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MULTILEVEL ARTIFICIAL NEURAL NETWORK TRAINING FOR

SPATIALLY CORRELATED LEARNING\ast 

C. B. SCOTT† AND ERIC MJOLSNESS‡

Abstract. Multigrid modeling algorithms are a technique used to accelerate iterative method
models running on a hierarchy of similar graphlike structures. We introduce and demonstrate a new
method for training neural networks which uses multilevel methods. Using an objective function
derived from a graph-distance metric, we perform orthogonally-constrained optimization to find op-
timal prolongation and restriction maps between graphs. We compare and contrast several methods
for performing this numerical optimization, and additionally present some new theoretical results
on upper bounds of this type of objective function. Once calculated, these optimal maps between
graphs form the core of multiscale artificial neural network (MsANN) training, a new procedure we
present which simultaneously trains a hierarchy of neural network models of varying spatial reso-
lution. Parameter information is passed between members of this hierarchy according to standard
coarsening and refinement schedules from the multiscale modeling literature. In our machine learning
experiments, these models are able to learn faster than training at the fine scale alone, achieving a
comparable level of error with fewer weight updates (by an order of magnitude).
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1. Motivation. Multigrid methods (or multilevel methods when the underlying
graph is not a grid) comprise a modeling framework that seeks to ameliorate a core
problem in iterative method models with local update rules: namely, that these models
have differing rates of convergence for fine-scale and coarse-scale modes [38]. Because
iteration of these models involves making updates of a given characteristic length,
they are maximally efficient for propagating modes of approximately this wavelength,
but ignore finer modes and are inefficient on coarser modes. Multigrid approaches
gain computational benefit by addressing these multiple length-scales of behavior
using multiple model resolutions, rather than attempting to address them all at the
finest scale (in which the coarse modes converge slowly). These methods make use
of “prolongation” and “restriction” operators to move between models in a hierarchy
of scales. At each level, a “smoothing” step is performed—usually, for multilevel
methods, a smoothing step consists of one pass of some iterative method for improving
the model at that scale.

In this paper, we describe a novel general algorithm for applying this approach
to the training of artificial neural networks (ANNs). In particular, we demonstrate
the efficiency of this new method, which combines ideas from machine learning and
multilevel modeling, by training several hierarchies of autoencoder networks (ANNs
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S298 C. B. SCOTT AND ERIC MJOLSNESS

which learn a mapping from data to a lower-dimensional latent space) [16, 6]. By
applying multilevel modeling methods we learn this latent representation with an
order of magnitude less cost. We will make our notion of “cost” more precise in the
experiments section, section 4.

2. Background.

2.1. Prior work. In this section, we discuss prior attempts to apply ideas from
multigrid methods to neural network models. Broadly speaking, prior approaches to
neural net multigrid can be categorized into two classes: (1) neural network models
which are “structurally multigrid,” i.e., are typical neural network models which make
use of multiple scales of resolution, and (2) neural network training processes which
are hierarchical in some way, or use a coarsening-refinement procedure as part of the
training process.

In the first class are approaches [14, 20, 26, 32]. Reference [20] implements a con-
volutional network in which convolutions make use of a multigrid-like structure similar
to a Gaussian pyramid, with the motivation that the network will learn features at
multiple scales of resolution. Reference [14] defines a convolution operation, inspired
by multigrid methods, that convolves at multiple levels of resolution simultaneously.
Reference [32] demonstrates a recurrent neural network model which similarly op-
erates in multiple levels of some scale space; but in this paper the scale space is a
space of aggregated language models (specifically, the differing scales are different
levels of generality in language models—for example, topic models are coarsest, word
models are finest, with document models somewhere in between). Reference [26] ap-
plies an algebraic multigrid approach to the specific case of training relaxation- or
optimization-based neural networks. Common to all four of these approaches is that
they make use of a modified neural net structure while leaving the training process
unchanged, except that the network accepts multiresolution inputs.

In contrast, multilevel neural network models [3, 31] in the second category pres-
ent modified learning procedures which also use methodology similar to multilevel
modeling. Reference [3] introduces a network which learns at coarse scales, and then
gradually refines its decision making by increasing the resolution of the input space
and learning “corrections” at each scale. However, that paper focuses on the capa-
bility of a particular family of basis functions for neural networks, and not on the
capabilities of the multigrid approach. Reference [31] presents a reframing of the
neural network training process as an evolution equation in time, and then applies a
method called MGRIT (multigrid reduction in time [11]) to achieve the same results
as parallelizing over many runs of training.

Our approach is fundamentally different: we use coarsened versions of the network
model to make coarse updates to the weight variables of our model, followed by
“smoothing steps”’ in which the fine-scale weights are refined. This approach is more
general than any of [14, 20, 32], since it can be applied to any feed-forward network
and is not tied to a particular network structure. The approach in [31] is to parallelize
the training process by reframing it as a continuous-in-time evolution equation, but
it still uses the same base model and therefore only learns at one spatial scale.

Our method is both structurally multilevel and learns using a multilevel training
procedure. Our hierarchical neural network architecture is the first to learn at all
spatial scales simultaneously over the course of training, transitioning between neural
networks of varying input resolution according to standard multigrid method schedules
of coarsening and refinement. To the best of our knowledge, this represents a fully
novel approach to combining the powerful data analysis of neural networks with the

D
o
w

n
lo

ad
ed

 0
8
/1

0
/2

0
 t

o
 1

2
8
.1

9
5
.7

9
.3

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE ARTIFICIAL NEURAL NETWORKS S299

model acceleration of multiscale modeling.

2.2. Outline. Section 3 covers the mathematical theory underlying our method.
We first introduce the necessary definitions, which are then used in subsection 3.2.1
to define an objective function which evaluates a map between two graphs in terms
of how well it preserves the behavior of some local process operating on those graphs
(interpreting the smaller of the two graphs as a coarsened version of the larger).
In subsection 3.3.3 we examine some properties of this objective function, including
presenting some projection matrices which are local optima for particular choices of
graph structure and process. In subsections 3.4 and 3.4.2, we define the multiscale
artificial neural network (MsANN), a hierarchically-structured neural network model
which uses these optimized projection matrices to project network parameters between
levels of the hierarchy, resulting in more efficient training. In section 4, we demonstrate
this efficiency by training a simple neural network model on a variety of datasets,
comparing the cost of our approach to that of training only the finest network in
the hierarchy. Finally, we conclude the paper by proving two novel properties of our
objective function in section 5.

3. Theory. In this section, we first define basic terms used throughout the paper,
and explain the core theory of our paper: that of optimal prolongation maps between
computational processes running on graph-based data structures, and hence between
graphs. In this paper we use a specific example of such a process, single-particle
diffusion on graphs, to examine the behavior of these prolongation maps. Finally,
we discuss numerical methods for finding (given two input graphs G1 and G2, and a
process) prolongation and restriction maps which minimize the error of using G1 as a
surrogate structure for simulating the behavior of that process on G2. We will define
more rigorously what we mean by “process,” “error,” and “prolongation” in section
3.2.1.

3.1. Definitions. In order to describe our objective function, we must first in-
troduce some core concepts related to minimal mappings between graphs.

\bullet Graph lineage: A graph lineage is a sequence of graphs, indexed by l \in N =
0, 1, 2, 3 . . . , satisfying the following:

– G0 is the graph with one vertex and one self-loop, and;
– successive members of the lineage grow roughly exponentially—that is,

the growth rate is O(bl+\epsilon ) for some b > 1, \epsilon \geq 0, and l > 1.
We introduce this term to differentiate this definition from that of a graph
family, which is a sequence of graphs without the growth condition. Most
of the graph lineages we examine in this work are structurally similar—for
example, the lineage of path graphs of length 2l. However, we do not define
this similarity in a rigorous sense, and we do not require it in the definition
of a lineage.

\bullet Graph Laplacian: We define the Laplacian matrix of a graph G as L(G) =
A(G) - D(G), where A(G) and D(G) are the adjacency matrix and diagonal
degree matrix of the graph, respectively. The eigenvalues of this matrix are
referred to as the spectrum of G. See [4, 10] for more details on graph
Laplacians and spectral graph theory. Our sign convention for L agrees with
the standard continuum Laplacian operator, ∆, of a multivariate function f :

∆f =
\sum n

i=1
\delta 2f

\delta x2
i

.

\bullet Kronecker product and sum of matrices: Given a (k\times l) matrix M , and some
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define the minimal eigenvalue matching m\ast (A1, A2) as the matrix which is
the solution of the following constrained optimization problem:

m\ast (A1, A2) = arg inf
M

n2
\sum 

i=1

n1
\sum 

j=1

Mi,j(\lambda 
(1)
j  - \lambda 

(2)
i )2

(3.2)

subject to
\bigl( 

M \in \{ 0, 1\} n2\times n1
\bigr) 

\wedge 
\Biggl( 

n2
\sum 

i=1

Mi,j = 1

\Biggr) 

\wedge 

\left( 

 

n1
\sum 

j=1

Mi,j \leq 1

\right) 

 .

In the case of eigenvalues with multiplicity > 1, there may not be one unique
such matrix, in which case we distinguish matrices with identical cost by the
lexicographical ordering of their occupied indices and take m\ast (A1, A2) as the
first of those with minimal cost. This matching problem is well studied and
efficient algorithms for solving it exist; we use a Python language implementa-
tion [8] of a 1957 algorithm due to Munkres [27]. Additionally, given a way to
enumerate the minimal-cost matchings found as solutions to this eigenvalue
matching problem, we can perform combinatorial optimization with respect
to some other objective function g, in order to find optima of g(P ) subject
to the constraint that P is a minimal matching.

3.2. Optimal prolongation maps between graphs.

3.2.1. Our objective function. Given two graphs G1 and G2, we find the
optimal prolongation map between them as follows: We first calculate the graph
Laplacians L1 and L2, as well as pairwise vertex Manhattan distance matrices (i.e.,
the matrix with Ti,j the minimal number of graph edges between vertices i and j in
the graph), T1 and T2, of each graph. Calculating these matrices may not be trivial
for arbitrary dense graphs; for example, calculating the pairwise Manhattan distance
of a graph with m edges on n vertices can be accomplished in O(m + n log n) by
the Fibonacci heap version of Dijkstra’s algorithm [13]. Additionally, in section 3.3
we discuss an optimization procedure which requires computing the eigenvalues of Li

(which are referred to as the spectrum of Gi). Computing graph spectra is a well-
studied problem; we direct the reader to [9, 29]. In practice, all of the graph spectra
computed for experiments in this paper took a negligible amount of time (< 1s) on a
modern consumer-grade laptop using the scipy.linalg package [19], which in turn uses
LAPACK routines for Schur decomposition of the matrix [2]. The optimal map is
defined as P which minimizes the matrix function

inf
P | C(P ),\alpha >0,\beta >0

E(P )(3.3)

= inf
P | C(P ),\alpha >0,\beta >0

\Biggl[ 

(1 - s)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1\surd 
\alpha 
PL1  - 

\surd 
\alpha L2P

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

2

F

“Diffusion term”

+s

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1\surd 
\beta 
PT1  - 

\sqrt{} 

\beta T2P

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

2

F

\Biggr] 

“Locality term,”1

where | | \cdot | | F is the Frobenius norm, and C(P ) is a set of constraints on P (in particu-
lar, we require PTP = In1

, but could also impose other restrictions such as sparsity,

1By this we mean the notion that neighborhoods of G1 should be mapped to neighborhoods of
G2 and vice versa.
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regularity, and/or bandedness). The manifold of real-valued orthogonal n2 \times n1 ma-
trices with n1 \leq n2 is known as the Stiefel manifold; minimization constrained to
this manifold is a well-studied problem [30, 34]. This optimization problem can be
thought of as measuring the agreement between processes on each graph, as mapped
through P . The expression PX1  - X2P compares the end result of

1. advancing process X2 forward in time on G2 and then using P to interpolate
vertex states to the smaller graph, to

2. interpolating the initial state (the all-ones vector) using P and then advancing
process X1 on G1.

Strictly speaking, the above interpretation of our objective function does not apply
to the Manhattan distance matrix T of a graph, since T is not a valid time evolution
operator and thus is not a valid choice for X. However, the objective function term
containing T may still be interpreted as comparing travel distance in one graph to
travel distance in the other, that is, we are implicitly comparing the similarity of two
ways of measuring the distance of two nodes vk and vl in G1:

1. the Manhattan distance, as defined above and
2.
\sum n2

i=1

\sum n2

j=1 pikdG2
(ui, uj)pjl, a sum of path distances in G2 weighted by how

strongly vk and vl are connected, through P , to the endpoints of those paths,
ui and uj .

Parameters \alpha and \beta are rescaling parameters to compensate for different graph
sizes; in other words, P must only ensure that processes 1 and 2 above agree up to some
multiplicative constant. In operator theory terminology, the Laplacian is a time evo-
lution operator for the single particle diffusion equation: Li = A(Gi) - diag(1 \cdot A(Gi)).
This operator evolves the probability distribution of states of a single-particle diffusion
process on a graph Gi (but other processes could be used—for example, a chemical
reaction network or multiple-particle diffusion). The process L defines a probability-
conserving master equation of nonequilibrium statistical mechanics dp/dt = L\cdot p which
has formal solution p(t) = exp (tL) \cdot p(0). Premultiplication by the prolongation ma-
trix P is clearly a linear operator, i.e., linear transformation from R

n1 to R
n2 . Thus,

we are requiring P which minimizes the degree to which the operator diagram

L1
∆t

- L1
\prime 

(Diagram 1)

L2

P

? ∆t
- L2

\prime 

P

?

fails to commute. ∆t, of course, refers to advancement in time; see [18, Figure 1], for
a more complete version of this commutative diagram for model reduction.

We thus include in our objective function terms with (1) graph diffusion and
(2) graph locality as the underlying process matrices (T , the Manhattan distance
matrix, cannot be considered a time evolution operator because it is not probability-
preserving). Parameter s adjusts the relative strength of these terms to each other;
so we may find “fully diffuse” P when s = 0 and “fully local” P when s = 1. Figure 2
illustrates this tradeoff for an example prolongation problem on a pair of grid graphs,
including the transition from a global optimum of the diffusion term to a global
optimum of the locality term. In each case, we only require P to map these processes
into one another up to a multiplicative constant: \alpha for the diffusion term and \beta for
the locality term. Exhaustive grid search over \alpha and \beta for a variety of prolongations
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Fig. 2. Several solutions of our objective function found by PyManOpt as s, the relative weight
of the two terms of our objective function, is tuned from 0 (fully diffuse, top left) to 1 (fully local,
bottom right). Within each subplot, grayscale indicates the magnitude of matrix entries. Note that
the P matrices found with s = 0 do not appear to be structured in a way which respects the locality
of the original graphs, whereas the matrices with s = 1 do.

between (a) one-dimensional (1D) grid graphs and (b) two-dimensional (2D) grid
graphs of varying sizes has suggested that for prolongation problems where the Gi are
both paths or both grids, the best values (up to the resolution of our search, 10 - 6)
for these parameters are \alpha = 1.0 and \beta = n1/n2. However, we do not expect this
scaling law to hold for general graphs.

3.3. Numerical optimization of P matrices.

3.3.1. Minimization method. We tried various publicly available optimiza-
tion codes to find optima of our objective function. Unless otherwise noted, all P
matrices found via optimization were found using PyManOpt [33], a Python lan-
guage package for manifold-constrained optimization. In our experience, this package
outperformed other numerical methods codes such as constrained Nelder–Mead (as
implemented in Mathematica 11.3 [37] or SciPy [19]), gradient descent with projec-
tion back to the constraint manifold, or the orthogonally-constrained optimization
code of [36]. More details on our comparison of these software packages may be found
in the section “Comparison of numerical methods” of the Supplementary Material
accompanying this paper.

3.3.2. Initialization. We initialize our minimization with an upper-bound so-
lution given by the Munkres minimum-cost matching algorithm; the initial P is
m\ast (L1, L2) as defined in (3.2), i.e., the binary matrix where an entry P(i,j) is 1 if
the pair (i, j) is one of the minimal-cost pairs selected by the minimum-cost assign-
ment algorithm, and 0 otherwise. While this solution is, strictly speaking, minimizing
the error associated with mapping the spectrum of one graph into the spectrum of the
other (rather than actually mapping a process running on one graph into a process on
the other) we found it to be a reasonable initialization, outperforming both random
restarts and initialization with the appropriately sized block matrix

\bigl( 

I
0

\bigr) 

. As detailed
further in section 5, the P found as a solution to this matching problem provides an
upper bound for the full orthogonality-constrained optimization problem.
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We highlight the best of these multiple species of closed-form solution, for both
cycle graphs and grid graphs. The interpolation matrix-like P seen in the third column
of the “Cycle Graphs” section, or the sixth column of the “Grid Graphs” section of
Figure 3, were the local optima with lowest objective function value (with s = 1,
i.e., they are fully local). As the best optima found by our method(s), these matrices
were our choice for line graph and grid graph prolongation operators in our neural
network experiments, detailed in section 4. We reiterate that in those experiments we
do not find the P matrices via any optimization method—since the neural networks in
question have layer sizes of order 103, finding the prolongation matrices from scratch
may be computationally difficult. Instead, we use the solutions found on smaller
problems as a recipe for generating prolongation matrices of the proper size.

Furthermore, given two graph lineages G
(1)
1 , G

(2)
1 , G

(3)
1 , . . . and G

(1)
2 , G

(2)
2 , G

(3)
2 , . . .,

and sequences of optimal matrices P
(1)
1 , P

(2)
1 , P

(3)
1 , . . . and P

(1)
2 , P

(2)
2 , P

(3)
2 , . . ., map-

ping between successive members of each, we can construct P which are related to
the optima for prolonging between members of a new graph lineage which is com-
prised of the levelwise graph box product of the two sequences. We show in sec-
tion 5.2, Corollary 5.2 conditions under which the value of the objective function

at P
(i)
box = P

(i)
1 \otimes P

(i)
2 is an upper bound of the optimal value for prolongations be-

tween members of the lineage G
(1)
1 \square G

(1)
2 , G

(2)
1 \square G

(2)
2 , G

(3)
1 \square G

(3)
2 , . . . . We leave open

the question of whether such formulaic P exist for other families of structured graphs
(complete graphs, k-partite graphs, etc.). Even in cases where formulaic P are not
known, the computational cost of numerically optimizing over P may be amortized,
in the sense that once a P -map is calculated, it may be used in many different hier-
archical neural networks or indeed many different multiscale models.

3.4. Multiscale artificial neural network algorithm. In this section we de-
scribe the MsANN training procedure, both in prose and in pseudocode (Algorithm
3.1). Let \scrM 0 . . .\scrM L be a sequence of neural network models with identical “aspect
ratios” (meaning the sizes of each layer relative to other layers in the same model)
but differing input resolution, so that \scrM 0 operates at the finest scale and \scrM L at

the coarsest. For each model \scrM l, let \theta 
(l)
0 , \theta 

(l)
1 , . . . , \theta 

(l)
nvars - 1 be a list of the nvars net-

work parameters (each in matrix or vector form) in some canonical order which is

maintained across all scales. Let the symbol \scrP (l)
j represent either of the following:

\bullet If the network parameters \theta 
(i)
j at levels i = 0, . . . , L are weight matrices

between layers m1 and m2 of each hierarchy, then \scrP (l)
j represents a pair of

matrices (P
(l)
inputj

, P
(l)
outputj

), such that

– P
(l)
inputj

prolongs or restricts between possible values of nodes in layer m1

of model \scrM l, and values of nodes in layer m1 of model \scrM l+1.

– P
(l)
outputj

does the same for possible values of nodes in layer m2 of each

model.
\bullet If the network parameters \theta 

(i)
j at levels i = 0, . . . , L are bias vectors which are

added to layer m of each hierarchy, then \scrP (l)
j represents a single P

(l)
j which

prolongs or restricts between possible values of nodes in layer m of model
\scrM l, and values of nodes in layer m of model \scrM l+1.

As a concrete example, for a hierarchy of single-layer networks \scrM 0,\scrM 1,\scrM 2, each

with one weight matrix W (l) and one bias vector b(l), we could have \theta 
(l)
0 = W (l), \theta 

(l)
1 =

b(l) for each \scrM l. \scrP (0)
0 would represent a pair of matrices which map between the space
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of possible values ofW (0) and the space of possible values ofW (1) in a manner detailed

in the next section. On the other hand, \scrP (0)
1 would represent a single matrix which

maps between b(0) and b(1). Similarly, \scrP (1)
0 would map between W (1) and W (2),

and \scrP (1)
1 between b(1) and b(2). In section 3.4.2, we describe a general procedure

for training such a hierarchy according to standard multilevel modeling schedules of
refinement and coarsening, with the result that the finest network, informed by the
weights of all coarser networks, requires fewer training examples.

3.4.1. Weight prolongation and restriction operators. In this section we
introduce the prolongation and restriction operators for neural network weight and
bias optimization variables in matrix or vector form, respectively.

For a 2D matrix of weights W , define

Pro\scrP \circ W \equiv Pro(Pinput,Poutput) \circ W \equiv PinputWPT
output,

Res\scrP \circ W \equiv Res(Pinput,Poutput) \circ W \equiv PT
inputWPoutput,

(3.4)

where Pinput and Poutput are each prolongation maps between graphs which respect
the structure of the spaces of inputs and outputs of W , i.e., whose structure is similar
to the structure of correlations in that space. Further research is necessary to make
this notion more precise. In our experiments on autoencoder networks in section 4,
we use example problems with an obvious choice of graph to use. In these 1D and
2D machine vision tasks, where we expect each pixel to be highly correlated with
the activity of its immediate neighbors in the grid, 1D and 2D grids are clear choices
of graphs for our prolongtion matrix calculation. Other choices may lead to similar
results; for instance, we speculate that since neural network weight matrices may be
interpreted as the weights of a multipartite graph of connected neurons in the network,
these graphs could be an alternate choice of structure to prolong/restrict between. We
leave for future work the development of automatic methods for determining these
structures.

Note that the Pro and Res linear operators satisfy Res\scrP \circ Pro\scrP = I, the identity
operator, so Pro\scrP \circ Res\scrP is a projection operator.

For a 1D matrix of biases b, define

Pro\scrP \circ b = P \cdot b,
Res\scrP \circ b = PT \cdot b,

(3.5)

where, as before, we require that P be a prolongation matrix between graphs which
are appropriate for the dynamics of the network layer where b is applied. Again
Res\scrP \circ Pro\scrP = I.

Given such a hierarchy of models \scrM 0 . . .\scrM L, and appropriate Pro and Res op-
erators as defined above, we define an MsANN to be a neural network model with
the same layer and parameter dimensions as the largest model in the hierarchy, where
each layer parameter Θj is given by a sum of prolonged weight matrices from level j
of each of the models defined above:

Θj = \theta 
(0)
j + Pro1\rightarrow 0 \circ \theta (1)j + Pro2\rightarrow 0 \circ \theta (2)j . . .ProL\rightarrow 0 \circ \theta (L)

j .(3.6)
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Fig. 4. Visits to models in a hierarchy of neural networks realized by several values of the
recursion frequency parameter γ. The γ = 1 case and the γ = 2 case are referred to as “V-cycles”
and “W-cycles,” respectively. Each time the multilevel training procedure visits a level, it performs
some number, k, of smoothing steps (i.e., gradient descent at that resolution) at that model.

Here we are using Prok\rightarrow 0 as a shorthand to indicate composed prolongation from

model k to model 0, so if \theta 
(i)
j are weight variables, we have (by (3.4))

Θj = \theta 
(0)
j + P

(0)
inputj

\theta 
(1)
j

\Bigl( 

P
(0)
outputj

\Bigr) T

(3.7)

+ P
(0)
inputj

P
(1)
inputj

\theta 
(2)
j

\Bigl( 

P
(1)
outputj

\Bigr) T\Bigl( 

P
(0)
outputj

\Bigr) T

+ \cdot \cdot \cdot +
\biggl( 

P
(0)
inputj

. . . P
(L - 1)
inputj

\theta 
(L)
j

\Bigl( 

P
(L - 1)
outputj

\Bigr) T

. . .
\Bigl( 

P
(0)
outputj

\Bigr) T
\biggr) 

,

and if \theta 
(i)
j are bias variables, we have (by (3.5))

Θj = \theta 
(0)
j + P

(0)
biasj

\theta 
(1)
j + P

(0)
biasj

P
(1)
biasj

\theta 
(2)
j + \cdot \cdot \cdot +

\Bigl( 

P
(0)
biasj

P
(1)
biasj

. . . P
(L - 1)
biasj

\theta 
(L)
j

\Bigr) 

.(3.8)

We note that matrix products such as P
(0)
inputj

. . . P
(k)
inputj

need only be computed once

during model construction.

3.4.2. Multiscale artificial neural network training. The MsANN algo-
rithm is defined in terms of a recursive “cycle” that is analogous to one epoch of
default neural network training. Starting with \scrM 0 (i.e., the finest model in the hi-
erarchy), we call the routine MsANNCycle(0), which is defined recursively. At any
level l, MsANNCycle trains the network at level l for k batches of training exam-
ples, recurses by calling MsANNCycle(l + 1), and then returns to train for k further
batches at level l. The number of calls to MsANNCycle(l + 1) inside each call to
MsANNCycle(l) is given by a parameter \gamma .

This is followed by additional training at the refined scale; this process is normally
[35] referred to by the multigrid methods community as “restriction” and “prolonga-
tion” followed by “smoothing.” The multigrid methods community additionally has
special names for this type of recursive refining procedure with \gamma = 1 (“V-Cycles”)
and \gamma = 2 (“W-Cycles”). See Figure 4 for an illustration of these contraction and
refinement schedules. In our numerical experiments below, we examine the effect of
this parameter on multigrid network training.

Neural network training with gradient descent requires computing the gradient
of the error E between the network output and target with regard to the network
parameters. This gradient is computed by taking a vector of error for the nodes
in the output layer, and backpropagating that error backward through the network
layer by layer to compute the individual weight matrix and bias vector gradients. An
individual network weight or bias term w is then adjusted using gradient descent,
i.e., the new value w\prime is given by w\prime = w  - \eta dE

dw
, where \eta is a learning rate or step

D
o
w

n
lo

ad
ed

 0
8
/1

0
/2

0
 t

o
 1

2
8
.1

9
5
.7

9
.3

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S308 C. B. SCOTT AND ERIC MJOLSNESS

size. Several techniques can be used to dynamically change learning rate during
model training—we refer the reader to [5] for a description of these techniques and
backpropagation in general.

Our construction of the MsANN model above did not make use of the Res (re-
striction) operator—we show here how this operator is used to compute the gradient
of the coarsened variables in the hierarchy. This can be thought of as continuing
the process of backpropagation through the Pro operator. For these calculations we

assume Θj is a weight matrix, and derive the gradient for a particular \theta 
(k)
j . For nota-

tional simplicity we rename these matrices W and V , respectively. We also collapse
the matrix products

P (input) = P
(0)
inputj

P
(1)
inputj

. . . P
(k)
inputj

,(3.9)
\Bigl( 

P (output)
\Bigr) T

=
\Bigl( 

P
(L - 1)
outputj

\Bigr) T\Bigl( 

P
(L - 2)
outputj

\Bigr) T

. . .
\Bigl( 

P
(0)
outputj

\Bigr) T

.(3.10)

Let dE
dW

be a matrix where
\bigl( 

dE
dW

\bigr) 

mn
= dE

dwmn
, calculated via backpropagation as de-

scribed above. Then, for some m,n,

dwmn

dvkl
=

d

dvkl
(\cdot \cdot \cdot + Pro \circ V + \cdot \cdot \cdot )mn(3.11)

=
d

dvkl
(\cdot \cdot \cdot + Prok\rightarrow 0 \circ V + \cdot \cdot \cdot )mn =

d

dvkl
(Prok\rightarrow 0 \circ V )mn

=
d

dvkl

\biggl( 

P (input)V
\Bigl( 

P (output)
\Bigr) T
\biggr) 

mn

=
d

dvkl

\left( 

 

\sum 

a,b

p(input)ma vabp
(output)
nb

\right) 

 

=
\Bigl( 

p
(input)
mk p

(output)
nl

\Bigr) 

.

Then,

dE

dvkl
=
\sum 

m,n

dE

dwmn

dwmn

dvkl
(3.12)

=
\sum 

m,n

dE

dwmn

p
(input)
mk p

(output)
nl

=

\biggl( 

\Bigl( 

P (input)
\Bigr) T dE

dW
P (output)

\biggr) 

kl

,

and so

dE

dV
=
\Bigl( 

P (input)
\Bigr) T dE

dW
P (output),

and, therefore, finally

dE

dV
= Res0\rightarrow k \circ dE

dW
,(3.13)

where Res is as in (3.4).
We also note here that our code implementation of this procedure does not make

explicit use of the Res operator; instead, we use the automatic differentiation capa-
bility of Tensorflow [1] to compute this restricted gradient. This is necessary because
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Algorithm 3.1. One “cycle” of the MsANN procedure.

Procedure MsANNCycle(l):
Train model \scrM l for k batches, where each consists of the following:

1. Feed examples through the network in feed-forward mode.
2. Compute error E between network output and target.
3. Use the classical backpropagation algorithm to compute the gradient of

top-level parameter Θj w.r.t. this error.
4. Use the appropriate Res operations to compute the gradient of E w.r.t.

the parameters in \scrM l, as described in (3.13).
if max depth has not been reached then

for 1 \leq i \leq \gamma do
MsANNCycle(l + 1);
Train model \scrM l for k batches, as above

end

end

data is supplied to the model, and error is calculated, at the finest scale only. Hence
we calculate the gradient at this scale and restrict it to the coarser layers of the
model. It may be possible to feed coarsened data through only the coarser layers of
the model, eliminating the need for computing the gradient at the finest scale, but we
do not explore this method in this paper.

4. Machine learning experiments.

4.1. Preliminaries. We present four experiments using this multiscale neural
network method. All of the experiments below demonstrate that our multigrid method
outperforms default training (i.e., training only the finest-scale network), in terms of
the number of training examples (summed over all scales) needed to reach a partic-
ular mean-squared error (MSE) value. We perform two experiments with synthetic
machine vision tasks, as well as two experiments with benchmark image datasets for
machine learning. While all of the examples presented here are autoencoder networks
(networks whose training task is to reproduce their input at the output layer, while
passing through a bottleneck layer or layers), we do not mean to imply that MsANN
techniques are constrained to autoencoder networks. All network training uses the
standard backpropagation algorithm to compute training gradients, and this is the
expected application domain of our method. Autoencoding image data is a good
choice of machine learning task for our experiments for two main reasons. First, au-
toencoders are symmetric and learn to reproduce their input at their output. Other
Machine Learning (ML) models (for instance, neural networks for classification) have
output whose nodes are not spatially correlated, and it is not yet clear if our approach
will generalize to this type of model. Second, since the single- and double-object ma-
chine vision tasks operate on synthetic data, we can easily generate an arbitrary
number of samples from the data distribution, which was useful in the early devel-
opment of this procedure. Our initial successes on this synthetic data led us to try
the same task with a standard benchmark real-world dataset. For each experiment,
we use the following measure of computational cost to compare relative performance.
Let | \scrM | be the number of trainable parameters in model \scrM . We compute the cost

of a training step of the weights in model \scrM k using a batch of size b as | \scrM k| 
| \scrM 0| 

b. The

total cost C(t) of training at step t is the sum of this cost over all training steps
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thus far at all scales. This cost is motivated by the fact that the number of multiply
operations for backpropagation is O(nm) in the total number of network parameters
m and training examples n, so we are adding up the relative cost of using a batch of
size b to adjust the weights in model \scrM k, as compared to the cost of using that same
batch to adjust the weights in \scrM 0.

4.2. Simple machine vision task. As an initial experiment in the capabili-
ties of hierarchical neural networks, we first try two simple examples: finding lower-
dimensional representation of two artificial datasets. In both cases, we generate syn-
thetic data by uniformly sampling from

1. the set of binary-valued vectors with one “object” comprising a contiguous
set of pixels one-eighth as long as the entire vector set to 1, and the rest zero,
and

2. the set of vectors with two such nonoverlapping objects.
In each case, the number of possible unique data vectors is quite low: for inputs of
size 1024, we have 1024  - 128 = 896 such vectors. Thus, for both of the synthetic
datasets we add binary noise to each vector, where each “pixel” of the input has an
independent chance of firing spuriously with p = 0.05. This noise in included only in
the input vector, making these networks denoising autoencoders: models whose task
is to remove noise from an input image.

4.2.1. Single-object autoencoder. We first test the performance of this proce-
dure on a simple machine vision task. The neural networks in our hierarchy of models
each have layer size specification (in number of units) [2n, 2n - 2, 2n - 3, 2n - 2, 2n] for n
in \{ 10, . . . , 6\} , with a bias term at each layer and sigmoid logistic activation. We
present the network with binary vectors which are 0 everywhere except for a contigu-
ous segment of indices of length 2n - 3 which are set to 1, with added binary noise as
described above. The objective function to minimize is the MSE between the input
and output layers. Each model in the hierarchy is trained using AdamOptimizer [21]
in Tensorflow [1], with learning rate \alpha = 0.0005.

The results of this experiment are plotted in Figure 5 and summarized in Table
1. We perform multiple runs of the entire training procedure with differing values
of k (the number of smoothing steps), \gamma (the multigrid cycle parameter), and L
(depth of hierarchy). Notably, nearly all multigrid schedules demonstrate performance
gains over the default network (i.e., the network which trains only at the l = 0
scale), with more improvement for higher values of k, L, and \gamma . The hierarchy which
learned most rapidly was the deepest model (L = 6) with k = 4 and \gamma = 3. Those
multigrid models which did not improve over the default network were only slightly
more computationally expensive per unit of accuracy than their default counterparts,
and the multigrid models which did improve, improved significantly.

4.2.2. Double-object autoencoder. We repeat the above experiment with a
slightly more difficult machine vision task—the network must learn to denoise an im-
age with two (nonoverlapping) “objects” in the visual field. We use the same network
structure and training procedure, and note that we see again (plotted in Figure 5 and
summarized in Table 2) that the hierarchical model is more efficient, reaching lower
error in the same amount of computational cost C(t). The multigrid neural networks
again typically learn much more rapidly than the nonmultigrid models.

4.3. MNIST. To supplement the above synthetic experiments with one using
real-world data, we perform the same experiment with an autoencoder for the MNIST
handwritten digit dataset [24, 25]. In this case, rather than the usual MNIST classifi-
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Table 1

Best performance (on validation dataset for the one-object autoencoding task) by any combina-
tion of parameters in our sweep over values for γ (recursion constant), L (depth of network), and k

(number of batches processed at each visit to each level). We report the final MSE for both the best
and worst combination of these parameters, as well as for default training. We also report the best
combination of parameters. The second row indicates the cost C(t) necessary to train each model to
1
10

of the error at which it began. The best MsANN network reaches this threshhold in an order of
magnitude less cost, and its final error is roughly half that of the default model, demonstrating clear
improvement over training without multigrid.

Best MsANN Worst MsANN Default Best MsANN params

Final MSE 6.612× 10−4 4.431× 10−3 3.654× 10−3 (γ = 3, L = 5, k = 004)

Cost to 1
10

MSE 7.342× 103 1.640× 105 1.266× 105 (γ = 3, L = 6, k = 004)

Table 2

Best performance (on validation dataset for the two-object autoencoding task). Again the
MsANN network demonstrates performance and accuracy gains over neural network training alone.
See Table 1.

Best MsANN Worst MsANN Default Best MsANN params

Final MSE 2.576× 10−3 8.998× 10−3 8.816× 10−3 (γ = 3, L = 6, k = 002)

Cost to 1
10

MSE 2.433× 104 2.623× 105 2.216× 105 (γ = 3, L = 6, k = 016)

multilevel models performed on par with the default model. Because the MNIST data
is comprised of 2D images, we tried using P matrices which were the optima of pro-
longation problems between grids of the appropriate sizes, in addition to the same 1D
P used in the prior two experiments. The difference in performance between these
two choices of underlying structure for the prolongation maps can be seen in Figure 6.
With either approach, we see similar results to the synthetic data experiment, in that
more training steps at the coarser layers results in improved learning performance of
the finer networks in the hierarchy. However, the matrices optimized for 2D prolon-
gation perform marginally better than their 1D cousins—in particular, the multigrid
hierarchy with 2D prolongations took 60% of the computational cost to reduce its
error to 1

10 of its original value, as compared to the 1D version. We explore the effect
of varying the strategy used to pick P in subsection 4.4.

4.4. Experiments of choice of P . To further explore the role of the struc-
ture of P in these machine learning models, we compare the performance of several
MsANN models with P generated according to various strategies. Our initial experi-
ment on the MNIST dataset used the exact same hierarchical network structure and
prolongation/restriction operators as the example with 1D data, and yielded mar-
ginal computational benefit. We were thus motivated to try this learning task with
prolongations which are designed for 2D grid-based model architectures, as well as
trying unstructured (random orthogonal) matrices as a baseline. More precisely, our
1D experiments used P matrices resembling those in column 3 of the “Cycle Graphs”
section of Figure 3. We instead, for the MNIST task, used P matrices like those in
column 6 of the “Grid Graphs” section of the same figure. In Figure 7, we illustrate
the difference in these choices for the MNIST training task, with the same choice of
multigrid training parameters: (L = 6, \gamma = 3, k = 1). We compare the following
strategies for generating P :

1. as local optima of a prolongation problem between 1D grids, with periodic
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error lower than the default model. In many of our test cases, the hierarchical models
reached the same level of MSE as the default in more than an order of magnitude
fewer training examples, and continued to improve, surpassing the final level of error
reached by the default network. Even in the worst case, our hierarchical model struc-
ture performed on par with neural networks which did not incorporate our weight
prolongation and restriction operators. We leave the question of finding optimal
(L, \gamma , k) for future work—see section 6 for further discussion. Finally, we note that
the model(s) in the experiments presented in section 4.2 were essentially the same
MsANN models (same set of L, \gamma , k, and same set of P matrices), and showed similar
performance gains on two different machine vision problems, indicating that it may
be possible to develop general MsANN model-creation procedures that are applicable
to a variety of problems (rather than needing to be hand-tuned).

5. Upper bounds for diffusion term. In this section, we consider two theo-
retical concerns:

1. invariance in Frobenius norm of diffusion term solutions under transformation
to a spectral basis; and

2. decoupling a prolongation problem between graph products into a sum of
prolongation problems of the two sets of graph factors.

We will here rely heavily on various properties of the Kronecker sum and product of
matrices which may be found in [17, section 11.4].

5.1. Invariance of objective function evaluation of P under eigenspace

transformation. For the purpose of the calculations in this section, we restrict our-
selves to the “diffusion” term of the objective function of (3.3) (the term which coerces
two diffusion processes to agree), which we will write as

DP,\alpha (G1, G2) =

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1\surd 
\alpha 
PL1  - 

\surd 
\alpha L2P

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

F

.(5.1)

Because L1 and L2 are each real and symmetric, they may both be diagonalized as
Li = UiΛiU

T
i , where Ui is a rotation matrix and Λi is a diagonal matrix with the

eigenvalues of Li on the diagonal. Substituting into (5.1), and letting P̃ = UT
2 PU1,

we have

DP,\alpha (G1, G2) =

\bigm| 
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\bigm| 
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Λ1  - 
\surd 
\alpha Λ2

\bigl( 

UT
2 PU1

\bigr) 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

F

=

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1\surd 
\alpha 
P̃Λ1  - 

\surd 
\alpha Λ2P̃

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

F

,(5.2)

where P̃ is an orthogonal matrix P̃T P̃ = I if and only if P is. Since the Frobenius
norm is invariant under multiplication by rotation matrices, (5.2) is a reformulation
of our original Laplacian matrix objective function in terms of the spectra of the
two graphs. Optimization of this modified form of the objective function subject to
orthogonality constraints on P is upper-bounded by optimization over matchings of
eigenvalues: for any fixed \alpha the eigenvalue-matching problem has the same objective
function, but our optimization is over all real-valued orthogonal P . The orthogonality
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constraint is a relaxed version of the constraints on matching problems (see (3.2))
discussed in subsection 3.1, since matching matrices M are also orthogonal (MTM =
I). Many algorithms exist for solving the inner partial and 0-1 constrained minimum-
cost assignment problems, such as the Munkres algorithm [27] (also in subsection
3.1).

We note three corollaries of the above argument. Namely, because the Frobenius
norm is invariant under the mapping to and from eigenspace:

1. optimal or near-optimal P̃ in eigenvalue-space maintain their optimality through
the mapping U2 \cdot UT

1 back to graph-space;
2. solutions which are within \epsilon of the optimum in P̃ -space are also within \epsilon of

the optimum in P -space; and
3. more precisely, if they exist, zero-cost eigenvalue matchings correspond ex-

actly with zero-cost P .
A natural next question would be why it might be worthwhile to work in the

original graph-space, rather than always optimizing this simpler eigenvalue-matching
problem instead? In many cases (path graphs, cycle graphs) the spectrum of a member
Gl of a graph lineage is a subset of that of Gl+1, guaranteeing that zero-cost eigenvalue
matchings (and thus, by the argument above, prolongations with zero diffusion cost)
exist. However, when this is not the case, the above argument only upper bounds
the true distance, since the matching problem constraints are more strict. Thus,
numerical optimization over P , with orthogonality constraints only, may find a better
bound on DP,\alpha (Gl, Gl+1).

5.2. Decomposing graph product prolongations. We next consider the

problem of finding optimal prolongations between two graphs G
(1)
\square 

= G
(1)
1 \square G

(2)
1 and

G
(2)
\square 

= G
(1)
2 \square G

(2)
2 when optimal prolongations are known between G

(1)
1 and G

(1)
2 , and

G
(2)
1 and G

(2)
2 . We show that under some reasonable assumptions, these two prolon-

gation optimizations decouple—we may thus solve them separately and combine the
solutions to obtain the optimal prolongations between the two product graphs.

From the definition of graph box product, we have

L
(j)
\square 

= L(G
(j)
1 \square G

(j)
2 )

= A(G
(j)
1 \square G

(j)
2 ) - D(G

(j)
1 \square G

(j)
2 )

=
\Bigl( 

A(G
(j)
1 )\otimes I

(j)
2 + I

(j)
1 \otimes A(G

(j)
2 )
\Bigr) 

 - 
\Bigl( 

D(G
(j)
1 )\otimes I

(j)
2 + I

(j)
1 \otimes D(G

(j)
2 )
\Bigr) 

=
\Bigl( 

A(G
(j)
1 )\otimes I

(j)
2  - D(G

(j)
1 )\otimes I

(j)
2

\Bigr) 

 - 
\Bigl( 

I
(j)
1 \otimes A(G

(j)
2 ) - I

(j)
1 \otimes D(G

(j)
2 )
\Bigr) 

= (L
(j)
1 \otimes I

(j)
2 ) + (I

(j)
1 \otimes L

(j)
2 )

= L(G
(j)
1 )\oplus L(G

(j)
2 ),

where \oplus is the Kronecker sum of matrices as previously defined. See [12, Item 3.4]
for more details on Laplacians of graph products. We calculate

DP,\alpha 
\Bigl( 

G
(1)
\square 

, G
(2)
\square 

\Bigr) 

=

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1\surd 
\alpha 
PL

(1)
\square 

 - 
\surd 
\alpha L

(2)
\square 

P

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

F

=

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1\surd 
\alpha 
P
\Bigl( \Bigl( 

L
(1)
1 \otimes I

(1)
2

\Bigr) 

+
\Bigl( 

I
(1)
1 \otimes L

(1)
2

\Bigr) \Bigr) 

 - 
\surd 
\alpha 
\Bigl( \Bigl( 

L
(2)
1 \otimes I

(2)
2

\Bigr) 

+
\Bigl( 

I
(2)
1 \otimes L

(2)
2

\Bigr) \Bigr) 

P
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

F
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=

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\biggl( 

1\surd 
\alpha 
P
\Bigl( 

L
(1)
1 \otimes I

(1)
2

\Bigr) 

 - 
\surd 
\alpha 
\Bigl( 

L
(2)
1 \otimes I

(2)
2

\Bigr) 

P

\biggr) 

+

\biggl( 

1\surd 
\alpha 
P
\Bigl( 

I
(1)
1 \otimes L

(1)
2

\Bigr) 

 - 
\surd 
\alpha 
\Bigl( 

I
(2)
1 \otimes L

(2)
2

\Bigr) 

P

\biggr) \bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

F

.

Now we try out the assumption that P = P1 \otimes P2, which restricts the search space
over P and may increase the objective function:

DP,\alpha 
\Bigl( 

G
(1)
\square 

, G
(2)
\square 

\Bigr) 

=

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\biggl[ 

1\surd 
\alpha 
(P1 \otimes P2)

\Bigl( 

L
(1)
1 \otimes I

(1)
2

\Bigr) 

 - 
\surd 
\alpha 
\Bigl( 

L
(2)
1 \otimes I

(2)
2

\Bigr) 

(P1 \otimes P2)
\Bigr] 

+

\biggl[ 

1\surd 
\alpha 
(P1 \otimes P2)

\Bigl( 

I
(1)
1 \otimes L

(1)
2

\Bigr) 

 - 
\surd 
\alpha 
\Bigl( 

I
(2)
1 \otimes L

(2)
2

\Bigr) 

(P1 \otimes P2)
\Bigr] \bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

F

=

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\biggl( 

1\surd 
\alpha 

\Bigl( 

P1L
(1)
1 \otimes P2

\Bigr) 

 - 
\surd 
\alpha 
\Bigl( 

L
(2)
1 P1 \otimes P2

\Bigr) 

\biggr) 

+

\biggl( 

1\surd 
\alpha 

\Bigl( 

P1 \otimes P2L
(1)
2

\Bigr) 

 - 
\surd 
\alpha 
\Bigl( 

P1 \otimes L
(2)
2 P2

\Bigr) 

\biggr) \bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

F

=

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\biggl( \biggl( 

1\surd 
\alpha 
P1L

(1)
1  - 

\surd 
\alpha L

(2)
1 P1

\biggr) 

\otimes P2

\biggr) 

+

\biggl( 

P1 \otimes 
\biggl( 

1\surd 
\alpha 
P2L

(1)
2  - 

\surd 
\alpha L

(2)
2 P2

\biggr) \biggr) \bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

F

.

Since | | A+B| | F \leq | | A| | F + | | B| | F ,

\leq 
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\biggl( \biggl( 

1\surd 
\alpha 
P1L

(1)
1  - 

\surd 
\alpha L

(2)
1 P1

\biggr) 

\otimes P2

\biggr) \bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

+

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\biggl( 

P1 \otimes 
\biggl( 

1\surd 
\alpha 
P2L

(1)
2  - 

\surd 
\alpha L

(2)
2 P2

\biggr) \biggr) \bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

F

=

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1\surd 
\alpha 
P1L

(1)
1  - 

\surd 
\alpha L

(2)
1 P1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

F

| | P2| | F

+ | | P1| | F
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1\surd 
\alpha 
P2L

(1)
2  - 

\surd 
\alpha L

(2)
2 P2

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

F

.

Thus assuming P = P1 \otimes P2

DP,\alpha 
\Bigl( 

G
(1)
\square 

, G
(2)
\square 

\Bigr) 

\leq | | P2| | F D\alpha ,P1

\Bigl( 

G
(1)
1 , G

(2)
1

\Bigr) 

+ | | P1| | F D\alpha ,P2

\Bigl( 

G
(1)
2 , G

(2)
2

\Bigr) 

,

which is a weighted sum of objectives of the optimizations for prolongation from G
(1)
1

to G
(2)
1 and G

(1)
2 to G

(2)
2 . Recall that our original constraint on P was that PTP = I;

since P = P1 \otimes P2 this is equivalent (by a property of the Kronecker product; see
Corollary 13.8 in [22]) to the coupled constraints on P1 and P2:

\biggl( 

P1
TP1 =

1

\eta 
I
(1)
1

\biggr) 

\wedge 
\Bigl( 

P2
TP2 = \eta I

(1)
2

\Bigr) 

(5.3)
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for some \eta \in R. For any P1, P2 which obey (5.3), we may rescale them by \eta to make
them orthogonal without changing the value of the objective, so we take \eta = 1 in
subsequent calculations. Noting that | | A| | F =

\sqrt{} 

Tr(ATA), we see that

| | P1| | F =

\sqrt{} 

Tr(I
(1)
1 ) =

\sqrt{} 

n
(1)
1 and similarly | | P2| | F =

\sqrt{} 

n
(1)
2 .

Thus, we have proven the following theorem.

Theorem 5.1. Assuming that P decomposes as P = P1 \otimes P2, the diffusion dis-

tance DP,\alpha 

\bigl( 

G
(1)
\square 

, G
(2)
\square 

\bigr) 

between G
(1)
\square 

and G
(2)
\square 

is bounded above by the strictly mono-
tonically increasing function of the two distances DP1,\alpha and DP2,\alpha :

\scrF (DP1,\alpha , DP2,\alpha ) =

\sqrt{} 

n
(1)
2 DP1,\alpha +

\sqrt{} 

n
(1)
1 DP2,\alpha .

Namely,

DP,\alpha 

\Bigl( 

G
(1)
\square 

, G
(2)
\square 

\Bigr) 

\leq \scrF 
\Bigl( 

DP1,\alpha 

\Bigl( 

G
(1)
1 , G

(2)
1

\Bigr) 

, DP2,\alpha 

\Bigl( 

G
(1)
2 , G

(2)
2

\Bigr) \Bigr) 

.

Thus, the original optimization over the product graphs decouples into separate
optimizations over the two sets of factors, constrained to have the same value of \alpha .
Additionally, since the requirement that P = P1 \otimes P2 is an additional constraint, we
have the following corollary.

Corollary 5.2. If (\alpha 1, P1) and (\alpha 2, P2), subject to orthogonality constraints,

are optima of D\alpha ,P

\bigl( 

G
(1)
1 , G

(1)
1

\bigr) 

and D\alpha ,P

\bigl( 

G
(1)
2 , G

(1)
2

\bigr) 

, and furthermore, if \alpha 1 = \alpha 2,

then the value of DP,\alpha (G
(1)
1 \square G

(1)
2 , G

(2)
1 \square G

(2)
2 ) for an optimal P is bounded above by

DP1\otimes P2,\alpha 1
(G

(1)
1 \square G

(1)
2 , G

(2)
1 \square G

(2)
2 ).

This upper bound on the original objective function is a monotonically increasing
function of the objectives for the two smaller problems. A consequence of this upper

bound is that if DP1,\alpha 

\bigl( 

G
(1)
1 , G

(2)
1

\bigr) 

\leq \epsilon 1 and DP2,\alpha 

\bigl( 

G
(1)
2 , G

(2)
2

\bigr) 

\leq \epsilon 2, then the compos-

ite solution P1 \otimes P2 must have DP1\otimes P2,\alpha 

\bigl( 

G
(1)
\square 

, G
(2)
\square 

\bigr) 

\leq \epsilon =
\bigl( \surd 

n1 +
\surd 
n2

\bigr) 

max(\epsilon 1, \epsilon 2).
Thus if both of these distances are arbitrarily small, then the composite distance must

also be small. Furthermore, if only one of these is small, so that DP1,\alpha 

\bigl( 

G
(1)
1 , G

(2)
1

\bigr) 

\approx 0

or DP2,\alpha 

\bigl( 

G
(1)
2 , G

(2)
2

\bigr) 

\approx 0, then DP1\otimes P2,\alpha \approx DP2,\alpha or DP1\otimes P2,\alpha \approx DP1,\alpha , respectively.
We have experimentally found that many families of graphs do not require scaling

between the two diffusion processes: the optimal (\alpha , P ) pair has \alpha = 1. In particular,
prolongation between path (cycle) graphs of size n and size 2n always have \alpha optimal =
1, since the spectrum of the former graph is a subset of that of the larger—therefore,
there is a matching solution of cost 0 which by the argument above can be mapped
to a graph-space P with objective function value 0 (we prove this in section SM1 of
the Supplementary Material to this paper). In this case, the two terms of the upper
bound are totally decoupled and may each be optimized separately (whereas in the
form given above, they both depend on an \alpha ).

6. Conclusion and future work. We have introduced a novel method for
multiscale modeling which relies on a novel prolongation and restriction operator to
move between models in a hierarchy. These prolongation and restriction operators
are the optima of an objective function we introduce which is a natural distance
metric on graphs and graph lineages. We prove several important properties of this
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objective function, including an upper bound which allows us to decouple a difficult
optimization into two smaller optimization problems under certain circumstances.

Additionally, we demonstrate an algorithm which makes use of such P and R op-
erators to simultaneously train models in a hierarchy of neural networks (specifically,
autoencoder neural networks). This multiscale artificial neural network (MsANN)
approach statistically outperforms training only at the finest scale, achieving lower
error than the default model and also reaching the default model’s best performance
in an order of magnitude fewer training examples. While in our experiments we saw
uniform improvement as the parameters \gamma , k, and L were increased (meaning that the
hierarchy is deeper, and the model spends more relative time training at the coarser
scales), this may not always be the case, and we leave the question of finding optimal
settings of these parameters for future work.

Future work will also focus on investigating the properties of the distance metric
on graphs, and the use of those properties in graph lineage, as well as modifying
the MsANN algorithm to perform the same type of hierarchical learning on more
complicated ANN models, such as Convolutional Neural Networks [23], as well as
nonautoencoding tasks, for example, classification.

Acknowledgment. The authors wish to thank the Sainsbury Laboratory, Cam-
bridge University for their hospitality.
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