
Photometric Redshift Estimation with Galaxy Morphology Using Self-organizing Maps

Derek Wilson
1

, Hooshang Nayyeri
1

, Asantha Cooray
1
, and Boris Häußler

2

1
Department of Physics & Astronomy, University of California, Irvine, CA 92697, USA

2
European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago, Chile

Received 2019 June 11; revised 2019 November 18; accepted 2019 November 20; published 2020 January 10

Abstract

We use multiband optical and near-infrared photometric observations of galaxies in the Cosmic Assembly Near-
infrared Deep Extragalactic Legacy Survey to predict photometric redshifts using artificial neural networks. The
multiband observations span from 0.39 to 8.0 μm for a sample of ∼1000 galaxies in the GOODS-S field for which
robust size measurements are available from Hubble Space Telescope Wide Field Camera 3 observations. We use
self-organizing maps (SOMs) to map the multidimensional photometric and galaxy size observations while taking
advantage of existing spectroscopic redshifts at 0<z<2 for independent training and testing sets. We show that
use of photometric and morphological data led to redshift estimates comparable to redshift measurements from
modeling of spectral energy distributions and from SOMs without morphological measurements.

Unified Astronomy Thesaurus concepts: Galaxy radii (617); Galaxies (573); Multi-color photometry (1077);
Galaxy properties (615); Redshifted (1379)

1. Introduction

Photometric redshift (photo-z) estimation is crucial for
astrophysical applications because obtaining spectroscopic
redshifts for large samples of distant galaxies is often
infeasible. Physical properties of extragalactic sources further
depend on accurate redshift measurements. The photometric
redshift can also be used as a good proxy for distance for
mapping the large-scale structure and performing weak lensing
studies (Munshi et al. 2008).

Unfortunately, due to selective sampling of the galaxy
spectral energy distribution (SED), photometric redshifts suffer
from much higher uncertainties than spectroscopic redshifts.
Errors in photometric redshifts can significantly affect
measurements of cosmological parameter in, for example,
studies of weak lensing (e.g., Huterer et al. 2006; Ma et al.
2006; Bernstein & Huterer 2010) and baryon acoustic
oscillation (e.g., Zhan & Knox 2006; Chaves-Montero et al.
2018).
The observable quantity available for photo-z estimation is

galaxy photometry in multiple wavelength bands, and a large
number of techniques have been developed to estimate redshift
while trying to minimize zphot−zspec. Photometric redshift
estimation is primarily done via template-fitting (e.g., Lanzetta
et al. 1996; Fernández-Soto et al. 1999) and/or statistical (e.g.,
Connolly et al. 1995) and machine learning techniques. As
surveys grow ever larger, machine learning techniques that can
process enormous amounts of data with minimal human input
are becoming increasingly important.

Some techniques for photo-z estimation involve using
artificial neural networks with photometry and/or morphology
data (e.g., Firth et al. 2003; Ball et al. 2004; Collister &
Lahav 2004; Vanzella et al. 2004; Bonfield et al. 2010; Soo
et al. 2018), support vector machines (e.g., Wadadekar 2005;
Jones & Singal 2017), the Multi-Layer Perceptron with Quasi-
Newton Algorithm (MLPQNA, Brescia et al. 2013), and the
conditional density estimator FLEXCODE (Izbicki & Lee 2017).
Statistical models have also been developed, such as the
surface brightness and photometry model of Kurtz et al. (2007),
the algorithm based on surface brightness, Sèrsic index, and

photometry developed in Wray & Gunn (2008), and the
Gaussian process regression model (Way & Srivastava 2006;
Bonfield et al. 2010; Way 2011; Almosallam et al.
2016a, 2016b), which also appears in Gomes et al. (2018)
when applied to infrared- and visible-band photometry in
conjunction with angular size. Wadadekar (2005) uses support
vector machines to estimate redshifts from photometric data as
well as the 50% and 90% Petrosian radii for their sources. They
observe 15% greater accuracy when they use the two Petrosian
radii with photometry than when they use photometry alone.
The empirical techniques in Vince & Csabai (2007) use
photometry and morphological data from the Sloan Digital Sky
Survey (SDSS), and they find that the weak correlation
between morphology and redshift leads to only negligible
gains in accuracy of photo-z estimation. Singal et al. (2011) use
a principal component analysis including morphological
parameters to estimate photometric redshifts for the All-
wavelength Extended Groth Strip International Survey
(AEGIS; Davis et al. 2007). They conclude that the additional
noise added to the data set by including morphological
parameters will offset any of the gains coming from
correlations between redshift and morphology. Jones & Singal
(2017) use a support vector machine to estimate photometric
redshifts. Their work includes principal components of eight
morphological parameters; however, they observe no signifi-
cant decrease in the rms error or in the number of outliers (i.e.,
the number of galaxies with - +z z z1phot spec spec( ) ( ) greater
than some value, such as the value of 0.15 in Hildebrandt et al.
2010) when using morphological data. Machine learning
models are trained on photometric and/or morphological
features that have been derived from the galaxy images. Hoyle
(2016) develops a deep neural network that is trained directly
on galaxy images, so the network itself decides which parts of
the image are important. The paper does not note a significant
improvement in redshift accuracy. A similar approach is found
in Menou (2019), which uses a multilayer perceptron/
convolutional neural network (MLP-convnet) architecture that
analyzes galaxy-integrated features such as fluxes and colors
using the MLP framework while adding in morphological
information found by analyzing images directly with the
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convnet framework. They find that the MLP-convnet archi-
tecture does lead to a significant improvement in accuracy but
has no effect on the number of outliers.

We now focus on the use of a machine learning technique
known as a self-organizing map (SOM; Kohonen 1982, 1990),
which has increased in the last decade. An SOM is an artificial
neural network whose main advantage is its ability to reduce
the dimensionality of input data while preserving the relation-
ships between data points, thus making those relationships
easier to visualize. We use the SOM to characterize the
multidimensional space of observed galaxy SEDs. In the
literature, Tagliaferri et al. (2003) combine multilayer percep-
trons with SOMs to analyze photometric data from SDSS.
There is also MLZ (Machine Learning and photo-z, Carrasco
Kind & Brunner 2013, 2014), which performs two regression
algorithms for computing photo-zs: TPZ, which uses prediction
trees and random forests, and SOMZ, which uses SOMs. SOMs
are also used by Masters et al. (2015) to estimate redshifts and
identify regions in galaxy color space where spectroscopic
redshifts have not been obtained in past surveys. If these gaps
could be filled in by future surveys, such a complete training
set would be a powerful tool for photo-z estimation using
machine learning. Recent work by Speagle & Eisenstein
(2017a) develops a photo-z technique that combines template-
fitting methods with SOMs. Concerning the predictive power
of SOMs, Geach (2012) finds that SOMs can reach accuracies
in photometric redshifts that are competitive with template-
fitting and other empirical methods. When trained on mock
data from the Large Synoptic Survey Telescope and Euclid,
they find that their technique can predict redshifts to the
accuracy required for Euclid weak lensing measurements
(Speagle & Eisenstein 2017a, 2017b).

In this paper, we explore the effect that the addition of
galaxy morphology to SOM training data has on the accuracy
of redshift estimation. This paper is organized as follows:
Section 2 describes the catalog data from GOODS-S used in
our study. In Section 3, we summarize the SOM algorithm.
Sections 4 and 5 discuss the performance of the SOMs when
photometry alone and photometry plus morphology, respec-
tively, are used for training. The AB magnitude system is used,
and a flat-ΛCDM cosmology of W = 0.27m0

, W =L 0.73
0

, and

H0=70 - -km s Mpc1 1 is assumed. The code developed herein
will be made publicly available at https://github.com/
derkwilson/PhotSOM.

2. Data

We use publicly available data from the GOODS-S field
(centered at R.A.=03h32m30s, decl.=-27d48m20s), which
covers an area of approximately 150 arcmin2. Our training and
testing catalogs are pulled from the Cosmic Assembly Near-
infrared Deep Extragalactic Legacy Survey (CANDELS;
Grogin et al. 2011; Koekemoer et al. 2011).3 The full
CANDELS GOODS-S catalog (Guo et al. 2013) includes
optical, near-, and mid-infrared photometry from the Hubble
Space Telescope (HST), the Very Large Telescope (VLT), and
the Spitzer Infrared Array Camera (IRAC). Our primary
training and testing catalogs each consist of 506 galaxies in
the GOODS-S field with colors computed from the 15 bands
listed in Table 1, comparable to the training and testing sets of
Dahlen et al. (2013). We have an additional training set with

about 1360 sources, and the results using this training set do
not differ significantly from those with the training set of 506
sources, so we will focus on the results from the latter. We note
that Bonfield et al. (2010) find that photo-z estimates
deteriorate with fewer than 2000 training objects when using
artificial neural networks and Gaussian process regression, but
that the size and architecture of the network may permit
reasonable results with fewer training objects. All sources in
the training and testing sets have zspec<2, and the distribution
of redshifts is shown in Figure 1. Dahlen et al. (2013)
previously released a training/testing catalog set with

Table 1

The 19 Features Used in the Training and Testing of the SOMs

Feature Wavelength (μm) References.

VLT/VIMOS U ∼0.36 N09, G13

HST/ACS F435W 0.4320 G04, K11, G13

HST/ACS F606W 0.5956 G04, K11, G13

HST/ACS F775W 0.7760 G04, K11, G13

HST/ACS F814W 0.8353 G04, K11, G13

HST/ACS F850LP 0.8320 G04, K11, G13

HST/WFC3 F098M 0.985 W11, G13

HST/WFC3 F105W 1.045 K11, G13

HST/WFC3 F125W 1.250 K11, G13

HST/WFC3 F160W 1.545 K11, G13

VLT/ISAAC Ks 2.16 R10, G13

Spitzer/IRAC 3.6 3.6 A13, G13

Spitzer/IRAC 4.5 4.5 A13, G13

Spitzer/IRAC 5.8 5.8 G13

Spitzer/IRAC 8.0 8.0 G13

R50 0.4320 H13

Concentration (C) 1.250 P16

Asymmetry (A) 1.250 P16

Smoothness (S) 1.250 P16

Note. The first 15 lines of the table are the photometry, showing the instrument

and filter used as well as the central wavelength of the filter. The bottom four

lines of the table show the morphological quantities used and the corresponding

wavelengths. References: G04: Giavalisco et al. (2004), N09: Nonino et al.

(2009), R10: Retzlaff et al. (2010), K11: Koekemoer et al. (2011), W11:

Windhorst et al. (2011), A13: Ashby et al. (2013), G13: Guo et al. (2013), H13:

Häußler et al. (2013), P16: Peth et al. (2016).

Figure 1. Histograms of the galaxy spectroscopic redshifts comprising the
training set (red) and testing set (blue dashed). The training and testing sets
each contain 506 individual galaxies up to a redshift of 2.

3
https://archive.stsci.edu/prepds/candels/

2
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photometry in the same bands (except ACS F814W) extending
up to z∼5 in redshift, so we also test our SOMs with these
catalogs for comparison.

In addition to the photometry, we use half-light radii
(Häußler et al. 2013) and concentration, asymmetry, and
smoothness data from Peth et al. (2016) (see Table 1). In total,
we use 15 photometric features and four morphological
features when training and testing our SOMs. Half-light radii
come from a single-Sèrsic fit to sources extracted from H-band
images. Peth et al. (2016) extract morphological quantities
from the WFC3 F125W and F160W images obtained by
CANDELS. We use the H-band morphologies from the catalog
of Peth et al. (2016). Training data consist of the colors (Guo
et al. 2013) and sizes/morphologies (Häußler et al. 2013; Peth
et al. 2016) for ∼500 galaxies with known spectroscopic
redshifts. We match the size/morphology data to the photo-
metry for each of the sources in these catalogs based on sky
coordinates.

Galaxy morphologies are captured by a number of quantities;
for example, radius, concentration, asymmetry, smoothness,
Sèrsic index, axis ratio, Gini coefficient, and second-order
moment (e.g., Conselice et al. 2000; Conselice 2003; Lotz et al.
2004; Peth et al. 2016). A galaxy’s spatial extent can be

characterized through measurements of half-light radius (here-
after R50), which is the radius within which 50% of the galaxy’s
total flux falls. Concentration (Kent 1985; Bershady et al. 2000;
Conselice 2003) describes the extent to which a galaxy’s light
is concentrated toward the center. The concentration is taken to
be the ratio between the radii containing 80% and 20% of the
galaxy’s light within 1.5 Petrosian (Petrosian 1976) radii (e.g.,
Peth et al. 2016). Large-scale asymmetries in the light
distribution of the source are described by the asymmetry
statistic (Conselice et al. 2000). High asymmetry is typical for
blue, star-forming galaxies and can be indicative of systems
that have undergone mergers (Conselice et al. 2000; Con-
selice 2003). Smoothness (Conselice 2003), also known as
clumpiness, traces structures with high spatial frequencies, such
as star-forming regions. In contrast, objects such as elliptical
galaxies consist primarily of low spatial frequencies, due to
their smooth light distributions. Conselice (2003) define
clumpiness as the ratio between the flux in high-frequency
spatial structures and the total flux of the galaxy. There are
alternative methods for identifying clumps, such as resolved
rest-frame (U–V ) color selections (Hemmati et al. 2014, see
also Wuyts et al. 2012; Guo et al. 2015), which yield
comparable results.

Together, concentration, asymmetry, and smoothness form
the CAS structural parameter system (Conselice 2003). The
CAS parameters form a three-dimensional volume that can be
used to classify galaxies into elliptical, spiral, dwarf irregular,
dwarf elliptical, and merger classes. We include the CAS
system in our analysis to see whether the evolution of
morphological parameters correlates strongly enough with
redshift to improve photo-z estimates.

We provide a brief summary of other interesting morpho-
logical quantities that could also potentially be used in training
the SOMs, though they were not used in this study. The Gini
coefficient (Lorenz 1905; Abraham et al. 2003; Lotz et al.
2004) is a quantity used to measure how equally light is
distributed among pixels in a galaxy image. The Gini
coefficient is also correlated with concentration (Abraham
et al. 2003). The second-order moment (Lotz et al. 2004)

measures the flux in pixels weighted by their squared distance
from the galaxy center. This statistic is sensitive to bright
features such as galactic nuclei, bars, spiral arms, and star
clusters (Lotz et al. 2004).

3. Redshift Measurement Algorithm

We use the SOM to identify correlations between redshift
and observed galaxy colors as measured from the multiband
optical and near-infrared data. Morphological information on a
galaxy is included in the SOM algorithm in a later section.
When the SOM is given the color/morphology data of a test
galaxy, it searches for the node that is closest in color–
morphology space to that test galaxy and makes an approx-
imation of its redshift based on the location of the node within
the map. In theory, we could supply the SOM with any
observable quantity (photometric or morphological; such as
color, half-light radius, Sèrsic index, asymmetry, concentration,
Gini coefficient, etc.), and the SOM would cluster the input
data according to the correlations that it locates in the data. For
studies of galaxy SEDs, this means that we can explore any of
the mapped properties and associate them with a measured
value given the clustered information.
The construction of the SOM is similar to the self-organizing

map association network (SOMA) from Yamakawa et al.
(2001), though our method of association differs. A SOMA
infers a set of perfect (complete) information from a set of
incomplete information. For the case presented here, we take
the perfect information to be a vector of data points consisting
of galaxy photometry, morphology, and spectroscopic redshift,
and the incomplete information would be a vector of
photometric and morphological data points without a redshift.
The SOMs are constructed and organized from a set of training
samples consisting of perfect information; subsequently,
samples composed of incomplete information and unknown
spectroscopic redshift can be presented to the map for redshift
classification. Note that perfect in this sense does not mean
without error, but rather that the data exist.
The SOM is initialized to an m×n array of nodes. Each

node contains a weight vector that covers the attribute (e.g.,
color, size, spectroscopic redshift) space of the input data. This
weight vector is initialized to random values, and as the map is
trained these weight vectors will update themselves to be more
representative of the data. This training process is repeated for
each galaxy in the training sample. The map as a whole has a
topology that we take to be toroidal. Various works in the
literature (e.g., Yamakawa et al. 2001; Masters et al. 2015)
describe the training process in detail. We summarize the same
process here and borrow their notation. One training iteration
begins with the selection of a random training sample with
feature vector x containing photometric and morphological
data as well as a spectroscopic redshift. Next is the
identification of the best-matching unit (BMU), the node that
is closest in attribute space to the training sample according to
the reduced χ

2 distance given by

å
s

=
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=

x wd
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x w
,

1
1k k

i

m
i k i
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where dk is the reduced χ
2 distance, m is the length of the

feature vector x, xi is the ith component of x, sxi is the

uncertainty associated with xi, and wk is the kth weight vector in

the SOM. In the cases in which a training object or testing
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object was missing a data feature (i.e., a value of −99 for flux

in some band), the reduced χ
2 distances for each node were

computed by taking the missing feature to be exactly equal to

the node weight that corresponded to the missing feature; i.e.,

setting xi equal to wk,i for that feature. This means that only the

non-missing data will contribute to the sum in Equation (1). In

this way, the incomplete training/testing vector can still exist in
the m-dimensional feature space, but its reduced χ

2 distance

will only depend on the features that are not missing. This

technique also works if more than one feature is missing.
The goal is to have nodes with similar weights located near

each other in the map. The nodes in the “neighborhood” of the
BMU are determined by the neighborhood function Hk, which
we take to be Gaussian:

= s-H t e 2k
d tk
2 2

( ) ( )( )

where the standard deviation σ
2
(t) of the neighborhood

function is

s s
s

=t
1

3

t N

0
0

iters⎛

⎝
⎜

⎞

⎠
⎟( ) ( )

/

where σ0 is an arbitrary initial value, and t is an integer ranging

from 1 to the total number of training iterations, Niters.
The BMU and surrounding nodes are then rewarded for

being nearest to the training sample and are allowed to update
their weights according to the relation

+ = + -w w x wt t a t H t t t1 4k k k k( ) ( ) ( ) ( )[ ( ) ( )] ( )

where we adopt the learning function a(t):

= -a t e . 5t Niters( ) ( )/

While other learning functions exist in the literature (e.g.,
Masters et al. 2015), we selected this one because it gave the
lowest outlier fraction (OLF). The learning function decreases
monotonically and is intended to desensitize the SOM to new
training data as time progresses, allowing it to converge to a
stable solution.

The multitude of SOM parameters (e.g., number of nodes,
number of training iterations, learning rate, neighborhood
function) affect the performance of the SOM as a whole. The
number of nodes and training iterations used will depend on the
total number of training samples available. A larger training set
will require more training iterations to fully capture the data;
however, it is possible to overtrain a map with too many
training iterations, where the SOM learns the training data well
but does not generalize to data it has not seen before. The
number of nodes affects the number and size of clusters that
form in the trained map. If the number of nodes is too small, the
map may not capture the full set of relations present in the data.
Increasing the number of nodes and training iterations comes at
a cost in computing time as well. We determined by cross-
validation that a map size of 150 pixels by 150 pixels had
optimal predictive ability. Cross-validation involves removing
a subset of samples (the validation set) from the training set,
training the map on the remaining samples, and then using the
validation set as testing samples. The grid size of the map is
varied, and the optimal value of the grid size hyperparameter is
selected based on performance on the validation set.

To extract a redshift prediction from the SOM, it is presented
with a test vector that contains the same photometric and
morphological attributes as the training vectors, but without the

spectroscopic redshift. While ignoring the redshift attribute of
the SOM nodes, the reduced χ

2 distance is computed between
the test vector and each node in the map, identifying the BMU
(node). The redshift of the BMU becomes the redshift
associated with the test vector and represents the best
prediction of the redshift of the test source.

4. SOMs on Galaxies

In order to test the SOM, the known spectroscopic redshifts
of galaxies must be compared with the predictions of the map.
However, the galaxies used to test the map must not be sources
that the map has seen before; that is, they cannot appear in the
training set. A study of several photometric redshift codes was
performed by Dahlen et al. (2013), and they have released the
training and control catalogs based on GOODS-S data that
were used in the study. As a first test, our SOMs were trained
and tested using this training/control set, which contained only
photometric data. For each source, the quantity
s = D +z z1 spec( ), where Δz=zBMU−zspec, is determined.
There are several measures of performance (e.g., Dahlen et al.
2013), denoted by σF (= D +z zrms 1 spec[ ( )]), σO (the same as
σF but it has sources with σ >0.15 removed), and the OLF
specifying the fraction of sources with σ>0.15. Individual
SOMs were trained using the training/testing set from Dahlen
et al. (2013), and the performance of individual maps was
found to be σF∼0.17, σO∼0.042–0.044, and OLF ∼9%–

10%. To obtain a slight improvement in accuracy, the median
of the results of 500 SOMs was found (since each SOM will be
slightly different because the initial node weights are random
and the training samples may be presented in different orders),
giving σF∼0.15, σO∼0.036–0.038, and OLF ∼6%–8%.
Next, we trained and tested the SOMs using three training/

testing set pairs each composed of ∼500 sources with z<2.
The first training/testing set contains only 13 colors (computed
from 14 photometric bands), the second set contains R50 from a
single-Sèrsic fit in addition to the colors, and the third set
contains the colors as well as CAS data. We select sources with
z <2 because morphological measurements for sources at
higher redshift will be inherently less precise. A single SOM
trained and tested with our training set of z<2 sources
produced a typical σF in the range 0.14–0.16 and σo in the
range 0.048–0.052 with OLFs of ∼10%–12%. By computing
the median of multiple SOMs, we produced slightly lower
values of σo. By averaging the SOM outputs in this way, we
obtained the results in Table 2 when using photometry alone,
and photometry with either R50 or CAS. An example of typical
results is shown in Figure 2.

Table 2

Summary of Performance when using the Median of Multiple SOM Predictions
after Training

σF σo OLF

Photometry Only ∼0.14 ∼0.05 10%–1%

With R50 ∼0.14 ∼0.06 12%–4%

With CAS ∼0.13 ∼0.05 10%–2%

Note. Training was done with photometry alone, photometry plus half-light

radius, and photometry plus concentration, asymmetry, and smoothness. The

addition of morphological parameters had an insignificant effect on

photometric redshift estimation. OLF denotes the outlier fraction, the fraction

of sources with σ >0.15.
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For comparison, we run several public photo-z codes on the
three training/testing set pairs. The photo-z codes used were
PHOTORAPTOR using MLPQNA (Brescia et al. 2013), FLEX-

CODE (Izbicki & Lee 2017), and TPZ and SOMZ from the MLZ

package (Carrasco Kind & Brunner 2013, 2014). Here we will
only give a brief summary of these algorithms. MLPQNA uses a
supervised learning technique involving multilayer percep-
trons, a network of neurons that is trained by minimizing a loss
function. The loss function is minimized by iteratively updating
the weights in the neural network. The quasi-Newton algorithm
is used to compute the Hessian of second derivatives, which is
necessary for computing the amount by which the network
weights are updated. We use a three-layer network with 15, 16,
or 18 neurons in the first layer (if the training set contains just
photometry, phot + R50, or phot + CAS, respectively), 64
neurons in the second layer, and one neuron in the final layer.
We set a decay rate of 0.001 and use a maximum of 10,000
iterations.

FLEXCODE employs a conditional density estimator method
that seeks to improve photo-zs by constructing a full
conditional density distribution from the data. This is done
using an orthogonal series formulation, with the series
coefficients determined by regression. The result is a condi-
tional probability distribution that is useful for handling the
multimodality in a photo-z prediction. When running FLEX-

CODE, we use the XGBoost regression method with a cosine
basis system.

MLZ can perform regression using two different methods: a
prediction tree and random forest algorithm and a self-
organizing map algorithm. Prediction trees work by splitting
the data into multiple branches based on some attribute. This
process is repeated recursively until a stopping criterion is met,
at which point a photo-z prediction can be made. A random
forest is a collection of prediction trees whose predictions can
be combined to produce more accurate results. The SOM
component of MLZ works similarly to the SOM algorithm
described in this work. The main difference between the SOM
algorithms is the way in which spectroscopic redshift is used to
train the SOM. In the MLZSOMZ, the spectroscopic redshift

does not enter in the training of the SOM. Only after the map
has been trained are the spectroscopic redshifts from the
training sample associated with the nodes in the map, with the
mean redshift of the sources associated with each node
becoming the final redshift of that node. For our study with
TPZ, we set the MinLeaf parameter to 10. For SOMZ, we use a
periodic grid with a size of 64 nodes and 3000 training
iterations.
Our implementation of the SOM algorithm uses a supervised

approach. The spectroscopic redshift is included during the
training process, and the final trained map will contain weights
corresponding to the final redshift associated with each node.
Overall, the performances of our SOM algorithm and the other
photo-z codes were comparable, though missing data nega-
tively affected the performance of some of the codes. As almost
every source was missing photometry in one band or another,
the replacement of the missing value with −99 may not allow
the codes to perform optimally, while at the same time, removal
of all data points with a missing value was not possible. The
results from the photo-z codes are shown in Figure 3, and the
corresponding metrics are listed in Table 3. FLEXCODE

returned similar results for all three testing sets. The TPZ

algorithm from MLZ was generally less accurate for the testing
sets that included morphological data. We note that it is
possible that there may exist hyperparameters for the FLEX-

CODE and TPZ algorithms that may improve their predictions
but which we may have missed while tuning these models,
despite our best efforts to find the optimal hyperparameters.
MLPQNA and the SOMZ algorithm had large OLFs, with the
number of outliers increasing when morphological data were
used in training. It is likely that the large OLFs may be caused
by missing data.

5. Probability Distributions

Many photo-z methods return a probability distribution in
redshift space (e.g., LEPHARE: Arnouts et al. 1999; Ilbert et al.
2006, PROBWTS: Cunha et al. 2009) because methods that only
give point estimates can miss important information; e.g., a
probability distribution may be double-peaked, but a point

Figure 2. Top row shows a comparison of photo-z to spec-z for GOODS-S field using different subsets of data features. The bottom shows the normalized residuals
given by (zphot−zspec)/(1 + zspec). Left: SOM predictions using only photometric data. Middle: using photometry and half-light radius. Right: using photometry and
CAS data.
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estimate may only see the larger peak and miss the information
in the secondary peak (Mandelbaum et al. 2008; Cunha et al.
2009; Wittman 2009; Bordoloi et al. 2010; Abrahamse et al.
2011; Sheldon et al. 2012). By using an ensemble of SOMs, the
algorithm that we employ can be extended to return a
probability distribution. Each individual SOM in the ensemble
is initialized randomly, with no two SOMs having the same
starting parameters. The different initializations will lead each
map to converge to different weights after the training process
is completed, and thus each map will predict a different
photometric redshift for a test source. The results from the
ensemble of SOMs are histogrammed with a bin size of
Δz=0.01 to form the final probability distribution function
(PDF) (see Figure 4), and the median of the distribution is
taken to be the final point estimate of the redshift.

The quality of the PDFs is tested using the probability
integral transform (PIT) described in Polsterer et al. (2016) and
the confidence test from Wittman et al. (2016). The PIT
(Dawid 1984) is given by the histogram of the cumulative
probabilities of each redshift PDF computed at the value of the
spectroscopic redshift. The PIT histogram serves as a visual
guide for how well calibrated the probability distribution is
(Polsterer et al. 2016). Figure 5 shows an example derived from
the SOM distribution functions. Ideally, the PIT should be
nearly uniform if the PDFs are well calibrated. The U-shape of
the histogram in Figure 5 indicates that our PDFs are

underdispersed, i.e., that the dispersion in the redshift PDFs
predicted by the SOMs is too small and the spectroscopic
redshifts are too often ending up in the tails of the PDFs. As
such, it appears that there is an overabundance of PDFs in
which the statistical likelihood is very low for the spectroscopic
redshift associated with the galaxy for that PDF. This means
that the PDFs do not adequately represent the spectroscopic
redshifts, and more work is required to make them more
accurate.
The second metric used to test the SOM PDFs is the test

developed by Wittman et al. (2016) to determine whether the
widths of PDFs are over- or underconfident. We refer readers to
the original paper for a more in-depth explanation of the test
but provide a brief summary here. This confidence test is based
on the principle that, ideally, a sample of galaxies should have

Figure 3. Example of the results from the literature photo-z codes when applied to our training/testing set containing photometry and R50. See text for references and
Table 3 for quantitative metrics of the results. We find that our SOM implementation produces results that are similar in dispersion and outlier fraction. PhotoRApToR
and SOMz had unusually large outlier fractions, which we attribute to the effects of missing data in the training/testing sets. It is possible that a more extensive search
over hyperparameter space may yield better results.

Table 3

Typical Results Obtained by Running Photo-z Codes from the Literature on our
Training/testing Sets Including Photometry and Morphologies

σF σo OLF

FlexCode ∼0.15 ∼0.05 11%–13%

PhotoRApToR (MLPQNA) ∼0.44 ∼0.07 21%–27%

MLZ (TPZ) ∼0.12 ∼0.05 9%–10%

MLZ (SOM) ∼0.16 ∼0.07 24%–28%

Note. The results from our SOM implementation are about the same as the

results from these other software products.

Figure 4. Example of a redshift probability distribution generated using 500
different SOMs. The spectroscopic redshift for this source is z=0.278. Since
each of the 500 SOMs is initialized with a different random set of parameters,
each will converge to its own estimate of the redshift. The median of multiple
SOMs provided measurements that were more closely aligned with the
spectroscopic redshifts, due to its insensitivity to outliers.
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1% of its spectroscopic redshifts fall in the 1% credibility
intervals (CI) of the corresponding PDFs, 2% of spectroscopic
redshifts fall in the 2% CI, 50% of spectroscopic redshifts fall
in the 50% CI, and so on. To perform the test, the threshold
credibility, ci, is computed for each galaxy in the testing set.
The cumulative probability function F(c) is then found from the
distribution of the ci. This cumulative distribution function is
plotted in Figure 6. Ideally, the curve should lie on the red
dashed line, if 1% of zspec fall in the 1% CI, etc. In our case, the
black curve lies below the ideal case, indicating that our
redshift PDFs are overconfident, i.e., that the confidence
intervals are too narrow and the uncertainties are under-
estimated. Again, more work is needed to improve the PDFs.

6. Discussion

Figure 7 shows the difference between the SOM photo-z
using photometry alone and the SOM photo-z using photo-
metry in conjunction with R50. For each galaxy in the test
sample, we calculate its redshift with and without R50 as input
data and then determine the absolute difference between the
two photo-zs (Dzphot∣ ∣ and D +zphot size∣ ∣) and the spectroscopic
redshift. If R50 had no effect on the redshift determination, then
D - D +z zphot phot size∣ ∣ ∣ ∣ should be zero. If, however, R50 led to

some improvement, then D - D +z zphot phot size∣ ∣ ∣ ∣ would be
positive, since the deviation of zphot from zspec would be larger
than the deviation of +zphot size from zspec. Negative values
would indicate that R50 had a detrimental effect. In Figure 7,
67% of data points lie below zero, indicating that half-light
radius did not improve photo-z estimation.

We find that the addition of galaxy morphological data does
not significantly improve the redshift estimation from the
SOMs. The scatter introduced by the morphological data most
likely dominates any benefit coming from the correlation
between redshift and morphology. These results appear to be in
line with the results from Soo et al. (2018), who find that
adding morphological quantities such as galaxy size, Sèrsic
index, surface brightness, and ellipticity does not significantly
improve photo-z estimates when combined with a complete set
of good photometry (in their case, full ugriz photometry). Soo
et al. (2018) conclude that including a full set of photometric
bands may saturate the amount of redshift information

available, which is reasonable given that they find improve-
ment in photo-z estimates when morphology is used in
conjunction with sub-optimal photometry or photometry in
fewer than all five ugriz bands. Similarly, we conclude that our
use of morphology, at its present precision, may not be
providing any new information that is not already contained in
our 15 bands of photometry. Soo et al. (2018) also compare the
effects of low-quality versus high-quality morphology by
studying galaxy radii measured by the SDSS Stripe 82 survey
and by the Canada–France–Hawaii Telescope (CFHT) in Stripe
82 (CS82), the latter of which they assume to be of higher
quality due to its 0 6 seeing. However, they do not find any
improvement in photo-zs when using the CS82 data over the
SDSS data. In comparison, we find that improvement might be

Figure 5. The PIT (e.g., Polsterer et al. 2016) from a set of redshift PDFs. A set
of well-calibrated PDFs will have a near-uniform PIT. The U-shape of our PIT
indicates that our redshift PDFs are underdispersed..

Figure 6. Confidence test from Wittman et al. (2016). Shown in black is the
cumulative distribution function, F(c), of the binned threshold credibilities, c.
The red dashed line represents the case in which the redshift PDFs have a well-
calibrated width. The plot indicates that at least some of our redshift PDFs are
overconfident, i.e., that their widths are too narrow.

Figure 7. Comparison of SOM predictions for each test source with and
without half-light radius. The quantityΔz is given by zspec – zphot. We showΔz

calculated with photometry alone (Δzphot) minus Δz calculated with
photometry and size (Δzphot+size). Positive values indicate that the use of
half-light radius increased the accuracy of the SOM, while negative values
indicate a decrease in accuracy.
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possible if the scatter in radii is less than 0 05 (Figure 9),
which is well below the CS82 seeing.

While morphological parameters did not lead to significant
increases in accuracy, we would like to see whether future
morphological measurements with increased precision may
lead to better SOM predictions. To do this, we pass simulated
R50 data to the SOMs during training and testing. The mock
size data are generated by taking the power-law fits for log(re)
as a function of redshift for Lyman-break galaxies in Mosleh
et al. (2012) to be the true relation between size and redshift
(see also van der Wel et al. 2014). The simulated R50 are drawn
from a Gaussian distribution with a variable standard deviation
(scatter) and mean equal to the half-light radius at each redshift
from the “true relation.” Figure 8 shows a comparison of the
simulated R50 with the actual R50 from the data. In Figure 9, we
examine the effect that increased precision in R50 has on σo for
a sample of galaxies. As the amount of scatter (black points) is
lowered, improvement in photo-z estimation is achieved when
the deviation in half-light radius from the theoretical relation is
less than 0 05. Even with next-generation space telescopes
such as the James Webb Space Telescope (JWST) and the Wide
Field Infrared Survey Telescope (WFIRST) with diameters of
6.5 m and 2.4 m, respectively, the best angular resolution
possible would be 0 05 and 0 15 for the H band at 1.65 μm.
Improvement in photo-z estimation using half-light radius may
not be viable in the near future. It may also be the case that the
intrinsic scatter in radii at the same redshift may be too large (
i.e., greater than 0 03) for any correlation to improve redshift
estimates.

7. Summary

We apply the SOM algorithm to photometric and morpho-
logical data in the GOODS-S field to study the effect that
morphological parameters have on estimating photometric

redshifts. The SOMs are trained on photometry in 15
wavelength bands and on half-light radius, concentration,
asymmetry, and smoothness for about 500 galaxies with known
spectroscopic redshifts up to z∼2. The SOMs make
predictions for the redshifts of about 500 galaxies in a separate
testing set and are compared to the spectroscopic redshifts of
those sources. The results indicate no significant improvement
in the accuracy of the SOM redshift predictions when using
morphology plus photometry, in comparison to photometry
alone. Similar results are obtained after cursory studies using
our training and testing data on other photo-z codes, leading to
typical results of σF∼0.13–0.16, σO∼0.05–0.07, and OLF
∼ 10%–14% in the best cases. We attribute this result to the
large scatter in the morphological data and the possibility that
morphology is not introducing any new information that is not
already contained in the photometry.
Redshift PDFs are produced by the SOMs in addition to

point estimates. PDFs are more sensitive to multimodality in
the results of SOM predictions. At the present, tests of our
redshift pdfs show that they are underdispersed as well as
overconfident (or too narrow in width), and more work is
required to improve their accuracy.
Lastly, we explore the effect that a strong radius–redshift

relation would have on the SOM predictions. The goal was to
identify how tight a radius–redshift relation would have to be in
order to give improvement in photo-z estimation. This was
done by simulating half-light radii with varying levels of scatter
around a theoretical radius–redshift relation. The simulated
radii were used along with photometry to train and test a group
of SOMs. Improvement was found only for very small scatter
less than ∼0 05 around a theoretical radius–redshift relation.

This material is based upon work supported by the National
Science Foundation under award number 1633631. Additional
support for this paper was provided in part by GAANN

Figure 8. Comparison of simulated R50 with real R50 data (green diamonds).
The regions correspond to simulated R50 with different Gaussian spreads
around a presumed average trend; red: σ=0 05, orange: σ=0 1, yellow:
σ=0 15, brown: σ=0 2, and gray: σ=0 32. The scatter of the real R50 is
∼0 32, with approximately 68% of data points falling within the gray region.
We find improvement in photo-z estimates that include R50 only when the
spread in R50 is smaller than 0 05. Such a spread in real data may be
impossible to achieve due to the intrinsic variation in R50, even with increased
telescopic precision.

Figure 9. Redshift uncertainty as a function of the scatter added to the
theoretical size relation for the GOODS-S field (black dots). The training data
for the SOM results given by the black dots consist of photometry and size
(half-light radius, computed according to the relation in Mosleh et al. (2012)
(see also van der Wel et al. 2014). For comparison, we show the performance
of the SOM when using photometry alone (red line), photometry and half-light
radius from GALFIT (blue line), and the existing precision of photo-zs in the
CANDELS catalog. The SOMs with photometry+size would perform better
than with photometry alone if the variation in size at a particular redshift was
less than about 0 02. If future surveys with higher precision instruments could
measure half-light radii to this precision, the SOM networks presented here
may offer improvement in photo-z estimates.
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