalysts for use in Organic Synthesis. Angew. Chem., Int. Ed. 2003, 42, 4592-4633.
- Taylor, W.; Schrock, R. Tsay, C. Molybdenum R.; Disubstituted

Alkylidene Complexes.

Organometallics 2020. 39.658-661.

- Rojisha, V. C.; Nijesh, K.; De, S.; Parameswaran, P. Singlet 2adamantylidene - an ambiphilic foiled carbene stabilized by hyperconjugation. Chem. Commun. 2013, 49, 8465-8467.
- Fort, R. C.; Schleyer, P. V. R. Adamantane: Consequences of the Diamondoid Structure. Chem. Rev. 1964, 64, 277-300.
- (a) Armstrong, D.; Taullaj, F.; Singh, K.; Mirabi, F.; Lough. (7) A. J.; Fekl, U. Adamantyl metal complexes: new routes to adamantyl anions and new transmetallations. Dalton Trans. 2017, 46, 6212-6217. (b) Taullaj, F.; Armstrong, D.; Datta, S.; Lough, A. J.; Fekl, U. 2Adamantyl Complexes of Platinum. Eur. J. Inorg. Chem. 2019, 2019, 1288-1291.
- (a) Bauer, J.; Braunschweig, H.; Damme, A.; Carlos, J. O.; Jimenez-Halla; Kramer, T.; Radacki, K.; Shang, R.; Siedler, E.; Qing, Y. Metathesis Reactions of a Manganese Borylene Complex with Polar Heteroatom-Carbon Double Bonds: A Pathway to Previously Inaccessible Carbene Complexes. J. Am. Chem. Soc. 2013, 135, 8726-8734. (b) Wang, H.; Wan, Q.; Low, K.; Zhou, C.; Huang, J.; Zhang, J.; Che, C. Stable group 8 metal porphyrin mono- and bis(dialkylcarbene) complexes: synthesis, characterization, and catalytic activity. Chem. Sci. 2020, 11, 2243-2259.
- Bochmann, M.; Wilkinson, G.; Young, G. B. Preparation and Properties of 1-Adamantylmethyl and Adamantyl Complexes of Transition Metals. J. Chem. Soc., Dalton Trans. 1980, 1879-1887.
- Casitas, A.; Rees, J. A.; Goddard, R.; Bill, E.; DeBeer, S.; Fuerstner, A. Two Exceptional Homoleptic Iron(IV) Tetraalkyl Complexes. Angew. Chem., Int. Ed. 2017, 56, 10108-10113.
- (a) Brookhart, M.; Green, M. L. H. Carbon-HydrogenTransition Metal Bonds. J. Organomet. Chem. 1983, 250, 395-408. (b) Brookhart, M.; Green, M. L. H.; Parkin, G. Agostic interactions in transition metal compounds. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 6908-6914.
- Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. Synthesis, Structure, and Spectroscopic Properties of Copper(II) Compounds Containing Nitrogen-Sulfur Donor

Ligands: the Crystal and Molecular Structure of Agua[1,7-Bis(Nmethylbenzimidazol-2'-yl)-2,6-dithiaheptane]copper(II) Perchlorate. J. Chem. Soc., Dalton Trans. 1984, 1349-1356.