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a b s t r a c t

Total Shoulder Arthroplasty (TSA) is a type of surgery in which the damaged ball of the shoulder is

replaced with a prosthesis. Many years later, this prosthesis may be in need of servicing or replacement.

In some situations, such as when the patient has changed his country of residence, the model and the

manufacturer of the prosthesis may be unknown to the patient and primary doctor. Correct identification

of the implant’s model prior to surgery is required for selecting the correct equipment and procedure. We

present a novel way to automatically classify shoulder implants in X-ray images. We employ deep learn-

ing models and compare their performance to alternative classifiers, such as random forests and gradient

boosting. We find that deep convolutional neural networks outperform other classifiers significantly if

and only if out-of-domain data such as ImageNet is used to pre-train the models. In a data set containing

X-ray images of shoulder implants from 4manufacturers and 16 different models, deep learning is able to

identify the correct manufacturer with an accuracy of approximately 80% in 10-fold cross validation,

while other classifiers achieve an accuracy of 56% or less. We believe that this approach will be a useful

tool in clinical practice, and is likely applicable to other kinds of prostheses.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

1. Introduction

Total Shoulder Arthroplasty (TSA) [1] is a common invasive pro-

cedure for treating damaged shoulder joints, where the shoulder

ball is replaced with a prosthesis. The procedure is preceded and

followed by a series of X-ray images to assess placement and fit.

Common reasons for undergoing TSA surgery are critical shoul-

der injuries or severe arthritis. The procedure mitigates pain and

restores motion to the patients shoulder. There are several different

manufacturers producing prostheses, and each of them offers sev-

eral different models to better fit any type of situation and patient.

The prosthesis might – some or many years after it was

implanted – come in need of repair or replacement. In some of

these cases, the manufacturer and the model of the prosthesis

may be unknown to the patients and their primary care doctors,

for example when the surgery was conducted in another country

where the patient has currently no access to the records. Another

possible case of not knowing the exact manufacturer and model

could be due ambiguity in medical records or medical images. At

the present time, the task of identifying a prosthesis model in such

cases is on the basis of rigorous examinations and visual compar-

isons of X-ray images taken from the implant by medical experts.

This can be a monotonous task and requires time and effort for

every new patient.

Detecting shoulder implants inX-ray images isnot awell-studied

problem, despite great advances in computer vision in recent years,

predominantly made by deep Convolutional Neural Networks

(CNNs). Our goal is to thoroughly evaluate the use of deep learning

for classifying shoulder implants by manufacturer and compare it

to more traditional classification methods. More precisely, we test

custommodels as well as five well-known deep convolutional neu-

ral networks with weights that were pre-trained on the large Ima-

geNet data set [2]: VGG-16, VGG-19 [3], ResNet-50, ResNet-152

[4], DenseNet [5], and NASNet [6]. The use of pre-trained CNNs has

been shown to be very successful in the context of X-ray data [7,8],

as well as for medical imaging data in other contexts [9–12]. How-

ever, in some cases pre-training has actually been shown to be detri-

mental to model accuracy in biomedical image analysis [13].

The problem of identifying shoulder prostheses via X-ray

images has not been studied before. Therefore, we evaluate a vari-

ety of more ‘‘traditional” classifiers besides deep learning models,
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such as Logistic Regression with SAGA (extension of Stochastic

Average Gradient) [14], Random Forests [15], Gradient Boosting

[16], and K-nearest Neighbors [17] to establish a more thorough

baseline.

We focus on classifying shoulder implants by manufacturer

only, instead of by model, due to insufficient amounts of images

for each model. Nevertheless, the proposed model should be able

to classify shoulder implants by both manufacturer and model

once more data is collected.

2. Related work

To the best of our knowledge, no prior work exists on classifying

shoulder implants, the closest being [18], where the authors pro-

pose a detection and segmentation algorithm for shoulder

implants in X-ray images, based on the Hough Transform [19] for

finding circles. However, they do not attempt classification. In

[20] an approach to segment knee implants in X-ray images using

template matching is proposed. Their algorithm uses various image

processing techniques such as image smoothing, noise cancella-

tion, sharpening, and Gaussian filtering, followed by template

matching, but the authors acknowledge that the method is suscep-

tible to noise and did not assess how well their method works

quantitatively. Similarly, in [21] the authors identify knee prosthe-

sis models in X-ray images using template matching and are

reporting accuracies of 70% to 90%. However, their approach

requires 3D CAD models of the implants to generate the templates

and they could obtain only a single such implant model to evaluate

their method. It would be difficult if not impossible to apply their

method to our case of 16 different implant models. Other chal-

lenges for template matching are image artifacts, noise, variations

in the way the image is captured, changes in image contrast, or

variations in angles of image capturing. Deep Learning may prove

to be more robust and more practical as only ordinary X-ray scans

are needed for training and evaluation.

In [22] a classification system is proposed, which utilizes

ensemble learning to detect fractures in human bone X-ray images

with the main focus being on identifying fractures in long bones

using K-Nearest Neighbors [17], SVM (Support Vector Machine)

[23], and fully-connected neural networks. However, convolutional

neural networks were neither used nor mentioned. A more recent

study [24] utilizes deep convolutional neural networks to improve

fracture detection in X-ray images taken from a variety of body

parts.

3. Materials and Methods

3.1. Deep learning models

We use seven different convolutional architectures in total, six

of which are well-known published architectures that are pre-

trained on the ImageNet data set [2] and then fine-tuned on the

shoulder X-ray image data set. For all pre-trained models, we dis-

card their fully connected layers, as they are very likely to be spe-

cialized to the ImageNet data set and confer little benefit to our

task, and insert one smaller fully-connected layer with random ini-

tial weights before re-training the model on the X-ray data.

3.1.1. Pre-trained CNN

The pre-trained models that we use are (in order of publication

date):

� The VGG-16 and VGG-19 networks introduced by [3] have 16

and 19 layers respectively. They have become well established

for transfer learning tasks.

� Another (former) state-of-the-art CNN model is the deep resid-

ual network proposed by He et al. [4], of which we use the

ResNet-50 and ResNet-152 variants. The main difference to

non-residual networks such as VGG-16 is the use of (additive)

skip connections.

� The DenseNet architecture [5] is inspired by residual networks.

The main difference to ResNets is that each group of convolu-

tional layers operates on the concatenated input from all previ-

ous groups of layers, by means of skip connections from and to

all groups of layers.

� Motivated by Neural Architecture Search (NAS) framework [25],

the dimensions of blocks of layers in the NASNet model [6] are

optimized using reinforcement learning.

3.1.2. Non-pre-trained CNN

We build and train a custom CNN as a reference for not pre-

training on external data. The model uses six convolutional layers,

three max pooling layers, and one fully connected hidden layer.

The architecture of this model is shown in Fig. 1.

� Convðf ; kÞ: convolution layer with f convolutional filters of size

k.

� PoolðkÞ: max pooling layer with pooling size and stride k.

� FCðxÞ: fully connected layer with x neurons.

We use rectified linear units in all layers but the output layer,

which uses the Softmax function. We tested using batch normal-

ization [26] and dropout [27,28] as a means of regularization, but

these did not improve the model performance.

3.2. Data set

The data set consists of 597 de-identified X-ray scans of

implanted shoulder prostheses of four manufacturers and a total

of 16 different models. Some of the images were obtained from

the shoulder website of the University of Washington [29], and

others from individual surgeons and manufacturers. All images

that appeared to have been taken from the same patient were

removed, which was the case for 8 out of an original set of 605

X-ray images. The final 597 samples in the data set contain 83 X-

rays scans of implants from the manufacturer Cofield, 294 from

Depuy, 71 from Tornier, and 149 are scans of implants made by

Zimmer. Fig. 2 shows representative samples from the data set.

One of several challenges imposed by the data set is the variable

and relatively low image resolution – the longest dimension of

most of the images does not exceed 250 pixels and aspect ratios

of the images differ. Other challenges are the variable and some-

times very low image contrast and class imbalance – a naive model

predicting the most frequent manufacturer for all images would

have an accuracy of 49.2%. The class imbalance problem would

be far more severe if attempting to classify by model.

3.3. Pre-processing

In order to address the variable resolution of the images, we

insert black borders such that all images are equally-sized squares

– an alternative would be to rescale and interpolate images to a

fixed size but this would introduce image distortion. We experi-

mented with normalizing and enhancing the contrast of all images

via histogram normalization. While it visually improved image

quality, we found no improvement in model accuracy. We there-

fore opt for the simple and standard approach of normalizing

images by subtracting their mean and dividing by their standard

deviation.
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3.4. Training and evaluation

We use data augmentation for training all models, including

non-deep learning algorithms. Data augmentation is a common

technique to improve the generalization of trained models

[30,31], essentially by increasing the effective amount of available

labeled data. We apply random shifting, zooming, rotations, and

random flipping of images. We use hyper-parameter optimization

to find ideal parameters for the aforementioned operations: mini-

mum and maximum number of pixels shifted and zoomed, and

range of rotation angles. We use either Stochastic Gradient Descent

(SGD) [32] or Adam [33] to train the CNNmodels, whichever works

best for a given model, along with exponential decay of the learn-

ing rate during training.

We perform hyper-parameter optimization for every model

using a fixed training/validation data split. We optimize the initial

learning rate, rate of learning rate reduction, number of units in the

final hidden layer, batch size for training, optimization algorithm

(either Stochastic Gradient Descent (SGD) or Adam), and three

parameters controlling the data augmentation: maximum range

of random image rotations, range of image pixel shifts, and maxi-

mum amount of image stretching/zooming. To produce the results

presented in Section 4 we take the best hyper-parameters found

for any given model and train and evaluate it using stratified 10-

fold cross validation, i.e. for each train/validation split of the data

we use the same ratio of images per manufacturer as is present

in the entire data set. We similarly optimize the hyperparameters

of non-deep learning based algorithms.

We also experiment with augmenting test images of each split

20 times and average the model predictions across these augmen-

tations to hopefully increase model accuracy. The approach of aug-

menting images at test-time is used in some ImageNet models, see

e.g. [3,34]. We re-use the data augmentation hyperparameters set-

tings that were optimal for training.

Since the problem of classification of shoulder implants has not

been studied before, we train several non-deep learning models as

baseline, using Scikit-learn [35]. We use: (1) a Random Forest classi-

fier with the Entropy split criterion using 500 trees in the forest; (2)

multinomial Logistic Regression with L2 regularization optimized

using SAGA; (3) Gradient Boosting with a learning rate of 0:15 and

15 estimators; and (4) a K-Nearest Neighbors classifier that uses

the Euclidean distance metric with the value of K set to 35.

4. Results

Tables 1–3 present results obtained for different classifiers via

10-fold cross-validation as described in Section 3.4. Table 3 illus-

trates the performance of the CNN models with no pre-training

on the ImageNet data set [2]. Figs. 3 and 4 show the multi-class

generalization of ROC (Receiver Operating Characteristic) plots

for the best CNN and non-CNN model. Since ROC and AUC are

defined only for binary classification problems, we follow [36] to

compute the ROC/AUC one-versus-rest entities for every class

and combine the different values into a single AUC value via

micro-averaging, as this accounts for class-imbalance.

Fig. 1. Architecture of the custom CNN model. Convolutional layers are denoted as Conv, max pooling layers as Pool, and fully connected layers as FC.

Fig. 2. Examples of the data set: shoulder implants of three different manufacturers. Left to right: Cofield, Depuy, Zimmer.
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Random Forests are the best performing non-deep-learning

classifier and reach an accuracy of 56% (see Table 1) when using

data augmentation during training, which is slightly better than

the chance level of 49.2% for guessing the majority class. The cus-

tom convolutional neural network without pre-training on exter-

nal data (Table 3, bottom) reaches the same accuracy. On the

other hand, all models that were pre-trained on the ImageNet data

set perform significantly better, with accuracy values ranging from

74% to 80% (see Table 2). This difference is statistically significant

for all models, even at a very strict p-value of 0.001 of the two-

Table 1

Performance measures for non-deep learning classifiers. Shown are averages across 10-fold cross-validation, and standard deviation of the mean in parentheses. All methods were

trained using data augmentation.

Classifier Accuracy [%] Precision Recall F1-Score AUC

Random Forest 56 (1.) 0.62 (.03) 0.36 (.02) 0.51 (.03) 0.78 (.01)

Logistic Regression 53 (1.) 0.44 (.05) 0.31 (.01) 0.41 (.03) 0.73 (.01)

Gradient Boosting 55 (1.) 0.58 (.04) 0.34 (.01) 0.48 (.02) 0.75 (.01)

KNN 52 (1.) 0.49 (.04) 0.31 (.01) 0.43 (.02) 0.73 (.01)

Table 2

Performance measures for convolutional neural networks with pre-training on ImageNet. All models are trained with data augmentation, but we evaluated them both with and

without test-time data augmentation. Shown are averages across 10-fold cross-validation and standard deviation of the mean in parentheses.

Classifier Accuracy [%] Precision Recall F1-Score AUC

No Test Data Augmentation

VGG-16 74.0 (2.3) 0.72 (.03) 0.68 (.02) 0.69 (.03) 0.93 (.01)

VGG-19 76.2 (1.6) 0.75 (.03) 0.69 (.03) 0.70 (.03) 0.93 (.01)

ResNet-50 75.4 (1.5) 0.75 (.02) 0.70 (.02) 0.71 (.02) 0.93 (.01)

ResNet-152 75.6 (2.0) 0.73 (.03) 0.69 (.02) 0.70 (.03) 0.92 (.01)

NASNet 80.4 (.8) 0.80 (.01) 0.75 (.02) 0.76 (.02) 0.94 (.00)

DenseNet-201 79.6 (.9) 0.79 (.01) 0.74 (.02) 0.74 (.01) 0.94 (.01)

With Test Data Augmentation

VGG-16 75.2 (1.7) 0.74 (.02) 0.67 (.03) 0.68 (.03) 0.93 (.01)

VGG-19 76.2 (1.9) 0.75 (.03) 0.68 (.02) 0.69 (.03) 0.93 (.01)

ResNet-50 75.2 (1.8) 0.77 (.02) 0.67 (.03) 0.70 (.02) 0.92 (.01)

ResNet-152 74.5 (1.4) 0.71 (.03) 0.69 (.03) 0.69 (.03) 0.91 (.00)

NASNet 78.8 (1.8) 0.78 (.02) 0.73 (.03) 0.73 (.03) 0.93 (.01)

DenseNet-201 78.9 (2.0) 0.79 (.03) 0.74 (.03) 0.76 (.03) 0.93 (.01)

Table 3

Performance measures for convolutional neural networks without pre-training. Shown are averages across 10-fold cross-validation and standard deviation of the mean in

parentheses.

Classifier Accuracy [%] Precision Recall F1-Score AUC

VGG-16 55.6 (1.7) 0.46 (.02) 0.42 (.02) 0.42 (.02) 0.78 (.01)

VGG-19 57.0 (1.6) 0.50 (.03) 0.43 (.02) 0.43 (.02) 0.78 (.01)

ResNet-50 53.8 (1.7) 0.39 (.06) 0.34 (.03) 0.31 (.04) 0.74 (.02)

ResNet-152 53.4 (1.2) 0.38 (.03) 0.36 (.02) 0.34 (.02) 0.77 (.01)

NASNet 51.8 (1.5) 0.22 (.04) 0.29 (.02) 0.23 (.03) 0.71 (.02)

DenseNet-201 54.0 (1.3) 0.46 (.02) 0.40 (.02) 0.39 (.02) 0.79 (.01)

Custom CNN 56.0 (1.4) 0.42 (.02) 0.42 (.02) 0.41 (.02) 0.78 (.01)

Fig. 3. Receiver Operating Characteristic (ROC) curve for the Random Forest. Fig. 4. Receiver Operating Characteristic (ROC) curve for NASNet.
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tailed student-t test. For this test and p-value and with 18 degrees

of freedom the critical value is 3:922. For example for the NASNet

model we have t ¼ ð80:4� 51:8Þ=2 ¼ 14:3 which fulfills the

t > 3:922 criterion by a wide margin.

While it is not surprising that pre-trained models would per-

form better, the difference is considerable. All non-pretrained

models seem to overfit a lot on this data, which is especially true

for the ImageNet models when trained starting from scratch (cf.

Table 3), as all these models have many parameters. We suspect

that some of the factors that make classification hard are: (1) a

large intra-class variability, as manufacturer offers multiple mod-

els; (2) a low inter-class variability, as all implants look roughly

alike and no trivial features (such as color or context) exist that

would help in distinguishing them; (3) the high variability in

image size, quality, and device used to generate it; and (4) class

and sub-class imbalance in the data, i.e. the number of images

per manufacturer as well as per model differ.

As can be seen in Table 2 all pre-trained models reach relatively

comparable levels of performance, and are all significantly better in

all metrics compared to models without pre-training (see Table 3).

On the other hand, using test-time data augmentation with model

prediction averaging seems to not have any significant impact on

model performance – in some metrics it performs slightly better,

in others worse. A possible reason is that the hyperparameters

were set to values that are too extreme – we re-used the optimal

settings from the training phase as we didn’t want to further opti-

mize them and risk over-fitting on the small data set.

Furthermore, we test how well the features learned by pre-

trained CNNs on ImageNet transfer to the implant classification

task when not fine-tuned on the X-ray data. For this we run the

pre-trained VGG-16 and �19 models on the X-ray data set and col-

lect the activations of their final pooling layers, thus omitting the

hidden layers that are more ImageNet data specific. We repeat this

step ten times on differently augmented version of the images as a

means of data augmentation. Subsequently, we train a multilayer

perceptron (MLP) classifier on these features using the same ten-

fold cross validation procedure as done in all other experiments,

making sure to keep all features belonging to the same image in

either only the train or test splits and not mix them. The results,

shown in Table 4, are significantly better than all non-pretrained

models in Tables 1 and 3, showing that the features learned on

external data are extremely helpful even though those were not

medical images. However, it is also clear when comparing Table 2

to Table 4 that fine-tuning the entire CNN is better than just fine-

tuning the top hidden layers.

In a final experiment we assess the effect of using data augmen-

tation during training (see Table 5). As anticipated, training with

data augmentation has a large positive effect on model perfor-

mance: the best CNN in terms of accuracy (NASNet) is able to reach

an accuracy of 80.4% when trained with data augmentation, but

merely 64.5% when trained without. A similar drop in performance

is observable in all metrics recorded.

5. Discussion

Certain elements deserve additional consideration, that become

relevant when extending or deploying the presented work.

� Class imbalance: If we assumed that the current data set’s

implant manufacturer ratio was representative of the true

prevalence of implants in a typical patient, then training on

the entire data set and using the resulting model ‘‘as-is” would

be optimal, as the model’s bias would match the actual preva-

lence. But if the true prevalence was different, one would have

to either dynamically over- or undersample certain manufac-

turer models during training, or re-balance the model output

confidence. It should be noted that dealing with imbalanced

data is still an open problem [37], so there is no solution that

is guaranteed to be optimal.

� It is also worthwhile to consider the case that a test image could

come from a manufacturer not contained in the training set.

One way to address this is to assess the model output confi-

dence scores for the different classes and check if their distribu-

tion fulfills certain criteria. Alternative methods have been

proposed in recent work such as [38], which promises to do bet-

ter than simply using the existing model outputs.

� A natural way to extend this work could be to classify shoulder

implants by both manufacturer and model, and to include addi-

tional manufacturers. In either case this requires gathering

more data to train models with acceptable accuracy.

6. Conclusions

We evaluate the use of deep learning for classifying shoulder

implants in X-ray images by manufacturer and compare it with a

baseline of other classifiers. Out of seven deep learning architec-

tures tested, we find that all well-known ImageNet models per-

form well, with NASNet [25] taking the lead with an accuracy of

80.4%. We find that pre-training the CNNs on a different large com-

puter vision data set such as ImageNet [2] is crucial to obtain good

Table 4

Performance of MLP classifiers trained on features extracted from pre-trained ImageNet CNNs. Shown are averages across 10-fold cross-validation, and standard deviation of the

mean in parentheses. Trained using data augmentation.

Features Accuracy [%] Precision Recall F1-Score AUC

VGG-16 72.3 (1.) 0.77 (.01) 0.61 (.02) 0.65 (.02) 0.90 (.01)

VGG-19 72.2 (2.) 0.78 (.02) 0.64 (.03) 0.67 (.03) 0.91 (.01)

Table 5

Performance measures for convolutional neural networks without using any data augmentation. Shown are averages across 10-fold cross-validation and standard deviation of

the mean in parentheses.

Classifier Accuracy [%] Precision Recall F1-Score AUC

VGG-16 58.7 (2.5) 0.54 (.03) 0.45 (.03) 0.45 (.04) 0.81 (.02)

VGG-19 63.6 (1.6) 0.61 (.02) 0.53 (.03) 0.54 (.03) 0.84 (.01)

ResNet-50 59.6 (2.2) 0.56 (.02) 0.49 (.02) 0.49 (.02) 0.83 (.01)

ResNet-152 59.5 (1.2) 0.54 (.03) 0.47 (.02) 0.48 (.02) 0.83 (.01)

NASNet 64.5 (3.4) 0.62 (.05) 0.52 (.04) 0.54 (.04) 0.85 (.02)

DenseNet-201 65.9 (2.4) 0.65 (.03) 0.55 (.03) 0.57 (.03) 0.86 (.02)

Custom CNN 50.8 (2.4) 0.39 (.04) 0.32 (.01) 0.30 (.02) 0.73 (.01)
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results, and that fine-tuning the entire CNN model on the task-

specific X-ray data set is better than only fine-tuning the top hid-

den layers. We compare the performance of the neural networks

with other classifiers, including Gradient Boosting, Random For-

ests, Logistic Regression, and K-nearest Neighbors. Ultimately, we

find that pre-trained and then fine-tuned CNNs outperform all

other classifiers and all non-pre-trained CNNs by a significant mar-

gin, with accuracies of pre-trained CNNs reaching a range of 74% to

80% compared to accuracies of merely 51% to 56% for all classifiers

without pre-training (including CNNs and non-deep learning algo-

rithms). We also examined the effectiveness of data augmentation,

and found it to be crucial, as training even pre-trained CNNs with-

out data augmentation on the X-ray data set leads to accuracies of

only 59% to 66%, constituting a significant drop by approximately

14 percentage points across all models.
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