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Abstract

We introduce a new technique to constrain the line-of-sight integrated electron density of our Galactic halo DMMW,halo

through analysis of the observed dispersion measure distributions of pulsars DMpulsar and fast radio bursts (FRBs)
DMFRB. We model these distributions, correcting for the Galactic interstellar medium, with kernel density estimation—
well-suited to the small data regime—to find lower/upper bounds to the corrected DMpulsar/DMFRB distributions:

»   -max DM 7 2 stat 9 sys pc cmpulsar
3[ ] ( ) ( ) and » -

+ -min DM 63 stat 9 sys pc cmFRB 21
27 3[ ] ( ) ( ) . Using

bootstrap resampling to estimate uncertainties, we set conservative limits on the Galactic halo dispersion measure
- < < -2 DM 123 pc cmMW,halo

3 (95% c.l.). The upper limit is especially conservative because it may include a
nonnegligible contribution from the FRB host galaxies and a nonzero contribution from the cosmic web. It strongly
disfavors models where the Galaxy has retained the majority of its baryons with a density profile tracking the presumed
dark matter density profile. Last, we perform Monte Carlo simulations of larger FRB samples to validate our technique
and assess the sensitivity of ongoing and future surveys. We recover bounds of several tens of -pc cm 3 that may be
sufficient to test whether the Galaxy has retained a majority of its baryonic mass. We estimate that a sample of several
thousand FRBs will significantly tighten constraints on DMMW,halo and offer a valuable complement to other analyses.

Unified Astronomy Thesaurus concepts: Radio transient sources (2008); Circumgalactic medium (1879);
Astrostatistics techniques (1886)

1. Introduction

In the early universe the majority of baryons resided in a cool,
diffuse plasma, which is predicted to have collapsed into sheetlike
and filamentary structures that make up the intergalactic medium
(IGM). Around the time of structure formation, dark matter
collapses into halos, pulling baryons with it. As the gas falls
inward, it is shock-heated to form a hot, diffuse plasma, known as
halo gas or the circumgalactic medium (CGM). Approximately
10% of the gas cools and falls into the center of the halo to form
stars and the interstellar medium (ISM; e.g., White & Rees 1978).

Comparing the baryonic mass fraction detected for galaxies
(M Mb halo) to the cosmic mean (W Wb m), however, reveals a
baryonic deficit (e.g., Dai et al. 2010). The missing baryons
may have been ejected back into the IGM before forming stars
or perhaps have yet to be detected (e.g., Prochaska et al. 2011;
Booth et al. 2012). In the latter scenario, the CGM presents
itself as a possible refuge.

This issue holds for the CGM of our Galaxy. While it is
evident that its stars and ISM correspond to 25% of the
baryonic mass available to a halo with mass =M M10halo

12.2


(the current estimate; Boylan-Kolchin et al. 2013), the mass
and distribution of gas within our Galactic halo are not well
determined even despite our close proximity. The key
observables that constrain the Galactic CGM include soft
X-ray emission from the plasma (Henley et al. 2010), X-ray,
and UV absorption lines of oxygen ions (Faerman et al. 2017;
Kovács et al. 2019), density constraints from ram pressure
stripping of the Large Magellanic Cloud (LMC; Salem et al.
2015), and dispersion measure (DM) observations from pulsars
toward the LMC (Manchester et al. 2006). These have provided
valuable constraints for models of the Galactic halo, but still
allow for large variations in the mass and spatial extent of the

gas (Fang et al. 2013; Faerman et al. 2013; Bregman et al.
2018; Prochaska & Zheng 2019).
A primary challenge to assessing the Galactic CGM is that the

gas is too diffuse (especially at large radii) to be imaged directly.
Furthermore, the absorption-line measurements (e.g., OVI and
OVII) require substantial ionization and/or metallicity corrections
to infer the total gas. In this respect, the DMmeasurements toward
the LMC provide the most direct probe of the ionized gas, yet it
lies at only ≈1/4 the virial radius r200 of the Galaxy. Ideally, one
would prefer to record DM measurements to r200 and also across
the sky to search for asymmetries in the halo gas distribution. Just
such an opportunity is now afforded (albeit with caveats, as we
will discuss) by the transients known as fast radio bursts (FRBs).
FRBs are the population of ∼millisecond chirps of bright radio

emission at approximately GHz frequencies discovered serendi-
pitously (Lorimer et al. 2007) and now pursued in earnest with
dedicated projects and facilities (Caleb et al. 2016; CHIME/FRB
Collaboration et al. 2018; Law et al. 2018; Kocz et al. 2019).
Recorded in each FRB event is its DM value DMFRB. The
majority greatly exceed estimates for our Galactic ISM and CGM,
lending strong statistical support that FRBs have an extragalactic
origin (Cordes & Chatterjee 2019; Petroff et al. 2019). This
inference has been confirmed by a small but growing set of FRBs
localized to » 1 and then shown to reside in a distant galaxy
(Tendulkar et al. 2017; Bannister et al. 2019; Prochaska et al.
2019; Ravi et al. 2019; Marcote et al. 2020). As a result, the
community now recognizes FRBs as a viable tool to probe
ionized gas across the universe, e.g., to conclusively detect the so-
called “missing” baryons of the present-day universe (Fukugita
et al. 1998; Macquart 2018).
Owing to its integral nature, DMFRB includes contributions

from all of the electrons along the sight line: the IGM, gas in
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distant Galactic halos, the ionized gas of the system hosting the
FRB, and our Milky Way (MW). Indeed, the host and Galaxy
contributions (DMhost, DMMW) are frequently considered a
“nuisance” to proposed analyses of the cosmic web. In this
Letter, however, we view them as a highly desired signal, i.e., a
new opportunity to constrain the Galactic CGM.

There are two primary challenges that this Letter addresses:
how to use pulsars and FRBs to probe the DM of Galactic
halos, and how to do so with a limited data set. The first
problem is addressed by constraining the DM contribution of
the MW halo to the total observed DM of pulsars and FRBs.

For the second challenge, only ∼100 FRBs have been observed
to date; this necessitates techniques that are well suited to dealing
with small data sets. We propose the use of standard kernel density
estimation (KDE; Silverman 1986) and asymmetric, variable-
bandwidth KDE (Chen 2000; Hoffmann & Jones 2015) to find
probability density functions (PDFs) of the DM distribution of
pulsars and of FRBs, respectively. Other density estimation
techniques are explored—namely, density estimation using field
theory (DEFT; Kinney 2014, 2015; Chen et al. 2018) and a
generalized extreme value (GEV), but prove to be insufficient (see
Appendices B and C for details). From the PDFs one can estimate
the maximum MW halo DM given by pulsars, and the minimum
MW halo and host halo DM given by FRBs. This infers constraints
on the DM of the MW CGM and part of the host CGM.

We measure a MW halo DM of -
+63 stat 9 sys21
27 ( ) ( )

-pc cm 3, corresponding to a 1σ confidence detection. The
precision of this measurement is limited by the FRB sample
size and we predict a robust detection of the MW halo with
the incorporation of FRB detections anticipated in the coming
year. The techniques presented here will make the best precision
and least ambiguous measurement of the MW halo in several
years with samples of 104FRBs.

The Letter is structured as follows. Section 2 outlines the core
concepts of this work. Section 3 details the density estimation
techniques used in the analysis. The methodology and results are
presented in Section 4, where Section 4.2 provides constraints
based on observed data and Section 4.3 provides an analysis
based on simulations. The results and implications are discussed
in Section 5, and conclusions are summarized in Section 6.

2. The Framework

Pulsars and FRBs are both millisecond radio transients. The
former lie in the disk of the MW galaxy and the latter are
extragalactic. Since the group velocity of the electromagnetic
wave depends on the free electron density (ne) along the path of

propagation, the arrival time of the transient signal is extended.
This spread is described by the DM:

ò= +
n ds

z
DM

1
. 1

e
( )

DMs can therefore be used to study the distribution of baryons
along the line of sight between a transient source and an
observer.
Figure 1 shows a schematic of how electrons are distributed

relative to pulsars and FRBs. Galactic halos are assumed to be
devoid of radio transients, but contain a significant column
density of electrons. Pulsars have been detected predominantly
in the Galactic disk or nearby globular clusters5 (Manchester
et al. 2005). Those with a known distance have been used to
create detailed models of the electron density distribution of the
Milky Way disk (Cordes & Lazio 2002, 2003; Gaensler et al.
2008; Yao et al. 2017). In the following we adopt both the
NE20016 and YMW167 algorithms.
If we assume FRBs are distributed throughout their host

galaxies and throughout space, then the lowest DMFRB values
set a bound on the electron column density associated with the
halos of the Milky Way and the typical host galaxy. This
measurement is the focus of this Letter. Table 1 provides a
summary of the notation used in this Letter.

2.1. Constraints from Pulsars

We consider

= +d dDM DM DM , 2pulsar ISM MW,halo ( )

with dDMISM as the ISM contribution and dDMMW,halo as the halo
contribution. We then define an ISM-corrected quantity
DDMpulsar, which subtracts the total ISM contribution along
the pulsar sight line,

D = -DM DM DM . 3pulsar pulsar ISM ( )

Most pulsars have unknown distances yet are expected to lie
predominantly in the Galactic disk, with a scale height of
100 pc (Faucher-Giguère & Kaspi 2006). Therefore, DMISM is
generally larger than DMpulsar and the majority of DDMpulsar

values will be negative. Any positive values could be attributed

Figure 1. Schematic of the radio telescope (left-most image), the distribution of electrons (cloud shapes) that contribute to DM, and the millisecond transients (Sun and
lightning symbols) that are used to measure the DM. The regions shown in red have electrons, but no sources of millisecond transients. For sources distributed
throughout their host galaxies and host galaxies distributed over a range of distances, the minimal Milky Way, IGM and FRB host DM contributions are zero.

5 The more distant pulsars purported to reside in the Magellanic clouds (e.g.,
Ridley et al. 2013) are excluded from this analysis.
6 Available in Python at https://github.com/FRBs/ne2001.
7 Available in Python at https://github.com/telegraphic/pygedm.

2

The Astrophysical Journal Letters, 895:L49 (10pp), 2020 June 1 Platts, Prochaska, & Law



to the halo, and therefore the maximum DDMpulsar yields a
lower limit:

> DDM max DM . 4MW,halo pulsar[ ] ( )

Such an analysis must allow for uncertainties in the modeling
of DMISM, but for high Galactic latitudes these uncertainties are
expected to be less than -10 pc cm 3.

2.2. Constraints from FRBs

DMFRB has contributions from the ISM, the MW halo,
cosmic gas, and the FRB host galaxy,

= + + +DM DM DM DM DM . 5FRB ISM MW,halo cosmic host ( )

Similar to the pulsars, we define an ISM-corrected measure:

D = -DM DM DM . 6FRB FRB ISM ( )

From the full distribution of DDMFRB, we will examine the
lowest values on the expectation that these have lower DMcosmic

contributions. For reference, an FRB at z=0.03 (e.g., Marcote
et al. 2020) has an average á ñ » -DM 25pc cmcosmic

3.
The lowest values ofDDMFRB should also reflect the lowest

combinations of DMMW,halo and DMhost. We expect significant
variations in the latter both due to the distribution of host
galaxy masses and also from variations in the FRB location
within the galaxy. We express DMhost

min as the minimum of this
distribution, which may be 10 to several tens of -pc cm 3.

Regarding variations in DMMW,halo, galaxy formation models
tend to predict a nearly spherical distribution of gas, especially
beyond the inner halo (but see Yamasaki & Totani 2020, which
includes a nonspherical component). Spherically symmetric
models of our Galaxy yield less than -10 pc cm 3 variations in
DMMW,halo even though the Sun is located off-center
(Prochaska & Zheng 2019). In the following, we will assume
a single DMMW,halo unless otherwise discussed. One recovers

+ = DDM DM min DM , 7MW,halo host
min

FRB[ ] ( )

and therefore

< DDM min DM . 8MW,halo FRB[ ] ( )

3. Kernel Density Estimation

KDE is a nonparametric technique that estimates an
unknown density by constructing a kernel at each data point
and summing their contributions. Owing to their shapes, the
distributions of DDMpulsar and DDMFRB are each suited to a

different class of KDE.DDMpulsar has smooth edges and can be
adequately modeled with a Gaussian kernel and a fixed
bandwidth. The sharp edge of DDMFRB, however, necessitates
a varying bandwidth and a kernel with a steep cutoff.
In Section 3.1 we outline standard KDE and in Section 3.2

we describe the modifications for asymmetric, bandwidth-
varying KDE.

3.1. Standard KDEs

Consider an independent and identically distributed sample
=X i n: 1 ,...,i{ } drawn from some unknown distribution f (x).

We wish to obtain an estimate f xˆ ( ) of this distribution using
KDE:

å å= - =
-

= =

f x
n

K X x
nh

K
X x

h

1 1
, 9

i

n

h i

i

n
i

1 1

⎜ ⎟
⎛

⎝

⎞

⎠
ˆ ( ) ( ) ( )

where K is the kernel and >h 0 is the bandwidth. The kernel is
the underlying distribution function and the bandwidth is a
smoothing parameter. In standard KDE symmetric kernels are
used, such as Gaussian, triangular, cosine, biweight, triweight,
or Epanechnikov. While an Epanechnikov kernel is most
optimal in terms of the mean squared error, a Gaussian kernel is
the most widely used: the loss of efficiency is marginal (~5%)

and the distribution offers convenient mathematical properties.
As such, a Gaussian kernel is used in our analysis of
DDMpulsar. Bandwidth selection is a trade-off between the bias
of the KDE and its variance. Often the bandwidth is chosen to
minimize the mean integrated squared error (MISE),

ò= -h f x f x dxMISE E , 102⎡
⎣⎢

⎤
⎦⎥( ) ( ˆ ( ) ( ) ( )

which is equivalent to the expected L2 risk function. f (x) is
unknown; however, it can be approximated through various
techniques (see Jones et al. 1996). One can also use rule-of-
thumb bandwidth estimators, such as Silverman’s (1986) and
Scott’s (1979); however, these assume the underlying distribu-
tion is Gaussian. In our analysis we use scikit-learn to
select the optimal bandwidth via cross-validation.
The KernelDensity() function invokes a nearest

neighbors based approach: instead of using the full data set
to estimate the density at each point, a number of neighboring
points are selected based on the bandwidth. This improves the
algorithm efficiency by ignoring distant points that have a
negligible effect. KDEs are generated for a range of
bandwidths, and GridSearchCV() is used to find the
optimal bandwidth. Here n-fold cross-validation is performed.
The pulsar data are divided into n subsets, a KDE is generated
using the data from -n 1 subsets (training data), and the
performance of the KDE is evaluated on the remaining subset
(test data) by calculating the log-likelihood, å p xlog iˆ ( ). This
process is repeated n times, using a different subset as the test
set each time, to give a final (averaged) log-likelihood score. In
this manner, scores are calculated for a range of bandwidths.
The bandwidth with the maximum log-likelihood is selected for
the analysis ( »h 10).

3.2. Asymmetric KDEs

Standard KDE performs well when the underlying distribu-
tion is unbounded and the density of data is relatively uniform.
We will show, however, that theDDMFRB distribution has data

Table 1

Notation

Quantity Description

DMpulsar The total DM measurement of a pulsar

DMFRB The total DM measurement of an FRB
dDMISM DM from a fraction of the Galactic ISM

DMISM Total sight line DM for the Galactic ISM
DMMW,halo DM of all gas in our Galactic halo

dDMMW,halo DM from a fraction of gas in our Galactic halo

DMIGM DM from the IGM (gas between halos)
DMcosmic DM from all cosmic gas (IGM + halos)
á ñDMcosmic Average DM from all cosmic gas
DMhost DM from FRB host galaxy halo

3
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concentrated toward the front of the distribution and is bounded
on ¥0,[ ). This presents two problems that standard KDE
cannot resolve. First, a fixed bandwidth h entails a trade-off
between large- and small-scale structure: overdense regions
will be oversmoothed by a large h, and underdense regions will
be overfitted if h is too small. Second, symmetric kernels have
significant bias at or near a boundary, known as edge or
boundary effects. A fixed and symmetric kernel will allocate
weight outside of the density region when smoothing the
distribution.

Various techniques have been developed that attempt to
resolve this issue, e.g., data reflection (Schuster 1985),
boundary kernels (Müller 1991, 1993, 1994), the hybrid
method (Hall & Wehrly 1991), generating pseudo-data
(Cowling & Hall 1996), data binning and local polynomial
fitting (Cheng et al. 1997), and others. One can also invoke
asymmetric kernels (such as gamma, lognormal, and inverse
Gaussian) and variable bandwidths. In this work we use gamma
estimators developed by Chen (2000) and expanded upon by
Jeon & Kim (2013) and Hoffmann & Jones (2015).

The gamma PDF with standard gamma function G(·) is given
by

q
=

-

G
q

q
-

K x
x

k

exp
, 11k

k x

k,

1 ( )
( )

( )
( )

with scale parameter k and shape parameter θ. Chen (2000) take
r=k xh ( ) and q = h with random gamma variables Xi to

obtain

r
=

-

G
r

r

r

-

K X
X

h x

exp
, 12x h i

i
x X

h

x
h

,

1

h

h i

h

( )
( )

( ( ))
( )( )

( )

( )

with

r =
+ Î


x

x h

x h

, if 2 ,

1, if 0, 2 .
h

x

h

x

h2

2

⎧

⎨
⎪

⎩⎪( )
( )

[ )

The resulting gamma estimator is given by

å= r
=

f x
n

K X
1

. 13
i

n

x h i

1

,h

ˆ ( ) ( ) ( )( )

The shape of gamma kernels vary naturally, allowing for
different smoothness at different points of the distribution.
Further, because gamma kernels are nonnegative, the gamma
estimator itself is unlikely to deviate below zero. The
bandwidths h depend either on the point of estimation (h x ;( )
a balloon estimator), or on the sample associated with a kernel
(h X ;i( ) sample-smoothing estimator). In this analysis we
consider the former.

Another challenge for standard KDEs is that regions with
few samples have overestimated densities and regions with
many are underestimated. Shifted KDEs minimize this bias by
moving samples from higher- to lower-density regions.
Combining this with balloon estimators (Hoffmann &
Jones 2015), one has

å d= -r
=

f x
n

K X h x x
1

, 14
i

n

x h x i
p

1

,h

ˆ ( ) ( ( ) ( ) ( )( ) ( )

where p is the order of the kernel and d x( ) is the shift. The
kernel is shifted by dh x xp( ) ( ), which vanishes for small

bandwidths. For our analyses, we use Python code by
Hoffmann & Jones (2015),8 where the optimal bandwidth for
each kernel is chosen by minimizing the MISE.

4. Methodology and Results

4.1. Bounding the DM Distributions

As described in Section 2, we wish to estimate a maximum
DDMpulsar and a minimum DDMFRB from the observed
distributions. We will first apply the appropriate formalism to
derive a PDF for each. The minimum/maximum of the PDF,
however, is not a precisely posed quantity. Here we introduce a
metric tailored primarily for DDMFRB as an estimator after
experimenting on simulated distributions (Section 4.3 and
Appendix A): the maximum gradient of the distributions,

¢ Dfmax DM[ ( )]. This approach is based on the physical prior
that the DMFRB distributions will have sharp cutoffs, which will
hold if the variance in DMMW,halo is much less than its average.
It is further supported by the current set of FRB observations.
The observed DDMpulsar PDF, on the other hand, is more
evenly distributed with smoother edges. As such, estimates for

Dmax DMpulsar[ ] given by the metric are more conservative.
This effect is discussed in Appendix A.
In Section 4.2, KDE analysis is performed on observed

transient samples to place current constraints on DMMW,halo

from DDMpulsar and DDMFRB. In Section 4.3, the KDE
(gamma) methodology is analyzed by simulating DDMFRB.
Random samples of sizes n=100, 1000, and 10,000 are taken
and Dmin DMFRB,sim[ ] is compared to the known inputs. This
analysis also offers insight into the statistical power of future
samples.

4.2. Observed Sample

To define our sample of pulsars and FRBs, we use the largest
aggregation sites for each type of object. For pulsars, we
downloaded the Australia Telescope National Facility (ATNF)
pulsar catalog (version 1.61; Manchester et al. 2005). For
FRBs, we downloaded the FRBCat (downloaded 2020
February 25, verified events only; Petroff et al. 2016).
The Milky Way electron distribution is more complex at low

Galactic latitudes owing to contributions from spiral arms, HII
regions, and supernova remnants. Electron density models are
most complex on size scales smaller than 200 pc and within
1 kpc of the Sun (Cordes & Lazio 2003). To minimize
systematic error introduce by the model, we only consider
sources more than 200/1000≈20° from the galactic plane; we
also compare the results with a second, more conservative cut
to estimate systematic error. We also remove all pulsars within
5° of the Magellanic clouds. For a latitude limit of >b 20∣ ∣ °,
the samples include 371 pulsars and 83 FRBs. For a latitude
limit of >b 30∣ ∣ °, the samples include 215 pulsars and 64
FRBs. Owing to the significant decrease in FRB data for
>b 30∣ ∣ °, the final results presented in this Letter use a

Galactic cut of >b 20∣ ∣ °.
This analysis requires correcting by the total DMISM contrib-

ution estimated from the Milky Way. Even at high Galactic
latitudes, the electron density models have systematic uncertain-
ties on the order of tens of percent due to modeling errors
(Schnitzeler 2012). We estimate DMISM with both the NE2001

8 Available athttps://github.com/tillahoffmann/asymmetric_kde.

4

The Astrophysical Journal Letters, 895:L49 (10pp), 2020 June 1 Platts, Prochaska, & Law



(Cordes & Lazio 2002, 2003) and YMW16 (Yao et al. 2017)
models as a way of estimating potential systematic errors.

We then generated distributions ofDDMpulsar andDDMFRB,
as given by Equations (3) and (6). These are shown in
Figures 2(a) and (b). As expected, the majority of DDMpulsar

values are negative with a small tail to positive values. In
contrast, the DDMFRB distribution is exclusively positive and
rises sharply at D » -DM 64 pc cmFRB

3.
We applied KDE (with Gaussian and gamma kernels,

respectively) to the observed DDMpulsar and DDMFRB

distributions to derive PDFs for each. The dark, thick curves in
Figures 2(a) and (b) show the results. Also overlaid on the
figures are a series of distributions derived from 1000
resampled data sets (100 shown). Table 2 reports the final
results for both models on both Galactic latitude samples. In
general, we find that the uncertainty on DDMFRBvalues are
dominated by the size of the FRB sample. However, the
uncertainty on the two distributions is largely insensitive to the
Galactic latitude cut. The YMW16 model tends to have slightly
smaller DMISM values for this sample, which yields larger

Dmax DMpulsar[ ] and Dmin DMFRB[ ] estimates. However, the

separation of these distributions is not sensitive to the Galactic
electron density model.

4.3. Simulated Sample

We now simulateDDMFRB to explore how the estimation of
min[DDMFRB] is likely to improve as more FRB data become
available and to assess our choice of metric for Dmin DMFRB[ ].
From Equation (5),

D = + +DM DM DM DM . 15FRB MW,halo cosmic host ( )

DMMW,halo has a positive minimum, whereas DMcosmic and
DMhost—in principle—have minimums of zero. As such,
DMMW,halo provides a zero-point offset for DDMFRB, i.e.,

D >min DM 0FRB[ ] . For the following simulation, DMMW,halo

is chosen to be a delta function at 30 -pc cm 3 and DMhost is
approximated by a lognormal distribution with a mean of
m = 40 -pc cm 3 and a standard deviation of s = 0.5. Other
models for these quantities are explored in Appendix A.
To generate a cosmic DM contribution to the simulation, we

must adopt a distribution of redshifts for the FRBs. We choose
to estimate it from the observed DMFRB values. Specifically, we
adopt a DM–z relation9 to convert the observed sample of
DMFRB values to a set of redshifts. Here the observed sample
set has >b 20∣ ∣ ° and DMISM is subtracted off with NE2001.
We then applied a standard KDE with a Gaussian kernel to
build a PDF of the z values from which random draws may be
taken. The draws are fed back into the DM–z relationship to
obtain the average cosmic contribution to the DM,

òá ñ =
+

z
n ds

z
DM

1
, 16

e
cosmic( )

¯
( )

where r m m=n f z z me d b e m p¯ ( ) ( ) is the average electron density,
fd is the fraction of cosmic baryons in diffuse ionized gas,
r rº Wb b c is the cosmic baryonic mass density, and mm and me
describe properties of helium.

Figure 2. Distributions for observed samples, restricted to >b 20∣ ∣ ° and using
NE2001 for modeling DMISM. Overlaid on the data are PDFs derived with
KDE. (a) DDMpulsar KDEs (with Gaussian kernels and a fixed bandwidth)
overlaid on the observed data. The dark orange curve denotes the PDF
estimated with the original data, and the lighter curves denote PDFs generated
with resampled data. The bandwidth for each distribution is selected with cross-
correlation and a search range between h=8 and h=15. (b)DDMFRB KDEs
(with gamma kernels and variable bandwidths) overlaid on the observed data.
The thick dark-red curve denotes the PDF generated with the original data and
the lighter curves denote PDFs generated with the resampled data.

Table 2

Constraints Derived from (a) Pulsar and (b) FRB Observations

Latitude Dmax DMpulsar[ ] DMMW,halo

NE2001 >b 20∣ ∣ ° -   -2 2 stat 9 sys pc cm 3( ) ( ) >- -11 pc cm 3

>b 30∣ ∣ ° -   -4 3 stat 8 sys pc cm 3( ) ( ) >- -13 pc cm 3

YMW16 >b 20∣ ∣ °   -7 2 stat 9 sys pc cm 3( ) ( ) >- -2 pc cm 3

>b 30∣ ∣ °   -4 2 stat 8 sys pc cm 3( ) ( ) >- -5 pc cm 3

Latitude Dmin DMFRB[ ] DMMW,halo

NE2001 >b 20∣ ∣ ° -
+ -54 stat 9 sys pc cm19
40 3( ) ( ) < -127 pc cm 3

>b 30∣ ∣ ° -
+ -45 stat 7 sys pc cm9
39 3( ) ( ) < -110 pc cm 3

YMW16 >b 20∣ ∣ ° -
+ -63 stat 9 sys pc cm21
27 3( ) ( ) < -123 pc cm 3

>b 30∣ ∣ ° -
+ -52 stat 7 sys pc cm11
37 3( ) ( ) < -113 pc cm 3

Note. NE2001 and YMW16 are used to model DMISM with >b 20∣ ∣ ° and
>b 30∣ ∣ °. Dmax DMpulsar[ ] and Dmin DMFRB[ ] are calculated at 1σ, and upper

and lower limits for DMMW,halo at 95%c.l. Systematic errors are taken to be the
difference between NE2001 and YMW16 estimates. KDE with Gaussian
kernels and fixed bandwidths are used to model DDMpulsar, and KDE with
gamma kernels and varying bandwidths are used to model DDMFRB.

9 Code available athttps://github.com/FRBs/FRB.
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We allow for deviations of DMcosmic from the average value
following the formalism presented in Macquart & Ekers
(2018). Our treatment is simpler than theirs; specifically, we
assume that the fractional standard deviation of á ñDMcosmic is
s = -FzDM

1 2 with F = 0.2. We may then generate a simulated
DMcosmicdistribution based on the z distribution and random
draws from a Gaussian characterized by s = 1DM and truncated
at s1 . Throughout, we enforce >DM 0cosmic . The resultant
DMcosmic values are added to DMhalo and DMhost to give the
simulated PDF of DDMFRB.

Figure 3(a) shows a realization of this simulated PDF for
n=10,000 draws. This realization has an absolute minimum
of D = -DM 30 pc cmFRB

3 and rises sharply due to the host
and DMcosmic contributions. The dark-red curve is the KDE
(gamma) using the original data set and the other red curves are
distributions generated with resampled data.

We explore the sensitivity of the analysis and results to
samples size n as follows. For n=100, 1000, and 10,000, we
draw a random set of DDMFRB values and model the
distributions with KDE (gamma). We then estimate a minimum
value from the gradients of the PDFs, i.e., min DMFRB[ ] is the
value that maximizes the slope of the KDE. Since each n PDF
is complemented by 1000 PDFs resampled from the original

data set, 1000 minima are available for error estimation. The
distribution of min[DDMFRB] values are shown in Table 3. As
n increases, the dispersion in min[DDMFRB] decreases and the
central values approach » -34 pc cm 3 (Figure 3(b)). Adding
more than 10,000 samples has no notable effect on the results.
The simulation estimates are skewed to the left for small n

and approach a Gaussian distribution with increased confidence
as n increases (Figure 3(b)). While the mean values of the
distributions are similar (Table 3), a sample size of n=100 is
inadequate to place a constraint with reasonable confidence.
The confidence level does however improve significantly as n
approaches 10,000.
Other choices for DMhost are explored to ensure the metric
D = ¢ Dfmin DM max DMFRB FRB[ ] [ ( )] is reasonably robust to

changes in the FRB simulation. Results are consistent, as
detailed in Appendix A. The smoother the leading edge of
DDMFRB, i.e., the smoother DMhost, the more conservative the
limits become, and a very sharp edge forDDMFRB, i.e., a delta
function for DMhost, is described well by the metric. These
cases represent extreme examples of possible host galaxy DM
distributions.

5. Discussion

The principle empirical result of our work is a conservative
upper limit on the DM contribution of the Milky Way halo. At
1σ, = -

+ -DM 63 stat 9 sys pc cmMW,halo 21
27 3( ) ( ) ( >b 20∣ ∣ °,

YMW16). This can be converted to a conservative upper limit
of < -DM 123pc cmMW,halo

3 (95%c.l.). This includes the ISM
and halo, and potentially a nonzero contribution from the FRB
host galaxy, which is plausibly several tens of -pc cm 3 (see
below). This limit also includes a nonzero contribution from
the cosmic web (DMcosmic). That contribution is difficult to
estimate at present but we note that the lowest-redshift FRB
( =z 0.03; Marcote et al. 2020) would yield an average
DMcosmic of » -25 pc cm 3. A more realistic, yet speculative,
upper limit to DMMW,halo may therefore be » -50 pc cm 3.
The results presented include two measurements of uncer-

tainty: systematic uncertainties related to ISM models and
statistical uncertainties related to the estimation techniques.
Another point to consider is the effect that Galactic latitude has
on results. Owing to the complexity of the electron distribution
at lower Galactic latitudes, we consider cuts of >b 20∣ ∣ ° and
>b 30∣ ∣ °. Results are largely insensitive to this cut; however,

the loss of data at >b 30∣ ∣ ° (371 to 215 pulsars, and 83 to 64
FRBs), motivates a cut of >b 20∣ ∣ ° for our final analysis.
Pulsar constraints are dominated by uncertainties in modeling

DMISM. We find that, on average, DMISM values recovered from
NE2001 are» -10 pc cm 3 lower than those from YMW16. Given
the expectation that >DM 0MW,halo , we use YMW16 in our

Figure 3. (a) Distribution of DDMFRB,sim from simulated data. The KDE
(gamma) estimation for n=10,000 is denoted by the thicker dark-red line. The
thinner red lines show the ensemble of KDEs from resampled data. (b)
Distributions of Dmin DMFRB,sim[ ] given by the maximum gradients of the
KDE (gamma) PDFs. As the sample size increases, solutions settle with higher
certainty to D = -min DM 34 pc cmFRB,sim

3[ ] , which is -4 pc cm 3 above the
absolute minimum.

Table 3

Simulation Estimates for Different Sample Sizes
with D = -min DM 30 pc cmFRB,sim

3[ ]

No. FRBs Dmin DMFRB[ ] DMMW,halo

100  -37 24 stat pc cm 3( ) < -114 pc cm 3

1000  -35 7 stat pc cm 3( ) < -55 pc cm 3

10000  -34 2 stat pc cm 3( ) < -44 pc cm 3

Note. The second column gives the recovered measurements for
Dmin DMFRB[ ] at 1σ and the last column gives an upper limit for DMMW,halo

(95%c.l.).
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analysis (see Table 2(b)). This gives a final result of
> - -DM 2 pc cmMW,halo

3 (95%c.l.). We note that characteriz-
ing the line of sight to MW pulsars may help find HII regions that
bias the DMISM estimate, allowing for improvement in the pulsar
sample.

FRB constraints are predominantly limited by sample size n,
i.e., our simulations show a significant improvement as n increases.
For an absolute value of = -DM 30 pc cmMW,halo

3, limits for
=n 100, 1000, and 10,000 are < -DM 114 pc cmMW,halo

3,
< -DM 55 pc cmMW,halo

3, and < -DM 44 pc cmMW,halo
3, res-

pectively (95%c.l.). This suggests that once thousands of FRBs
have been observed, the constraints will greatly improve.

Even the conservative limit of < -DM 123 pc cmMW,halo
3

offers a valuable bound to models of the Galactic halo and the
Local Group that our Galaxy resides within. Scenarios that adopt a
Galactic halo mass »M M10halo

12.2
 that has retained all of its

cosmic average of baryons estimate > -DM 50 pc cmMW,halo
3

(Prochaska & Zheng 2019; but see Keating& Pen 2020).
Furthermore, models that would predict the gas traces the dark
matter profile would yield > -DM 200 pc cmMW,halo

3 (Figure 4);
these are ruled out by our FRB analysis, and also their
overestimated X-ray emission (e.g., Fang et al. 2015). Our results
also place an upper bound on the average contribution from
the Local Group medium, consistent with current estimates
(Prochaska & Zheng 2019). Clearly, as the observed FRB sample
increases—one expects a dramatic leap from the CHIME survey
(CHIME/FRB Collaboration et al. 2018)—the resultant limits
may well distinguish between models where the Galaxy has
retained the majority of its baryons from those where they have
been expelled.

To illustrate the potential constraints, Figure 4 shows a model-
based estimate for DMMW,halo for a dark matter halo with mass

=M M10halo
12.2

, baryonic mass = W W » ´M M 2.4b b m halo

M1011 , and that 75% of those baryons are in a diffuse, ionized
halo. The density profile is assumed to follow a modified Navarro–
Frenk–White (NFW) profile parameterized by y0 and α (see

Mathews & Prochaska 2017; Prochaska & Zheng 2019). The
upper limit to DMMW,halo estimated from our analysis prefers
largera y, 0 with a strict NFW profile (a = =y0, 10 ) ruled out at
high confidence unless W WM Mb b m halo . Larger a y, 0 are
inferred for our Galaxy and external ones from absorption-line
analyses (e.g., Faerman et al. 2017; Mathews & Prochaska 2017).
We emphasize that ongoing FRB projects will offer

complementary constraints on the magnitude and distribution
of contributions from the host and the cosmic web to the upper
limit on DMMW,halo. In particular, well-localized FRBs reveal
the host galaxy population and the redshift distribution of FRB
events. From follow-up observations of the hosts, one may
estimate the DM contribution from the host galaxy ISM
through measurements of the Balmer line emission (e.g.,
Tendulkar et al. 2017; Chittidi et al. 2020). The two systems
analyzed thus far yield » -DM 50 200 pc cmhost,ISM

3– . There
are other FRBs (e.g., FRB 180924; Bannister et al. 2019) where
the Balmer emission is low or even negligible at the FRB
location and we infer < -DM 50 pc cmhost,ISM

3. Within the
next year, we expect to have a sample of ∼20 hosts to derive
the distribution.
One may additionally translate the estimated stellar mass of

the host galaxy into a model-based estimate for the DM
contribution from the halo gas of the host (Bannister et al.
2019; Prochaska & Zheng 2019). Current estimates range from
» -50 pc cm 3 for the most massive hosts (Bannister et al. 2019)
to < -20 pc cm 3 for FRB181112 (Prochaska & Zheng 2019).
From the redshift distribution of the localized FRBs, one may
estimate the minimum typical contribution of DMcosmic to the
DMMW,halo limit. This bears an important caveat that the
selection biases of the localized sample will not match those of
the larger ensemble (e.g., due to differences in the radio
frequencies and/or flux limit). One will need to account for
these differences. Alternatively, one may focus on the analysis
of the a localized sample alone once it grows to a sufficient
sample size.
Last, we emphasize that other, future observations will also

offer constraints on DMMW,halo independent of FRB analyses.
We anticipate high-precision X-ray absorption-line spectrosc-
opy of the Galactic halo from the upcoming Japanese XRISM
mission. With a spectral resolution that will greatly exceed
current X-ray satellites, the data will yield much more reliable
estimates of +O 5 and +O 6 column densities across the sky. At
the very least, these yield conservative lower limits to
DMMW,halo. Another promising yet still unrealized opportunity
is to discover pulsars in Andromeda or any other Local Group
galaxy. These would offer a strict upper bound on DMMW,halo

or even a well-informed value along that sight line.

6. Concluding Remarks

We have demonstrated how density estimation techniques can
be used to probe the DM—i.e., the line-of-sight electron column
density—of the MW Galactic halo. For the corrected DMpulsar

and DMFRB distributions, we recover » max DM 7pulsar[ ]

 -2 stat 9 sys pc cm 3( ) ( ) and » -
+min DM 63 statFRB 21
27[ ] ( )

-9 sys pc cm 3( ) (1σ uncertainty). Conservative upper and
lower limits on the Galactic halo DM are also derived:

> - -DM 2 pc cmMW,halo
3 and < -DM 123 pc cmMW,halo

3

(95%c.l.). Here the lower bound given by pulsars reflects only a
fraction of the MW halo DM, and the upper bound given by FRBs
includes a nominal contribution from the FRB host galaxy and
IGM. In the latter case, the localization of FRBs at very low

Figure 4. Predicted DMMW,halo for our Galaxy as a function of two shape
parameters that describe the assumed baryonic density profile (Prochaska &
Zheng 2019). The analysis assumes a Galactic halo with total baryonic mass
» ´M M2.4 10b

11
 and that 75%of those baryons are in an ionized diffuse

phase of the halo. The upper limit of < -DM 123 pc cmMW,halo
3 rules out

density profiles that more closely resemble the NFW profile (a = =y0, 10 ).
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distances and/or on the outskirts of galaxies would establish that
the minimum DM would be more representative of the MW halo.
Scenarios consistent with this include the collapse of compact
objects (e.g., Falcke & Rezzolla 2013) that have been expelled
from a host galaxy, as well as more exotic theories such as tiny
electromagnetic explosions (which may occur in dark matter halos;
Thompson 2017a, 2017b) and cosmic strings (e.g., Vachas-
pati 2008; Yu et al. 2014; Zadorozhna 2015; Brandenberger et al.
2017).

We do not consider how DMMW,halo may vary as a function
of Galactic latitude. It may be possible with a sample of a
couple thousand FRBs per region of sky, but it is left to
future work.

Our current estimates cannot yet discern whether the Milky
Way has retained its cosmic average of baryons ( >DMMW,halo

-50 pc cm 3); however, in the near future, as more FRBs are
reported, results may offer a valuable complement to other
analyses. In the least, the methodology provides a reasonable—
albeit conservative—estimate of DMMW,halo and a minimum
contribution from DMhost. This may discern the viability of
Galactic halo models and aid in the search for missing baryons.
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Appendix A
Minimum of FRB DM Distribution

We postulate that the minimum of the DDMFRB distribution
can be approximated by D = ¢ Dfmin DM max DMFRB FRB[ ] [ ( )].
This metric is based on the prior that the underlying distribution
has a sharp leading edge and is motivated by simulations. To
bear weight, the metric must hold for a wide range of
reasonable DDMFRB distributions.
The MW can be given by a delta function (as its DM is

thought to vary by 10 -pc cm 3) and the cosmic DM distribution
can be modeled theoretically. The distribution of host galaxy
DMs, however, is unknown. In the main analysis we consider a
lognormal distribution with μ=40 -pc cm 3 and a standard
deviation of σ=0.5. Here we consider two extreme variations:
a delta function at -30 pc cm 3 and a broad Gaussian
distribution with m = -60 pc cm 3 and σ=0.5. The former
distribution makes the edge of DDMFRB sharper and the latter
makes it smoother. The metric is a reasonable approximation
for the combined +DM DMMW,halo host contribution when each
distribution is sharp (Figure A1(a)). When DMhost has a smooth
edge, the estimates are more conservative (Figure A1(b)). Thus,
provided the leading edge ofDDMFRB is sufficiently sharp, the
metric for determining the distribution minimum can be
considered reasonably robust.
Looking at Figure A1, a sample size of n=1000 appears

sufficient to provide an estimate consistent with that of
n=10,000. For n=100, distributions are wide and skewed
to the left, providing results that are clearly premature.

Figure A1. (a) Dmin DMFRB[ ] with DMhost a delta function at 30 -pc cm 3. The absolute minimum is 60 -pc cm 3. (b) Dmin DMFRB[ ] for a Gaussian DMhost with
m = -60 pc cm 3 and s = 15. The absolute minimum is 30 -pc cm 3.
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Appendix B
Density Estimation Using Field Theory

Density estimation using field theory (DEFT; Kinney
2014, 2015; Chen et al. 2018) is a newly developed technique
specifically developed for the small data regime. It takes a
Bayesian field theory approach to density estimation in small data
sets using a Laplace approximation of the Bayesian posterior (also
see Riihimaki & Vehtari 2014). An advantage of DEFT over
standard density estimation methods is that the method does not
require the manual identification of critical parameters nor does it
require the specification of boundary conditions. The DEFT
simulations in this Letter use the Python package Statistics Using
Field Theory (SUFTware) by Chen et al. (2018).

Consider n data points ( ¼x x x, , , n1 2 ) drawn from a known
probability distributionQ xtrue ( ) with x intervals of length L. We
wish to find the best estimate Q x*( ) of this distribution and the
accompanying ensemble of other plausible estimates. Each
distribution Q(x) is parameterized by a real field f x( ), ensuring
that Q(x) is positive and normalized:

ò
=

¢

f

f

-

- ¢
Q x

e

dx e
. B1

x

x
( ) ( )

( )

( )

Using scalar field theory, a prior fp ℓ( ∣ ) is formulated that
favors smooth probability densities. Specifically, Kinney
(2015) consider priors of the form

f =
f-

p ℓ
e

Z
, B2

S

ℓ
0

ℓ
0

( ∣ ) ( )
[ ]

with action

òf f= ¶
a

aS
dx

L

ℓ

2
, B3ℓ

0
2

2[ ] ( ) ( )

and partition function

ò f= f-Z e . B4ℓ
S0 ℓ
0

( )[ ]

Here, ℓgives the length scale below which f fluctuations are
strongly damped and a > 0 is an integer in the range [1, K, 4]
that determines the smoothness. The resultant posterior is given
by

f =
f-

p ℓ
e

Z
data, , B5

S

ℓ

ℓ

( ∣ ) ( )
[ ]

with nonlinear action

òf
a

f f= ¶ + +a f-S
dx

L

ℓ
nLR ne

2
, B6ℓ

2
2

⎧
⎨
⎩

⎫
⎬
⎭

[ ] ( ) ( )

and partition function

ò f= f-Z e . B7ℓ
Sℓ ( )[ ]

= å ¶ -=R x x x
n i

n
i

1
1( ) ( ) is a histogram that summarizes

the data.
Maximum a posteriori (MAP) density estimation approx-

imates the posterior fp ℓdata,( ∣ ) as a δ function given by the
mode of the posterior, at which the action fSℓ [ ] is then
minimized. It has been shown that even without imposing
boundary conditions on f, fSℓ [ ] has a unique minimum
(Kinney 2015). The optimal length scale ℓ* is identified by
maximizing the Bayesian evidence p ℓdata( ∣ ).

The uncertainty in the DEFT estimate Q* is determined by
sampling the Bayesian posterior,

ò=p Q dlp ℓ p Q ℓdata data data, , B8( ∣ ) ( ∣ ) ( ∣ ) ( )

by first drawing ℓfrom p ℓ data( ∣ ) and then drawing Q from
p Q ℓdata,( ∣ ). Laplace approximation is used to estimate
p Q ℓdata,( ∣ ) by constructing a Gaussian centered at its MAP
value. This gives the Laplace posterior,

ò=p Q dlp ℓ p Q ℓdata data data, , B9Lap Lap( ∣ ) ( ∣ ) ( ∣ ) ( )

from which an ensemble of distributions Q can be sampled. Some
of the Qs, however, are clearly not representative of the
underlying distribution. Importance resampling is thus used to
remove unfavorable distributions, where each f is given a weight,

f f f= -w S Sexp , B10ℓ ℓ ℓ
Lap[ ] ( [ ] [ ]) ( )

proportional to its probability of being drawn (Chen et al.
2018). DEFT uses importance resampling with replacement;
however, for this work we invoke importance resampling
without replacement.
When a posterior turns out to be a poor approximation of the

target distribution, a few of the sampled distributions are given
very large weights and the majority are given small weights
(Skare et al. 2003; Gelman et al. 2014). When resampling with
replacement, the heavily weighted distributions become
significantly over represented. In our case, ∼60%–70% of the
sampled distributions were duplicates, which lead to notable
bias when calculating the upper and lower bounds of
DMMW,halo. As such, we use a set of the most probable
distributions, with limited replications. Specifically, we select
500 out of 1000 distributions via importance sampling without
replacement. This lowered the duplication rate to ∼10%.
We approximate the FRB distribution described in

Section 4.3 using DEFT for n=100, n=1000, and
n=10,000. Even for large n DEFT is unable to adequately
describe the sharp edge of the simulated distribution. In
Figure B1(a), the PDF tail extends below zero, violating the
physical condition that D >DM 0FRB . Further, the PDF cuts

Figure B1. Distributions of DDMFRB for 10,000 samples, restricted to
>b 20∣ ∣ ° and using NE2001 for modeling DMISM. Overlaid on the data are

PDFs derived with DEFT. The thick line denotes the DEFT Bayesiean
posterior and shaded line denotes standard deviation of the set of PDFs derived
by sampling the Bayesiean posterior.
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straight through the front of the simulated distribution and so
bypasses the structure of the distribution’s edge.

Appendix C
Generalized Extreme Value

A standard statistical technique for estimating the maximum
values of an ensemble is to fit it with a GEV PDF (e.g., Coles
2001). This technique, however, is most applicable for assessing
the upper limit of a distribution with a long tail. ForDDMFRB, this
holds for the largest values but the lowest values rise sharply as
one may expect from the MW and host contributions.

Nevertheless, we attempted to estimate the minimum of
DDMFRB following the standard practice of assessing the
maximum of the negative of the distribution (Coles 2001). The
results reported a minimum value at effectively infinite
confidence at the lowest DDMFRB in the distribution and we
found the results were unstable to random sampling.
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