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Development of composite material parts requires significant research and development effort. The fiber size,
volume fraction and direction are important in determining the properties of the part. Additive manufacturing
(AM) methods are increasingly used for printing composite materials. Advancements in 3D scanning and imaging
technology have raised a significant concern in reverse engineering of parts made by AM, which may result in
counterfeiting and unauthorized production of high quality parts. This work is focused on using imaging methods

and machine learning to reverse engineer a composite material part, where not only the geometry is captured but
also the tool path of 3D printing is reconstructed using machine learning of microstructure. A dimensional ac-
curacy with only 0.33% difference is achieved for the reverse engineered model.

1. Introduction

Additive Manufacturing (AM) methods are being adopted in in-
dustries ranging from aerospace, automotive and medical to arts and
construction [1-3]. The capabilities of 3D printers are increasing to
allow printing different kinds of materials and geometries. A wide range
of feed materials are available across the spectrum of polymers, metals,
ceramics and concrete as well as biomaterials and reinforced polymers
[4-6]. 3D printed biomaterial such as strontium substituted hydroxy-
apatite (SrHA) recently showed promising results for bone tissue engi-
neering applications [7].

Polymer matrix composites (PMCs) are now widely used in weight
sensitive industrial applications such as aircraft and automobile struc-
tures. Many of these composite structures have been successfully 3D
printed, especially with carbon and glass fiber reinforcement [8,9]. As
the need for 3D printing lightweight materials is increasing, innovative
material filaments are being developed for use in commercial 3D
printers. A high-density polyethylene composite reinforced with fly ash
cenosphere is found promising for use in commercial fused filament
fabrication (FFF) 3D printers [10,11]. Efforts are also going on to recycle
thermoplastics for developing high performance 3D printable PMC fil-
aments for use in FFF printers [12]. These developments in new mate-
rials for AM are coupled with developing new capabilities in 3D printers.
Using a multi-head FDM 3D printer has enabled co-deposition of
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multiple materials and printing multifunctional products [13]. FFF
printing of carbon nanotube reinforced PEEK has also been used for
developing multifunctional composites [14,15]. In many cases, the
toolpath of 3D printers is configured to obtain specific distribution or
orientation of reinforcement in the manufactured part.

Significant research and development effort is invested in developing
the composite material parts using AM, which requires configuring pa-
rameters such as volume fraction and orientation of the reinforcement as
well as optimizing AM parameters such as slicing thickness and toolpath
[16]. Since many high technology applications, e. g. aircraft and satellite
parts, are being printed using AM of composite materials, reverse en-
gineering of these parts may result in loss of important intellectual
property. The part shape can be reverse engineered using 3D scanners
and CAD design tools. However, obtaining a high-quality composite part
also requires reproducing composite parameters such as volume fraction
of the reinforcement and 3D printer toolpath. Methods are available to
determine the volume fraction and orientation of reinforcement in
composites [17,18], which can also be used on 3D printed parts. In
recent years, a steady improvement in the capabilities of micro-CT (pCT)
scans is observed that has allowed improved image quality and possi-
bility of conducting in-situ experiments [19-22]. In a recently published
research article, micro-CT images are used to read the embedded QR
code in a 3D printed part for product authentication and since the im-
ages are off low contrast image processing techniques were used to
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improve the readability [22]. The present work is focused on deter-
mining the possibility of reconstructing the toolpath of 3D printed parts
by means of identifying the orientation of fibers in the microstructure
obtained from microscopy and pCT scan, which has not been studied yet.

Cybersecurity risks related to sabotage or reverse engineering of
parts have been studied in detail because 3D printing has made it easier
to print parts without having expertise in the manufacturing process
[23,24]. The classification of attack and possible damage by the attacks
has been described for AM [25,26]. Once considered a remote possi-
bility, side channel attacks related to capturing power consumption or
vibration of the machine and using it for reverse engineering have been
successfully demonstrated [27]. Since the AM process is defined as a
cyber-physical system (CPS), it is exposed to both physical and cyber
risks [28,29]. Sabotage during the 3D printing process has shown to
embed defects that are hard to detect using conventional destructive or
non-destructive test methods and cause in-service failure of parts [30].
Attacks related to sabotaging fiber reinforced laminated composite
materials have also been studied, where a change in the layup sequence
of a laminate can change the mechanical properties [31]. Technologies
are required to enable positive identification of genuine parts made by
AM [32]. Novel methods are being developed to counter the unautho-
rized production and reverse engineering. In one available approach,
security features are embedded in CAD files so the high-quality part will
only print under unique settings such as STL file resolution, slicing
conditions, part orientation on the print bed, and the printer operating
parameters [33]. In another approach, a method was developed using
image processing techniques known as G-ID slicing and labelling inter-
face [34]. Where the subtle patterns left by the 3D printer are identified
and tagged using the slicing and infill parameters instead of embedding
new tags onto the model [34]. In this work, the possibility of reverse
engineering the tool path used to 3D print a composite material spec-
imen is explored using machine learning methods. While ML methods
are enabling composite material design [35-37], they may also be used
for reverse engineering of products, which is the focus of the present
work.

2. Material and methods

A FlashForge- Creator Pro Dual Extruder FFF 3D printer is used for
printing the specimens. The CAD models are designed using SolidWorks
2017 (Waltham, Massachusetts) and saved in STL format. ABS-GF10
glass fiber reinforced acrylonitrile butadiene styrene (ABS) filament of
1.75 mm diameter, manufactured by 3DXTECH, Grand Rapids Michi-
gan, USA, is used for 3D printing. The STL files are processed using
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ReplicatorG software for preparing the sliced model and generating the
G-code, which is used for printing the model. The printing parameters
included 100% solid infill, travel feed rate of 15 mm/s, feed rate of 41
mm/s, extrusion temperature of 220 °C, and build platform temperature
of 120 °C. The printing direction of the fiber is set to 0° and 90° for
alternative layers and the layer resolution (thickness of each layer) is set
to 0.27 mm for the original model and 0.28 mm for the reversed engi-
neered model. Fig. 1 shows the CAD model, a cube of 6 mm side, and
Fig. 1 shows the uCT scan of the 3D printed model. Five identical cubes
were printed for testing the repeatability of the process. Since the aim of
the present work is to capture the fiber orientation information, the
quality of the specimen and printing are not relevant at this stage. These
aspects may be covered in the future works when proficiency in
capturing the toolpath and printing parameters is attained.

2.1. Imaging

Hitachi S-3400N SEM (Tokyo, Japan) is used for capturing micro-
structure and dimensions of the specimens. The specimens are coated
with gold using Cressington 108 Auto Sputter Coater (Watford, United
Kingdom) before microscopy. The SEM images are used to measure the
specimen height and the height of each layer, which are used as inputs in
the ReplicatorG software when converting a 3D model into a STL format
for printing.

The pCT scans are conducted using SkyScan 1172 (Bruker, Belgium)
at the source voltage of 44 kV, current of 222 pA, and camera pixel size
of 9.5 pm, rotation step of 0.6° per scan, and 360° rotation providing 656
raw images. The image reconstruction software has an option to rotate
the images, which is useful in obtaining a clear final image of each layer
and helps in obtaining the fiber orientation at each layer. This infor-
mation of the fiber orientation at each layer is needed to reproduce the
G-Code. The reconstructed pCT images of two layers are shown in Fig. 2.
The glass fibers filled in ABS can be observed as the white lines. These
fibers help in inferring the printing direction in each image. Here, the
horizontal direction is taken as the reference and assigned 0° orientation
and then the orientation of fibers in individual layers are identified in
the counterclockwise direction.

2.2. Recurrent Neural Network

Recurrent neural network (RNN) is a supervised ML algorithm,
which is designed to model sequential data. The order is very important
in sequential data. There are different forms of sequence modeling al-
gorithms but the one used here is the many-to-one sequence model,
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Fig. 1. (a) CAD model with dimensions marked in mm and (b) pCT scan of the 3D printed part (the violet lines seen in the image are from the imaging refer-

ence frame).



K. Yanamandra et al.

Composites Science and Technology 198 (2020) 108318

Sil) um

Fig. 2. CT scan of slices of a 3D printed model after reconstruction showing (a) 0° and (b) 90° orientation of the fiber in the middle part.

which implies that the input data is a sequence but the output is not a
sequence, rather a fixed-size vector. In a standard neural network, after
the model is trained, information flows from input to the hidden layer to
the output layer. In an RNN, the hidden layer has inputs from both the
input layer and the hidden layer from the previous step. The flow of
information in an RNN from one time-step to another introduces
memory of past inputs into the network [38-40]. This flow of infor-
mation is usually depicted as a loop called recurrent edge.

The representation of a multilayer RNN is presented in Fig. 3, which
is used to predict the direction of fibers in a pCT scan image. The input
represented as x® is the CT-scan image in the present case and the
output y¥ is the fiber orientation angle. The curved loops beside the
hidden layers h{¥ and A% in the figure represent the recurrent edge. The
unfolded version shows the functioning of recurrent edge, where the
information flows from the past inputs to the hidden layer. At any time
instance t the model uses the information from the past and input at time
t to predict the output at t. Since AM follows a sequential process of
printing, the fiber orientation at each layer can be helpful to predict the
orientation of fiber of the next layer. Using this idea, an RNN model is
implemented in Python language and TensorFlow package. Typically, a
backpropagation through time (BPTT) algorithm is used to train an
RNN. However, the BPTT algorithm sometimes has a problem of van-
ishing gradient while training RNN. Since sequential data is fed into the
RNN model for training, it faces difficulty in learning the long-term
dependencies, which implies that the model will not be able to relate
the images which occurred several time steps apart. This problem leads
to preventing the weights in the hidden layer from updating according to
the gradient from the earlier time step, causing the RNN to stop from
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further training. To address these issues, the RNN architecture with Long
Short-Term Memory (LSTM) network is used [40]. RNN with hidden
layers containing LSTM cells take information from the input and from
the previous hidden layers and calculate the output through a standard
set of equations. Then sending the information to the next layer in the
model and to the hidden layer (i.e. another LSTM cell) in the next time
step. LSTM cells are designed to handle the vanishing gradient problem,
which have inbuilt default units programmed to remember the updates
from the previous time steps without loss of information over long time
steps.

3. Results and discussion
3.1. Dimensional accuracy of reverse engineered sample

The printed cubes have some curvature due to thermal expansion
mismatch between the modeling material and build plate. Hence,
dimensional measurements were conducted on the printed cubes and on
the images obtained by SEM to measure the length of various sections.

Table 1
Comparison of measurements of one of the original models obtained using
Vernier calipers and SEM images.

Measurement Length (mm) Width (mm) Height (mm)
Vernier Caliper 6.06 + 0.04 6.10 + 0.04 6.06 + 0.08
SEM 6.05 + 0.01 6.10 + 0.04 6.10 + 0.02

Fig. 3. Representation of the multilayer RNN and the unfolded version of it.
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Table 1 compares the measurements obtained by the two methods. The
measurements obtained from both methods are very consistent and have
a small standard deviation. The measured dimensions are consistent
with those in the CAD model. After finding the overall dimensions, the
next task in reverse engineering is to gather information on the number
of layers in the specimen and fiber orientation in each step.

The fiber orientation is obtained from the pCT scan images. In Fig. 4,
images of the 3D printed model are shown. It can be observed that a
border is first printed and then the material is deposited to fill the inner
square space. This region of interest is enclosed by the red squares, in
which glass fibers are aligned in a specific direction only. The orienta-
tions of fibers are identified as 0° and 90° in Fig. 4a and Fig. 4b,
respectively. Similar analysis is conducted layer by layer and these nCT
images are used to train the ML model. The boundary is ignored in the
analysis because the direction of boundary printing is always the same
and easy to replicate.

A few pCT images show overlapping printing directions as shown in
Fig. 5 because the scan resolution is much finer than the deposited layer
thickness. These overlapping images are mostly at the boundary of two
deposited layers due to the slight slope that can be either in the printing
or in the specimen positioning on the pCT stage. These images are
removed from the dataset because there is enough information available
from other slices that are cleaner. In order to have a defined/labeled
angle, a set of 433 images that show clear orientation of fibers is iden-
tified and rotated so that the fiber orientation is horizontal. These im-
ages are labeled as 0° fiber orientations. All the images are cropped to a
region of interest to decrease the number of pixels in the analysis. The
cropped image is shown in Fig. 5 with each image having 536 x 536
pixels. A circular cropped image is used in order to avoid any sharp
angles in the image because training a neural network having corners or
sharp angles can make the network biased resulting in inaccurate pre-
dictions. Individual fibers in each image show some variation in their
direction. However, the algorithm takes the global signature as the
features for the 0° and disregards the individual fiber orientation. Each
of these images are then rotated counterclockwise from 0° to 180° at
1°interval using a Python code. This procedure allows creating a large
training database with controlled fiber orientation and trains the model
to identify any angle. This procedure resulted in 78,373 images. The
process of rotating the images and cropping them to generate training
data is known as image augmentation and it is helpful in training the
neural network model to be robust.

In order to accelerate the image augmentation, Binarized Statistical
Image Features (BSIF) algorithm is used [41]. BSIF is used to convert an
image into a binary image format without losing valuable features. Fig. 6
shows an example of the image produced by the BSIF algorithm. The
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images processed through BSIF algorithm are used for training the ML
algorithm. The output image produced by the BSIF algorithm is binary
code for each pixel in the image and is stored in a 1D array, which makes
it convenient to handle large amounts of data. Although the visual
representation of features in Fig. 6 is not well resolved to the naked eye,
such images are proven to perform as well as any other state-of-the-art
descriptor [41]. Use of BSIF code reduced each image to 1 x 256
pixels, which reduced the computational expense involved in running
RNN.

3.2. Prediction of fiber orientation

The RNN algorithm is trained using the 78,373 images generated in
the previous step to predict the orientation/angle of the fiber. The
dataset is split into 70% (54,861 images) for training and 30% (23,512
images) of validation. In addition, a test dataset of 5,250 uCT scan im-
ages is generated as a test dataset to check the accuracy of prediction
after training. The mean square error (MSE) loss function is used in this
algorithm since the output value is a continuous number between 0° and
180°. Once the training of the neural network is started, it is run itera-
tively and the best output for each iteration is saved. When the least MSE
is obtained, then the architecture of the neural network is finalized, and
the test dataset is used to run through the RNN model. It is important to
limit the number of times the algorithm runs on the test dataset because
RNN can remember the data, which affects the accuracy of the model.

In Table 2, the MSE values for training, validation and test dataset at
different epochs is shown. Epoch is the number of times the training
dataset is run iteratively to train the model. As the number of epochs
increases, the performance on the test dataset improves which is
evident. However, as the number of epochs increases, the time required
to run the algorithm also increases so it is important to find a balance
between the computing time and the accuracy. Here, the training of the
model for 10,000 epochs took about 31 h and it achieved the lowest MSE
for the test dataset. As the importance was given for accuracy, 10,000
epochs were used for predicting the angle. The trend presented in
Table 2 shows that further training will increase the expense without
increasing the accuracy by any appreciable extent. Fig. 7 shows a graph
between MSE values for each angle in the training and test dataset for
the model trained for 10000 epochs. The test shows improved accuracy
over training dataset. The MSE values for the training and test dataset
for 10,000 epochs are very close. The trend observed in Fig. 7 does not
show signs of overfitting or underfitting. Fig. 7(a) shows the prediction
of the fiber angle with respect to the actual angle for the test dataset. The
predicted value for each labeled angle and the linear regression line is
also shown in the graph. As can be observed in Fig. 7(b), the result
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Fig. 4. Image slices of a 3D printed model showing a region of interest in (a) 0° and (b) 90° fiber orientation in the infill.
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Fig. 6. pCT scan image (a) before going though BSIF and (b) the image produced by BSIF algorithm.

Table 2
MSE values at different epochs for Training, Validation and Test Datasets.
Parameter Epochs
500 1000 10000
Training MSE 0.49 0.23 0.06
Validation MSE 1.53 1.45 0.04
Test MSE 6.40 6.20 0.04

predicted by the algorithm is very close to the exact angle with less than
0.5° variation. All the points lie around the regression line and MSE
values are low. But at the ends of the regression line that is at 0° and
180° where the predicted angles are deviating away from the regression
line, the error in prediction increases which is evident in Fig. 7 (a) which
shows higher MSE values compared to other angles. This is because the
fibers oriented at both these angles appear the same which makes it
difficult for the ML algorithm to learn and predict accurately. Therefore,
the prediction error is higher for 0° and 180° angles. From this analysis,
the orientation of the fiber at each layer of the 3D model can be pre-
dicted from a pCT scan image of the model.

3.2.1. Validation of the machine learning model
For validating the ML model used, images obtained on a 3D printed

cylindrical specimen are used to predict the fiber orientation. Fig. 8(a)
the model of the cylinder in Solidworks is shown and in Fig. 8(b) the uCT
scan image of the slice of 3D printed cylinder can be seen. In Fig. 8, MSE
for the training and test sets is plotted. It is observed that the MSE is very
low, which is also reflected in the angle prediction plotted in Fig. 8. This
test on a different specimen demonstrates that the trained ML algorithm
is capable of predicting the fiber orientation in similar specimens.

3.2.2. 3D printing of reverse engineered model

Using the information from previous analysis for the cube, the
reverse engineered model is designed in SolidWorks 2017. The
measured length, width and height values of 6.05, 6.10 and 6.09 mm,
respectively are used as the model dimensions and then G-code is
generated using the measured layer thickness and fiber orientation. A
comparison of original and reverse engineered specimen dimensions is
presented in Table 3. The dimensions of both types of specimens show
only 0.33% difference. The values presented in this table are obtained on
5 original and 10 reverse engineered specimens and several measure-
ments are taken on each specimen at different locations. The dimensions
of the reverse engineered model are observed to be slightly higher than
the original 3D printed specimens but the difference is only 0.33%.
These results show that the available ML methods can be trained to
predict the fiber angle in fiber reinforced composites and develop
reverse engineered components.
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Fig. 7. (a) Mean square error for each angle in the training and test dataset. (b) The predicted angle of fiber orientation compared to the correct labeled value for test
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Fig. 8. (a) Model of the cylinder made in SolidWorks, (b) micro CT-scan image of a slice of cylinder used for machine learning. (c) Mean Square error for each angle
in the training and test datasets. (d) The predicted angle of fiber orientation compared to the correct labeled value for test dataset with the regression line.

filament is used to 3D print the specimens.
Table 3

Measurements of original and reverse engineered model.

e A reverse engineering method is proposed using the pCT scan and

Dimension Original (mm) Reverse Engineered (mm) Difference (%) SEM images of the model. The tool-path information is captured by
Length 6.08 + 0.04 6.10 + 0.03 0.33 identifying the fiber orientation in each layer with the help of
Width 6.13 +0.02 6.15 + 0.02 0.32 Recurrent Neural Network with LSTM architecture.

Height 6.07 £+ 0.05 6.09 + 0.02 0.33

e A refined RNN model achieving a high degree of accuracy that has
MSE loss of 0.04 an error of 0.5° in predicting the printing orienta-

4. Conclusions tion of the fiber is obtained. By using RNN architecture, the printing
orientation at each layer of the model was successfully identified.
The aim of this work is to reverse engineer a high-quality replica of e The origin.?ll models were reverse engineered with a dimensional
fiber reinforced composite material. A glass fiber reinforced ABS accuracy difference of only 0.33%.
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The work shows that the capabilities developed for designing high
performance composites can also be used for reverse engineering high
quality replicas of composite parts. The research on developing config-
urations of composite layup sequence for certain parts can be reverse
engineered from the microstructural images. Although the part geome-
try is simple in the current example, the success of the ML method in
identifying tracking any given orientation of the fibers demonstrates the
possibility of reconstructing the G-code and reverse engineering any
composite part.
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