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ICNN: The Iterative Convolutional Neural Network
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Modern and recent architectures of vision-based Convolutional Neural Networks (CNN) have improved de-

tection and prediction accuracy significantly. However, these algorithms are extremely computationally in-

tensive. To break the power and performance wall of CNN computation, we reformulate the CNN compu-

tation into an iterative process, where each iteration processes a sub-sample of input features with smaller

network and ingests additional features to improve the prediction accuracy. Each smaller network could ei-

ther classify based on its input set or feed computed and extracted features to the next network to enhance the

accuracy. The proposed approach allows early-termination upon reaching acceptable confidence. Moreover,

each iteration provides a contextual awareness that allows an intelligent resource allocation and optimiza-

tion for the proceeding iterations. In this article, we propose various policies to reduce the computational

complexity of CNN through the proposed iterative approach. We illustrate how the proposed policies con-

struct a dynamic architecture suitable for a wide range of applications with varied accuracy requirements,

resources, and time-budget, without further need for network re-training. Furthermore, we carry out a visu-

alization of the detected features in each iteration through deconvolution network to gain more insight into

the successive traversal of the ICNN.
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1 INTRODUCTION

The rapid advancement of computing technologies, innovation in parallel processing, develop-

ment of learning-model oriented languages, and the availability of large data sets has given new

momentum to research and innovation in the field of machine learning in the past decade. Ma-

chine learning solutions are becoming prevalent and have found their ways into many domains

and applications from social media services [1], health and wellness solutions [2–4], security and

privacy [5–7], predictive and scheduling solutions [8–10], to computer vision tasks such as voice

recognition [11], text recognition [12], object detection and image classification [13–15], and object

localization[16].
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Fig. 1. Reformulating the CNN into an iterative solution.

The state of the art machine learning solutions for object detection has gained a significant boost

in their prediction accuracy. This is credited to the recent developments in the design of deep and

modern Convolutional Neural Networks (CNN), and processing power provided by Graphical Pro-

cessing Units (GPU) for training them. However, many Neural Network algorithms and CNN as a

part of this family, due to their deep networks and dense connectivity, are computationally inten-

sive. For example, AlexNet [14], a CNN architecture that won the 2012 ImageNet visual recognition

challenge, contains 650K neurons and 60M parameters, which demand computational performance

in the order of 0.8G–1.0G Floating Point Operations (FLOP)s per classification. Next generations

of vision-based CNN algorithms have further improved the prediction accuracy; however, this is

achieved via even deeper networks. VGG [15], GoogleNet [17], and ResNet [18] have improved the

prediction accuracy by increasing the FLOPs to 20G, 1.5G, and 11G, respectively, while keeping

the CNN a computationally intensive and power-hungry solution.

Albeit higher performance requirements, there is a need to aggressively reduce the power con-

sumption of these solutions as many desired platforms for vision-based applications are energy-

constrained [19, 20]. Adopting complex vision algorithms in many of mobile and hand-held, em-

bedded systems and IoT applications will not be feasible if energy consumption barrier is not

addressed. At the same time, many of the desired applications require real-time and short-latency

responses. Therefore, the optimization space involves Accuracy, Latency, Power and Area (ALPA).

With this in mind, in Reference [21], we propose a radically different approach from modern

and deep CNN models; we reformulate the learning from a single feed-forward network to a series

of smaller networks that are executed iteratively.

Figure 1 illustrates a high-level abstraction of the proposed iterative CNN (ICNN). With iterative

learning, each iteration processes a small set of sub-sampled input features and enhances the accu-

racy of the classification. The proposed ICNN model removes the need for a large neural network

and constructs a learning model based on iterative execution of substantially smaller networks.

In each iteration, by combining the processing results of the previous iteration with new features

extracted from the sub-sampled input image, ICNNs classification accuracy is refined.

2 BACKGROUND

CNNs are constructed from multiple computational layers formed as Directed Acyclic Graph

(DAG) [22, 23]. Each layer extracts an abstraction of data from the previous layer, called a fea-

ture map (fmap). Most common layers are Pooling (POOL), Convolution (CONV), and Fully Con-

nected (FC). In CONV layers, as illustrated in Figure 2, two-dimensional filters slide over the input

images/feature-maps (Ifmaps) performing convolution operation to extract feature characteristics

from local regions and generating output images/feature-maps (Ofmaps). Computation of CONV

layer in popular CNNs accounts for more than 90% of the overall operations and requires a large

amount of data movement and memory operations [24]. The large size of Ifmaps, Ofmaps and par-

tial results generated during the CONV processing increases the memory requirements for these

architectures. After CONV layers, a non-linear operation is applied to each Ofmap pixel to intro-

duce non-linearity in the network. An example of such a non-linear operator is the Rectified Linear
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Fig. 2. Computing one CONV layer using input Ifmap/image and filters to produce the output (Ofmaps).

Unit (ReLU) that replaces all negative pixel values by zero. Other non-linear functions include Tanh

and Sigmoid operators.

POOL layers perform down-sampling along the spatial dimensions of Ifmaps by partitioning

them into a set of sub-regions and combining the values in each sub-region into a single value.

Max-pooling and Average-pooling are examples of POOL operators that use the maximum and the

average values for each sub-region, respectively. The outputs from the CONV and POOL layers

represent high-level features of the input image. Each CNN includes multiple CONV, non-linear

and POOL layers with their outputs fed to FC layers. FC layers combine all the neurons in the

previous layer and connect them to every single neuron in the next layer. FC layers fuse the features

extracted in the CONV layers to generate a relational representation of these features for each

class in the classifier detection set. In the last layer, a Softmax classifier uses the outputs of the

last FC layer to produce normalized class probabilities for various classes. Softmax classifier is a

multi-class version of the binary logistic regression classifier, which produces un-normalized log

probabilities for each class using cross-entropy loss.

3 RELATED WORK

In this section, the detection accuracy of CNN architectures that have competed in the ImageNet

Large-Scale Visual Recognition Challenge (ILSVRC) in recent years is discussed. The ILSVRC [25]

is an object detection competition for classification of images into 1,000 different classes by training

on 1.2 million labeled images. AlexNet architecture, which consists of five convolutional layers and

3 fully connected layers, achieves a top-5 accuracy of 80.2% on ImageNet. VGG [15] advocates the

idea that going deeper with CNNs increases accuracy [26]. It is proven that the effective receptive

fields of 2 and 3 back-to-back 3 × 3 CONV layers are equivalent to the receptive field of 5 × 5 and

7 × 7 CONV layers, respectively. With this idea, VGG-16 achieves a top-5 accuracy of 92.5% by

stacking 13 3 × 3 CONV layers, and 3 FC layers.

Considering the huge variation in the location and size of the networks, the selection of the size

of kernels is tricky in large networks. For objects distributed more globally a larger kernel size is

more desirable, whereas smaller kernels are better suited for objects that are locally distributed.

GoogLeNet’s solution to this problem is to make the network wider using the inception layer. In

inception layer, pooling layers and multiple convolutional layers with different kernel sizes process

the same input. All the outputs are then concatenated allowing the model to take advantage of

multi-level feature extraction from each input. For instance, it extracts global (3 × 3 and 5 × 5)

and local (1 × 1) features at the same time. With 22 weight layers, GoogLeNet (aka. Inception v1)

achieves a top-5 accuracy of 93.3% and wins ILSVRC 2014. Inception v2 and Inception v3 were

proposed in Reference [27], where 7 × 7 and 5 × 5 kernels were factorized to smaller kernels (3 × 3
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kernels) and n × n kernels were replaced by 1 × n and n × 1 kernels to reduce the computational

load.

Finally, Microsoft ResNet [18] uses residual blocks in which, each input goes through a series

of CONV-ReLu-CONV layers before being added to itself. The formulation of residual blocks is

realized through shortcut connections [28, 29], which allows features to skip one or more CONV

layer and be combined with other features at a later stage in the network. The authors show that

these residual networks are easier to optimize and they benefit from increased depth. With 152

layers, ResNet wins the ILSVRC 2015 with a top-5 accuracy of 96.4%.

The number of layers and the complexity of the CNNs in terms of FLOP count has dramatically

increased over time to enhance their classification accuracy (see Table 2). In the literature, vari-

ous optimization approaches have been proposed to reduce the computational complexity and to

enhance the energy-efficiency of the CNN architectures [30–32], including Tensor decomposition

and low-rank optimization [33, 34], parameter compression and exploitation of sparsity [35], bina-

rized neural networks [36–41], and precision reduction of weights and/or neurons by fixed-point

tuning and quantization [42–46]. In addition to changes in the model, researchers have also in-

vestigated the means of enhancing the energy-efficiency of these applications by designing new

ASIC or FPGA solutions [47–53]. All these approaches are orthogonal to the proposed ICNN, which

modifies the structure of the network and could be applied to ICNN as well.

Other works have focused on deploying a dynamically configured structure that allows the com-

plexity of CNN to be adjusted in the run-time. In Reference [54] a dynamic approach is proposed

that breaks the CNN into partial networks and the number of active channels per layer is adjusted

based on classification confidence of partial networks. This allows CNN to be partially or fully

deployed. While Reference [54] reduces the computational of classification, the memory footprint

required to keep all the intermediate features in case of non-satisfactory confidence results from

partial networks is quite large. In ICNN, this is addressed by keeping the feature-maps of only the

last CONV layer.

In Reference [55], a Conditional Deep-learning Network (CDLN) is proposed in which, FC lay-

ers are added to the intermediate layers to produce early classification results. CDLN starts with

the first layer and monitors the confidence to decide whether a sample can be classified early,

skipping the computation in the proceeding layers. While CDLN only uses FC layers at each exit

point, BranchyNet [56] uses additional CONV layers at each exit point (branch) to enhance the

performance.

While ICNN is most closely comparable to References [55] and [56], it significantly improves

the computational complexity of the solution and provides a far more flexible and much richer

set of features for trading off the accuracy vs computational complexity vs energy consumption

vs classification time. While both References [56] and [54] allow dynamic adjustment of the CNN

for various images through incremental networks, ICNN uses its contextual awareness from early

iterations to provide hints to the next iterations for computational pruning. Moreover, unlike Ref-

erences [54, 56] ICNN, processes sub-sample of the images with reduced dimensions, which signifi-

cantly reduces the computation load and required memory footprint. Regarding memory footprint,

ICNN only saves the features extracted in the last CONV layer of the previous iterations, resulting

in a much smaller memory footprint.

In addition, while the architectures in References [56], and [54] are proposed for up-to four

iterations, ICNN shows promising results for up to seven iterations allowing a more flexible

termination policy. The architectures in References [54] and [56] are trained on much for 10-class

datasets (i.e., MNIST [57], CIFAR-10) and their scalability when the number of classes increases

is questionable, while ICNN is trained on the entire ILSVRC dataset for 1,000 classes. ICNN,

along with References [55] and [56] behaves perfectly and shows negligible degradation in the
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classification accuracy for a small number of classes. However, achieving acceptable accuracy

when the number of classes increases is quite challenging.

A major contribution of the ICNN is the training of multiple networks. GoogLeNet is another

massively adopted CNN architecture that trains auxiliary classifiers. GoogLeNet adds auxiliary

classifiers to the intermediate layers only in the training phase. During training, the weighted loss

of the auxiliary networks is added to the total loss of the network. This allows the classifier to

combat the vanishing gradient problem associated with the training of neural networks [58] while

providing regularization. In the inference phase, the auxiliary networks are removed. Moreover,

the effect of the auxiliary network is reported to be minor (0.5%). The basic contribution of the In-

ception architecture is the increase in the accuracy due to multi-level feature extraction. However,

during the inference phase with inception architecture, each classification requires the whole im-

ages to go through all the layers of the network. ICNN, however, trains multiple smaller networks

during the training phase and deploys these networks in the inference phase. During the inference

phase the network processes only a DWT sub-sample of the image with each uCNN. As a result,

the network could be tuned at the run-time to meet the timing and confidence requirements of the

applications. A large number of images produce high confidence classification results with the first

few uCNNs, which precludes the need to process the whole image. In fact, the proposed approach

is also applicable to GoogLeNet, VGGNet, and other networks.

4 ITERATIVE LEARNING

State of the art DAG-based CNN networks are composed of a single feed-forward computational

network, where the prediction is given and its confidence is determined after performing all nec-

essary computations. Our proposed reformulation is driven by the needs of resource-constrained

vision applications for reducing energy consumption and the classification latency when deploy-

ing CNN solutions. In the proposed solution, a large CNN block is decomposed into many smaller

networks (uCNN in Figure 1), allowing iterative refinement and greater control over the execution

of the algorithm. Thus, not all images pass through all the uCNNs; by monitoring the successive

execution of uCNN networks, a thresholding mechanism decides when to terminate the forward

uCNN traversal based on the current classification confidence of the images [59]. In addition, the

ability to change the required confidence threshold from classification to classification, allows the

system to trade off the accuracy of prediction versus energy consumed per iteration.

Using ICNN requires a methodology for sub-sampling the input image for the use of each it-

eration. Preferably, each sub-sample is obtained using a different sampling method to push each

smaller network (uCNN) to learn new features that are not extracted in the previous iterations.

For this reason, we propose the application of Discrete Wavelet sampling to decompose an input

image into various input sets (sub-bands). The classification is then initiated by digesting the first

sub-sampled as input in the first iteration. Upon completion of the first computational round (first

uCNN), the classification confidence is tested. If the confidence is unsatisfactory, then it could

be progressively increased by working on additional input samples (chosen from remaining sub-

bands). Discrete Wavelet Transformation (DWT) provides the proposed learning algorithm with

an attractive start point, because, in addition to frequency information, it also preserves temporal

information of an image [60]. However, note that other sampling mechanisms could also be used

for ICNN.

The DWT of an image is calculated by passing it through a series of high and low pass filters.

Consider h[n] as the impulse response of the high pass filter, and д[n] as the impulse response

of low pass filter, and each row of the image as a signal x[n]. To obtain the first order DWT

transform of the image, for each row of the image, the low and high filters are first convolved with

the image values in each row. Note that since half the frequencies of the signal (row of pixels) are
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Fig. 3. (a) DWT filter structure, (b) sub-bands generated from a two-level two-dimensional Haar Discrete

Wavelet Transformation (DWT) of an input image.

removed by each filter, the low pass and high pass filter sub-sample the input signal by half the

frequency:

ylow [n] = (x ∗ д)[n] =

W idth∑
n=0

x[k]д[2n − k], (1)

yhiдh[n] = (x ∗ h)[n] =

Heiдht∑
n=0

x[k]h[2n − k]. (2)

As illustrated in Figure 3(a), application of the DWT to each row results in two sub-sampled

images. Each image has the same height as the original image, but half the width. By placing these

two images next to one another, the resulting image is equal to the size of the original image. The

same sampling mechanism could now be applied in a vertical direction, considering each column

of pixel values as discrete signal x. This results in four sub-bands. Each sub-band is a sub-sample of

the original input obtained using a different filtering mechanism. If more sub-samples are required,

then we could apply the DWT to any of the sub-bands hierarchically. In this article, we have used

seven iterations. Hence, we have applied a second transformation to the LL sub-band to generate

four level-2 sub-bands. Figure 3(b) shows the two resulting sub-bands by applying two-level DWT

to a dog image.

A high-level representation of envisioned ICNN fed by DWT is illustrated in Figure 4. Each

iteration is a uCNN, which processes a new DWT sub-band and refines the confidence of learning

network. DWT, being a convolutional filter, could be readily computed using processing elements

(PE) in CNN processing engine of interest, or could be provided directly to each uCNN.

Figure 5 shows the decomposition of the ith uCNN, while Table 1 captures the configuration of

each uCNN. The Concat layer in Figure 5 fuses the Ofmaps of the last CONV layer in the current

iteration with the Ofmaps of the last CONV layers from previous iterations. Note that the number

of Ofmaps, which are processed at any given CONV layer in each uCNN is considerably smaller

than that of original AlexNet (see Table 1). Hence, the computational complexity of each uCNN is

considerably smaller than that of AlexNet.

5 IMPLEMENTATION FRAMEWORK

An iterative version of AlexNet was designed to build a 1,000-class image classifier for the Ima-

geNet dataset. The Iterative AlexNet was implemented in Caffe [61], a deep-learning framework

developed by Berkeley AI Research (BAIR). Following the methodology in Reference [17] to solve

the over-fitting problem, the training set was augmented by reshaping images to 3 × 256 × 256 and
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Fig. 4. Iterative CNN (ICNN) general architecture where each uCNN is fed by features extracted from its

previous uCNN and a DW sub-band generated from DWT transformation of the input image.

Fig. 5. The architecture of the ith uCNN for the iterative AlexNet.

Table 1. The Configuration (Number of Output Channels)

of the Iterative AlexNet

iter i1 i2 i3 i4 i5 i6 i7

CONV1 24 24 24 24 24 24 24

CONV2 64 64 64 64 64 64 64

CONV3 96 96 96 96 96 96 96

CONV4 48 48 48 48 48 48 48

CONV5 32 32 32 32 32 32 32

FC6 1,024 1,024 1,024 1,024 2,048 2,048 4,096

FC7 1,024 1,024 1,024 1,024 2,048 2,048 4,096

FC8 1,000 1,000 1,000 1,000 1,000 1,000 1,000

extracting 3 × 228 × 228 crops from each image (resulting in 784 crops). Moreover, the horizontal

mirror of each crop was added to the dataset.

To prepare the sub-band for the ICNN, a two-level two-dimensional DWT was captured through

the Haar filter [62] for each channel (i.e., R, G, and B) of the images. The resulting sub-bands are

four RGB images of size 3 × 57 × 57 in smaller sub-bands (corresponding to LL-LL, LL-LH, LL-HL,

LL-HH), and three RGB images of 3 × 114 × 114 in larger sub-bands (corresponding to HL, LH and

HH). The seven resulting sub-bands allows sampling of the input image by 7×, and as a result

building the ICNN with seven iterations. To increase the number of iterations, the DWT depth can

be increased or alternatively, DWT can be applied to the other sub-bands (LH, HL, HH).

For training the ICNN, we initialize the weights from a Gaussian distribution with zero mean and

a standard deviation of 0.01. We start each training step with a learning rate of 0.01. The learning

rate was reduced by 2× every 20-epoch until the learning rate was as low as 10−6. By one-epoch,
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we refer to one pass of all the 1.2 million images in ImageNet; however, for data augmentation

purposes, every few epochs, the order of the images was modified, the image crops were altered

and horizontal mirrors of the images were utilized. To train the network, Tesla K80 GPUs were

deployed.

6 ICNN TRAINING SCHEMES

When training the ICNN, two different training policies could be adopted. In the first method, the

iterations are trained in sequence and in the second method, all of the iterations are trained in

parallel. Each training process, the implications of each training approach, and the trade-offs for

adopting one training approach versus others is discussed next:

6.0.1 Sequential Training. The first proposed training method is a multi-step training process

carried out sequentially. In this approach, the first uCNN network is separated and its weights are

trained as described in Section 5. Starting from the second iteration and moving up, each uCNN is

then trained without changing the filter weights in the previous iterations. When training the ith
uCNN (uCNN[i]), this training constraint is enforced by keeping the learning rate of convolutional

layers in uCNN[1]-uCNN[i-1] equal to zero. Hence, the weights in the previous iterations are only

used during forward propagation of error during the training process, without affecting the back

propagation’s update process. To allow faster training, starting from the second iteration, instead of

initiating the weights from Gaussian distribution, the weights in the CONV layer of each iteration

were initiated to the values in the corresponding CONV layer of the previous iteration.

6.0.2 Parallel Training. The second proposed training method is a two-step training process. In

the first step, the FC layers of the intermediate iterations are removed, and only the FC layers of

the last iteration that combine the features from the last CONV layer of all iterations are kept. The

resulting network, which is the last iteration of ICNN is trained first using the training process

described earlier, yielding the weights for the FC layer of the last iterations, and CONV layers of

all the iterations. In the second step, the FC layers in all other iterations are added to construct

parallel networks for the rest of the iterations. Subsequently, the weights in all the CONV layers

are kept constant by setting their learning rate to zero, and the weights in the FC layers of the

intermediate iterations, are trained in parallel. Note that back-propagation at this step does not

update the filter values in the CONV layers, and only the weights in FC layers are updated.

In terms of training time, parallel training is considerably faster. Using a single Tesla K-80 GPU,

the parallel training was concluded in 7 days, while the sequential training took about 3 weeks to

conclude. In terms of prediction accuracy, parallel and sequential training introduce an interesting

trade-off. Figure 6 shows the top-5 and top-1 accuracy of both sequential and parallel training.

Figures 6(a) and 6(c) capture the results for only one 1 crop. It should be noted, that to increase

the prediction accuracy during the inference phase, rather than feeding only one image to the

network, various work [14–18] extract 5 crops from images (4 corner and 1 center crop), along

with their horizontal mirrors (10 crops in total), calculate the average of the output of SoftMax

layer from all 10 crops and conclude the classification. To make a fair comparison with related

work, in Figures 6(b) and 6(d) the results for the average of 10 crops are depicted.

As illustrated in Figure 6 sequential training provides higher accuracy in early iterations and

has a front-loaded accuracy gain, which is advantageous for low-power and real-time systems

that could benefit from improved accuracy with low delay. However, the parallel training suffers

from lower classification accuracy in earlier iteration(s), while gaining a higher accuracy in

the last iteration(s). This is due to the fact that the parallel scheme starts with training the last

iteration. Another reason could be that in the parallel training approach all the weights are

initialized from Gaussian distribution while in the sequential scheme, starting from the second
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Fig. 6. AlexNet vs. Iterative AlexNet using (a) top-1 accuracy with 1 crop, (b) top-1 accuracy with an average

of 10 crops, (c) top-5 accuracy with 1 crop, and (d) top-5 accuracy with an average of 10 crops.

Fig. 7. Increase in the top-5 accuracy of ICNN in Sequential and Parallel training approaches.

iteration, the weights are initialized from the values in the previous iteration. The first sub-bands

of the DWT are mainly dominated by low-frequency, while the other sub-bands are mainly domi-

nated by higher-frequency. Due to this difference, the initialization strategy degrades the training

procedure. As a result, the parallel training approach is used in the implementation results.

Based on Figure 6, the difference between the accuracy of the two approaches is more significant

in both the early iterations and the latter ones. To get a better insight into the difference between

the two training scheme, Figure 7 shows the growth of the top-5 accuracy in percentage. Since

the parallel approach incurs lower and higher accuracy in the first and last iterations, respectively,

parallel training covers a larger range of accuracy values, and each iteration contributes more

significantly to the accuracy. Depending on the accuracy, latency, and power requirements of the

hosting hardware (or application) when working on a batch or stream of images, one training

process may become more appealing than the other.
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7 DETECTION OF TINY IMAGES

The sub-sampling approach deployed in this article, the Wavelet Transform through Haar Filter,

is a lossless transform. Note that DWT by itself is lossless, as it merely transforms pixels to a

domain in which they can be more efficiently encoded; however, to generate compressed images,

coefficients are modified, and compression becomes lossy [63, 64]. In this article, compression

is carried out and any image detail lost in earlier sub-bands is eventually recovered in other

sub-bands.

The images in ImageNet are of varied dimensions and they are all re-sized to match the input

requirement of the networks. However, this predefined input size is not suitable when object scales

vary. This problem seems exacerbated in ICNN, where images are scaled to 1
4 and 1

2 of the original

size for the first four, and last three iterations, respectively. But it should be noted that while

the size of the convolutions in the first layers are the same as the original network, with ICNN the

size of the strides vary based on the image sizes to maintain the precision. In the original AlexNet,

the stride in the first convolution is 4, while in ICNN the stride is 2 and 1 in the first four and last

three iterations, respectively. As a result, the extracted feature maps in the CONV layers have the

same dimensions, albeit a different number of channels with respect to the original Network.

In SPPNet [65], Spatial pyramid pooling has been proposed as a solution to remove the fixed-size

constraint of the CNN networks. In this approach instead of resizing the input images, the original

(larger) images are processed by the CNN and variable-size Poolings are applied to the features

extracted in the last fully CONV layers to generate fixed-size outputs for the FC layers. As a result,

smaller details in the network are better processed. This approach is well-suited for modifying any

network for detection of tiny objects, where instead of scaling images to sizes that fit the network,

we process larger images and then apply the spatial pyramid pooling to the extracted features.

However, this would increase the processing time of the network.

8 VISUALIZATION OF CONVOLUTIONAL NEURAL NETWORKS

The major contribution of the ICNN is the training of multiple small networks and allowing the

classification to improve sequentially in each iteration. The rate of improvement in the prediction

accuracy in each iteration of ICNN depends on the network being able to learn distinct features in

each iteration, and leverage all features learned in the previous iterations. To illustrate how ICNN

learns distinct features in each iteration, visualization techniques are used to present the features

learned in different iterations.

Deconvolutional networks have been widely used to project the feature activations back to

the input pixel [66]. Deconvolutional networks construct layers from the image upwards in an

unsupervised fashion [67]. In Reference [68] they were used to reveal the input stimuli that ex-

cite individual feature maps at various layers in the model. Since then, various works have used

the Deconvolution networks for semantic segmentation [69], flow estimation [70], and generative

modeling [71].

We use the Deconvolution networks to demonstrate how hidden convolution layers of each

iteration extract features distinct from other iterations for CONV2 layers. Figure 8 depicts the

top 9 activations for all 64 feature maps of CONV2 layers in all iterations. Each figure shows the

reconstructed patterns from the training set that triggers the highest filter response in a given

feature map on the left and the corresponding image patch that triggered the response on the

right. The extracted features are drastically different in the same CONV layer in different itera-

tions. The ability of ICNN to extract different features in different iterations and to combine these

features after last CONV layer of each iteration is the reason why the accuracy of each iteration

increases.
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Fig. 8. Visualization of features in a fully trained model for layers CONV2 of iterations (a) 1, (b) 2, (c) 3,

(d) 4, (e) 5, (g) 6, (h) 7. The figure shows the top 9 activations for all 64 feature maps of CONV2 layer across the

validation data, projected down to pixel space using deconvolutional network approach. The reconstructed

patterns from the validation set that cause high activations in a given feature map are depicted on the right,

and the corresponding image patches are depicted on the left.

It should be noted that the networks in 8 are trained with the sequential approach. As

mentioned in Section 6.0.1 starting from the second iteration, the weights in the CONV layers

of each iteration is initialized to the values in the corresponding CONV layer of the previous

iteration. As a result, the patterns identified in each iteration for some feature maps are somewhat

correlated albeit, different. See the first feature map in Figure 8 (top left 3 × 3 images). This feature

map is triggered for image patches with vertical lines, diagonal lines and blurrier vertical lines
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in iteration 1, 2 and 3, respectively. After the fourth iteration, the same feature map index starts

identifying completely different patterns, which is indicative of the evolving nature of ICNN.

9 CONTEXTUAL AWARENESS IN ICNN AND ITS APPLICATION

Real-time application of deep-learning algorithms is often hindered by high computational com-

plexity and frequent memory accesses. Network pruning is a promising technique to solve this

problem [72]. The network can be pruned by learning only the important connections; i.e., if the

weight of a connection is less than a threshold, then the connection is dropped [73, 74]. This ap-

proach is previously deployed in the training phase of CNN by discarding negligible weight values.

However, ICNN enables us to apply the pruning at run-time. This is because early classification

provides ICNN with a hint to avoid computation related to classes that are least probable.

Upon completion of the first uCNN, ICNN develops a form of contextual awareness as its first

FC classifier outputs the probability of various classes with respect to an input image. We explore

how this feature may be used to reduce the computational complexity of CONV or FC layers in

the next iterations based on the class probabilities. To this end, We compare the class probabilities

from various iterations to understand how the predictions and class probabilities derived in each

iteration relate to the ones in the next iterations.

We introduce Prediction Rank (PR) as an indicator of the prediction accuracy of a model for each

image. Consider an image with class labelC[i]. After executing a uCNN, all the class probabilities

are sorted in descending order. The location of the classC[i] in the sorted array of class probabilities

is called Prediction Rank. Needless to mention, PR can be any value from 1 to 1k, with 1 and 1k

indicating highest and lowest image detection accuracy, respectively. If statistical analysis of the

dataset for classC[i] shows that PR is always smaller than L in all iterations, where (1 ≤ L ≤ 1K ),

then limiting the number of computed class probabilities in the ICNN to L instead of 1k will have no

impact on the probability of detection of class C[i]. However, if the number of computed classes

(i.e., L) is chosen smaller than PR variation for class C[i], then by pruning the computation for

class C[i], we will end up with miss-classification. Expanding this to all classes, the probability of

miss-classification (MC) conditioned on pruning the classes to those with PR ≤ L is given by

P (MC |Pth = L) =
1000∑
i=1

P (C[i])P (PR (C[i]) > L). (3)

In this equation the Pth is the Pruning threshold,C[i] is the ith class, PR (C[i]) is the prediction

rank forC[i], and L is the chosen limit for pruning. For obtaining the probability P (PR (C[i]) > L),
we define the Decision function D as

D (αC[i] (j ),L) =

{
1, if PR (αC[i] (j )) > L
0, else.

(4)

In this equation αC[i] (j ) is the jth image member of classC[i]. If we define S[i] as the number/size

of images in the dataset (or expected number of images in the batch) that belong to classC[i], then

P (PR (C[i]) > L) is computed as follows:

P (PR (C (i )) > L) =

∑S[i]
j=1 D (αC[i] (j ),L)

S[i]
. (5)

Based on Equation (3) the pruning threshold L is selected to set the Probability of miss classifi-

cation due to pruning to the desired value. The higher the value of L, the higher the classification

accuracy, but at the cost of higher computational complexity. The value L could reduce from iter-

ation to the next iteration, making the pruning more aggressive as the accuracy of classification

increases.
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Fig. 9. Prediction Rank: (a) PRμ & PRμ + 2 × PRσ for various classes at iteration 1. (b) Maximum PRμ among

all classes in each iteration. (c) Maximum PRμ + 2 × PRσ among all classes in each iteration.

To get a sense on the impact of choosing a value for L, for each class, we find the mean (μ) and

variation (σ ) of PR based on all the data in the validation set. Figure 9(a) shows the mean (PRμ )

and variation (PRσ ) of PR for all 1k classes sorted in descending order of PRμ at the first iteration.

Assuming a normal distribution, 95% of images of each class will have a PR below PRμ + 2 × PRσ .

In Figure 9, PRμ + 2 × PRσ of none of the classes exceeds 500, suggesting that by removing 50%

of classes (Pth = 500) the prediction accuracy does not drop beyond 5% for any of the classes.

Figures 9(b) and 9(c) show the maximum of PRμ and PRμ + 2 × PRσ among all classes for all the

iterations. The maximum of PRμ + 2 × PRσ is reduced as ICNN moves to the next iteration, indi-

cating that in subsequent iterations, the pruning policy could be more aggressive. Note that based

on the eliminated classes, the computational complexity of the next iterations is reduced by prun-

ing the neurons in the FC layers and/or the filters in the CONV layers, which are highly correlated

to classes with close to zero probabilities.

9.1 Pruning Neurons in FC Layers

For each image, all class probabilities are sorted in descending order. Assuming the rank of each

class is the location of the class in the sorted array, by setting Pruning Thresholds (Pth ) to L in

a given iteration, all the classes with ranks greater than L are eliminated in the subsequent it-

eration. Hence, the computation of FC layer for these classes could be skipped. This results in a

significant reduction in FC computation, and removes memory transfer of parameters related to

the classification of eliminated classes.

9.2 Pruning Filters in CONV Layers

In addition to eliminating neurons in the FC layers, CONV filters in the final layer(s) can also be

eliminated. To this end, for each class, we carry out a statistical analysis on the 1.2 million images

in the training set. In this study, we identify the classes that are least affected by the elimination of

each CONV filters in each iteration. When we set the Pruning threshold (Pth ) to value L in a given

iteration, all classes with ranks greater than L are eliminated in the subsequent iteration. Hence,

the required CONV filters are only those needed by remaining classes, and the computation of

other filters could be skipped.

It should be noted that while filter pruning has been a well-known approach for reducing the

computational complexity of CNN [72–74], ICNN allows the pruning to be carried out based on the

feedback from previous iterations. An ignorant pruning approach removes a number of filters that

least affect the overall accuracy; however, context-aware pruning allows us to remove the filters

that least affect the top-Pth classes of the previous iteration, promising an increased accuracy.
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10 PROPOSED POLICIES FOR COMPLEXITY/ACCURACY TRADE-OFF

The iterative transformation of the learning algorithm can be exploited to yield the highest accu-

racy while meeting hard deadlines or create an efficient trade-off between computational complex-

ity and accuracy. To this end, we propose the following policies to explore the benefits of ICNN

and its trade-offs in terms of computational complexity (thus energy consumption) and accuracy.

10.1 Dynamic Deadline (DD) Policy for Real-Time Applications

Many real-time applications require fast and deadline-driven computations to operate safely

and correctly. To speed up the CNN-based classifier, one could adapt more powerful resources

and benefit from higher parallelism. However, such solutions are extremely expensive in terms

of hardware cost and energy requirements. The proposed ICNN, however, provides a cost and

energy effective solution for real-time applications. Each uCNN in ICNN produces a classification

allowing early exit upon reaching a scheduled deadline. For the deadline-driven applications, the

ICNN classifier processes the input image up until the uCNN iteration in which, the scheduled

deadline is reached, and subsequently a classification is made. Consequently, the accuracy of the

detection and computational complexity is dependent on the time-budget and the number of iter-

ations that can be completed within the scheduled deadline. Note that in this mode of operation,

only FC layer(s) in the last processed uCNN iteration is required to make a classification decision,

and the FC layers in the previous iterations for the availability of computation-time-budget are

skipped. This is due to the fact that for the deadline-driven applications, we rely solely on the

classification results from the last processed iteration.

Algorithm 1 captures the implementation of DD policy. In this algorithm, N marks the number

of ICNN iterations.uCNNCO N V (i, imд) invokes the convolution layers in the ith uCNN with imд as

input, returning Ofmaps from the last CONV layer (O fμ ) and the elapsed time (tCO NV ). The Ofmaps

are concatenated with the Ofmaps from the previous iterations. Subsequently, tCO NV is compared

to the deadline, tD , and if lower with a tmrд margin, the next uCNN is invoked. The tmrд[i +
1] accounts for the projected time of the next iteration of uCNN. Upon reaching the deadline,

uCNNFC (i,O f ) invokes the FC layers of the ith uCNN producing a vector of probabilities Pr , one

for each of 1k labels.

ALGORITHM 1: Dynamic Deadline (DD)

1: O f ← [];

2: tmrд[i]← iteration_time_budдet ;
3: for i = 1 to N − 1 do

4: tCO NV ,O fμ ← uCNNCO N V (i, imд);
5: O f ← O fμ +O f ;

6: if (tCO NV + tmrд[i + 1]) < tD then

7: exit;

8: P̄r ← uCNNFC (i,O f );

10.2 Thresholding Policy (TP) for Dynamic Complexity Reduction

Using this policy, the ICNN terminates as soon as a uCNN produces the desired classification

confidence. The classification confidence is calculated by summing the probabilities of top-C (e.g.,

C = 5) suggested classes. Note that, in this approach, the FC layers of the previous uCNNs are

not skipped, as the calculations for classification confidence relies on the output of the FC layers.

When processing a batch of images, while the first iteration in ICNN may yield high confidence

for a test image, it might yield lower confidence for another test image. The iterative CNN, in this
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case, terminates the classification after the 1st iteration for the first image but proceeds to the next

iteration for the second image. This decision is made dynamically based on a predefined Detection

confidence-threshold (DCt ).

Algorithm 2 implements the TP policy. The uCNN (i, C̄L, imд) function invokes the ith uCNN

with imд as input, requesting classification result for all class labels in the C̄L vector and pro-

duces a vector of probabilities P̄r , one for each label in C̄L , which contains all 1,000 labels. After

each uCNN, the sum of top-5 probabilities (
∑5

k=1
P̄r [k]) is compared with Detection Confidence

Threshold ( ¯DCt [i]), and if greater, the image is classified. Note that some of the images never reach

a classification confidence above DCt . For these images, the results of the classification in the last

iteration are used.

ALGORITHM 2: Thresholding Policy (TP)

1: for i = 1 to N − 1 do

2: P̄r ← uCNN (i, C̄L , imд);
3: Sort_descending(P̄r );

4: if ((
∑5

k=1
P̄r [k]) > ¯DCt [i]) then

5: exit;

6: P̄r ← uCNN (N ,CL , imд);

In this approach, classification for various images is terminated in different uCNN iterations.

Thus, the total complexity of classification dynamically varies for each image. Moreover, the num-

ber of parameters required for images classified in early iterations significantly drops, which di-

rectly results in a reduction in the number of memory accesses, required memory footprint and

energy consumption. Note that the DCt values could be different for each iteration of the ICNN al-

lowing ICNN to exercise complicated thresholding policies. In this article, we explore two variants

of TP: (1) Fixed Thresholding Policy (TPF): In the fixed thresholding policy, a fixed value for DCt

is used across all uCNNs. (2) Variable Thresholding Policy (TPV): InTPV the confidence threshold

value for different iterations is varied.

10.3 Context-aware Pruning Policy (CAPP)

Based on the contextual awareness obtained upon completion of the initial uCNNs, CONV, and FC

pruning policies are proposed.

(1) Context-aware Pruning Policy for FC layer (CAPPF C ): Based on the discussion in Sec-

tion 9.1, Algorithm 3 proposes the implementation of CAPP policy for FC neurons. In the first

uCNN, CL contains all 1,000 labels. The uCNN (i, C̄L, imд) function invokes the ith uCNN for an

input imд returning a vector of probabilities P̄r , one for each label in C̄L . Subsequently, The less-

probable classes are pruned based on pruning threshold stored in the pruning policy vector ¯Pth .

For instance, ¯Pth[i] = 100 results in only choosing the 100 labels and disables all other neurons in

the FC layer of the uCNN(i+1) associated with the eliminated labels.

ALGORITHM 3: Context Aware Pruning Policy for FC layer (CAPPFC )

1: for i = 1 to N − 1 do

2: P̄r ← uCNN (i, C̄L , imд);
3: Sort_descending(P̄r );

4: C̄L ← C̄L[1 : ¯Pth[i]];

5: P̄r ← uCNN (N , C̄L , imд);
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Since the compute-intensive parts of the CNN architectures are the CONV layers, the pruning

slightly reduces the computational complexity as it only affects the FC layers. However, it con-

siderably reduces the number of weights needed to be moved to the memory. CAPP is yielding

a dynamic trade-off between accuracy, the required memory footprint, and computational com-

plexity. Pruning a larger number of classes results in higher complexity and memory footprint

reduction, while negatively affecting the accuracy. It should be noted that, unlike the thresholding

scheme, the pruning scheme yields the same computational complexity for all the images.

(2) Context-aware Pruning Policy for CONV layer (CAPPCO N V ): Visualization of the

ICNN filters by using deconvolution networks as described in Reference [68], makes it possible

to identify and remove trained CONV filters that are closely associated with the classification

of low-probability classes, extending the pruning feature into CONV layers. The pruning feature

based on filter visualization is explored in Algorithm 4.

ALGORITHM 4: Context Aware Pruning Policy for CONV layer (CAPPCO NV )

1: Pre-Process:Obtain ¯Pre (i, cnv, c )
2: for i = 1 to N − 1 do

3: P̄r ← uCNN (i, C̄L , imд);
4: Sort_descending(P̄r );

5: for cnv=1 in CONVlst do

6: Fltrem = {}

7: for c = 1 to ¯Pth[i] do

8: Fltrem+ = ¯Pre (i, cnv, c )[1 : rm]

9: Fltrem ← Maj (Fltrrem, rm))
10: Update(uCNN , i , cnv, Fltrem)

11: P̄r ← uCNN (N , C̄L , imд);

Algorithm 4, requires a statistical analysis by pre-processing a large dataset (i.e., 1.2 images in

the training set). Based on this analysis, for each iteration, target CONV layer, and class, a vector

is calculated in which, filters are arranged based on accuracy loss due to their removal from the

network in ascending order. ¯Pre (i, cnv, c ) shows the pre-processing vector for the ith iteration,

where cnv refers to the target CONV layer and c refers to class label. Thus, the removal of the

filter associated with the first argument in ¯Pre (i, cnv, c ) has the least effect on the overall accuracy

of class c . CONVlst is the list of CONV layers targeted for filter pruning. The variable rm is the

number of filters to be removed from each CONV layer.

In the ith iteration, the filters least affecting the top-Pth classes are gathered in Fltrem deter-

mining the candidate filters for removal. Subsequently, the majority function Maj (Fltrrem, rm)
returns rm most repeated arguments in Fltrem. This allows us to find the union of filters that

least affect the top-Pth[i] classes in the ith iteration. Subsequently, Update (uCNNi, cnv, Fltrem)
updates the ith uCNN by removing the rm filters in Fltrem from cnvth CONV.

10.4 Pruning and Thresholding Hybrid Policy (PTHP)

The PTHP scheme takes advantage of both early termination in the thresholding scheme and the

pruning of the FC layers in context-aware pruning policy. In this article, two variants of hybrid

PTHP policies are studied:

(1) Fixed-Percentage Pruning & Thresholding (PTHPFP): Algorithm 5 shows the first

studied hybrid policy. In the first uCNN, C̄L contains all 1000 labels. After each uCNN the top-5

confidence (
∑5

k=1
P̄r [k]) is compared with DCt [i]. If confidence is greater, then the image is
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ALGORITHM 5: Fixed-Percentage Pruning & Thresholding (PTHPFP) Policy

1: for i = 1 to N − 1 do

2: P̄r ← uCNN (1, C̄L , imд);
3: Sort_descending(P̄r );

4: if ((
∑5

k=1
P̄r [k]) > ¯DCt [i]) then

5: exit;

6: else

7: C̄L ← C̄L[1 : ¯Pth[i]];
8: P̄r ← uCNN (i, C̄L , imд);

9: P̄r ← uCNN (N , C̄L , imд);

classified. Otherwise, a number of classes are pruned based on Pruning policy ¯Pth[i] defined for

each iteration.

(2) Confidence-Tracking Pruning & Thresholding (PTHPCT): Algorithm 6 illustrates the

PTHPCT policy. In the first uCNN the probability for all classes (all labels) is computed. In the while

loop, if top-5 confidence is above the detection threshold ¯DCt [i], the classification is terminated.

Otherwise, based on the value of a Saturation Threshold ¯Sth[i], a number of labels are selected for

further processing in the next layer. The selected classes are the minimum number of labels with

an accumulated probability of no less than ¯Sth[i]. In this algorithm ¯CCL is the shrunk version of

C̄L that only contains the labels of interest.

ALGORITHM 6: Confidence-Tracking Pruning & Thresholding (PTHPCT) Policy

1: P̄r ← uCNN (1, C̄L , imд);
2: for i = 1 to N − 1 do

3: Sort_descending(P̄r );

4: if ((
∑5

k=1
P̄r [k]) > ¯DCt [i]) then

5: exit;

6: else

7: Sum = 0, ¯CCL = [], label=1;

8: while Sum < ¯Sth[i] do

9: Sum+ = P̄r [label];
10: ¯CCL[label] = C̄L[label];
11: label++;

12: P̄r ← uCNN (i + 1, ¯CCL , imд);

11 IMPLEMENTATION RESULTS

For reporting the accuracy values, we evaluated the 50K images in the validation set of ImageNet

repository. We use the FLOP count as an indicator of computational complexity (MFLOP is equiv-

alent to Mega FLOP). It should be noted that since the accuracy of the parallel training approach

is higher, the parallel trained networks were used in the implementations. The results for the im-

plementation of proposed policies are summarized next:

11.1 Dynamic Deadline Policy for Real-time Applications

Figure 10 shows the overall accuracy and FLOP count of each iteration when using DD policy.

Each bar representing the flop count of an iteration accumulates the total flop count of its previous

iteration with that of CONV and FC layer of the current iteration. The figure shows that assuming

a large time-budget, continuing the ICNN to the last iteration still results in lower computational
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Fig. 10. The FLOP count and accuracy for dynamic deadline policy.

Fig. 11. Number of classified images and the number of classified images with a correct label in the top-5

probabilities for various confidence thresholds (Dct ): (a) Dct = 0.6; (b) Dct = 0.7; (c) Dct = 0.8; (d) Dct = 0.9.

complexity (38% lower than original AlexNet) with only a 1% reduction in the top-5 accuracy. Note

that the reduction in FLOPs in the last iterations of ICNN with DD policy is more significant than

the thresholding policy. This is mainly a result of skipping the intermediate FC layers. However,

assuming a limited timing budget, a reliable classification decision could still be made in the early

iterations with a much lower computational cost. Thus, ICNN is no longer limited to a one-fits-all

architecture and is allowed to make efficient use of the resources to make the best prediction, based

on the requirements of each application.

11.2 Thresholding Policy for Dynamic Complexity Reduction

(1) TPF : Figure 11 shows the total number of images classified up to each iteration and their top-

5 score for various fixed DCt values. Each blue bar represents the number of classified images,

and each green bar represents the number of correctly classified images. Hence, the difference
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Fig. 12. Variable thresholding policies: (a) the accuracy and average FLOP count; (b) the table including the
¯DCt values in each iteration for each thresholding policy. (For the last iteration, all the remaining images are

classified.)

between the height of the blue and green bar is the number of incurred miss-classifications. Each

bar is divided into two segments. The first segment is the accumulated number of classified images

up to that iteration, and the second segment is the classifications being concluded in that iteration.

The final bars on iteration 7 have an additional segment for remaining images that have not passed

the classification threshold, however, are classified for lack of further iterations. For the remaining

images, the top-5 classification accuracy is significantly lower than those with confidence values

higher than the threshold. With increasing values of DCt the number of these remaining images

increases, pushing the classifier toward the last iteration and thus increasing the total FLOP count.

Figure 11 shows that by increasing the value of DCt , the number of images classified in early

iterations decreases; however the (top-5) classification accuracy increases. In Figure 11 this is illus-

trated by comparing the difference in the heights of top-5 and Detected bars in each iteration, where

a larger delta means larger miss-classification. More specifically, higher values of DCt enhances

the accuracy at the expense of larger computation complexity.

(2) TPV : Figure 12(a) shows the overall accuracy and average FLOP count for variable thresh-

olding policy. It should be noted that since not all images go through all the iterations of ICNN,

the FLOP count varies for each image. Thus, in Figure 12 the average parameter and FLOP counts

are reported over 50K images in the validation set. Moreover, to better highlight how the thresh-

olding policy contributes to reducing computational complexity, the FLOP and parameter counts

are devised relative to the last iteration of ICNN. Figure 12(b) shows the ¯DCt values for each it-

eration of the studied thresholding policies. T1 to T10 are sorted based on FLOP counts, with T1

corresponding to the policy with the lowest FLOP count and T10 the highest.

Figure 12 shows that even with a mild thresholding policy as in T10, the FLOP and parameter

counts are reduced by up to 25% and 80%, respectively, with negligible accuracy loss. It should be

noted that the number of parameters in the early iterations of ICNN is significantly lower than

the later iterations. For instance, the first and the last iteration account for less than 3% and more

than 50% of the total parameter count, respectively. This is due to the fact that FC layers require

99×more parameters compared to the CONV layers in the proposed ICNN structure. With the FC

layers being smaller in the early iterations, a significant drop in the parameter count is observed

due to skipping the parameters in FC layers of last iterations as a result of early termination.
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Fig. 13. Pruning policies: (a) the accuracy and average parameter count for FC layers; (b) the table including

the number of labels not pruned in previous iterations. (The first iteration uses all 1,000 labels, as there is no

feedback from the previous iterations.)

The complexity/accuracy trade-off suggests that by setting high values for confidence thresh-

olds, and thus higher FLOP count, the accuracy increases from T1 to T10. However, extensive ex-

ploration of a large set of variable thresholding policies with ICNN yields the thresholding policy

to be more of a Pareto optimization question, where increased accuracy can be achieved with lower

FLOP count through intelligent tuning of the DCt values. For instance, while the FLOP counts of

T1 and T4 are significantly lower than T3 and T8, respectively, they yield higher accuracy.

11.3 Context-aware Pruning Policy for Parameter Reduction

(1) CAPPF C : Figure 13(a) shows the accuracy and average parameter count for various FC layer

pruning policies, while the table in Figure 13(b) captures the setting of the pruning policy ( ¯Pth ) by

listing the number of remaining classes after pruning the classes with low probability. The last bar

shows the ICNN results when none of the classes are pruned. P1 to P8 are sorted based on their

parameter count, with P1 having the lowest parameter count and P8 the highest.

Figure 13 shows that by increasing the number of pruned classes (i.e., lower Pth ) the accuracy

drops; however, intelligent selection of the pruning policy yields reductions in the parameter count,

with negligible accuracy loss (see P4 yields with a 17% reduction in the parameter count). Note

that in this scheme, all the images go through all the iterations. Thus, the only reduction in the

FLOP count is due to the pruning of the last FC layer in each iteration. Newer and deeper CNNs

(e.g., VGGNet and GoogleNet) deploy a single FC layer as opposed to three FC layers in AlexNet.

Hence, Application of pruning policy to deeper CNNs increases the rate of FLOP count reduction

as well as parameter count reduction in their iterative version. Note that moving the large set of

parameters required for the FC from the memory accounts for a significant energy and execution

delay.

(1) CAPPCO N V : Figure 14 captures the result of filter pruning for the CONV5 layer in iterations

2 to 7. Note that the CONV5 of each iteration consists of 32 filters, and in each iteration, 5, 10,

and 15 filters least affecting the top-5 classes from the previous iteration are pruned (i.e., rm =
5, 10, 15 and Pth = 5). Our proposed smart approach takes advantage of the feedback from previous

iterations and depending on the remaining classes removes the least contributing filters, while

the ignorant approach prunes filters based on how strongly each filter contributes to the overall

accuracy of the network across all classes and all images in the training dataset. As illustrated in

Figure 14, the contextual knowledge generated after each classification, and selective pruning of

filters based on remaining classes significantly reduces the loss in classification accuracy when

pruning filters.
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Fig. 14. The accuracy of CAPPCO N V for the last CONV layer (i.e., CONV5) in iterations 2–7. The ignorant

trend-line shows the results for pruning filters that least affect the accuracy for detection of all classes, while

the smart trend-line shows the results for when feedback from previous iterations is used to prune the filters.

Fig. 15. The accuracy and average FLOP and parameter counts (normalized to ICNN with no pruning or

threshold policy) for (a) PTHPF P and (b) PTHPCT . For each thresholding policy (i.e., ¯DCt vector), multiple

pruning policies (i.e., ¯Sth vector) are investigated. The red and black bars show the increase and reduction,

respectively, in the number of FLOP and/or parameter counts of a thresholding policy due to pruning.

11.4 Pruning and Thresholding Hybrid Policy

Figures 15(a-left) and 15(b-left) show the accuracy, and normalized FLOP and parameter counts

for the PTHP policy, while Figures 15(a-right) and 15(b-right) capture the setting used for ex-

perimented thresholding and pruning policies in the hybrid approach. The figure is divided into

five sections, one for each thresholding policy. Each segment assesses the impact of five different

pruning policies on total parameter and flop count when combined with thresholding in PTHP .

(1) PTHPF P : Figure 15(a) shows the normalized accuracy, FLOP and parameter counts for

FTHPF P policy. For each thresholding policy, we study how each ¯Pth policy affects the FLOP and

parameter counts by highlighting the increase and decrease in the average count by red, and black

colors.

An inverse trend is observed when both thresholding and pruning policies are aggressive (im-

ages with lower confidence are classified in early iterations, and more classes are pruned in each

iteration), where the parameter and FLOP counts are increased by pruning. This is due to the fact

that an aggressive pruning policy that keeps only a small number of classes, might eliminate one

or more classes in the top-5 classes of the next iteration, reducing the top-5 confidence of the next
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iteration and forcing ICNN to proceed to its next iteration, which increases the parameter and

FLOP counts.

(2) PTHPCT : As illustrated in Figure 15, with aggressive thresholding (e.g., T1), the opportu-

nities for pruning are limited due to the significant drop in accuracy. However, with moderate

thresholding some (but not all) of the applied pruning policies allow the parameter and FLOP

counts to significantly drop with small impact on the accuracy. This is mainly because these prun-

ing policies allow only the high probability classes (with an accumulated probability of Sth ) to

proceed to the next iterations.

In the PTHPCT the classification would be terminated if (1) a top-5 confidence of DCt is reached,

or (2) the number of classes selected for the next iteration is no bigger than 5. In the second case,

proceeding to the next iteration does not increase the top-5 accuracy and ICNN is terminated while

the confidence threshold is not reached. The effect of this early termination is twofold: On the

one hand, it identifies images that would never reach high classification confidence, and for which

processing of more iterations is a waste of resources, hence reducing computation with no accuracy

loss. On the other hand, it prematurely terminates the processing of images that could have reached

high confidences in the proceeding iteration, negatively affecting the accuracy. Hence, selection

of the best combination of ¯DCt and ¯Sth is an optimization problem. Figure 15(b) shows that when

the value of ¯Sth in each iteration is selected to be slightly higher than ¯DCt of the next iteration,

reductions in FLOP and parameter counts has the least impact on the accuracy (see T4-P5 hybrid

policy). It should be noted that the inverse impact of aggressive pruning and thresholding on

parameter and flop count mentioned for Figure 15(b) is observed for Figure 15(a) too (see red bars

in Figure 15).

11.5 Run-time and Overall Accuracy

11.5.1 Pruning and/or Thresholding. Adopting the pruning or thresholding policy creates a

trade-off between the average delay of classification and the accuracy of classification. The prun-

ing policy reduces the parameter count, and the thresholding policy reduces the average FLOP

count. However, based on the results (see Figures 13 and 12), increased resources does not always

translate into higher accuracy. The hybrid policies, which combine both pruning and thresholding,

exhibit the same behavior, in which a higher number of parameters and FLOPs does not always

contribute to higher classification accuracy. Consequently, finding the optimal strategy in which

the target accuracy is reached with minimal resources (in this case execution time), requires thor-

ough exploration and tuning of the thresholding and pruning parameters.

Figure 16 captures the design space of the ICNN when trading the accuracy to reduce run-time

through 5k combination of thresholding and pruning policies. In this figure, each point denotes a

unique combination of thresholding and pruning policies. For the real-time applications, waiting

for a whole batch to be processed significantly adds to the latency [75], thus a batch size of 1 was

selected to target real-time streaming applications.

As illustrated, the stand-alone thresholding policy yields better run-time/accuracy trade-off

compared to the stand-alone pruning policy. However, their combination in hybrid policy could

lead to optimal solutions. Several optimization points for the hybrid policies in Figure 16 exhibit

lower run-time compared to the stand-alone thresholding policy with the same accuracy. For in-

stance Figure 16 highlights a stand-alone thresholding policy and a hybrid policy derived by com-

bining the same thresholding policy with pruning. Figure 16 shows that the hybrid policy reduces

the classification time by 38% with only 1% accuracy loss.

11.5.2 Deadline-driven. Figure 17 shows the overall accuracy of deadline-driven (DD) policy

for iterative AlexNet with a batch size of 1 for 50k validation images on K80 GPU for various
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Fig. 16. The accuracy vs. average run-time per image of iterative AlexNet with a batch size of 1 for 50k

validation images on K80 GPU. The diamond marks the original AlexNet. The policies on the top border of

the diagram mark the most efficient ones in terms of accuracy and execution time.

Fig. 17. The overall accuracy of DD for iterative AlexNet with a batch size of 1 for 50k validation images on

K80 GPU. The diamond marks the original AlexNet. Higher time-budget only increases the accuracy when

it is sufficient for execution of the next iteration.

time-budgets per image. As opposed to the pruning and thresholding policies, all the images go

through the same iterations for any given deadline. Thus, the accuracy is captured as a function

of the time-budget. Note that higher time-budgets only increase the accuracy when it is sufficient

for execution of the next iteration, which results in the step-like behavior observed in the figure.

Unlike the thresholding and pruning policies, the DD policy only executes the FC layer of one

iteration, more specifically the last iteration given the time-budget. However, the pruning and/or

thresholding policies require the FC layers of all the iterations to be completed to draw a conclusion

about the early termination and pruning of class labels. As a result, for higher accuracy values

(i.e., high DCt and Pth and low Sth values in hybrid/thresholding/pruning policies, and large time-

budget for theDD policy), where all images go through all the iterations, theDD policy yields lower

execution time due to the fact that the computations in the FC layers of the preceding iterations

are skipped in the DD policy. For instance, a top-5 accuracy of 79% is reached with a time-budget

of 1.7ms with DD policy, while the same average run-time yields at least 1% drop in the top-5

accuracy with the TPHP policies. The DD policy allows adjusting the run-time per images in the

range of 0.3–3.2 ms based on the available time-budget by trading off accuracy.

Table 2 captures the detection accuracy and FLOPS of ICNN with popular efficient models. The

table shows that the complexity of the CNNs has dramatically increased over time to enhance their

classification accuracy. However, ICNN proposes an architecture that allows a dynamic trade-off

between FLOPs and accuracy. The Iterative version of AlexNet, for instance, achieves the same

accuracy as the original network with 38% fewer FLOPs. Moreover, with ICNN, the FLOPs could
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Table 2. Comparison with the Existing CNN Architectures

ZFNet VGG GoogLeNet ResNet MobileNet V1 MobileNet V2 Inception V3 AlexNet ICNN

[68] [15] [17] [18] [76] [77] [27] [14] (AlexNet version)

Top-5 Accuracy[%] 88.8 89.6 89.9 96.3 89.9 91.0 96.3 80.2 59.2–80.2

FLOPS 663M 19.6G 1.5G 11.3G 568M 300M 12G 729M 82M-448M

be further reduced by trading off accuracy. Although ICNN was constructed based on AlexNet

in this article, by following the same approach, each of these networks could be converted to

their iterative version, for trading off the accuracy versus computational complexity and energy

efficiency.

12 CONCLUSIONS

In this article, an iterative architecture for processing convolutional neural network (ICNN) was

proposed. As a case study, the proposed ICNN was used to break the large CNN network of AlexNet

into a sequence of smaller networks (uCNN), each processing a sub-sample of the input image,

providing the ability to terminate the classification early (when reaching a deadline in a real-time

system or reaching a required classification accuracy in low-power systems), or carry the classi-

fication to the next iteration (if the deadline in a real-time system is not reached, or classification

accuracy threshold is not satisfied in a low-power system). ICNN enable us to explore a wide range

of complexity versus accuracy trade-offs. To explore these trade-offs, a dynamic deadline-driven

exit policy for real-time applications, a confidence thresholding policy for dynamic complexity

reduction, a context-aware pruning policy for parameter reduction and two hybrid pruning and

thresholding policies for simultaneous parameter and complexity reduction were introduced. Our

simulation results show that with an intelligent selection of the pruning and/or thresholding poli-

cies, ICNN reduces the average FLOP and parameter counts, and execution time across 50K vali-

dation images in ImageNet database by more than 25%, 80%, and 38%, respectively, with negligible

accuracy loss. The reductions in the number of FLOP and parameter counts are directly translated

to energy saving, motivating a power-aware CNN architecture. Moreover, the real-time systems

could exploit the dynamic structure of the ICNN by reducing the execution time by up to 12× by

trading off accuracy with execution time.
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