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Abstract—In this paper, we present NESTA, a specialized Neural
engine that significantly accelerates the computation of convolution
layers in a deep convolutional neural network, while reducing the
computational energy. NESTA reformats Convolutions into 3 x 3
batches and uses a hierarchy of Hamming Weight Compressors
to process each batch. Besides, when processing the convolution
across multiple channels, NESTA, rather than computing the
precise result of a convolution per channel, quickly computes
an approximation of its partial sum, and a residual value such
that if added to the approximate partial sum, generates the
accurate output. Then, instead of immediately adding the residual,
it uses (consumes) the residual when processing the next batch in
the hamming weight compressors with available capacity. This
mechanism shortens the critical path by avoiding the need to
propagate carry signals during each round of computation and
speeds up the convolution of each channel. In the last stage of
computation, when the partial sum of the last channel is computed,
NESTA terminates by adding the residual bits to the approximate
output to generate a correct result.

Convolutional Neural Network, DNN Accelerator, MAC

I. INTRODUCTION AND BACKGROUND

Deep learning models that deploy Convolutional Neural Net-
works (CNN) for feature extraction have become increasingly
popular in recent years [1]. The popularity of these learning
solutions stems from their ability to achieve unprecedented
accuracy, surpassing that of human’s ability, for various tasks
such as object and scene recognition [2], [3], [4], [5], [6], [7],
[8], object detection, and object localization[9], [10]. This, as il-
lustrated in Table I, is made possible by using deep and complex
neural networks expressed using specialized frameworks such
as Caffe [11], PyTorch [12] and Tensorflow [13], and trained
and executed in acceptable time by Graphical Processing Units
(GPU).

Although innovation in parallel computing has enabled us
to train and execute such complex models, the applicability
of such models remains limited due to their computational
and storage requirements. These state of the art CNNs require
up to hundreds of megabytes for a model and partial result
storage and 30k-600k operations per input pixel [14]. The high
computational complexity of these models, in turn, poses energy
(power) and throughput (delay) challenges to the underlying
hardware. Typically, in such learning solutions the majority
(over 90%) of computational complexity is for processing the
convolution (CONV) layers [15].

The generality of a processing engine significantly affects
the throughput and energy efficiency of neural processing
hardware[16][17]. The more general the hardware, the less ef-
ficient (in terms of delay and power) the computation becomes.
The least attractive solutions are generated by running CNNs
on general-purpose CPUs. Utilizing more specialized hardware
such as GPUs and FPGAs provide a significant improvement in
the efficiency of computation, while most efficient computing,
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TABLE I: Depth and complexity of some of the existing and
modern CNN solutions for object detection.

AlexNet[2] VGG[3] GoogLeNet[4]  Resnet[5]
Top5 Accuracy 80.2% 89.6% 89.9% 96.3%
layers 8 19 22 152
FLOPS 729M 19.6G 1.5G 11.3G
FLOPS in 3 x 3 CONV 118M 19.5G 1.18G 6.7G

with an order(s) of magnitude improvement in performance
and power consumption, is reported when specialized ASIC
accelerators such as Eyeriss[14], Diannao[18], Dadiannao[19],
or Shidiannao[20] are deployed. The major difference in the
performance of ASIC accelerator solutions, previously proposed
in [21], [22], [14], [18], [19], [20], [16], [17], [23], [24], is
on the type of data flow implemented for maximizing data
reuse (weight, partial sum, and activation value) and minimizing
memory access. This is when the neural Processing Elements
(PE), that implement the multiply-accumulate (MAC) function,
remain non-optimized in these accelerator solutions.

In this paper, we claim that the architecture of PEs in an
ASIC DNN accelerator could significantly improve when the
computational model, data locality, and data reuse concepts are
used to architect a DNN/CNN specific PE. We propose NESTA
as a PE that is designed based on these principles. To reduce
data movement, and minimize the generation of partial sums,
NESTA consumes 9 values of the convolution at a time (equal
to the size of a 3 x 3 convolution) until all filter-image pairs of
a convolution across all channels are consumed. To significantly
speed up the computation and reduce energy consumption,
NESTA does not use adders or multipliers. Instead, it converts
the convolution into a sequence of N compression and one
final addition. The add operation transforms the compressed
and accumulated result into a correct partial sum.
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Fig. 1: Computing one CONYV layer using inpt%t Ifmap/image
and filters to produce the output (Ofmaps)

II. NESTA: PROPOSED PROCESSING ENGINE

Before describing our proposed solution, we first explain the
concept of temporal carry in a miniaturized solution in section
II-A, then we explain the concept of compression and expansion
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the form of Dl

At B7 are the 1nput data in the i iteration (corresponding to the i’
h significant bits of inputs A, B, and partial sum at the 7*

and p!. are accordingly the m!

, the subscript (m) captures the bit position values, and postscript (z) capture the cycle (iteration). For example

h cycle) of the multlply accumulate operation. The b, al ,
h cycle (iteration). The division of CPA

into GEN and PCPA is also shown in this figure. Note that the PC'PA is only executed at the last cycle.

in section II-B. Finally, in section II-C, we use these concepts
to construct and describe our proposed solution.

A. Motivation 1: Temporal Carry

Suppose two vectors A and B each have N 8-bit values, and
the goal is to compute their dot product, _1(A *B;) (similar
to what is done during the activation process of each neuron in
a NN). This could be accomplished using a single Multiply-
Accumulate (MAC) unit and working on 2 inputs at a time for
N rounds. Fig. 2(A-right) shows the General view of a typical
MAC architecture that comprised of two parts multiplication
and addition. We have assumed that a Carry Propagation Adder
(CPA) is used as adder unit for reducing the MAC delay. More
detailed view of this architecture, 2(A-left), reveals that for
generating the final result, the CPA will be executed 2N times,
N times for producing the results of N multiplications and N
times for accumulating the result of multiplications. These CPAs
are located at the critical path of this architecture so eliminating
them lead to a performance gain. Fig. 2(A-right) captures how
CPA has been broken into GEN (which is highlighted in red),
and PCPA (Partial CPA).

Fig.2(B-right) shows a simplified version of our proposed
solution, NESTA-V1. As illustrated NESTA-V1, 1) intertwines
the multiplication and addition, and 2) reduces the delay of
CPA by only using the GEN section of the CPA. The GEN
section only produces the first level generate G, and propagate
Pl signals, after which NESTA-V1 feedback each Pt and G to
its compressor network for inclusion in the cycle computation.
We can consider this as the process of generating a temporal
carry signal, as opposed to a spatial carry signal which is used
in typical MACs. This is made possible, considering that we do
not need the output of individual multiplications, and our target
is to compute the correct vaz_ol (A;*B;). Hence, in NESTA-V1
for N-1 times, only the GEN section of CPA is executed, while
for the last iteration the complete CPA is executed (including
PCPA) to avoid generating further temporal carry bits.

B. Motivation 2: Compression and Expansion

Lets consider an application that requires hardware acceler-
ation for computing the following expression: p = Z _1 G4, in
which a;(s) are 16-bit unsigned numbers. One natural solution,
as illustrated in Fig. 3.(left), is using an adder-tree, while each
add operator could be implemented using a fast adder such as

carry-look-ahead [25] (CLA), Brent-Kung [26] (BK) or Kogge-
Stone [27] (KS) adder. Regardless of the choice of the adder,
the resulting adder tree is not the most efficient. The adder
power delay product (PDP) could significantly improve if a
multi-input adder is reconstructed using Hamming Weight (HW)
compressors. For this purpose, we reformulate the computation
of p as shown in Equation 1, by rearranging the values into
16 arrays, where each array is composed of 9 bits with equal
significance value. With this formulation, we can use a hierarchy
of Hamming Weight compressor to perform the addition.

p=>_> (2" & a)) ()

i=0 j=1

Fig. 3-(right) captures the structure of the proposed HW
compression Adder (HWC-Adder), which is composed of 4
stages. In each of the first 3 stages, the HW compressors
C(m:n) take a stack of m bit values of the same significance
(shown vertically) and computes its HW value (of size n) which
is expanded vertically. Aligning the bit values of the same
significance generates a smaller stack of bit values at each bit
position as input to the next level of compressors. We refer
to each of these stages (stages 1 to 3) as Compression and
Expansion Layer (CEL). In the last stage, every bit-column
contains no more than 2 bits. In this stage, a 2-input addition
generates the final results.

Table II compares the PPA and PDP of an adder tree
constructed using Brent-Kung and Kogge-Stone adders, and that
of HWC-Adder. As illustrated the energy consumption of the
HWC-Adder is 50.2% and 39.8% lower than that of the BK
and KS adder-trees respectively. At the same time, the delay
of HWC-Adder is 8.3% and 9.8% lower than that of the KS
and BK adder-trees respectively. The delay of HWC-Adder
architecture could be further improved, if instead of incomplete
C(9:4) HW compressors in the first CEL, we use complete
CC(7:3) compressors, passing the unconsumed bits (2 bits) to
the next hierarchy layer, in which the C(4:3) incomplete com-
pressors are converted to C(6:3). This transformation shortens
the critical path (reduces the number of logic levels) in stage
CEL-1 and reduces the area, without increasing the number of
logic levels in CEL-2, hence, producing a faster implementation.
The PDP of the resulting HWC-Adder* is captured in the table
II. The resulting improvements in the HWC-Adder(s) are the
result of 1) using larger HW compressors (as opposed to C(2:2)
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entries (left), Hamming Weight Adder (HW-Adder) of 9 16-bit-wide entries (right).

In the HWC-Adder compressor hierarchy (CEL) the complete compressors are colored blue, while compressors with available
capacity are white. For building the improved version of HWC-Adder (HWC-Adder*), 2 bits from each compressor in CEL-1
are differed to a compressor in the same bit position in CEL-2, increasing the number of complete compressors and reducing the

critical path delay in CEL-1 as reported in table II

TABLE 1II: Comparing the efficiency of HWC-Adder(s) vs
Adder tree constructed using Brent-Kung (BK) and Kogge-

Stone-(KS).
Xdder Type Area(um?) | Delay(ns) | Power(ulV) | PDP(fj)
Adder tree (BK) 4723 2.66 0.555 1.48
Adder tree (KS) 5135 2.60 0.686 1.78
HWC-Adder 4738 2.40 0.369 0.88
HWC-Adder* 4428 2.35 0.368 0.86

and C(3:2) in Brent-Kung), and 2) maximizing the number of
complete compressors, thus reducing the hardware deficiency.

C. NESTA: Our Proposed Solution

Our proposed solution, NESTA, is a specialized neural pro-
cessing engine designed for executing learning models in which
filter-weights, input-data, and applied biases are expressed in
fixed-point format. NESTA combines 9 multiplications and
9 additions into one batch-operation for gaining energy and
performance benefits. Let’s assume N EST A oc¢ is the current
accumulated value, while I and W represent the input values
and filter weights respectively. In its n** round of execution,

NESTA performs the following operation:
In+9

NESTAacc(n) = NESTAacc(n—1)+ > I; x Wi (2)
i=9n

To improve efficiency, NESTA does not use adders and
multipliers. Instead, it uses a sequence of hamming weight
compressions followed by a single add operation. Furthermore,
in each cycle ¢, after consuming 9 input-pairs (weight and
input), instead of computing the correct accumulated sum,
NESTA quickly computes an approximate partial sum s’ [c]
and a carry C|c] such that S[¢] = S'[¢] + C[c]. The S'[¢] is
the collection of generated bits (Gi7) and C'[c] is the collection
of propagated (P7) bits produced by GEN unit of CPA. Note
that the division of CPA into GEN and PCPA was described in
section II-A. The S [¢] is saved in the output registers, while
the C[c] are stored in Carry Buffer Unit (CBU) registers. In the
next cycle, both S'[¢] and C[c] are used as additional inputs
(along with 9 new inputs and weights) to the CEL unit. Saving
the carry (propagate) values (Ps) in CBU and using them in
the next iteration reflects the temporal carry concept that was
described in section II-A, while the reuse of S’ in the next
round implements the accumulation function of NESTA.

In the last cycle, when working on the last batch of inputs,
NESTA computes the correct S[c| by using the PCPA to con-
sume the remaining carry bits and by performing the complete

addition S[c] S'[¢] + C[¢]. Note that the add operation
generates a correct partial sum whenever executed. But, to avoid
the delay of the add operation, NESTA postpones it until the
last cycle. For example, when processing a 11 x 11 convolution
across 10 channels, to compute each value in Ofmap, 1210
(11 x 11 x 10) MAC operations are needed. To compute this
convolution, NESTA is used 135 times [1210/9], followed by
one single add operation at the end to generate the correct
output.

Fig. 4 captures the NESTA architecture. It is comprised of 6
units: 1) Data Reshaping Unit (DRU), 2) Sign Expansion Unit
(SEU), 3) Compression and Expansion Layers (CEL), 4) Adder
Unit (AU), 5) Carry Buffer Unit(CBU), and 6) Output Register
Unit(ORU). Each of these units is described next:

1) Data Reshape Unit (DRU): The DRU, as illustrated in
Fig. 4-(DRU), receives 9 pair of multiplicands and multipliers
(W and I), converts each multiplication to a sequence of
additions by ANDing each bit value of multiplier with the
multiplicand and shifting the resulting binary by the appropriate
amount, and returns bit-aligned version of the resulted partial
products.

2) Sign Extension Unit:(SEU): The SEU is responsible for
producing the sign bits SEj to SFE,. The inputs to SEU is sign
bit (X14). The result of a multiplying and adding 9, 8-bit values
is at most 20-bits. Hence, we need to sign-extend each one of
the 15-bit partial sums (for supporting larger the architecture is
accordingly modified). To support singed inputs, we also need
to slightly change the input data representation. For a partial
product p = a x b, if one values a or b is negative, we need to
make sure that the negative number is used as the multiplier and
the positive one as the multiplicand. With this arrangement, we
treat the generated partial sums as positive values and make a
correction for this assumption by adding the two’s complement
of the multiplicand during the last step of generating the partial
sum. This feature is built into the architecture using a simple 1-
bit sign detection unit, and by adding multiplexers to the output
of input registers to capture the sign bits. Note that multiplexers
are only needed for the last 5-bits as shown in figure 4-(SEU).
Following example clarify this concept: let’s suppose that a is
a positive and b is a negative b-bit binary. The multiplication
b X a can be reformulated as:
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are captured by CB registers. In the next cycle, the carry bits (of the previous cycle that are stored in CB registers) are fed to
the hamming weight compressors at that bit position, temporally deferring their impact to the next cycle. The compression unit,
in each cycle consumes the bit values from 9 new input (W, I) pairs, the Carry bits of the previous cycle (stored in CB registers)
and the partial sum stored in S registers. The consumption of bit values in S registers implement the accumulation function. In
the last round of computation, instead of capturing the carry bits in CB registers, they are fed to the PCPA (Partial CPA) to
propagate through the carry chain and generate the correct convolution results.

6 6
bxa=(-2"+ inZi) xa=—2"a+ (Z 2 xa (3)
i=0 i=0

The term —27a is the two’s complement of multiplicand
which is shifted to the left by 7 bits, and the term (Z?:o 7;2%) x
a is only accumulating shifted version of the multiplicand. Note
that some of the output bits generated by SEU compressor
extend beyond 20 required bits. These sign bits are safely
ignored. Finally, the multiplexers switch at the output of SEU
is used to allow NESTA to switch between signed and unsigned
modes of operation.

3) Compression and Expansion layers (CEL): The input to
ith bit of CEL unit in cycle n is the 1) bit-aligned partial
sums (at the output of DRU) in position i 2) the temporary
sum generated by GEN unit of NESTA at time ¢ — 1 at bit
position ¢, and 3) the Propagate (carry) value generated by
GEN unit of NESTA at time ¢ — 1 at bit position ¢ — 1.
Following the concept of HWC-Adder, described in section
II-B, the CEL is constructed using a network of Hamming
Weight Compressors (HWC). A HWC function Cgy(m:n) is
defined as the Hamming Weight (HW) of m input-bits (of the
same bit-significance value) which is represented by an n-bit
binary number, where n is related to m by: n = |logs* |+ 1. For
example 011010, 111000, and ”000111” could be the input
to a Cyyy(6:3), and all three inputs generate the same Hamming
weight value represented by ”011”. A Completed HWC function
CCpyhw (m:n) is defined as a C gy function, in which m is 2" —1
(e.g., CC(3:2) or CC(15:4)). As illustrated in Fig.4, each HWC

takes a column of m input bits (of the same significance value)
and generate its n-bit hamming weight. The resulting n bits is
then horizontally distributed as input to Cgyy(s) in the next-
layer CEL. This process is repeated until each column contains
no more than 2-bits.

4) Carry Propagation Adder Unit(CPAU): Similar to HWC-
Adder, described in section II-B, the CPA is divided into GEN
and PCPA. If NESTA is executed n times, the PCPA is skipped
n — 1 times and is only executed in the last iteration. GEN
is the first logic level of CPA executing the generate and
propagate functions to produce temporary sum/generate G and
carry/propagate P which are used as input in the next cycle.

5) Carry Buffer Unit (CBU): The CBU is a set of registers
that store the propagate/carry bits generated by GEN at each
cycle, and provide this value to CEL unit in the next cycle.
Note that CB bits can be injected to any of the Cyy (m : n) in
any of the CEL layers in that bit position. Hence, it is desired
to inject the CB bits to an incomplete C'yy(m : n) to avoid
an increase in the critical path delay of CEL.

6) Output Register Unit (ORU): The ORU capture the output
of GEN in the first n-1 cycles or PCPA in the last cycle of
operation. Hence, in the first n — 1 cycle, NESTA stores the
Generate (G) output of GEN unit and feeds this value back to
the CEL unit in the next cycle. In the last cycle, it stores the
sum generated by PCPA.

D. NESTA: Putting it all together

NESTA receives 9 pair of Ws and Is. The DRU generate the
partial products and bit-align them as input to the CEL unit. The
CEL unit at each round of computation consumes 1) bit values
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generated by DRU, 2) generate (temporary sum) values stored at
S registers, and 3) propagate (carry) bits in CB registers. This is
when the SEU assures that the sign bits are properly generated.
For the first n cycles, only the GEN unit of CPA is executed.
This allows NESTA to skip the delay of the carry chain of the
PCPA. To be efficient, the clock period of NESTA is reduced to
exclude the time needed for the execution of PCPA. The timing
paths in PCPA are defined as multi-cycle paths (2 cycle paths).
Hence, the execution of the last cycle of NESTA takes 2 cycles,
see Fig. 5. In the last round of execution, the PCPA unit is
activated, allowing the addition of stored values in S registers
and CB registers to take place for producing the correct and
final SUM. Considering that the number of channels in each
layer of modern CNNss is fairly large (128 to 512) the savings
in the result of shortening NESTA cycle time (by excluding
PCPA) accumulated over large number of cycles (of NESTA
execution) is far larger than one additional cycle needed at the
end to execute the PCPA for producing the correct final sum.

i it , GEN
RMU, DRU | CEL i
0 %
Cyclel
1 §os GEN PCPA
Ly} J »
RMU; DRU | CEL i
0
Cyclel fo Cycle2 2o

Fig. 5: NESTA cycle time is computed by excluding the
execution time of PCPA. In the last cycle of computation of
convolution, the NESTA activates the PCPA and captured the
correct sum after 2 cycles of execution.

E. Supported Data flows

A considerable portion of the power consumed in a neural
processing engine is related to storage, read and write from
its memory subsystem. The extent of power consumed in the
memory subsystem is a function of 1) the read/write/retention
power of each memory element, and 2) the frequency of access
to each memory. In several prior work [28], [29], [30], [31],
[32], it was shown that it is possible to significantly reduce
the read/write/retention power consumption of a memory unit
by aggressively scaling it supplied voltage while deploying
architectural fault tolerance techniques and solutions to mitigate
the increase in the memory write/read/retention failure rate. The
frequency of access to the memories, on the other hand, can not
be controlled from an architectural perspective as it is a dataflow
optimization problem.

Memory access pattern of a model which is being ex-
ecuted on a neural engine significantly impacts its energy
efficiency and performance. Accessing data in off-chip DRAM
consumes around 200X more energy and takes around 20X
longer compared to accessing data in on-chip SRAM memories
[14][33][34]. Hence, for a modern Deep Neural Network with
a large number of operations and parameters, designing a
dataflow that minimizes the access to off-chip DRAM and
maximizes the data reuse (while data is on-chip) can go a
long way in improving its energy efficiency and performance.
Related to neural processing engines, several dataflows has been
studied in the literature. The work in [14] divides the DNN
dataflows into 5 major categories: 1) No Local Reuse(NLR),
2) Weight Stationary(WS), 3) Input Stationary(IS), 4) Output

8A-3

Stationary(OS), and 5) Row Stationary(RS, RS+). These data
flows differ on the way they reuse input frame maps (Ifmaps),
partial sums (Psums), and filter weights. The NLR does not
have any reuse at the PE level and requires the largest number
of transaction with a global buffer. Diannao is an example of
NLR based accelerator described in [18]. The WS dataflow
stores the filter weights within the PEs. The goal is to mini-
mize the re-fetching of filter weights by limit their movement.
Examples of WS implementation include [35][36]. IS and OS
dataflows try to minimize the movement of Ifmaps and Psums
respectively, examples of which include [17][37][20]. The RS
dataflow combines the WS and the OS dataflows to achieve
greater efficiency. Eyeriss is an example of RS implementation
described in [14][38].

Another way to understand the differences between these
dataflows is through the study of the algorithm governing
the computation of the convolution in each data flow. Let us
consider the convolution in Fig. 1 with M filters (each with
size C' x R x R), repeated in a batch of B images with each
image being of size C' x H x H. To process this CONV, as
shown in Alg. 1, seven nested loops are required. Because each
one of the loops is independent of the others, changing the order
of each these loops can produce a new dataflow. Each dataflow
promotes a different form of data reuse. It should be noted that
it is possible that one permutation of these nested loops to be
applicable to more that one dataflow. For example in the Alg. 1,
execution line order 1-2-3-4-5-6-7-8, NLR, WS, and RS have
the same representation, however, depending on the underlying
NOC different data access patterns can be designed. Os and
IS dataflows also can be obtained if the execution’s line of the
seven loops changes to 1-2-4-5-3-6-7.

Algorithm 1 seven nested loops for calculating an Ofmap. B,
M, C, H, R are Batch-size, Number of Filters, Channel size,
Height/weight of an ifmap, and filter size respectively.

for (b =0;b < B;b++) do
for (u=0;u < M;u++) do
for (c=0;¢ < C;c++) do
for (h =0;h < H;h+ = 5) do
for (w =0;w < H;w+ = S) do
for (i =0;i < R;i++) do
for (j=0;5 < R;j++) do
ofmap[b][u][h][w] += ifmap[b][c][h+i][w+j]*
filter[u][c][i](j]

WRIIN R

NESTA could be used to implement any of these dataflows.
However, in this work (for lack of space), we only describe how
NESTA dataflow could be designed to model the RS dataflow
and will address the implementation of other dataflows for our
future work. Fig. 6 capture the RS dataflow used to compute
3 x 3 (right) and 5 x 5 (left) convolution across many channels.
To capture the data reuse and communications between NESTA
cores (assuming that many NESTA cores are packed into a SOC
to build a many-core accelerator), we have used three NESTASs
to construct each of scenarios illustrated in Fig. 6. Since NESTA
accept 9 inputs at a time, it can perform a 3 X 3 convolution
in one cycle, or a 5 x 5 convolution in 3 cycles. The data is
reshaped in the accelerator’s global buffer and is streamed to the
NESTA cores. Depending on the number of available NESTA
cores we can compute the value of different neurons in parallel
to promote higher data reuse. In this case we can either 1)
compute the neurons in different OFmaps by loading different
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Fig. 6: NESTA Row Stationary (RS) data flow for executing 3 x 3 convolution across multiple channels (right) and 5x 5 convolution
across multiple channels (left). A similar concept can be used to support all other convolutions sizes.

weights to each group of NESTA and share the ifmap weights
(not shown in this figure), or 2) compute the neuron values in
the same Ofmap by sharing the weights across different NESTA
cores and stream different (partially overlapping) ifmap values
to each group as shown in Fig. 6.

As described in section II-D, in its last round computa-
tions( when working on convolution across multiple channels),
NESTA switches to its two-cycle operation mode and activates
the PCPA that would take 2 cycles to generate the correct final
sum. Note that in deep channels, or for large convolutions, the
cost of one extra cycle is negligible compared to the gain of
removing the PCPA from the critical path in all computational
cycles.

III. RESULTS

In this section, we evaluate the NESTA in terms of Power,
Performance, and Area (PPA). NESTA and all MACs cited in
this section support 16-bit signed fixed-point inputs.

A. Evaluation and Comparison Framework

The PPA metrics are extracted from the post-layout simu-
lation of each design. Each MAC or MACY is designed in
VHDL, synthesized using Synopsis Design Compiler [39] using
32nm standard cell libraries, and is subjected to physical design
(targeting max frequency) by using the reference flow provided
by Synopsys and by using IC Compiler [40]. The area and
delay metrics are reported using Synopsys Primetime [41]. The
reported power is then averaged across 20K cycles of simulation
with random input data fed to PrimetimePX [41] in FSDB
format. To build a fair comparison, in addition to simple 2-
input MACs, we constructed multiple flavors of 9-input MACs
(MAC9s) using various high-speed adders and multipliers to
compute the convolution in one shot. The general structure of
MACs and MAC9s used for comparison is captured in Fig. 7.
Each MAC9 is constructed using 9 multipliers, the output of
which is fed to a 10-input adder tree (9 inputs from multiplier
and 1 from output register) to compute a 3 X 3 convolution in
one shot. For multiplication, we used Booth-Radix-N (BRx2,
BRx4, BRx8), and Wallace multipliers. For addition, we used
Brent-Kung (BK) and Kogge-Stone (KS) adders. In addition,
we considered a hybrid approach, where the multipliers are fed
to an HWC-Adder which was discussed in section II-B. Each
2-input MAC is identified by (Multiplier choice, Adder choice)
and each 9-input MACY is identified by (Multiplier Choice,
( Adder Arrangement, Adder Choice)). For example ( BRx2,
(tree, Brent-Kung)) is a MAC9 constructed by using 9 BRx2

multipliers followed by an adder tree constructed from Brent-
Kung Adders. Similarly, a (BRx2, (HWC-Adder, Brent-Kung))
uses the same multiplier, but replace the adder tree with an
HWC-Adder that uses a single Brent-Kung adder.

B. PPA efficiency: NESTA v.s. MACYs

Power: The power consumption of NESTA is considerably
less than other MAC9 flavors. When comparing NESTA with
various flavors of MACY, the power consumption is reduced
by 17.4% to 58.9% when compared to (BRX4, (HWA, BK))
and (BRX2, (Tree, KS)) representing the MAC9s with lowest
and highest power consumption, respectively.

Performance: In terms of delay, the delay of NESTA is
better than all other MAC9 flavors. For example, the delay of
NESTA is 23.7% and 11.3% better than (BRX2, (Tree, BK))
and (BRX4, (HWA, KS)) as the slowest and fastest MAC9s
in Fig. 11. However, the reduction in the delay comes with a
catch; When NESTA process the last batch of inputs of the
last channel, it has to take one extra cycle to perform the
final addition. Hence, energy efficiency becomes a function
of the number of processed input batches. This tradeoff is
illustrated in Fig.8. The larger the number of input channels,
the smaller the overhead of one extra cycle for the final
addition. As illustrated in Fig. 8, NESTA becomes more
efficient if the number of processed input batches is greater
than 64, 8, 2, 1 for kernel size 1x1, 3x3, 5x5, 11x11 respectively.

Area: Figure 11 captures the PPA comparison of NESTA
with various flavors of MACY9s. As illustrated, NESTA is
implemented in a smaller area. The area saving is between 6%
to 9% when NESTA is compared with (BRX4, (HWA, BK))
and (BRX2, (Tree, KS)), which are the smallest and largest
MACO9s, respectively.

PDP: Considering that NESTA has lower delay and power
consumption compared to other MAC9s, the PDP savings for
NESTA is even more significant. According to Fig. 11, NESTA
reduces the PDP by 30% to 67% when compared to (BRX4,
(HWA, BK)) and (BRX2, (Tree, KS)) that have the lowest and
highest PDP respectively.

C. PPA efficiency: NESTA v.s. MACs

Table III captures the PPA metrics of various 2-input MACs
and 9-input NESTA. Each single MAC has a smaller area,
power, and delay compared to NESTA, however, in terms of
functionally, one NESTA is equivalent to 9 MACs. Hence, For
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Fig. 7: A 9-input MAC, which is identified as (Multiplier Choice, Adder Choice). MACs constructed with similar structure are
used for PPA and PDP comparison with our proposed NESTA PE solution.
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a fair comparison between NESTA and selected MACs, we
compare their energy efficiency and throughput when fixing
the area. For this comparison, we assume a NN accelerator
assigns a fixed silicon area for instantiating 9-input NESTAs or
2-input MACs and report the improvement in throughput and
energy with this constraint. Table IV captures our comparison
results. As illustrated, NESTA in terms of throughput (delay of
processing normalized to the unit area) and energy efficiency
(processing a large number of convolutions) is substantially
more efficient than all MAC solutions studied. By using NESTA
as the PE solution in an accelerator, the throughput improves
between 1% to 37%, correspond to (Brx4, BK) and (BRx2, KS)
respectively, and energy efficiency improves 33% to 78% when

4.E408
4.E408
—3.E408
L5
o 3E08
Saeu08
LE408
LEw08
S.E407
0.E400

B MACI(BRX, (HWA,BK))
O NESTA
O MAC(BRx4, BK)

CONV1 CONV2 CONV3 CONV4 CONV5 FCO FC7 FC8
7.E408

6108 EMACY(BRx4, (HWA,KS))

DINESTA

E SEe08 EMAC(BRx4, KS)
F 408
& 3.E108
2.E408

1.E+08

0.E+00

CONV1 CONV2Z CONV3 CONV4 CONV5 FC6 FC7 FC8

Fig. 10: Breakdown of delay and energy consumption of each
layer of AlexNet [2] when processed by a Neural engine
composed of MACs, MAC9s or NESTA cores.

compared with NESTA-V1 and (BRx2, BK) which represent
the best and worst MACs in terms of energy efficiency.

TABLE III: PPA comparison between various MAC flavors and
NESTA-V1 and NESTA .

MAC Type Area(um2 ) | Power(uw) | Delay(ns) | PDP(f.J)
(BRx2, KS) 9394 0.612 3.57 2.24
(BRx2, BK) 9227 0.577 3.59 2.13
(BRx8, KS) 8123 0.523 3.5 1.88
(BRx8, BK) 7929 0.509 3.55 1.86
(WAL, KS) 7024 0.533 3.46 1.84
(WAL, BK) 7876 0.566 3.21 1.81
(BRx4, KS) 6899 0.480 3.10 1.48
(BRx4, BK) 6775 0.452 3.172 1.43
NESTA-V1 6825 0.442 2914 1.287
NESTA 49200 1.817 3.875 7.04

TABLE IV: Percentage improvement in Throughput(left) &
energy consumption(right) when using NESTA to process 1K

of different convolution size.

MAC Type [3X3[5X5[7X7 [11XI1
(BRx2, KS)| 37 | 37 | 37 | 37 65| 62|62 64
(BRx2, BK)| 36 | 36 | 36 36 78 | 76 | 76 77
(BRx8, KS)| 26 | 26 | 26 26 58 | 55| 54 57
(BRx8, BK)| 25 | 25 | 25 25 58 | 55| 54 56
(WAL, KS)| 13 | 13 | 13 | 13 57|54 |53 356
(WAL, BK)| 16 | 16 | 16 | 16 57 53|52 55
(BRx4, KS)| 1 1 1 1 47 | 43 | 42 45
(BRx4, BK)| 1 1 1 1 45 | 41 | 40 43
NETSA-V1| 30 | 30 | 30 30 39 | 34 | 33 37

D. NESTA for Efficient CNN Processing

In this section, we study the performance and energy con-
sumption of a Neural Processing solution that uses 9-input
NESTA, MACS9s, or 2-input MACs to process Alexnet[2] and
VGG[3]. In this paper, we only investigate the energy consumed
for the processing the information and would address the saving
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Fig.
The

(due to data reuse in NESTA) dataflow related power saving
in the future work. Fig. 9 and Fig. 10 capture the delay and
energy consumed for processing each layer (including CONVs
and FCs layers) of Alexnet [2] and VGG [3] respectively. This
is when the choice of processing engine is varied between
MACs, MAC9s and NESTA cores. In each figure, NESTA is
compared with the best choice of MAC or MACY for energy
or delay according to the results of section III-C and III-B. As
illustrated, MACO9 solutions are faster than MAC’s but consume
more power. However, NESTA outperforms both MAC9 and
MAC solutions in terms of both power and delay (and PDP)
when processing each layer of AlexNet or VGG.
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V. CONCLUSION

In this paper, we introduced NESTA, a novel processing en-
gine for efficient processing of Convolutional Neural Networks.
NESTA benefits from 1) its ability to generate temporal carry
bits that could be passed to be included in the next round of
computation without affecting the overall results, and 2) the
utilization of a hierarchy of compressors to efficiently compute 9
multiplication and additions at the same time. When computing
the convolution across multiple channels and/or larger convolu-
tion window sizes, NESTA generates an approximate sum (S”)
and a temporal carry (P) in each cycle. In the last cycle, when
processing the last convolution, NESTA takes an additional
cycle and add the remaining carriers to the approximate sum to
generate the correct output. Our post-layout simulation results
report 30% to 67% reduction in power delay product (PDP)
when NESTA is compared with various flavors of 9-input MAC
units, and 33% to 78% reduction in PDP when compared
with Neural processing engines constructed from various MAC
flavors.
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