

1 Evaluating indicators of marsh vulnerability to
2 sea level rise along a historical marsh loss gra-
3 dient

4 Lennert Schepers^{1*}, Matthew Kirwan², Glenn Guntenspergen³, Stijn Temmerman¹

5 ¹Ecosystem Management Research Group, University of Antwerp, Antwerp, Belgium.

6 ²Department of Physical Sciences, Virginia Institute of Marine Science, College of William
7 and Mary, Gloucester Point, Virginia, USA.

8 ³Patuxent Wildlife Research Center, U.S. Geological Survey, Laurel, Maryland, USA.

9

10 Corresponding author: Lennert Schepers (lennert.schepers@uantwerpen.be)

11 (running head: marsh vulnerability indicators along historical marsh loss gradient)

12

13 **1 Abstract**

14 Sea level rise (SLR) is threatening coastal marshes, leading to large-scale marsh loss in several
15 micro-tidal systems. Early recognition of marsh vulnerability to SLR is critical in these systems to
16 aid managers to take appropriate restoration or mitigation measures. However, it is not clear if
17 current marsh vulnerability indicators correctly assess long-term stability of the marsh system.
18 In this study, two indicators of marsh stress were studied, (i) the skewness of the marsh elevation
19 distribution, and (ii) the abundance of codominant species in mixtures. We combined high-
20 precision elevation measurements (GPS), LiDAR imagery, vegetation surveys and water level
21 measurements to study these indicators in an organogenic micro-tidal system (Blackwater River,
22 Maryland, U.S.A.), where large-scale historical conversion from marshes to shallow ponds resulted
23 in a gradient of increasing marsh loss. The two indicators reveal increasingly stressed marshes
24 along the marsh loss gradient, but suggest that the field site with the most marsh loss seems to
25 experience less stress. For the latter site, previous research indicates that wind waves generated
26 on interior marsh ponds contribute to lateral erosion of surrounding marsh edges and hence
27 marsh loss. The eroded marsh sediment might temporarily provide the remaining marshes with
28 the necessary sediment to keep up with relative SLR. However, this is only a short-term alleviation
29 as lateral marsh edge erosion and sediment export lead to severe marsh loss in the long term. Our
30 findings indicate that marsh elevation skewness and the abundance of codominant species in
31 mixtures can be used to supplement existing marsh stress indicators, but that additional indices
32 such as fetch length and the sediment budget should be included to account for lateral marsh
33 erosion and sediment export and to correctly assess long-term stability of micro-tidal marshes.

34

35 **2 Introduction**

36 Coastal marshes provide critical ecosystem services, such as carbon sequestration (Chmura et al.,
37 2003; McLeod et al., 2011; Ouyang and Lee, 2014), shoreline protection against storm impacts
38 (Temmerman et al., 2013; Möller et al., 2014) and providing habitat for commercial fisheries
39 (Boesch and Turner, 1984; Barbier et al., 2011), but the persistence of marshes over the next
40 decades to centuries is threatened by accelerating sea level rise (SLR). When marshes cannot
41 adapt to SLR by vertical accretion, submerging marsh vegetation dies off and is replaced by bare
42 mudflats or open water areas, which is evident on large scales in the Mississippi River Delta (Day
43 et al., 2000), the Venice Lagoon (Carniello et al., 2009) and the Chesapeake Bay (Kearney et al.,
44 1988).

45 Elevated, vegetated marsh platforms and low, unvegetated mudflats or interior open water areas
46 have been identified as a two stable states, each with positive feedback mechanisms that provide
47 long-term stability (Fagherazzi et al., 2006; Marani et al., 2010; Wang and Temmerman, 2013; van
48 Belzen et al., 2017). These feedbacks imply that once marshes convert to open water, it is very
49 hard to reverse the process and to restore marshes. Early recognition of marsh vulnerability to
50 SLR rise is thus critical to foresee these pending shifts and to take early management measures to
51 preserve marshes and their highly valued ecosystem services in face of accelerating SLR.

52 Two indices, (i) elevation skewness and (ii) the abundance of codominant species in mixtures,
53 have been proposed as indicators of marsh stress, but have never been tested empirically in
54 marshes experiencing large-scale marsh loss. First, the skewness of the elevation distribution has
55 been introduced by Morris et al. (2005). In their study, Morris et al. (2005) argue that resilient
56 marshes have a negative elevation skewness, i.e. with more high marsh than low marsh area,
57 because resilient marshes have the tendency to build-up vertically until their elevation
58 approaches mean high water level (Pethick, 1981; Allen, 1990; Temmerman et al., 2003). The
59 highest high water level is the upper limit for marsh vegetation as sediment deposition must
60 approach zero at elevations near that of the highest high tide (Morris et al., 2002). Further, Morris
61 et al. (2005) argue that an increase in SLR rate would result in increased flooding and would
62 provide accommodation space for marshes to grow, therefore temporarily forming normal
63 elevation distributions within the tidal frame. With higher rates of SLR, the marsh elevation is
64 expected to lag behind sea level, hence to lower within the tidal frame, and consequently to
65 approach their inundation tolerance limit (Kirwan and Murray, 2008; Kirwan and Temmerman,
66 2009). Marshes below this limit will die off, which results in a positively skewed elevation
67 distribution of the remaining marsh portions above this elevation limit (Morris et al., 2005). Hence
68 the change of elevation skewness from negative to positive values is interpreted as the effect of
69 SLR on the 'elevation capital' of a marsh system, i.e. the position of the wetland elevation within
70 the tidal zone (Cahoon and Guntenspergen, 2010).

71 A second indicator of marsh vulnerability to SLR is (ii) the co-occurrence of species in mixtures. A
72 theoretical background for this hypothesis is the stress gradient hypothesis (Bertness and
73 Callaway, 1994), which postulates that in harsh environments, positive interactions and
74 facilitation between multiple species prevail. In low stress environments, however, competition
75 leads to dominance by few or even one single species. Bertness and Hacker (1994) indeed show
76 that species interactions shift from competitive interactions at the highest marsh elevations to
77 positive interactions when stress levels are high in the low elevated marsh areas. Examples of
78 positive interactions are shade provision, which limits surface evaporation and salt accumulation

79 (Callaway, 1994) and rhizosphere oxidation which alleviates anoxic substrate conditions
80 (Bertness, 1991a; Boaga et al., 2014). The hypothesis that marshes dominated by codominant
81 species in mixtures are indicative for higher stress levels and higher marsh vulnerability to
82 submergence, has however never been tested.

83 Wetland assessment methods usually rely on multiple indicators, which are evaluated and
84 combined into a score (Carullo et al., 2007; Rogerson et al., 2010). Recently, Raposa et al. (2016)
85 and Cole Ekberg et al. (2017) both have developed an indicator scheme specifically targeted to
86 assess marsh vulnerability (or resilience) to SLR. Raposa et al. (2016) were the first to develop
87 their MArsh Resilience to SLR (MARS) indices aiming to determine the ability of wetlands to resist
88 SLR. Raposa et al. (2016) combined variables (see Table 1) measuring 'elevation capital' with
89 variables measuring accretion rates and SLR rates to compute a final score. Interestingly, one of
90 their elevation indices is the elevation skewness. Cole Ekberg et al. (2017) included in their
91 assessment also different vegetation types, but relies heavily on model outputs (SLAMM, see Table
92 1).

93 [Table 1 here]

94 Although the development of such indices is highly important to assess marsh vulnerability to
95 SLR, there is a need for validating such indices against observations of long-term (i.e. over
96 decades) historical marsh loss, in order to increase trust in these indices to correctly assess long-
97 term stability of marshes with SLR. In this study, we combined field data and LiDAR imagery to
98 test the skewness of the elevation distribution and the abundance of codominant species in
99 mixtures as indicators of marsh vulnerability with SLR. We collected our data in the Blackwater
100 River marshes (Blackwater Estuary, Maryland, U.S.A.), an organogenic micro-tidal marsh system
101 where widespread historical marsh loss over the last 80 years has resulted in a spatial gradient of
102 increasing marsh loss (Schepers et al., 2017). We test if the skewness of the elevation distribution
103 and the abundance of codominant species differ the indicator scores by Raposa et al. (2016) and
104 Cole Ekberg et al. (2017). Based on our evaluation of the indicator values against observed marsh
105 loss rates, we argue that lateral erosion of marsh edges and consequent sediment export
106 important mechanisms of marsh loss in our study area that are not assessed by the marsh
107 vulnerability indicators, hence we propose indicators that should be included in future further
108 developments of vulnerability indicators. This will aid managers to assess the marsh condition
109 and to take early adaptation measures.

110 **3 Study area**

111 The Blackwater marshes (Maryland, USA; 38°24' N, 76°40' W) are a brackish coastal marsh system
112 along the Blackwater river that connects Lake Blackwater, a large (> 5 km diameter) shallow open
113 water area, with the Fishing Bay, an interior bay of the Chesapeake Bay (Fig. 1.). Since 1938 more
114 than 2,000 ha or 51 % of the marshes have been converted to shallow open water, with most
115 marsh habitat lost at or near Lake Blackwater and leaving the most downstream marshes closest
116 to the Fishing bay relatively intact (Stevenson et al., 1985; Scott et al., 2009; Schepers et al., 2017).
117 As a result, there is a spatial gradient of decreasing marsh area and increasing shallow open water
118 area in upstream direction along the Blackwater River (Fig. 1). The marsh loss has been attributed
119 to insufficient surface accretion relative to SLR (Stevenson et al., 1985), lateral marsh erosion
120 along the pond edges (Stevenson et al., 1985; Ganju et al., 2013) and vegetation disturbance by
121 rodents (Kendrot, 2011).

122

123

124

125 [Figure 1 here]

126 Short-term measurements showed that salinity varies little (<2 ppt) between the most
127 downstream site near Fishing Bay and upstream site at Lake Blackwater, but the salinity might
128 change significantly on seasonal timescales (Fleming et al., 2011). The tidal range (from 1 to <0.05
129 m) and allochthonous sediment input decreases from the Fishing Bay to Lake Blackwater (Ganju
130 et al., 2013). At the most upstream areas, frequent northwestern storms export sediment out of
131 the system (Stevenson et al., 1985; Ganju et al., 2013, 2015).

132 **4 Methods**

133 **4.1 Field data**

134 We selected four sites with an increasing proportion of open water areas as a measure of marsh
135 loss (Fig. 1) along the Blackwater River, in such a way that transects of 1,000 m length and
136 perpendicular to the river would not cross other river bends or upland areas. At each site three
137 transects of 1,000 m (250 m apart) straddling the Blackwater River were created in a GIS system
138 (ESRI ArcGIS 10.1). During a field campaign in August 2014 the elevation relative to the North
139 American Vertical Datum of 1988 (NAVD88) was recorded with a high-precision GPS (Trimble R8
140 RTK-GPS, vertical error <2 cm) every 10 m along each transect. At the same time, we determined
141 the species composition by recording dominant plant species (all species with >30% cover) within
142 a circular, 0.5 m diameter plot centered on each GPS measuring point. Points located in tidal
143 channels or ponds were excluded in this study.

144 During the same period (August 14 to October 29, 2014), we recorded water level measurements
145 at each field site with pressure transducers (Hobo U20L-02, Onset, MA, USA). The measurements
146 were recalculated to the NAVD88 vertical datum after local atmospheric pressure compensation.
147 Tidal characteristics, including mean tidal range and mean high water level (MHW), were
148 calculated from this dataset with the Tides package in R (Cox and Schepers, 2017).

149 **4.2 LiDAR imagery**

150 Additional to the GPS elevation data, we used LiDAR (Light Detection and Ranging) elevation data
151 that were recorded in spring 2004 and downloaded from Maryland's GIS & Data portal (see Data
152 Availability section) as a 0.91 m resolution digital terrain model. Comparison with our GPS-data
153 (n = 737) revealed a high overall accuracy of the LiDAR data, with an average difference of 0.08 m
154 (RMSE 0.11 m) and normally distributed residuals without trends or spatial patterns (see
155 Supporting Information). Elevation changes in the area are lower than 1 cm/year (Cahoon et al.,
156 2010), which implies that in the 10 year between the LiDAR data (2004) and the field campaign
157 (2014), maximum elevation changes of around 10 cm are in the same order of magnitude as the
158 vertical error on the LiDAR data. For each of the four sites, we extracted the LiDAR elevation data
159 within an area of 125 m around the three transects. Based on an aerial image classification of 2010
160 (Schepers et al., 2017), only the marsh elevation was retained, resulting in >300,000 elevation
161 points at the most intact site and >150,000 for the most degraded site.

162 4.2 Marsh vulnerability indices

163 Several indices of wetland vulnerability have been calculated. The skewness of the elevation
 164 distribution was calculated for each site with both the GPS measurements and the LiDAR
 165 measurements. We defined the Pearson's moment coefficient of skewness as:

$$166 \quad skew = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^3}{\left[\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 \right]^{3/2}} \quad (equation \, 1)$$

167 where n = the number of measurements, x_i = each measurement (here each elevation data point),
 168 \bar{x} = the average of all measurements (all elevation data points).

169 In order to assess whether the skewness of the marsh elevation distribution is an indicator for
 170 marsh drowning driven by relative SLR, we simulated marsh drowning at field site 1 by removing
 171 the lowest quantiles of the LiDAR marsh elevation distribution in four different steps. These four
 172 steps were chosen to simulate an increasing percentage of marsh loss (1.86%; 12.20%; 34.33%;
 173 57.89%) that matches the increasing percentages of marsh loss observed from field site 1 to 4.
 174 The skewness was then calculated on the remaining LiDAR marsh elevations after simulated
 175 marsh drowning, and it was evaluated whether the simulated marsh drowning resulted in
 176 increased skewness of the remaining marsh elevations.

177 Species composition was determined by recording the dominant plant species (all species with
 178 >30% cover) within a circular, 0.5 m diameter plot centered on each GPS measuring point. Species
 179 abundances along the marsh loss gradient were calculated by summing the number of
 180 occurrences for each species in each field site. The total number of points with at least two
 181 dominant species present, i.e. codominant species in a mixture, were also summed for each field
 182 site. All numbers were scaled to proportions for each field site because a wider river or more
 183 marsh loss results in a different number of marsh point measurements per field site. For example,
 184 an abundance of 0.4 for a species in field site 2 means that the species is (co)dominant at 40% of
 185 all marsh points in field site 2. Similarly, a mixture of two species with an abundance of 0.12 means
 186 that these species are present together (each >30% cover) at 12% of all marsh points of that field
 187 site. Site 2 has most points (n=243), slightly more points than field site 1 (n=222), where the river
 188 is a little wider, and more points than field sites 3 and 4 (n= 164 and 114, respectively) with more
 189 marsh loss. At three points *Spartina patens* (spp), *Spartina alterniflora* (spa) and *Distichlis spicata*
 190 (dsp) were present in equal coverages (all >30%). For these points we counted each specific
 191 mixture (spp – spa, spa – dsp, dsp – spp).

192 We verified the results of these two indicators (elevation skewness and vegetation composition)
 193 with the indicators of Raposa et al. (2016) and Cole Ekberg et al. (2017)(Table 1). We did not
 194 include all indicators because of limited data availability, and we modified two species indicators
 195 of Cole Ekberg et al. (2017). The percentage of low marsh is in Cole Ekberg et al. (2017) defined
 196 as regularly flooded areas dominated by tall-form (>50 cm) *Spartina alterniflora*. We defined this
 197 indicator as areas with *Spartina alterniflora* monocultures (the only species with a cover >30 %).
 198 Cole Ekberg et al. (2017) defined Perennial turfgrass type I as 'irregularly flooded, dominated by
 199 *Spartina patens*, *Distichlis spicata*, *Juncus gerardii*, with no *S. alterniflora*'. We did not record
 200 species with coverages <30 %, so we can not guarantee that *S. alterniflora* is not present at our
 201 GPS points. Therefore we modified this index as areas with *Distichlis spicata* or *Spartina patens*
 202 monocultures (or a mixture of both) but where *Spartina alterniflora* was not dominant (cover is
 203 <30 %).

204 To calculate the MARS average scores, we used the metric threshold table from Raposa et al.
205 (2016, see Table 2). The average of the category scores (marsh elevation score and tidal range)
206 produced a MARS average score for each field site. To convert the Cole Ekberg et al. (2017) indices
207 to field site scores, we ranked the index scores from 1-4 with increasing vulnerability and
208 calculated an average score. Note that contrary to Cole Ekberg et al. (2017), a higher score
209 indicates a higher vulnerability.

210 **4.3 Analyses and statistics**

211 All data analyses, figures and maps were made in R (R Core Team, 2017). The non-parametric
212 bootstrap technique was applied to determine if the skewness of the GPS elevation distribution
213 was significantly different from zero: the elevation dataset was randomly resampled 10,000 times
214 with replacement, each resample having the same size as the original dataset, and on each
215 resample the skewness was calculated. If zero is within the 2.5th and 97.5th percentile of these
216 10,000 skewness values, the skewness is not significantly different from zero, similarly to a
217 statistical test with 0.05 confidence level (α). Since the LiDAR-dataset consists of a huge dataset
218 ($n > 150,000$) and includes the whole study area rather than a selection of sample points, the
219 bootstrap technique was deemed to be not necessary for the LiDAR data.

220 **5 Results**

221 **5.1 Elevation skewness**

222 At the selected field sites the marsh loss ranges from 2 % at field site 1 to 58% at field site 4 (Fig.
223 2 top row). The skewness of the marsh elevation distribution at these field sites shows similar
224 results for the LiDAR analyses (Fig. 2 row 2), the GPS measurements (Fig 2. row 3) as well as the
225 GPS bootstrap method (Fig. 2 bottom row). The skewness shifts from significantly negative at the
226 most intact field site 1, to non-skewed at site 2, to a positive skewness at site 3 (Fig. 2). Field site
227 4 has a non-skewed elevation.

228

229 [Figure 2 here]

230

231 [Figure 3 here]

232

233 5.2 Vegetation community structure

234

235 [Figure 4 here]

236 The most abundant species in the Blackwater Marshes are *Schoenoplectus americanus*, *Spartina*
237 *alterniflora* and *Spartina patens* (Fig. 4). Although *Spartina patens* is considered as a high marsh
238 species (Bertness, 1991b; Smith, 2009; Wigand et al., 2011; Raposa et al., 2017) and
239 *Schoenoplectus americanus* and *Spartina alterniflora* are considered low marsh species (Bertness,
240 1991b; Nyman et al., 1994; Donnelly and Bertness, 2001), these species do not show a clear
241 abundance shift with increasing marsh loss (Fig. 4) or with decreasing marsh surface elevation
242 (data not shown). A less abundant high marsh species is *Distichlis spicata* (dsp), which does show
243 a clear decline along the marsh loss gradient (Fig. 4). *Spartina cynosuroides* (spc) occurs in more
244 or less similar abundances throughout the study area (Fig. 4). *Bolboschoenus robustus*, *Juncus*
245 *gerardii* and *Iva fructusea* were sparsely present (<10 points) and not included in our analysis.

246

247 [Figure 5 here]

248 Specific mixtures between two species show various patterns with increasing marsh loss (i.e. from
249 field site 1 to field site 4). However, when summing all the mixture points, our results show that
250 field site 3 has the highest proportion of mixture points (Fig. 5), whereas field site 4 has a lower
251 proportion of mixtures.

252 5.3 Comparison with other indices indicating marsh vulnerability to SLR.

253 In Table 2 the results are shown of the MArsh Resilience to SLR (MARS) indices, calculated for our
254 study area. Darker colors are indicative of more vulnerable marshes. In Table 3 we calculated
255 indices that were mentioned in the recent work of Cole Ekberg et al. (2017). Although there are
256 some differences between individual indices, the average scores indicate similar results, with
257 increasing marsh loss from field site 1 to 4, the indices indicate an increasing vulnerability to SLR
258 from field site 1 to 3. At field site 4, the site with most marsh loss, the vulnerability decreases again
259 compared to field site 3.

260 [Table 2 here]

261 [Table 3 here]

262 **6 Discussion**

263 6.1 Elevation skewness

264 The skewness of the marsh elevation distribution shifts from significantly negative at the most
265 intact field site 1, to non-skewed at site 2, to a positive skewness at site 3 (Fig. 2). This indicates
266 that the marshes at the intact site 1 are mostly high elevation marshes close to their upper limit
267 with a large elevation capital, and therefore highly resilient to SLR. In contrast, the positive
268 skewness at field site 3 with considerable marsh loss indicates that there are more low elevation
269 marshes close to their lower elevation limit, and hence vulnerable to SLR. Field site 4 deviates
270 from this trend of increasing positive skewness with increasing marsh loss percentage, as field

271 site 4 has the highest marsh loss percentage but a non-skewed elevation distribution. Potential
272 explanations for this observation will be discussed at the end of this section.

273 An increase in the rate of SLR will lower the elevation of the marshes compared to the mean high
274 water level and create accommodation space and increased flooding (Morris et al., 2005). Since
275 marshes need time to build-up to adjust to a new equilibrium rate, the skewness of the elevation
276 distribution becomes more positive (Kirwan and Murray, 2008; Kirwan et al., 2010). The shift
277 from negative to positive skewness with increasing marsh loss from site 1 to 3 can be explained
278 by the gradient in marsh loss. First, marshes with lower tidal ranges will be more impacted by a
279 similar sea level rise because of a proportionally bigger shift of their growth range (Kirwan and
280 Guntenspergen, 2010; Kearney and Turner, 2016). More marsh loss thus results in a more positive
281 skewness (Fig. 3). This is the case in our study area, where tidal range decreases in upstream
282 direction from field site 1 (0.63 m tidal range) to field site 3 (0.20 m tidal range). Simulated marsh
283 drowning of the lowest elevated marsh portions (Fig. 3) indeed shows that increasing marsh loss
284 by drowning results in an increasingly positive skewness. This is not surprising since we cut off
285 lower values, but the fact that the patterns of simulated marsh loss resemble the actual observed
286 patterns (Fig. 3, compare top row with bottom row), supports the hypothesis that marsh die-off
287 at the lowest areas is at least partly responsible for the observed shift in skewness from field site
288 1 to 3.

289 At field site 4 the elevation has a slightly positive (LiDAR data) or no significant skewness (GPS
290 bootstrap method, see Fig. 2 right column). This is remarkable; from our marsh loss simulation
291 (Fig. 3) we would expect the most vulnerable, positive skewness at site field site 4 as this site has
292 experienced most marsh loss. We hypothesize that is due to increased sediment availability
293 generated by eroding marsh edges or pond bottoms at the most degraded field site 4. Studies of
294 Ganju et al. (2013, 2015) in the same area support this hypothesis, showing appreciable
295 suspended sediment concentrations (55 mg/L) and high accretion rates (>5 mm/yr) within marsh
296 vegetation close to field site 4, likely originating from sediments eroding from pond bottoms and
297 marsh edges. Furthermore, the remaining marsh portions in field site 4 are mostly located along
298 the edges of ponds and channels (see Fig. 2) and therefore close to the local source areas of
299 suspended sediments. These sediments build up the few remaining marsh areas, leading to non-
300 skewed elevation distributions (Fig. 2). This hypothesis implies then that the lowest, most
301 vulnerable areas have already converted to open water ponds, and that the remaining marsh
302 portions fringing along channel and pond edges are only moderately vulnerable to SLR.

303

304 6.2 Vegetation community structure

305 The most abundant species in the Blackwater Marshes are *Schoenoplectus americanus*, *Spartina*
306 *alterniflora* and *Spartina patens* (Fig. 4). *Spartina patens* is considered as a high marsh species
307 (Bertness, 1991b; Smith, 2009; Wigand et al., 2011; Raposa et al., 2017) and *Schoenoplectus*
308 *americanus* and *Spartina alterniflora* are considered low marsh species (Bertness, 1991b; Nyman
309 et al., 1994; Donnelly and Bertness, 2001), but these species do not show a clear abundance shift
310 with increasing marsh loss (Fig. 4) or with decreasing marsh surface elevation (data not shown).
311 We hypothesize that clear abundance shifts with marsh loss are absent because they occupy
312 elevations far below their optimum range, as flooding experiments of *Schoenoplectus americanus*
313 and *Spartina patens* in the Blackwater Marshes have demonstrated (Kirwan and Guntenspergen,

314 2012; 2015). In these cases, other factors such as interspecific interactions might become more
315 important.

316 6.3 Indices neglect erosional feedback mechanisms

317 Most indicators (% elevation below third elevation, elevation skewness, tidal range, marsh
318 orthometric height, percentage unvegetated) show the consistent pattern of increasing
319 vulnerability with increasing marsh loss from the intact marshes at site 1 to the degraded marshes
320 at field site 3. However, field site 4 shows a consistent decrease in vulnerability for nearly all the
321 indices. This is especially noteworthy because field site 4 is the area with the highest proportion
322 of marsh loss, where more than 58% of the area consists of ponds that once were vegetated
323 marshes (e.g. Schepers et al. 2017).

324 Site 4 has not only the highest proportion of marsh loss, but also the largest (Schepers et al., 2017)
325 and deepest ponds (Schepers et al., 2019), providing favorable conditions for wind-generated
326 wave erosion of the marsh edges surrounding the ponds. [Also previous studies in other marsh
327 areas with interior marsh ponds have highlighted that wind waves generated on the ponds play a
328 key role in erosion of the marsh edges surrounding ponds. For example](#), Mariotti et al. (2013) and
329 Ortiz et al. (2017) have demonstrated that interior marsh ponds larger than a certain threshold
330 width (300 m in Mississippi marshes, 200-1000 m in US Atlantic marshes) are susceptible to
331 runaway expansion due to the positive feedback between increasing wind fetch length and wave
332 erosion of the surrounding marsh edges. Lateral expansion of ponds enhances the chance for pond
333 merging, leading to larger ponds, larger wind fetch length and hence higher rates of wave-driven
334 marsh edge erosion. This is also evident along the die-off gradient in our study area, where the
335 average fetch length of the ponds increases suddenly from ca. 200 m at field site 4 to >1000 m just
336 upstream at Lake Blackwater (Schepers et al., 2017) (Fig. 1). Ganju et al. (2013) demonstrate that
337 marsh edge erosion along Lake Blackwater occurs predominantly into the direction of the most
338 energetic wind (and ostensibly wave) direction, highlighting the role of wind-induced erosion as
339 a mechanism for marsh loss. Schepers et al. (2017) show that over the last 80 years, open water
340 areas have expanded considerably also at field site 4.

341 Furthermore, the sediments that are brought into suspension in the ponds due to surrounding
342 marsh edge erosion, are subsequently exported from the marsh system. Ganju et al. (2013)
343 measured tidal sediment fluxes through the main tidal channel draining the Blackwater marshes
344 (our study area), and demonstrated a clear net sediment export from the marsh system during
345 periods of dominant northwesterly winds. In a follow-up study, Ganju et al. (2015) demonstrated
346 that upstream Blackwater marshes (close to field site 4) are unstable and exporting sediment,
347 whereas marshes close to field site 1 are stable and importing sediment (Ganju et al. 2015,
348 Guntenspergen 2017, unpublished data). The observation that ponds in site 4 are mostly
349 connected to the tidal channel network (Schepers et al., 2017) might also facilitate export of
350 eroded material with tidal ebb currents (Ganju et al. 2013; Schepers et al., 2019). In a further study
351 by Ganju et al. (2017), including 8 different micro-tidal marsh systems, the Blackwater marshes
352 were the only marsh system having a clear negative sediment flux. These observations all suggest
353 that the marshes at field site 4 are vulnerable to an irreversible trajectory of continuing marsh
354 edge erosion, rather than being only moderately vulnerable to SLR as suggested by the
355 vulnerability indices.

356 6.4 Accounting for lateral erosional processes to determine marsh loss risk

357 We highlighted that existing indicators for marsh vulnerability to SLR do not account for lateral
358 marsh edge erosion, a process that can erode the whole marsh by positive feedback mechanisms
359 between increasing wind fetch length over increasing open water area (ponds), and increasing
360 erosion rate of the adjacent marsh edge (Fagherazzi et al., 2013; Mariotti and Carr, 2014). To
361 overcome this problem, we recommend including (i) the fetch length of interior marsh ponds and
362 (ii) tidal channel sediment flux to assess the risk of marsh loss. Fetch length is a straightforward
363 indicator for wind-generated wave erosion of marsh edges surrounding ponds, and is defined as
364 the distance over continuous water surface in one direction, from one side of the pond to the other
365 over which wind can generate waves (Rohweder et al., 2012; Ortiz et al., 2017; Schepers et al.,
366 2017). Schepers et al. (2017) quantified the average fetch length oriented along 4 directions (N-S,
367 E-W, NW-SE, NE-SW). If we calculate the average fetch length at each point in our transect that is
368 located in a pond, we see an increase from 4.3 m to 281.0 m (Table 4), hence larger fetch lengths
369 at site 4 means higher vulnerability to lateral marsh erosion.

370 [Table 4 here]

371 Large fetches can activate wave-induced marsh erosion, but the question is where the eroded
372 sediment is transported to and eventually deposited, as this determines marsh stability on the
373 long term (e.g. Ganju et al., 2013, 2015, 2017). Does the eroded sediment nourish nearby marshes
374 (Hopkinson et al 2018)? Or is it exported from the marsh system? The sediment budget of a marsh
375 system will ultimately determine the final course of the marsh (French, 2006; Mariotti and Carr,
376 2014; Ganju et al., 2015, 2017; Mariotti, 2016). The connection of large ponds with the tidal
377 channel system might be an important factor influencing tidal import or export (Millette et al.,
378 2010; Schepers et al., 2019; Wilson et al., 2010, 2014). Sediment budgets have been measured
379 through these connections and tidal channels, by intensive and long-term sediment flux
380 measurements (Ganju et al., 2015, 2017). However, Ganju et al. (2017) suggest, based on a
381 sediment flux study in eight micro-tidal marshes along the Atlantic and Pacific coasts, that the
382 ratio between unvegetated-vegetated marsh area can be used as a single snapshot to infer the
383 sediment budget. When this metric is calculated for our field sites, the ratio increases from 0.02
384 at field site 1 to 1.37 at field site 4 (Table 4). In fact, this metric is similar to the 'percentage
385 unvegetated' as proposed by Cole Ekberg et al. (2017), the only metric that did not show a
386 decrease in vulnerability at field site 4 (Table 3).

387 In conclusion, we propose to include fetch length of ponds and ratio of unvegetated versus
388 vegetated marsh area as two additional indices to assess the long-term vulnerability of marshes,
389 in particular to wind wave driven marsh edge erosion and tidal export of eroded sediments. The
390 values for these two metrics show an increase from field site 1 towards field site 4, and indeed
391 identify field site 4 as the most vulnerable to marsh loss in our study area.

392

393 **7 Conclusion**

394 Along a spatial gradient of increasing marsh loss, the skewness of the marsh elevation distribution
395 shifts from negative to positive, indicating a shift from marshes that are resilient to SLR to marshes
396 that are highly vulnerable. The abundance of individual species was not found to be a good
397 indicator for marsh vulnerability to SLR, but the total proportion of codominant species in
398 mixtures increased along the marsh die-off gradient and resulted in the same vulnerability trend

399 as the elevation skewness. These vulnerability trends corroborate previously proposed indices of
400 marsh vulnerability to SLR.

401 A remarkable result was that all above-mentioned indices suggested a lower vulnerability at the
402 site with the largest area of marsh loss. This highlights a shortcoming of the current indices
403 because they do not account for marsh loss by lateral erosional feedback mechanisms by wind
404 waves and tidal currents. We recommend including two parameters, fetch length and sediment
405 budget, to correctly assess long-term vulnerability which should aid managers to take the
406 appropriate restoration or mitigation measures.

407 Our results demonstrate that there might be two management strategies, based on the extent of
408 marsh loss. The elevation skewness and the proportion of mixtures of marshes, in combination
409 with newly proposed indicators by Raposa et al. (2016) and Cole Ekberg et al. (2017), can be used
410 initially as indicators of vertical marsh vulnerability to SLR. This will aid managers to monitor
411 existing marshes and to recognize early signs of marsh stress to SLR. If needed, the managers can
412 take actions to alleviate the stress e.g. by ensuring that enough sediment reaches marshes to keep
413 up with SLR or sediment is applied to marshes to recover optimum elevations. However, if
414 marshes are already experiencing marsh loss, our results indicate that managers should be
415 especially cautious about lateral processes that are not included in typical vulnerability
416 assessments, and can result in runaway erosion of large marshes. Preventing wave erosion by
417 nature based strategies such as building oyster reefs might be a suitable option (Walles et al.,
418 2015; Salvador de Paiva et al., 2018). Importantly, maintaining existing marshes is essential for
419 either strategy since recovery of lost marshes may be far more difficult to achieve due to feedback
420 mechanisms (Slocum and Mendelssohn, 2008; Day et al., 2011; Baustian et al., 2012; Mariotti,
421 2016).

422

423 **Data availability**

424 The LiDAR data was originally extracted from Maryland's GIS & Data portal
425 (<http://imap.maryland.gov>), but is currently no longer available. We have stored our extract with
426 metadata in the Marine Data Archive at
427 http://mdaviz.be/directlink.php?fid=VLIZ_00000640_5d7e98c6af96d

428

429 **Acknowledgements**

430 This project was financed by an UA-BOF DOCPRO grant (to L.S. and S.T.), the Research Foundation
431 Flanders (FWO, PhD grants L.S., 11S9614N & 11S9616N, travel grants L.S. V428214N and S.T.
432 K217414N), by the U.S. Geological Survey, Climate and Land-Use Research and Development
433 Program (G.G.), by NSF GLD 1529245, NSF SEES 1426981, NSF LTER 1237733 (M.K.). We would
434 like to thank the managers and biologists of the Blackwater National Wildlife Refuge for their
435 assistance and valuable comments; and P. Brennan (USGS) for indispensable field assistance. Any
436 use of trade, firm, or product names is for descriptive purposes only and does not imply
437 endorsement by the U.S. Government.

438

439 **Conflict of interest**

440 The authors declare no conflict of interest.

441

442 **References**

443 Allen, J.R.L., 1990. Salt-marsh growth and stratification: A numerical model with special reference
444 to the Severn Estuary, southwest Britain. *Mar. Geol.* 95, 77–96. doi:10.1016/0025-
445 3227(90)90042-I

446 Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C., Silliman, B.R., 2011. The value of
447 estuarine and coastal ecosystem services. *Ecol. Monogr.* 81, 169–193. doi:10.1890/10-
448 1510.1

449 Baustian, J.J., Mendelsohn, I. a., Hester, M.W., 2012. Vegetation's importance in regulating surface
450 elevation in a coastal salt marsh facing elevated rates of sea level rise. *Glob. Chang. Biol.* 18,
451 3377–3382. doi:10.1111/j.1365-2486.2012.02792.x

452 Bertness, M.D., 1991a. Interspecific Interactions among High Marsh Perennials in a New England
453 Salt Marsh. *Ecology* 72, 125–137. doi:10.2307/1938908

454 Bertness, M.D., 1991b. Zonation of *Spartina Patens* and *Spartina Alterniflora* in New England Salt
455 Marsh. *Ecology* 72, 138–148. doi:10.2307/1938909

456 Bertness, M.D., Callaway, R., 1994. Positive interactions in communities. *Trends Ecol. Evol.* 9, 187–
457 191. doi:10.1016/0169-5347(94)90087-6

458 Bertness, M.D., Hacker, S.D., 1994. Physical Stress and Positive Associations Among Marsh Plants.
459 *Am. Nat.* 144, 363. doi:10.1086/285681

460 Boaga, J., D'Alpaos, A., Cassiani, G., Marani, M., Putti, M., 2014. Plant-soil interactions in salt marsh
461 environments: Experimental evidence from electrical resistivity tomography in the Venice
462 Lagoon. *Geophys. Res. Lett.* 41, 6160–6166. doi:10.1002/2014GL060983

463 Boesch, D.F., Turner, R.E., 1984. Dependence of Fishery Species on Salt Marshes: The Role of Food
464 and Refuge. *Estuaries* 7, 460–468. doi:10.2307/1351627

465 Cahoon, D.R., Guntenspergen, G.R., 2010. Climate Change, Sea-Level Rise, and Coastal Wetlands.
466 *Natl. Wetl. Newsl.* 32, 8–12.

467 Cahoon, D.R., Guntenspergen, G.R., Baird, S., 2010. Do Annual Prescribed Fires Enhance or Slow
468 the Loss of Coastal Marsh Habitat at Blackwater National Wildlife Refuge? Final Report to
469 Joint Fire Science Program Project Number 06-2-1-35.

470 Callaway, R.M., 1994. Facilitative and Interfering Effects of *Arthrocnemum Subterminale* on
471 Winter Annuals. *Ecology* 75, 681–686.

472 Carniello, L., Defina, A., D'Alpaos, L., 2009. Morphological evolution of the Venice lagoon: Evidence
473 from the past and trend for the future. *J. Geophys. Res. Earth Surf.* 114, 1–10.
474 doi:10.1029/2008JF001157

475 Carullo, M., Carlisle, B.K., Smith, J.P., 2007. A New England rapid assessment method for assessing
476 condition of estuarine marshes: A Boston Harbor, Cape Cod and Islands pilot study.
477 Massachusetts Off. Coast. Zo. Manag. Boston, USA.

478 Chmura, G.L., Anisfeld, S.C., Cahoon, D.R., Lynch, J.C., 2003. Global carbon sequestration in tidal,
479 saline wetland soils. *Global Biogeochem. Cycles* 17. doi:10.1029/2002GB001917

480 Cole Ekberg, M.L., Raposa, K.B., Ferguson, W.S., Ruddock, K., Watson, E.B., 2017. Development and
481 Application of a Method to Identify Salt Marsh Vulnerability to Sea Level Rise. *Estuaries and*
482 *Coasts* 40, 694–710. doi:10.1007/s12237-017-0219-0

483 Cox, T., Schepers, L., 2017. Tides: Quasi-Periodic Time Series Characteristics. R package version
484 2.0. <https://cran.r-project.org/web/packages/Tides>.

485 Day, J.W., Britsch, L.D., Hawes, S.R., Shaffer, G.P., Reed, D.J., Cahoon, D.R., 2000. Pattern and Process
486 of Land Loss in the Mississippi Delta: A Spatial and Temporal Analysis of Wetland Habitat
487 Change. *Estuaries* 23, 425–438. doi:10.2307/1353136

488 Day, J.W., Kemp, G.P., Reed, D.J., Cahoon, D.R., Boumans, R.M., Suhayda, J.M., Gambrell, R., 2011.
489 Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt
490 marshes: The role of sedimentation, autocompaction and sea-level rise. *Ecol. Eng.* 37, 229–
491 240. doi:10.1016/j.ecoleng.2010.11.021

492 Donnelly, J.P., Bertness, M.D., 2001. Rapid shoreward encroachment of salt marsh cordgrass in
493 response to accelerated sea-level rise. *Proc. Natl. Acad. Sci. U. S. A.* 98, 14218–14223.
494 doi:10.1073/pnas.251209298

495 Fagherazzi, S., Carniello, L., D'Alpaos, L., Defina, A., 2006. Critical bifurcation of shallow microtidal
496 landforms in tidal flats and salt marshes. *Proc. Natl. Acad. Sci. U. S. A.* 103, 8337–8341.
497 doi:10.1073/pnas.0508379103

498 Fagherazzi, S., Mariotti, G., Wiberg, P., McGlathery, K., 2013. Marsh Collapse Does Not Require Sea
499 Level Rise. *Oceanography* 26, 70–77. doi:10.5670/oceanog.2013.47

500 Fleming, B.J., DeJong, B.D., Phelan, D.J., 2011. Geology, hydrology, and water quality of the Little
501 Blackwater River watershed, Dorchester County, Maryland, 2006–09: U.S. Geological Survey
502 Scientific Investigations Report 2011–5054. <http://pubs.usgs.gov/sir/2011/5054/>.

503 French, J., 2006. Tidal marsh sedimentation and resilience to environmental change: Exploratory
504 modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous
505 systems. *Mar. Geol.* 235, 119–136. doi:10.1016/j.margeo.2006.10.009

506 Ganju, N.K., Defne, Z., Kirwan, M.L., Fagherazzi, S., D'Alpaos, A., Carniello, L., 2017. Spatially
507 integrative metrics reveal hidden vulnerability of microtidal salt marshes. *Nat. Commun.* 8,
508 14156. doi:10.1038/ncomms14156

509 Ganju, N.K., Kirwan, M.L., Dickhudt, P.J., Guntenspergen, G.R., Cahoon, D.R., Kroeger, K.D., 2015.
510 Sediment transport-based metrics of wetland stability. *Geophys. Res. Lett.* 42, 7992–8000.
511 doi:10.1002/2015GL065980

512 Ganju, N.K., Nidzieko, N.J., Kirwan, M.L., 2013. Inferring tidal wetland stability from channel
513 sediment fluxes: Observations and a conceptual model. *J. Geophys. Res. Earth Surf.* 118,
514 2045–2058. doi:10.1002/jgrf.20143

515 Hopkinson, C. S., Morris, J. T., Fagherazzi, S., Wollheim, W. M., Raymond, P. A. 2018. Lateral marsh
516 edge erosion as a source of sediments for vertical marsh accretion. *J. Geophys. Res. Biogeosci.*
517 123(8), 2444-2465. doi: 10.1029/2017JG004358

518 Kearney, M.S., Grace, R.E., Stevenson, J.C., 1988. Marsh Loss in Nanticoke Estuary, Chesapeake Bay.
519 *Geogr. Rev.* 78, 205–220. doi:10.2307/214178

520 Kearney, M.S., Turner, R.E., 2016. Microtidal Marshes: Can These Widespread and Fragile Marshes
521 Survive Increasing Climate–Sea Level Variability and Human Action? *J. Coast. Res.* 319, 686–
522 699. doi:10.2112/JCOASTRES-D-15-00069.1

523 Kendrot, S.R., 2011. Restoration through eradication : protecting Chesapeake Bay marshlands
524 from invasive nutria (*Myocastor coypus*), in: Veitch, C.R., Clout, M.N., Towns, D.R. (Eds.),
525 Island Invasives: Eradication and Management. Proceedings of the International Conference
526 on Island Invasives. Gland, Switzerland: IUCN and Auckland, New Zealand: CBB, pp. 313–319.

527 Kirwan, M.L., Guntenspergen, G.R., 2010. Influence of tidal range on the stability of coastal
528 marshland. *J. Geophys. Res.* 115, F02009. doi:10.1029/2009JF001400

529 Kirwan, ML and Guntenspergen, GR. 2012. Feedbacks between inundation, root production, and
530 shoot growth in a rapidly submerging brackish marsh. *Journal of Ecology*, 100, 764-770.

531 Kirwan, M.L. and Guntenspergen, G.R., 2015. Response of Plant Productivity to Experimental
532 Flooding in a Stable and a Submerging Marsh. *Ecosystems* 18, 903-913.

533 Kirwan, M.L., Guntenspergen, G.R., D'Alpaos, A., Morris, J.T., Mudd, S.M., Temmerman, S., 2010.
534 Limits on the adaptability of coastal marshes to rising sea level. *Geophys. Res. Lett.* 37,
535 L23401. doi:10.1029/2010GL045489

536 Kirwan, ML and Murray, AB, 2008. Tidal marshes as disequilibrium landscapes? Lags between
537 morphology and Holocene sea level change. *Geophysical Research Letters* 35, L24401
538 doi:10.1029/2008GL036050.

539 Kirwan, M.L., Murray, a. B., 2008. Ecological and morphological response of brackish tidal
540 marshland to the next century of sea level rise: Westham Island, British Columbia. *Glob.*
541 *Planet. Change* 60, 471–486. doi:10.1016/j.gloplacha.2007.05.005

542 Kirwan, M and Temmerman, S, 2009. Coastal marsh response to historical and future sea level
543 acceleration. *Quaternary Science Reviews*, v. 28, p. 1801-1808,
544 doi:10.1016/j.quascirev.2009.02.022.

545 Marani, M., D'Alpaos, A., Lanzoni, S., Carniello, L., Rinaldo, A., 2010. The importance of being
546 coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. *J. Geophys. Res.*
547 *Earth Surf.* 115, 1–15. doi:10.1029/2009JF001600

548 Mariotti, G., 2016. Revisiting salt marsh resilience to sea level rise: Are ponds responsible for
549 permanent land loss? *J. Geophys. Res. Earth Surf.* 121, 1391–1407.
550 doi:10.1002/2016JF003900

551 Mariotti, G., Carr, J., 2014. Dual role of salt marsh retreat: Long-term loss and short-term resilience.
552 *Water Resour. Res.* 50, 2963–2974. doi:10.1002/2013WR014676

553 McLeod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger,
554 W.H., Silliman, B.R., 2011. A blueprint for blue carbon: Toward an improved understanding
555 of the role of vegetated coastal habitats in sequestering CO₂. *Front. Ecol. Environ.* 9, 552–
556 560. doi:10.1890/110004

557 Millette, T.L., Argow, B.A., Marcano, E., Hayward, C., Hopkinson, C.S., Valentine, V., 2010.
558 Integration of Multitemporal Multispectral Remote Sensing with LIDAR and GIS. *J. Coast. Res.*
559 265, 809–816. doi:10.2112/JCOASTRES-D-09-00101.1

560 Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van Wesenbeeck, B.K., Wolters, G., Jensen,
561 K., Bouma, T.J., Miranda-Lange, M., Schimmels, S., 2014. Wave attenuation over coastal salt

562 marshes under storm surge conditions. *Nat. Geosci.* 7, 727–731. doi:10.1038/ngeo2251

563 Morris, J.T., Porter, D., Neet, M., Noble, P.A., Schmidt, L., Lapine, L.A., Jensen, J.R., 2005. Integrating
564 LIDAR elevation data, multi-spectral imagery and neural network modelling for marsh
565 characterization. *Int. J. Remote Sens.* 26, 5221–5234. doi:10.1080/01431160500219018

566 Morris, J.T., Sundareshwar, P. V., Nietch, C.T., Kjerfve, B., Cahoon, D.R., 2002. Responses of Coastal
567 Wetlands to Rising Sea Level. *Ecology* 83, 2869–2877. doi:10.1890/0012-
568 9658(2002)083[2869:ROCWTR]2.0.CO;2

569 Nyman, J.A., Carloss, M., DeLaune, R.D., Patrick, W.H., 1994. Erosion rather than plant dieback as
570 the mechanism of marsh loss in an estuarine marsh. *Earth Surf. Process. Landforms* 19, 69–
571 84. doi:10.1002/esp.3290190106

572 Ortiz, A.C., Roy, S., Edmonds, D.A., 2017. Land loss by pond expansion on the Mississippi River
573 Delta Plain. *Geophys. Res. Lett.* 44, 3635–3642. doi:10.1002/2017GL073079

574 Ouyang, X., Lee, S.Y., 2014. Updated estimates of carbon accumulation rates in coastal marsh
575 sediments. *Biogeosciences* 11, 5057–5071. doi:10.5194/bg-11-5057-2014

576 Pethick, J.S., 1981. Long-term Accretion Rates on Tidal Salt Marshes. *J. Sediment. Res.* 51, 571–577.
577 doi:10.1306/212F7CDE-2B24-11D7-8648000102C1865D

578 R Core Team, 2017. R: A Language and Environment for Statistical Computing, Vienna, Austria.

579 Raposa, K.B., Wasson, K., Smith, E., Crooks, J.A., Delgado, P., Fernald, S.H., Ferner, M.C., Helms, A.,
580 Hice, L.A., Mora, J.W., Puckett, B., Sanger, D., Shull, S., Spurrier, L., Stevens, R., Lerberg, S., 2016.
581 Assessing tidal marsh resilience to sea-level rise at broad geographic scales with multi-
582 metric indices. *Biol. Conserv.* 204, 263–275. doi:10.1016/j.biocon.2016.10.015

583 Raposa, K.B., Weber, R.L.J., Ekberg, M.C., Ferguson, W., 2017. Vegetation Dynamics in Rhode Island
584 Salt Marshes During a Period of Accelerating Sea Level Rise and Extreme Sea Level Events.
585 *Estuaries and Coasts* 40, 640–650. doi:10.1007/s12237-015-0018-4

586 Rogerson, A., McLaughlin, E., Havens, K., 2010. Mid-Atlantic Tidal Wetland Rapid Assessment
587 Method Version 3.0.

588 Rohweder, J., Rogala, J.T., Johnson, B.L., Anderson, D., Clark, S., Chamberlin, F., Potter, D., Runyon,
589 K., 2012. Application of wind fetch and wave models for habitat rehabilitation and
590 enhancement projects—2012 update. U.S. Army Corp. Eng. Contract Rep.
591 doi:10.1017/CBO9781107415324.004

592 Salvador de Paiva, J.N., Walles, B., Ysebaert, T., Bouma, T.J., 2018. Understanding the conditionality
593 of ecosystem services: The effect of tidal flat morphology and oyster reef characteristics on
594 sediment stabilization by oyster reefs. *Ecol. Eng.* 112, 89–95.
595 doi:10.1016/j.ecoleng.2017.12.020

596 Schepers, L., Brennand, P., Kirwan, M., Guntenspergen, G., Temmerman, S., 2019. Coastal Marsh
597 Degradation into Ponds Induces Irreversible Elevation Loss Relative to Sea Level. Manuscript
598 submitted for publication.

599 Schepers, L., Kirwan, M., Guntenspergen, G., Temmerman, S., 2017. Spatio-temporal development
600 of vegetation die-off in a submerging coastal marsh. *Limnol. Oceanogr.* 62, 137–150.
601 doi:10.1002/lno.10381

602 Scott, M., McDermott, L., Silva, E., Watson, E., 2009. Project report: Digital Spatial Data Capture of
603 Marsh Extent in Blackwater National Wildlife Refuge, 1938 and 2006. Eastern Shore Regional

604 GIS Cooperative, Salisbury University.

605 Slocum, M.G., Mendelsohn, I.A., 2008. Use of experimental disturbances to assess resilience along
606 a known stress gradient. *Ecol. Indic.* 8, 181–190. doi:10.1016/j.ecolind.2007.01.011

607 Smith, S.M., 2009. Multi-Decadal Changes in Salt Marshes of Cape Cod, MA: Photographic Analyses
608 of Vegetation Loss, Species Shifts, and Geomorphic Change. *Northeast. Nat.* 16, 183–208.
609 doi:10.1656/045.016.0203

610 Stevenson, J.C., Kearney, M.S., Pendleton, E.C., 1985. Sedimentation and erosion in a Chesapeake
611 Bay brackish marsh system. *Mar. Geol.* 67, 213–235. doi:10.1016/0025-3227(85)90093-3

612 Temmerman, S., Govers, G., Meire, P., Wartel, S., 2003. Modelling long-term tidal marsh growth
613 under changing tidal conditions and suspended sediment concentrations, Scheldt estuary,
614 Belgium. *Mar. Geol.* 193, 151–169. doi:10.1016/S0025-3227(02)00642-4

615 Temmerman, S., Meire, P., Bouma, T.J., Herman, P.M.J., Ysebaert, T., De Vriend, H.J., 2013.
616 Ecosystem-based coastal defence in the face of global change. *Nature* 504, 79–83.
617 doi:10.1038/nature12859

618 van Belzen, J., van de Koppel, J., Kirwan, M.L., van der Wal, D., Herman, P.M.J., Dakos, V., Kéfi, S.,
619 Scheffer, M., Guntenspergen, G.R., Bouma, T.J., 2017. Vegetation recovery in tidal marshes
620 reveals critical slowing down under increased inundation. *Nat. Commun.* 8, 15811.
621 doi:10.1038/ncomms15811

622 Walles, B., Salvador de Paiva, J., van Prooijen, B.C., Ysebaert, T., Smaal, A.C., 2015. The Ecosystem
623 Engineer *Crassostrea gigas* Affects Tidal Flat Morphology Beyond the Boundary of Their Reef
624 Structures. *Estuaries and Coasts* 38, 941–950. doi:10.1007/s12237-014-9860-z

625 Wang, C., Temmerman, S., 2013. Does biogeomorphic feedback lead to abrupt shifts between
626 alternative landscape states?: An empirical study on intertidal flats and marshes. *J. Geophys.*
627 Res. Earth Surf.

628 118, 229–240. doi:10.1029/2012JF002474

629 Wigand, C., Carlisle, B., Smith, J., Carullo, M., Fillis, D., Charpentier, M., McKinney, R., Johnson, R.,
630 Heltshe, J., 2011. Development and validation of rapid assessment indices of condition for
631 coastal tidal wetlands in southern New England, USA. *Environ. Monit. Assess.* 182, 31–46.
doi:10.1007/s10661-010-1856-y

632 Wilson, C.A., Hughes, Z.J., FitzGerald, D.M., Hopkinson, C.S., Valentine, V., Kolker, A.S., 2014.
633 Saltmarsh pool and tidal creek morphodynamics: Dynamic equilibrium of northern latitude
634 saltmarshes? *Geomorphology* 213, 99–115. doi:10.1016/j.geomorph.2014.01.002

635 Wilson, K.R., Kelley, J.T., Tanner, B.R., Belknap, D.F., 2010. Probing the Origins and Stratigraphic
636 Signature of Salt Pools from North-Temperate Marshes in Maine, U.S.A. *J. Coast. Res.* 26,
637 1007–1026. doi:10.2112/JCOASTRES-D-10-00007.1

638

639

640 **Figure Captions**

641 Figure 1: Aerial image of the Blackwater Marshes. From lower right corner to upper left corner of the image
642 (i.e. in upstream direction along the Blackwater River) marshes are changing from high marsh vegetation
643 cover (reddish color) close to the Fishing Bay (SE-corner) to increasing open water areas (dark color) in
644 upstream direction, and ultimately to Lake Blackwater (NW-corner). White lines indicate GPS measurement
645 points. White shaded areas with dashed outlines are no marshes but upland areas. Inset: Location of the
646 Blackwater marshes along the Chesapeake Bay (white rectangle)

647 Figure 2: Changes in skewness of elevation distributions along the gradient of increasing marsh loss from
648 field site 1 (left) to 4 (right). Top to bottom: aerial images of field sites with increasing marsh loss (marshes
649 represented by reddish color); LiDAR elevation distributions and calculated skewness; GPS elevation
650 distributions and skewness; and bootstrap analysis of the skewness of the GPS elevation distributions,
651 indicating if the skewness is significantly negative (resilient marsh), neutral or positive (vulnerable marsh)
652 when the 0 skewness (red vertical line) is lower, in or higher than the skewness range (indicated by the
653 grey vertical lines i.e. the 2.5th and 97.5th percentile) respectively.

654 Figure 3: Changes in skewness of elevation distributions along a gradient of simulated increasing marsh
655 loss (from left to right). Top row: aerial images of field site 1 with simulated progressive marsh loss of the
656 lowest areas. Marsh areas are represented by reddish colors. Middle row: LiDAR elevation distribution and
657 skewness corresponding with the marsh loss simulations. Bottom row: The observed marsh loss at field
658 sites 1 to 4. Note that the simulated marsh loss resemble the observed marsh loss.

659 Figure 4: Abundances of the most prevalent species (sa: *Schoenoplectus americanus*, spa: *Spartina*
660 *alterniflora*, spp: *Spartina patens*, dsp: *Distichlis spicata* and spc: *Spartina cynosuroides*) in the four sites with
661 increasing marsh loss (sites 1 to 4 indicated on the X-axes). The numbers do not show consistent trends
662 with increasing marsh loss except for *Distichlis spicata*.

663 Figure 5: Proportion of mixtures in each field site with increasing marsh loss (sites 1 to 4 indicated on the
664 X-axis). The total number of mixtures results in a similar trend as the skewness indicator (see Fig. 2). sa:
665 *Schoenoplectus americanus*, spa: *Spartina alterniflora*, spp: *Spartina patens*, dsp: *Distichlis spicata* and spc:
666 *Spartina cynosuroides*

667

668

669

670 **Tables**

671 Table 1: vulnerability indices with short explanation from Raposa et al. (2016) and Cole Ekberg et al. (2017).

Indices from (Raposa et al., 2016)

Percentage of marsh below Mean High Water level (MHW)
Percentage of marsh below lowest third of plant distribution
Elevation skewness (see equation 1)
Elevation change rate (mm yr⁻¹)
Short-term accretion rate (mm yr⁻¹)
Long-term accretion rate (mm yr⁻¹)
Turbidity of the water (NTU)
Tidal range (m)
Long-term rate of Sea Level Rise (SLR) (mm yr⁻¹)
Short-term inter-annual variability in water levels (mm)

Indices from Cole Ekberg et al. (2017)

Median marsh orthometric height (m NAVD88)
Median marsh elevation relative to MHW
Modelled marsh loss with 0.3, 0.9 and 1.5 m of SLR with the Sea Level Affecting Marshes Model (SLAMM)
Loading Response: the depth that the PVC tube and penetrometer (4.6 kg) sink into the marsh when placed on its surface,
Penetration depth: the depth of penetration of the PVC tube after five blows from the hammer attached to the penetrometer.
Percentage unvegetated marsh area
Percentage *S. alterniflora* monoculture (low marsh)
Percentage turf grass type I (irregularly flooded, dominated by *Spartina patens*, *Distichlis spicata*, *Juncus gerardii*, with no *S. alterniflora*)
Percentage of perennial turfgrass type II (identical to type I, but *S. alterniflora* may be present but not dominant.

672

673

674

675 Table 2: vulnerability indices according to (Raposa et al., 2016)* show increasing vulnerability from field
676 site 1 to site 3 and again a decrease in vulnerability in site 4. A lower MARS score means higher vulnerability
677 to SLR.

Colorscale	Resilient			Vulnerable
Field site	1	2	3	4
% below MHW	79.7	96.3	93.9	86.8
% below third elevation	4.5	18.5	34.1	5.3
Skewness	-1.11	-0.12	0.49	-0.02
Average Marsh Elevation index	3.6	3	2.6	3.3
Tidal range (m)	0.63	0.31	0.20	0.06
MARS average score	2.5	2	1.5	2

678 *Not included: Elevation change rate, short-term and long-term accretion rate, turbidity, long-
679 term rate of SLR, short-term inter-annual variability in water levels.

680

681

682 Table 3: vulnerability indices according to (Cole Ekberg et al., 2017)* show increasing vulnerability from
683 field site 1 to site 3 and again a decrease in vulnerability in site 4.

Field site	1	2	3	4
Median marsh orthometric height (m NAVD88)	0.41	0.19	0.12	0.12
Median marsh elevation relative to MHW	-0.06	-0.12	-0.11	-0.06
Percentage unvegetated	1.55	11.42	33.25	58.24
Percentage <i>S. alterniflora</i> monoculture (low marsh)	23.42	9.88	34.15	15.79
Percentage turf grass type I (high marsh)	47.75	2.47	9.15	11.40
Average score (1 vulnerable – 4 resilient)	3.8	2.6	2	2.6

684 *Not included: average *S. alterniflora* height, Modelled loss with 0.3, 0.9 and 1.5 m of SLR, soil
685 penetration depth and loading response, percent of perennial turfgrass type II.

686

687

688 Table 4: proposed indices to be include to assess long-term marsh vulnerability.

Field site	1	2	3	4
Average fetch length for all pond points (m)	4.3	68.3	60.5	281.0
Ratio Unvegetated/vegetated marsh area	0.02	0.14	0.52	1.37
Long-term score (1 vulnerable – 4 resilient)	4	2.5	2.5	1

689

690