IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020 1

Safety Augmented Value Estimation from
Demonstrations (SAVED): Safe Deep Model-Based
RL for Sparse Cost Robotic Tasks

Brijen Thananjeyan*!', Ashwin Balakrishna*!, Ugo Rosolia®, Felix Li!, Rowan McAllister',
Joseph E. Gonzalez', Sergey Levine!, Francesco Borrelli!, Ken Goldberg'

Abstract—Reinforcement learning (RL) for robetics is chal-
lenging due to the difficulty in hand-engineering a dense cost
function, which can lead to unintended behavior, and dynamical
uncertainty, which makes exploration and constraint satisfac-
tion challenging. We address these issues with a new model-
based reinforcement learning algorithm, Safety Augmented Value
Estimation from Demonstrations (SAVED), which uses supervi-
sion that only identifies task completion and a modest set of
suboptimal demonstrations to constrain exploration and learn
efficiently while handling complex constraints. We then com-
pare SAVED with 3 state-of-the-art model-based and model-free
RL algorithms on 6 standard simulation benchmarks involving
navigation and manipulation and a physical knot-tying task
on the da Vinci surgical robot. Results suggest that SAVED
outperforms prior methods in terms of success rate, constraint
satisfaction, and sample efficiency, making it feasible to safely
learn a control policy directly on a real robot in less than an
hour. For tasks on the robot, baselines succeed less than 5% of
the time while SAVED has a success rate of over 75% in the
first 50 training iterations. Code and supplementary material is
available at https://tinyurl.com/saved-rl.

Index Terms—Reinforcement Learning, Imitation Learning,
Optimal Control

I. INTRODUCTION

To use RL in the real world, algorithms need to be efficient,
easy to use, and safe, motivating methods which are reliable
even with significant dynamical uncertainty. Deep model-
based reinforcement learning (deep MBRL) is of significant
interest because of its sample efficiency advantages over
model-free methods in a variety of tasks, such as assembly,
locomotion, and manipulation [4, 10-12, 20, 25, 32]. However,
past work in deep MBRL typically requires dense hand-
engineered cost functions, which are hard to design and can
lead to unintended behavior [2]. It would be easier to simply
specify task completion in the cost function, but this setting is

* Equal contribution

Manuscript received: September, 10, 2019; Revised January, 2, 2020;
Accepted February, 7, 2020.

This paper was recommended for publication by Editor Dongheui Lee upon
evaluation of the Associate Editor and Reviewers’ comments.

IBrijen Thananjeyan, Ashwin Balakrishna, Felix Li, Rowan McAllister,
Joseph E. Gonzalez, Sergey Levine, Francesco Borrelli, and Ken Goldberg are
with the Dept. of Electrical Engineering and Computer Science, University of
California, Berkeley, USA {bthananjeyan, ashwin_balakrishna,
fz1li, rmcallister, jegonzal, slevine, fborrelli,
goldberg}@berkeley.edu

2Ugo Rosolia is with the Dept. of Mechanical and Civil Engineering,
California Institute of Technology, USA urosolia@caltech.edu

Digital Object Identifier (DOI): see top of this page.

Figure 1: SAVED is able to safely learn maneuvers on the da Vinci surgical
robot, which is difficult to precisely control [36]. We demonstrate that SAVED
is able to optimize inefficient human demonstrations of a surgical knot-
tying task, substantially improving on demonstration performance with just
15 training iterations.

challenging due to the lack of expressive supervision. This mo-
tivates using demonstrations, which allow the user to roughly
specify desired behavior without extensive engineering effort.
However, providing high-performing trajectories of the task
may be challenging, motivating methods that can rapidly
improve upon suboptimal demonstrations that may be supplied
via a PID controller or kinesthetically. Furthermore, in many
robotic tasks, specifically in domains such as surgery, safe
exploration is critical to ensure that the robot does not damage
itself or cause harm to its surroundings. To enable this, deep
MBRL algorithms must be able to satisfy user-specified (and
possibly nonconvex) state-space constraints.

We develop a method to efficiently use deep MBRL in
dynamically uncertain environments with both sparse costs
and complex constraints. We address the difficulty of hand-
engineering cost functions by using a small number of subop-
timal demonstrations to provide a signal about task progress
in sparse cost environments, which is updated based on agent
experience. Then, to enable stable policy improvement and
constraint satisfaction, we impose two probabilistic constraints
to (1) constrain exploration by ensuring that the agent can plan

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020

back to regions in which it is confident in task completion and
(2) leverage uncertainty estimates in the learned dynamics to
implement chance constraints [27] during learning. The prob-
abilistic implementation of constraints makes this approach
broadly applicable, since it can handle settings with significant
dynamical uncertainty, where enforcing constraints exactly is
difficult.

We introduce a new algorithm motivated by deep model pre-
dictive control (MPC) and robust control, Safety Augmented
Value Estimation from Demonstrations (SAVED), which en-
ables efficient learning for sparse cost tasks given a small
number of suboptimal demonstrations while satisfying the
provided constraints. We specifically consider tasks with a
tight start state distribution and fixed, known goal set. SAVED
is evaluated on MDPs with unknown dynamics, which are
iteratively estimated from experience, and with a cost function
that only indicates task completion. The contributions of this
work are (1) a novel method for constrained exploration
driven by confidence in task completion, (2) a technique
for leveraging model uncertainty to probabilistically enforce
complex constraints, enabling obstacle avoidance or opti-
mizing demonstration trajectories while maintaining desired
properties, (3) experimental evaluation against 3 state-of-the-
art model-free and model-based RL baselines on 8 different
environments, including simulated experiments and physical
maneuvers on the da Vinci surgical robot. Results suggest that
SAVED achieves superior sample efficiency, success rate, and
constraint satisfaction rate across all domains considered and
can be applied efficiently and safely for learning directly on a
real robot.

II. RELATED WORK

There is significant interest in model-based planning and
deep MBRL [10-12, 20, 22, 25] due to the improvements
in sample efficiency when planning over learned dynamics
compared to model-free methods for continuous control [14,
16]. However, most prior deep MBRL algorithms use hand-
engineered dense cost functions to guide exploration and
planning, which we avoid by using demonstrations to pro-
vide signal about delayed costs. Demonstrations have been
leveraged to accelerate learning for a variety of model-free
RL algorithms, such as Deep Q Learning [17] and DDPG
[26, 39], but model-free methods are typically less sample
efficient and cannot anticipate constraint violations since they
learn reactive policies [37]. Demonstrations have also been
leveraged in model-based algorithms, such as in motion plan-
ning with known dynamics [31] and for seeding a learned
dynamics model for fast online adaptation using iLQR and a
dense cost [12], distinct from the task completion based costs
we consider. Unlike traditional motion planning algorithms,
which generate open-loop plans to a goal configuration when
dynamics are known, we consider designing a closed-loop
controller that operates in stochastic dynamical systems where
the system dynamics are initially unknown and iteratively
estimated from data. Finally, Brown et al. [8] use inverse RL
to significantly outperform suboptimal demonstrations, but do
not enforce constraints or consistent task completion during
learning.

In iterative learning control (ILC), the controller tracks a
predefined reference trajectory and data from each iteration
is used to improve closed-loop performance [7]. Rosolia et
al. [33-35] provide a reference-free algorithm to iteratively
improve the performance of an initial trajectory by using
a safe set and terminal cost to ensure recursive feasibility,
stability, and local optimality given a known, deterministic
nonlinear system or stochastic linear system under certain
regularity assumptions. In contrast to Rosolia et al. [33-35],
we consider designing a similar controller in stochastic non-
linear dynamical systems where the dynamics are unknown
and iteratively estimated from experience. Thus, SAVED uses
function approximation to estimate a dynamics model, value
function, and safe set. There has also been significant interest
in safe RL [15], typically focusing on exploration while
satisfying a set of explicit constraints [1, 21, 24], satisfying
specific stability criteria [5], or formulating planning via a
risk sensitive Markov Decision Process [23, 28]. Distinct from
prior work in safe RL and control, SAVED can be successfully
applied in settings with both uncertain dynamics and sparse
costs by using probabilistic constraints to constrain exploration
to feasible regions during learning.

III. SAFETY AUGMENTED VALUE ESTIMATION FROM
DEMONSTRATIONS (SAVED)

This section describes how SAVED uses a set of suboptimal
demonstrations to constrain exploration while satisfying user-
specified state space constraints. First, we discuss how SAVED
learns system dynamics and a value function to guide learning
in sparse cost environments. Then, we motivate and discuss
the method used to enforce constraints under uncertainty to
both ensure task completion during learning and satisfy user-
specified state space constraints.

A. Assumptions and Preliminaries

In this work, we consider stochastic, unknown dynami-
cal systems with a cost function that only identifies task
completion. We outline the framework for MBRL us-
ing a standard Markov Decision Process formulation. A
finite-horizon Markov Decision Process (MDP) is a tuple
(x,u,p(,-),T,C(-,-)) where X is the feasible (constraint-
satisfying) state space and I/ is the control space. The stochas-
tic dynamics model P maps a state and control input to a
probability distribution over states, T is the task horizon, and
C is the cost function. A stochastic control policy 7 maps an
input state to a distribution over U.

We assume that (1) tasks are iterative in nature, and have
a fixed low-variance start state distribution and fixed, known
goal set G. This is common in a variety of repetitive tasks, such
as assembly, surgical knot-tying, and suturing. We further as-
sume that (2) the user specifies an indicator function 1 (x € X),
which checks whether a state x is constraint-satisfying. Finally,
we assume that (3) a modest set of suboptimal but constraint
satisfying demos are available, for example from imprecise
human teleoperation or a hand-tuned PID controller. This en-
ables rough specification of desired behavior without having to

THANANJEYAN*, BALAKRISHNA* et al.: SAFETY AUGMENTED VALUE ESTIMATION FROM DEMONSTRATIONS (SAVED) 3

design a dense cost function, allowing us to consider cost func-
tions which only identify task completion: C(x,u) = cg
where G C X defines a goal set in the state space and G* is 1ts
complement. We define task success by convergence to G at
the end of the task horizon without violating constraints. Note
that under this definition of costs, the problem we consider
is equivalent to the shortest time control problem in optimal
control, but with initially unknown system dynamics which
are iteratively estimated from experience. The applicability of
SAVED extends beyond this particular choice of cost function,
but we focus on this class due to its convenience and notorious

difficulty for reinforcement learning algorithms [26].

Finally, we define the notion of a safe set to enable
constrained policy improvement, which is described further in
Section III-C. Recent MPC literature [33] motivates constrain-
ing exploration to regions in which the agent is confident in
task completion, which gives rise to desirable theoretical prop-
erties when dynamics are known and satisfy certain regularity
conditions [33-35]. For a trajectory at iteration k, given by
¥k = {x¥|t € N}, we define the sampled safe set as

Ssi=J

ke M

(III-A.1)

where M/ = {k € [0, j) : lim, .. x¥ € G} is the set of indices of
all successful trajectories before iteration j as in Rosolia et al.
[33]. SS7 contains the states from all iterations before j from
which the agent controlled the system to G and is initialized
from demonstrations. A key operating principle of SAVED is
to use SS’ to guide exploration by ensuring that there always
exists a way to plan back into a continuous approximation
of SS/. This allows for policy improvement while ensuring
that the agent can always return to a state from which it
has previously completed the task, enabling consistent task
completion during learning.

B. Algorithm Overview

1) Deep Model Predictive Control: SAVED uses MPC to
optimize costs over a sequence of controls at each state.
However, when using MPC, since the current control is com-
puted by solving a finite-horizon approximation to the infinite-
horizon control problem, an agent may take shortsighted
controls which may make it impossible to complete the task
safely, such as planning the trajectory of a race car over
a short horizon without considering an upcoming curve [6].
Additionally, the planner receives no feedback or information
about task progress when using the indicator task functions
used in this work. Thus, to guide exploration in temporally-
extended tasks, we solve the problem in equation III-B.2a,
which includes a learned value function in the objective.
Note that U refers to the set of H length control sequences
while X#+! refers to the set of H+ 1 length state sequences.
This corresponds to the standard objective in MPC with an
appended value function Vg, which provides a terminal cost
estimate for the current policy at the end of the planning
horizon.

While prior work in deep MBRL [10, 25] has primarily
focused on planning over learned dynamics, we introduce
a learned value function, which is initialized from demon-
strations to provide initial signal, to guide planning even in

sparse cost settings. The learned dynamics model fy and value
function Vdf are each represented with a finite probabilistic
ensemble of n neural networks (in this work we pick n=15), as
is used to represent system dynamics in Chua et al. [10]. The
probabilistic ensemble consists of a set of neural networks,
each of which output the parameters of a conditional axis-
aligned Gaussian distribution and are trained on bootstrapped
samples from the training dataset using a maximum likeli-
hood objective as in [10]. Each conditional Gaussian is used
to model aleatoric uncertainty in the dynamics, while the
bootstrapped ensemble of these models captures epistemic
uncertainty due to data availability in different regions of the
MDP. SAVED uses the learned stochasticity of the models
to enforce probabilistic constraints when planning under un-
certainty. These functions are initialized from demonstrations
and updated from data collected from each training iteration.
See supplementary material for further details on how these
networks are trained.

2) Probabilistic Constraints: The core novelties of SAVED
are the additional probabilistic constraints in III-B.2c to en-
courage task completion driven exploration and enforce user-
specified chance constraints. First, a non-parametric density
model p is trained on SS’, which includes states from prior
successful trajectories, including those from demonstrations.
p constraints exploration by requiring x; g to fall in a re-
gion with high probability of task completion. This enforces
cost-driven constrained exploration and iterative improvement,
enabling reliable performance even with sparse costs. Note
that the agent can still explore new regions, as long as it
has a plan that can take it back to the safe set with high
probability. Second, we require all elements of x;,,p to fall
in the feasible region X**! with probability at least 3, which
enables probabilistic enforcement of state space constraints. In
Section III-C, we discuss the methods used for task completion
driven exploration and in Section III-D, we discuss how
probabilistic constraints are enforced during learning.

In summary, SAVED solves the following optimization
problem at each timestep based on the current state of the
system, x;, which is measured from observations:

H-1
Uiy = argmin By, 1Y C((et ri) + Vg (Xrh)
UpgH—1 €EUT i=0
(I1I-B.2a)
st Xppit ~ fo (% upi) Vi€ {0,...,H—1} (II-B.2b)
pa(xiim) > 8, P (x,;,+H c XH“> >B (II-B.2¢)

C. Task Completion Driven Exploration

Under certain regularity assumptions, if states at the end of
the MPC planning horizon are constrained to fall in the sam-
pled safe set S8/, iterative improvement, controller feasibility,
and convergence are guaranteed given known stochastic linear
dynamics or deterministic nonlinear dynamics [33-35]. The
way we constrain exploration in SAVED builds on this prior
work, but we note that unlike Rosolia et al. [33-35], SAVED
is designed for settings in which dynamics are completely

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020

o I

Start Goal

Obstacle

N 3

_____________ PY P(collision|us, wisq, upyo) = 1
—X
:Lx[,%/O/— Obstacle
\O\O__x
v

1 2

Figure 2: Task Completion Driven Exploration (left): A density model is used to represent the region in state space where the agent has high confidence in
task completion; trajectory samples over the learned dynamics that do not have sufficient density at the end of the planning horizon are discarded. The agent
may explore outside the safe set as long as a plan exists to guide the agent back to the safe set from the current state; Chance Constraint Enforcement
(right): Implemented by sampling imagined rollouts over the learned dynamics for the same sequence of controls multiple times and estimating the probability

of constraint violation by the percentage of rollouts that violate a constraint.

Algorithm 1 Safety Augmented Value Estimation from
Demonstrations (SAVED)

Require: Replay Buffer R; value function V¥ (x), dynamics

model fg(x'|x,u), and safety density model pg(x) all seeded
with demos; kernel and chance constraint parameters o and
B.
foric{l,...,N} do
Sample xo from start state distribution
forrc{l,....,T—1} do
Pick u;, ,y_, by solving eq. IlI-B.2 using CEM
Execute u; and observe x4
R=RU {(xtv”;ﬂvc(xta ”z*)axH-l)}
end for
if x; € G then
Update safety density model p, with xq.7
end if
Optimize 0 and ¢ with R
end for

unknown, nonlinear, and stochastic. As illustrated in Figure 2,
the mechanism for constraining exploration allows the agent
to generate trajectories that leave the safe set as long as a plan
exists to navigate back in, enabling policy improvement. By
adding newly successful trajectories to the safe set, the agent
is able to further improve its performance. Note that since the
safety density model and value function are updated on-policy,
the support of the safety density model expands over iterations,
while the value function is updated to reflect the current policy.
This enables SAVED to improve upon the performance of the
demonstrations since on each iteration, it simply needs to be
able to plan back to the high support region of a safety density
model fit on states from which SAVED was able to complete
the task from all prior iterations rather than just those visited
by the demonstrations.

Since SS/ is a discrete set, we introduce a continuous
approximation by fitting a density model p to SS’. Instead
of requiring that x; 1y € SS’/, SAVED instead enforces that
Po(X+m) > 6, where o is a kernel width parameter (con-
straint III-B.2¢). Since the tasks considered in this work
have sufficiently low (< 17) state space dimension, kernel
density estimation provides a reasonable approximation. We
implement a top-hat kernel density model using a nearest
neighbors classifier with a tuned kernel width o and use

6 = 0 for all experiments. Thus, all states within Euclidean
distance o from the closest state in SS’ are considered safe
under py, representing states in which the agent is confident
in task completion. As the policy improves, it may forget how
to complete the task from very old states in SS’, so such
states are evicted from SS” to reflect the current policy when
fitting py. We discuss how these constraints are implemented
in Section III-D, with further details in the supplementary
material. In future work, we will investigate implicit density
estimation techniques to scale to high-dimensional settings.

D. Chance Constraint Enforcement

SAVED leverages uncertainty estimates in the learned dy-
namics to enforce probabilistic constraints on its trajectories.
This allows SAVED to handle complex, user-specified state
space constraints to avoid obstacles or maintain certain prop-
erties of demonstrations without a user-shaped or time-varying
cost function. During MPC trajectory optimization, control
sequences are sampled from a truncated Gaussian distribution
that is iteratively updated using the cross-entropy method
(CEM) [10]. Each control sequence is simulated multiple
times over the stochastic dynamics model as in [10] and
the average return of the simulations is used to score the
sequence. However, unlike Chua et al. [10], we implement
chance constraints by discarding control sequences if more
than 100- (1 —)% of the simulations violate constraints (con-
straint III-B.2c), where 8 is a user-specified tolerance. Note
that the B parameter controls the tradeoff between ensuring
sufficient exploration to learn the dynamics and satisfying
specified constraints. This is illustrated in Figure 2. The task
completion constraint (Section III-C) is implemented similarly,
with control sequences discarded if any of the simulated
rollouts do not terminate in a state with sufficient density under

Pa-

E. Algorithm Pseudocode

We summarize SAVED in Algorithm 1. The dynamics,
value function, and state density model are initialized from
suboptimal demonstrations. At each iteration, we sample a
start state and then controls are generated by solving equa-
tion III-B.2 using the cross-entropy method (CEM) at each
timestep. Transitions are collected in a replay buffer to update

THANANJEYAN*, BALAKRISHNA* et al.: SAFETY AUGMENTED VALUE ESTIMATION FROM DEMONSTRATIONS (SAVED) 5

the dynamics, value function, and safety density model at the
end of each iteration. The state density model is only updated
if the last trajectory was successful.

IV. EXPERIMENTS

We evaluate SAVED on simulated continuous control
benchmarks and on real robotic tasks with the da Vinci
Research Kit (dVRK) [19] against state-of-the-art deep RL
algorithms and find that SAVED outperforms all baselines
in terms of sample efficiency, success rate, and constraint
satisfaction rate during learning. All tasks use C(x,u) = 1 5c (x)
(Section III-A), which yields a controller which maximizes
the time spent inside the goal set. All algorithms are given
the same demonstrations and are evaluated by measuring
iteration cost, success rate, and constraint satisfaction rate (if
applicable). Tasks are only considered successfully completed
if the agent reaches and stays in G until the end of the episode.
Constraint violation results in early termination of the episode.

For all experiments, we run each algorithm 3 times to
control for stochasticity in training and plot the mean iteration
cost vs. time with error bars indicating the standard deviation
over the 3 runs. Additionally, when reporting task success rate
and constraint satisfaction rate, we show bar plots indicating
the median value over the 3 runs with error bars between
the lowest and highest value over the 3 runs. When reporting
the iteration cost of SAVED and all baselines, any constraint
violating trajectory is reported by assigning it the maximum
possible iteration cost T, where T is the task horizon. Thus,
any constraint violation is treated as a catastrophic failure. We
plan to explore soft constraints as well in future work. Fur-
thermore, for all simulated tasks, we also report best achieved
iteration costs, success rates, and constraint satisfaction rates
for model-free methods after 10,000 iterations since they take
much longer to start performing the task even when supplied
with demonstrations.

For SAVED, dynamics models and value functions are
each represented with a probabilistic ensemble of 5, 3 layer
neural networks with 500 hidden units per layer with swish
activations as used in Chua ef al. [10]. To plan over the
dynamics, the TS-oo trajectory sampling method from [10]
is used. We use 5 and 30 training epochs for dynamics and
value function training when initializing from demonstrations.
When updating the models after each training iteration, 5 and
15 epochs are used for the dynamics and value functions
respectively. Value function initialization is done by training
the value function using the true cost-to-go estimates from
demonstrations. However, when updated on-policy, the value
function is trained using temporal difference error (TD-1) on a
replay buffer containing prior states. The safety density model,
p, is trained on a fixed history of states from which the agent
was able to reach the goal (safe states), where this history
can be tuned based on the experiment (see supplement). We
represent the density model using kernel density estimation
with a tophat kernel. Instead of modifying & for each envi-
ronment, we set 6 = 0 (keeping points with positive density),
and modify o (the kernel parameter/width), which works well
in practice. See the supplementary material for additional

experiments, videos, and ablations with respect to choice of a,
B, and demonstration quantity/quality. We also include further
details on baselines, network architectures, hyperparameters,
and training procedures.

A. Baselines

We consider the following set of model-free and model-
based baseline algorithms. To enforce constraints for model-
based baselines, we augment the algorithms with the simula-
tion based method described in Section III-D. Because model-
free baselines have no such mechanism to readily enforce
constraints, we instead apply a very large cost when constraints
are violated. See supplementary material for an ablation of the
reward function used for model-free baselines.

1) Behavior Cloning (Clone): Supervised learning on

demonstration trajectories.

2) PETS from Demonstrations (PETSfD): Probabilistic
ensemble trajectory sampling (PETS) from Chua et
al [10] with the dynamics model initialized with demo
trajectories and planning horizon long enough to plan to
the goal (judged by best performance of SAVED).

3) PETSID Dense: PETSfD with tuned dense cost.

4) Soft Actor Critic from Demonstrations (SACID):
Model-free RL algorithm, Soft Actor Critic [16], where
demo transitions are used for training initially.

5) Overcoming Exploration in Reinforcement Learning
from Demonstrations (OEFD): Model-free algorithm
from Nair et al. [26] which combines model-free RL
with a behavior cloning loss on the demonstrations to
accelerate learning.

6) SAVED (No SS): SAVED without the sampled safe set
constraint described in Section III-C.

B. Simulated Navigation

To evaluate whether SAVED can efficiently and safely learn
temporally extended tasks with nonconvex constraints, we
consider a 4-dimensional (x, y, vy, V) navigation task in
which a point mass is navigating to a goal set, which is a
unit ball centered at the origin. The agent can exert force
in cardinal directions and experiences drag coefficient y and
Gaussian process noise z; ~ N (0,62I) in the dynamics. We
use ¥ =0.2 and o = 0.05 in all experiments in this domain.
Demonstrations trajectories are generated by guiding the robot
along a very suboptimal hand-tuned trajectory for the first
half of the trajectory before running LQR on a quadratic
approximation of the true cost. Gaussian noise is added to the
demonstrator policy. Additionally, we use a planning horizon
of 15 for SAVED and 25, 30, 30, 35 for PETS{D for tasks 1-4
respectively. The 4 experiments run on this environment are:

1) Long navigation task to the origin: xo = (—100,0) We
use 50 demonstrations with average return of 73.9 and
kernel width o = 3.

2) Large obstacle blocking the x-axis: This environment
is difficult for approaches that use a Euclidean norm cost
function due to local minima. We use 50 demonstrations
with average return of 67.9, kernel width a = 3, and
chance constraint parameter § = 1.

1 R

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020

“%@
[

i
]

Navigation Task Success Rate £ Navigation Task Constraint Satisfaction Rate == SAVED
< mmm SAVED (No SS)
Q 2 W PETSTD
e &8 PETSfD Dense
Q % mmm Clone
9 9 W SACFD
3 £ mEm OEFD
= B SACTD (10K)
s mmA OEFD (10K)
Task 1 Task 2 Task 3 Task 4 © Task 2 Task 3 Task 4
Navigation: Iteration Cost vs. Time [SAVED
§ Navigation Taskl *g Navigation Task2 [SAVED (No SS)
O 100 O 100 - mes PETSfD
s g(s): 5 ;g: s PETS(D Dense
.r‘_B' 25 - E 254 "ll’g\ Clone
s 0 a 0 == SACfD
= = 0 20 40 60 80 w OEFD
Iteration Iteration
2 Navigation Task3 = Navigation Task4
S 1004 S 100 Ty
5 551 5 13 ; _
"E 254 “§ 254 == v N -
9 0 9 0 T T T T T T
= = 0 20 40 60 80 100
Iteration Iteration

Figure 3: Navigation Domains: SAVED is evaluated on 4 navigation tasks. Tasks 2-4 contain obstacles, and task 3 contains a channel for passage to G near
the x-axis. SAVED learns significantly faster than all RL baselines on tasks 2 and 4. In tasks 1 and 3, SAVED has lower iteration cost than baselines using
sparse costs, but does worse than PETSfD Dense, which is given dense Euclidean norm costs to find the shortest path to the goal. For each task and algorithm,
we report success and constraint satisfaction rates over the first 100 training iterations and also over the first 10,000 iterations for SACfD and OEFD. We
observe that SAVED has higher success and constraint satisfaction rates than other RL algorithms using sparse costs across all tasks, and even achieves higher
rates in the first 100 training iterations than model-free algorithms over the first 10,000 iterations.

Simulated Robots: Iteration Cost vs. Time Fetch Pick and Place

- PR2 Reacher > = SAVED
8 100 e 3 W= SAVED (No SS)
o A | | 4 W - (@] 40 ﬁ U1 W PETSfD
g g " - =™ Clone
= 50 500 A | W= SACD
g g Ul W OEFD
= = |

0 0 20 40 60 80 100 0 0 50 100 150 200 250

Iteration Iteration

Figure 4: Simulated Robot Experiments Performance: SAVED achieves better performance than all baselines on both tasks. We use 20 demonstrations
with average iteration cost of 94.6 for the reacher task and 100 demonstrations with average iteration cost of 34.4 for the pick and place task. For the reacher
task, the safe set constraint does not improve performance, likely because the task is very simple, but for pick and place, we see that the safe set constraint

adds significant training stability.

3) Large obstacle with a small channel near the x-
axis: This environment is difficult for the algorithm to
optimally solve since the iterative improvement of paths
taken by the agent is constrained. We use xp = (—50,0),
50 demonstrations with average return of 67.9, kernel
width o = 3, and chance constraint parameter § = 1.
Large obstacle surrounds the goal set with a small
channel for entry: This environment is very difficult to
solve without demonstrations. We use xyp = (—50,0), 100
demonstrations with average return of 78.3, kernel width
o = 3, and chance constraint parameter 3 = 1.

SAVED has a higher success rate than all other RL baselines
using sparse costs, even including model-free baselines over
the first 10,000 iterations, while never violating constraints
across all navigation tasks. Furthermore, this performance
advantage is amplified with task difficulty. Only Clone and
PETS{D Dense ever achieve a higher success rate, but Clone
does not improve upon demonstration performance (Figure

4)

3) and PETSfD Dense has additional information about the
task. Furthermore, SAVED learns significantly more efficiently
than all RL baselines on all navigation tasks except for tasks
1 and 3, in which PETSfD Dense with a Euclidean norm
cost function finds a better solution. While SAVED (No
SS) can complete the tasks, it has a much lower success
rate than SAVED, especially in environments with obstacles
as expected, demonstrating the importance of the sampled
safe set constraint. Note that SACfD, OEFD, and PETS{D
make essentially no progress in the first 100 iterations and
never complete any of the tasks in this time, although they
mostly satisfy constraints. After 10,000 iterations of training,
SACD and OEFD achieve average best iteration costs of 23.7
and 23.8 respectively on task 1, 21 and 21.7 respectively
on task 2, 17.3 and 19 respectively on task 3, and 23.7
and 40 respectively on task 4. Thus, we see that SAVED
achieves comparable performance in the first 100 iterations
to the asymptotic performance of model-free RL algorithms

THANANJEYAN*, BALAKRISHNA* et al.: SAFETY AUGMENTED VALUE ESTIMATION FROM DEMONSTRATIONS (SAVED) 7

while maintaining consistent task completion and constraint
satisfaction during learning.

C. Simulated Robot Experiments

To evaluate whether SAVED also outperforms baselines
on standard unconstrained environments, we consider sparse
versions of two common simulated robot tasks: the torque-
controlled PR2 Reacher environment from Chua et al. [10]
with a fixed goal and on a pick and place task with a simulated,
position-controlled Fetch robot from [29]. The reacher task
involves controlling the end-effector of a simulated PR2 robot
to a small ball in R3. The state representation consists of 7
joint positions, 7 joint velocities, and the goal position. The
goal set is specified by a 0.05m radius Euclidean ball in state
space. Suboptimal demonstrations are generated with average
cost 94.6 by training PETS with a shaped cost function that
heavily penalizes large torques. We use o = 15 for SAVED
and a planning horizon of 25 for both SAVED and PETS{D.
SACID and OEFD achieve a best iteration cost of 9 and 60
respectively over 10,000 iterations of training averaged over
the 3 runs. The pick and place task involves picking up a block
from a fixed location on a table and also guiding it to a small
ball in R3. The task is simplified by automating the gripper
motion, which is difficult for SAVED to learn due to the
bimodality of gripper controls, which is hard to capture with
the unimodal truncated Gaussian distribution used during CEM
sampling. The state representation for the task consists of
(end effector relative position to object, object relative position
to goal, gripper jaw positions). Suboptimal demonstrations
are generated by hand-tuning a controller that slowly but
successfully completes the task with average iteration cost
34.4. We use a safe set buffer size of 5000 and o = 0.05. We
use a planning horizon of 10 for SAVED and 20 for PETS{D.
SACTD and OEFD both achieve a best iteration cost of 6 over
10,000 iterations of training averaged over the 3 runs.

SAVED learns faster than all baselines on both tasks (Figure
4) and exhibits significantly more stable learning in the first
100 and 250 iterations for the reacher and pick and place tasks
respectively. However, while SAVED is substantially more
sample efficient than SACfD and OEFD for these tasks, both
algorithms achieve superior asymptotic performance.

D. Physical Robot Experiments

We evaluate the ability of SAVED to learn a surgical knot-
tying task with nonconvex state space constraints on the
da Vinci Research Kit (dVRK) [19]. The dVRK is cable-
driven and has relatively imprecise controls, motivating model
learning [36]. Furthermore, safety is paramount due to the cost
and delicate structure of the arms. The goal of these tasks is
to speed up demonstration trajectories while still maintaining
properties of the trajectories that result in a task completion.
This is accomplished by constraining learned trajectories to
fall within a tight, 1 cm tube of the demos. The goal set is
represented with a 1 cm ball in R? and the robot is controlled
via delta-position control, with a maximum control magnitude
of 1 cm during learning for safety. Robot experiments are very
time consuming due to interactive data collection, so training

RL algorithms on limited physical hardware is difficult without
sample efficient algorithms. We include additional experiments
on a Figure-8 tracking task in the supplementary material.

1) Surgical Knot-Tying: SAVED is used to optimize
demonstrations of a surgical knot-tying task on the dVRK,
using the same multilateral motion as in [38]. Demonstrations
are hand-engineered for the task, and then policies are opti-
mized for one arm (arm 1), while a hand-engineered policy is
used for the other arm (arm 2). While arm 1 wraps the thread
around arm 2, arm 2 simply moves down, grasps the other
end of the thread, and pulls it out of the phantom as shown
in Figure 1. Thus, we only expect significant performance
gain by optimizing the policy for the portion of the arm 1
trajectory which involves wrapping the thread around arm 2.
We only model the motion of the end-effectors in 3D space.
We use B =0.8, @ =0.05, planning horizon 10, and 100
demonstrations with average cost 34.4 for SAVED. We use
a planning horizon of 20 and B = 1. for PETSfD. SAVED
quickly learns to smooth out demo trajectories, with a success
rate of over 75% (Figure 5) during training, while baselines are
unable to make sufficient progress in this time. PETSD rarely
violates constraints, but also almost never succeeds, while
SACED almost always violates constraints and never completes
the task. Training SAVED directly on the real robot for 50
iterations takes only about an hour, making it practical to train
on a real robot for tasks where data collection is expensive.
At execution-time (post-training), we find that SAVED is
very consistent, successfully tying a knot in 20/20 trials with
average iteration cost of 21.9 and maximum iteration cost of
25 for the arm 1 learned policy, significantly more efficient
than demos which have an average iteration cost of 34. See
supplementary material for trajectory plots of the full knot-
tying trajectory and the Figure-8 task.

V. DISCUSSION AND FUTURE WORK

We present SAVED, a model-based RL algorithm that can
efficiently learn a variety of robotic control tasks in the
presence of dynamical uncertainty, sparse cost feedback, and
complex constraints by using suboptimal demonstrations to
constrain exploration to regions in which the agent is confident
in task completion. We then empirically evaluate SAVED on
6 simulated benchmarks and on a knot-tying task on a real
surgical robot. Results suggest that SAVED is more sample
efficient and has higher success and constraint satisfaction
rates than all RL baselines and can be efficiently and safely
trained on a real robot. In future work, we will explore
convergence and safety guarantees for SAVED and extensions
to a wide distribution of start states and goal sets. Additionally,
a limitation of SAVED is that solving the MPC objective with
CEM makes high frequency control difficult. In future work,
we will explore distilling the learned controller into a reactive
policy to enable fast policy evaluation in practice.

VI. ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC Berkeley in
affiliation with the Berkeley AI Research (BAIR) Lab, Berkeley Deep Drive
(BDD), the Real-Time Intelligent Secure Execution (RISE) Lab, and the
CITRIS "People and Robots” (CPAR) Initiative. Authors were also supported

B
o

w
o

Iteration Cost

N
o

B Knot Tying Arm 1: Iteration Cost vs. Time

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020

Knot-Tying Arm 1 Trajectory Demo
< Learned

Knot Tyin X X X
Success Rate onstraint Satisfaction Rate
1.0 o1
0.9 2 0.9
0.8 50.8
go7 £07
x 0.6 ~E 0.6
0 a
= SAVED §o2 29
S 0. .
. PETSD 303 *% 03
. SAC 0.2 So.2
W™ Demo Avg 0.1 £o1
0.0 O 0.0
0 10 20 30 40 50
Iteration N SAVED mem PETSfD e SACfD

Figure 5: Physical Surgical Knot-Tying: Training Performance: After just 15 iterations, the agent completes the task relatively consistently with only a few
failures, and converges to a iteration cost of 22, faster than demos, which have an average iteration cost of 34. In the first 50 iterations, both baselines mostly
fail, and are less efficient than demos when they do succeed; Trajectories: SAVED quickly learns to speed up with only occasional constraint violations.

by the Scalable Collaborative Human-Robot Learning (SCHooL) Project, a
NSF National Robotics Initiative Award 1734633, and in part by donations
from Google and Toyota Research Institute. Ashwin Balakrishna is supported
by an NSF GRFP and Ugo Rosolia was partially supported by the Office
of Naval Research (N00014-311). This article solely reflects the opinions
and conclusions of its authors and do not reflect the views of the sponsors
or their associated entities. We thank our colleagues who provided helpful
feedback and suggestions, in particular Suraj Nair, Jeffrey Ichnowski, Anshul
Ramachandran, Daniel Seita, Marius Wiggert, and Ajay Tanwani.

[1]
[2]

[3]

[4]

[5]

[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization”, in Journal of Machine Learning Research, 2017.

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete problems in Al safety”, arXiv preprint
arXiv:1606.06565, 2016.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P.
Welinder, B. McGrew, J. Tobin, O. P. Abbeel, and W. Zaremba,
“Hindsight experience replay”, in Advances in Neural Information
Processing Systems, 2017, pp. 5048-5058.

A. Balakrishna, B. Thananjeyan, J. Lee, A. Zahed, F. Li, J. E.
Gonzalez, and K. Goldberg, “On-Policy Robot Imitation Learning
from a Converging Supervisor”, in Conf. on Robot Learning (CoRL),
2019.

F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees”, in
NIPS, 2017.

F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control”, IEEE control systems magazine, 2006.

D. S. Brown, W. Goo, P. Nagarajan, and S. Niekum, “Extrapolating
beyond suboptimal demonstrations via inverse reinforcement learning
from observations”, 2019.

K. Chua, Experiment code for “deep reinforcement learning in a
handful of trials using probabilistic dynamics models”, https://github.
com/kchua/handful-of-trials, 2018.

K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models”, in Proc. Advances in Neural Information Processing Systems,
2018.

M. Deisenroth and C. Rasmussen, “PILCO: A model-based and data-
efficient approach to policy search”, in Proc. Int. Conf. on Machine
Learning, 2011.

J. Fu, S. Levine, and P. Abbeel, “One-shot learning of manipulation
skills with online dynamics adaptation and neural network priors”, in
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2016.

J. Fu, J. Co-Reyes, and S. Levine, “Ex2: Exploration with exemplar
models for deep reinforcement learning”, in Advances in Neural
Information Processing Systems, 2017, pp. 2577-2587.

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods”, in Proc. Int. Conf. on
Machine Learning, 2018.

J. Garcia and F. Fernandez, “A comprehensive survey on safe rein-
forcement learning”, Journal of Machine Learning Research, 2015.

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

[27]
(28]

(29]

(30]

(31]

(32]

(33]

[34]

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor”, in Proc. Int. Conf. on Machine Learning.

T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband, et al., “Deep g-learning
from demonstrations”, in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

R. Jangir, Overcoming exploration from demos, https://github.com/
jangirrishabh/Overcoming-exploration-from-demos, 2018.

P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and
S. P. DiMaio, “An open-source research kit for the da Vinci surgical
system”, in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
2014.

I. Lenz, R. A. Knepper, and A. Saxena, “DeepMPC: Learning deep
latent features for model predictive control”, in Robotics: Science and
Systems, 2015.

Z. Li, U. Kalabi¢, and T. Chu, “Safe reinforcement learning: Learning
with supervision using a constraint-admissible set”, in 2018 Annual
American Control Conference (ACC), 2018.

K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch,
“Plan online, learn offline: Efficient learning and exploration via
model-based control”, in Proc. Int. Conf. on Machine Learning, 2019.
T. M. Moldovan and P. Abbeel, “Risk Aversion in Markov Decision
Processes via near optimal Chernoff bounds”, in Proc. Advances in
Neural Information Processing Systems, 2012.

T. M. Moldovan and P. Abbeel, “Safe exploration in markov decision
processes”, arXiv preprint arXiv:1205.4810, 2012.

A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-
free fine-tuning”, in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), 2018.

A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions”, Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 2018.
A. Nemirovski, “On safe tractable approximations of chance con-
straints”, European Journal of Operational Research, 2012.

T. Osogami, “Robustness and risk-sensitivity in markov decision
processes”, in NIPS, 2012.

M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G.
Powell, J. Schneider, J. Tobin, M. Chociej, P. Welinder, V. Kumar, and
W. Zaremba, “Multi-goal reinforcement learning: Challenging robotics
environments and request for research”, CoRR, vol. abs/1802.09464,
2018. arXiv: 1802.09464.

V. Pong, Rikit, https://github.com/vitchyr/rlkit, 2018.

S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control”, in International Conference on Robotics and Automation,
1993, 802-807 vol.2.

U. Rosolia, A. Carvalho, and F. Borrelli, “Autonomous racing using
learning model predictive control”, in Proceedings 2017 IFAC World
Congress, 2017.

U. Rosolia and F. Borrelli, “Learning model predictive control for
iterative tasks. a data-driven control framework”, IEEE Transactions
on Automatic Control, 2018.

, “Sample-based learning model predictive control for linear
uncertain systems”, CoRR, vol. abs/1904.06432, 2019. arXiv: 1904.
06432.

THANANIJEYAN*, BALAKRISHNA* et al.: SAFETY AUGMENTED VALUE ESTIMATION FROM DEMONSTRATIONS (SAVED)

[35] U. Rosolia, X. Zhang, and F. Borrelli, “A Stochastic MPC Approach
with Application to Iterative Learning”, 2018 IEEE Conference on
Decision and Control (CDC), 2018.

[36] D. Seita, S. Krishnan, R. Fox, S. McKinley, J. Canny, and K. Goldberg,
“Fast and reliable autonomous surgical debridement with cable-driven
robots using a two-phase calibration procedure”, in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), 2018.

[37]1 S. Tu and B. Recht, “The gap between model-based and model-free
methods on the linear quadratic regulator: An asymptotic viewpoint”,
CoRR, vol. abs/1812.03565, 2018.

[38] J. Van Den Berg, S. Miller, D. Duckworth, H. Hu, A. Wan, X.-Y. Fu,
K. Goldberg, and P. Abbeel, “Superhuman performance of surgical
tasks by robots using iterative learning from human-guided demon-
strations”, in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
2010.

[39] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothorl, T. Lampe, and M. A. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards”, CoRR, vol. abs/1707.08817, 2017.

10 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020

Safety Augmented Value Estimation from Demonstrations (SAVED):
Safe Deep Model-Based RL for Sparse Cost Robotic Tasks
Supplementary Material

VII. ADDITIONAL EXPERIMENTAL DETAILS FOR SAVED AND BASELINES

For all experiments, we run each algorithm 3 times to control for stochasticity in training and plot the mean iteration cost vs. time with error bars indicating
the standard deviation over the 3 runs. Additionally, when reporting task success rate and constraint satisfaction rate, we show bar plots indicating the median
value over the 3 runs with error bars between the lowest and highest value over the 3 runs. Experiments are run on an Nvidia DGX-1 and on a desktop
running Ubuntu 16.04 with a 3.60 GHz Intel Core i7-6850K, 12 core CPU and an NVIDIA GeForce GTX 1080. When reporting the iteration cost of SAVED
and all baselines, any constraint violating trajectory is reported by assigning it the maximum possible iteration cost 7', where T is the task horizon. Thus, any
constraint violation is treated as a catastrophic failure. We plan to explore soft constraints as well in future work.

A. SAVED

1) Dynamics and Value Function: For all environments, dynamics models and value functions are each represented with a probabilistic ensemble
of 5, 3 layer neural networks with 500 hidden units per layer with swish activations as used in Chua et al. [10]. To plan over the dynamics, the TS-oo trajectory
sampling method from [10] is used. We use 5 and 30 training epochs for dynamics and value function training when initializing from demonstrations. When
updating the models after each training iteration, 5 and 15 epochs are used for the dynamics and value functions respectively. All models are trained using
the Adam optimizer with learning rate 0.00075 and 0.001 for the dynamics and value functions respectively. Value function initialization is done by training
the value function using the true cost-to-go estimates from demonstrations. However, when updated on-policy, the value function is trained using temporal
difference error (TD-1) on a buffer containing all prior states. Since we use a probabilistic ensemble of neural networks to represent dynamics models and
value functions, we built off of the provided implementation [9] of PETS in [10].

2) Constrained Exploration: Define states from which the system was successfully stabilized to the goal in the past as safe states. We train density
model p on a fixed history of safe states, where this history is tuned based on the experiment. We have found that simply training on all prior safe states
works well in practice on all experiments in this work. We represent the density model using kernel density estimation with a top-hat kernel. Instead of
modifying & for each environment, we set § =0 (keeping points with positive density), and modify a (the kernel parameter/width). We find that this works
well in practice, and allows us to speed up execution by using a nearest neighbors algorithm implementation from scikit-learn. We are experimenting with
locality sensitive hashing, implicit density estimation as in Fu ef al. [13], and have had some success with Gaussian kernels as well (at significant additional
computational cost). The exploration strategy used by SAVED in navigation task 2 is illustrated in Figure 6.

B. Behavior Cloning

We represent the behavior cloning policy with a neural network with 3 layers of 200 hidden units each for navigation tasks and pick and place, and 2
layers of 20 hidden units each for the PR2 Reacher task. We train on the same demonstrations provided to SAVED and other baselines for 50 epochs.

C. PETSfD and PETSfD Dense

PETS{D and PETS{D Dense use the same network architectures and training procedure as SAVED and the same parameters for each task unless otherwise
noted, but just omit the value function and density model p for enforcing constrained exploration. PETS{D uses a planning horizon that is long enough to
complete the task, while PETSfD Dense uses the same planning horizon as SAVED.

D. SACfD

We use the rlkit implementation [30] of soft actor critic with the following parameters: batch size=128, discount=0.99, soft target 7= 0.001, policy learning
rate = 3e —4, Q function learning rate = 3e —4, and value function learning rate = 3e —4, batch size = 128, replay buffer size = 1000000, discount factor =
0.99. All networks are two-layer multi-layer perceptrons (MLPs) with 300 hidden units. On the first training iteration, only transitions from demonstrations
are used to train the critic. After this, SACfD is trained via rollouts from the actor network as usual. We use a similar reward function to that of SAVED,
with a reward of -1 if the agent is not in the goal set and O if the agent is in the goal set. Additionally, for environments with constraints, we impose a
reward of -100 when constraints are violated to encourage constraint satisfaction. The choice of collision reward is ablated in section X-B. This reward is set
to prioritize constraint satisfaction over task success, which is consistent with the selection of f in the model-based algorithms considered.

E. OEFD

We use the implementation of OEFD provided by Jangir [18] with the following parameters: learning rate = 0.001, polyak averaging coefficient = 0.8, and
L2 regularization coefficient = 1. During training, the random action selection rate is 0.2 and the noise added to policy actions is distributed as A/(0, 1). All
networks are three-layer MLPs with 256 hidden units. Hindsight experience replay uses the “future” goal replay and selection strategy with k =4 [3]. Here k
controls the ratio of HER data to data coming from normal experience replay in the replay buffer. We use a similar reward function to that of SAVED, with
a reward of -1 if the agent is not in the goal set and O if the agent is in the goal set. Additionally, for environments with constraints, we impose a reward
of -100 when constraints are violated to encourage constraint satisfaction. The choice of collision reward is ablated in section X-B. This reward is set to
prioritize constraint satisfaction over task success, which is consistent with the selection of 8 in the model-based algorithms considered.

VIII. SIMULATED EXPERIMENTS ADDITIONAL RESULTS

In Figure 6, we illustrate the mechanism by which SAVED iteratively improves upon suboptimal demonstrations on navigation task 2 by planning into an
expanding safe set.

In Figure 7, we show the task success rate for the PR2 reacher and Fetch pick and place tasks for SAVED and baselines. We note that SAVED outperforms
RL baselines (except SAVED (No SS) for the reacher task, most likely because the task is relatively simple so the sampled safe set constraint has little effect)
in the first 100 and 250 iterations for the reacher and pick and place tasks respectively. Note that although behavior cloning has a higher success rate, it
does not improve upon demonstration performance. However, although SAVED’s success rate is not as different from the baselines in these environments
as those with constraints, this result shows that SAVED can be used effectively in a general purpose way, and still learns more efficiently than baselines in
unconstrained environments as seen in the main paper.

THANANJEYAN*, BALAKRISHNA* et al.: SAFETY AUGMENTED VALUE ESTIMATION FROM DEMONSTRATIONS (SAVED) 11

Navigation 2: Trajectory Evolution

Iteration 0
Iteration 3
Iteration 6
Iteration 9
Iteration 12
—201 . teration 15
Iteration 18

-50 —-40 -30 -20 -10) 10 20

Figure 6: Navigation Task 2 Trajectory Evolution: SAVED rapidly improves upon demonstration trajectories by constraining its exploration to regions of
relative certainty and high cost. By iteration 15, SAVED is able to find a safe but efficient trajectory to the goal at the origin.

SAVED

SAVED (No SS)
PETSfD

Clone

SACfD

OEFD

SACD (10K)
OEFD (10K)

Simulated Robot Success Rate

0.9

0.8

0.7

0.6

0.5

Success Rate

0.4

0.3

0.2

0.1

0.0
PR2 Reacher Fetch Pick and Place

Figure 7: Simulated Robot Experiments Success Rate: SAVED has comparable success rate to Clone, PETSfD, and SAVED (No SS) on the reacher task
in the first 100 iterations. For the pick and place task, SAVED outperforms all baselines in the first 250 iterations except for Clone, which does not improve
upon demonstration performance.

IX. PHYSICAL EXPERIMENTS: ADDITIONAL DETAILS AND EXPERIMENTS

For all experiments, & = 0.05 and a set of 100 hand-coded trajectories with a small amount of Gaussian noise added to the controls is generated. For all
physical experiments, we use § = 1 for PETSfD since we found this gave the best performance when no signal from the value function was provided. In all
tasks, the goal set is represented with a 1 cm ball in R3. The dVRK is controlled via delta-position control, with a maximum control magnitude set to 1 cm
during learning for safety. We train state density estimator p on all prior successful trajectories for the physical robot experiments.

A. Figure-8

In addition to the knot-tying task discussed in the main paper, we also evaluate SAVED on a Figure-8 tracking task on the surgical robot. In this task, the
dVRK must track a Figure 8 in the workspace. The agent is constrained to remain within a 1 cm pipe around a reference trajectory with chance constraint
parameter § = 0.8 for SAVED and 8 = 1 for PETSfD. We use 100 inefficient but successful and constraint-satisfying demonstrations with average iteration
cost of 40 steps for both segments. Additionally we use a planning horizon of 10 for SAVED and 30 for PETSfD. However, because there is an intersection
in the middle of the desired trajectory, SAVED finds a shortcut to the goal state. Thus, the trajectory is divided into non-intersecting segments before SAVED
separately optimizes each one. At execution-time, the segments are stitched together and we find that SAVED is robust enough to handle the uncertainty at
the transition point. We hypothesize that this is because the dynamics and value function exhibit good generalization.

Results for both segments of the Figure 8 task are shown in Figures 8 and 9 below. In Figure 8, we see that SAVED quickly learns to smooth out demo
trajectories while satisfying constraints, with a success rate of over 80% while baselines violate constraints on nearly every iteration and never complete the
task, as shown in Figure 8. Note that PETSfD almost always violates constraints, even though constraints are enforced exactly as in SAVED. We hypothesize
that since we need to give PETSfD a long planning horizon to make it possible to complete the task (since it has no value function), this makes it unlikely
that a constraint satisfying trajectory is sampled with CEM. For the other segment of the Figure-8, SAVED still quickly learns to smooth out demo trajectories
while satisfying constraints, with a success rate of over 80% while baselines violate constraints on nearly every iteration and never complete the task, as
shown in Figure 9.

In Figure 10, we show the full trajectory for the Figure-8 task when both segments are combined at execution-time. This is done by rolling out the policy
for the first segment, and then starting the policy for the second segment as soon as the policy for the first segment reaches the goal set. We see that even
given uncertainty in the dynamics and end state for the first policy (it could end anywhere in a 1 cm ball around the goal position), SAVED is able to smoothly
navigate these issues and interpolate between the two segments at execution-time to successfully stabilize at the goal at the end of the second segment. Each
segment of the trajectory is shown in a different color for clarity. We suspect that SAVED’s ability to handle this transition is reflective of good generalization
of the learned dynamics and value functions.

B. Knot-Tying

In Figure 11, we show the full trajectory for both arms for the surgical knot-tying task. We see that the learned policy for arm 1 smoothly navigates
around arm 2, after which arm 1 is manually moved down along with arm 2, which grasps the thread and pulls it up through the resulting loop in the thread,
completing the knot.

12 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020

Figure-8 Segment 1: Iteration Cost vs. Time

L Figure 8 Segment 1 Trajectory
Figure-8 Segment 1 A
50 10 Success Rate 1 (Fonstraint Satisfaction Rate 0.10 N Demo
] 09 209 i’ O™ Learned
. . s >
3 l l 08 o8 008 N
© 40 207 Lo7 ' >
c] 9) » .
o 0.6 £06 1 i
® 205 205 > 0.06{ I8 |
o == SAVED ‘ I+] A
230 go0.4 © 0.4 » J
= == PETSfD @ 0.3 £0.3 " o
. SAC 0.2 [02 0.04 > Ve
5 ?
2 L S
W= Demo Avg 0.1 S 0.1 ~— v
20 0.0 0.0 0.02 A
0 10 20 30 40 50
Iteration N SAVED s PETSfD s SACD -0.125 —0.100—0.075—0.05)?—04025 0.000 0.025

Figure 8: Figure-8: Training Performance: After just 10 iterations, SAVED consistently succeeds and converges to an iteration cost of 26, faster than demos
which took an average of 40 steps. Neither baseline ever completes the task in the first 50 iterations; Trajectories: Demo trajectories satisfy constraints, but
are noisy and inefficient. SAVED learns to speed up with only occasional constraint violations and stabilizes in the goal set.

Figure-8 Segment 2

10 Success Rate 1(&Jnstraint Satisfaction Rate
Figure-8 Segment 2: lteration Cost vs. Time . g
50 0.9 kK 0.9 Figure 8 Segment 2 Trajectory
o8 s 0.8 o10 Demo s ,,:
5% % 07 07 0.09 Learned 7, v “‘
8 < 0.6 £056 0.08 4 .
7] - <
Qa0+ T it 20.5 S 0.5 i !
c [@ 0.07 4 { J
s go4 “ 0.4 b 5
© 35 3 c > 0.06{ .. 1 {
S == SAVED »n 0.3 K 0.3 1
= - PETSfD 0.2 £0.2 0.05 A
30 SAC y 2 oal L)
— ' ' 0.1 S 0.1 - A% y
251 W™ Demo Avg 0.0 0.0 0.03 R 4.4
N
0 10 20 30 40 50 002 it
Iteration [N SAVED mem PETSfD |mes SACfD -0.125 -0.100 —0.075 —n.ns; ~0025 0.000 0.025 0.050

Figure 9: Figure-8: Training Performance: After 10 iterations, the agent consistently completes the task and converges to an iteration cost of around 32,
faster than demos which took an average of 40 steps. Neither baseline ever completed the task in the first 50 iterations; Trajectories: Demo trajectories are
constraint-satisfying, but noisy and inefficient. SAVED quickly learns to speed up demos with only occasional constraint violations and successfully stabilizes
in the goal set. Note that due to the difficulty of the tube constraint, it is hard to avoid occasional constraint violations during learning, which are reflected
by spikes in the iteration cost.

X. ABLATIONS

A. SAVED

We investigate the impact of kernel width @, chance constraint parameter 3, and the number of demonstrator trajectories used on navigation task 2.
Results are shown in Figure 13. We see that SAVED is able to complete the task well even with just 20 demonstrations, but is more consistent with more
demonstrations. We also notice that SAVED is relatively sensitive to the setting of kernel width . When o is set too low, we see that SAVED is overly
conservative, and thus can barely explore at all. This makes it difficult to discover regions near the goal set early on and leads to significant model mismatch,
resulting in poor task performance. Setting ¢ too low can also make it difficult for SAVED to plan to regions with high density further along the task, resulting
in SAVED failing to make progress. On the other extreme, making ¢ too large causes a lot of initial instability as the agent explores unsafe regions of the
state space. Thus, o must be chosen such that SAVED is able to sufficiently explore, but does not explore so aggressively that it starts visiting states from
which it has low confidence in being able reach the goal set. Reducing 8 allows the agent to take more risks, but this results in many more collisions. With
B =0, most rollouts end in collision or failure as expected. In the physical experiments, we find that allowing the agent to take some risk during exploration
is useful due to the difficult tube constraints on the feasible state space.

Finally, we also ablate the quantity and quality of demonstrations used for navigation task 2 (Figure 13), and find that SAVED is still able to consistently
complete the task with just 20 demonstrations and is relatively robust to lower quality demonstrations, although this does result in some instability during
training. We additionally ablate the quantity and quality of demonstrations for navigation task 1 in Figure 12. We note that again, SAVED is relatively robust
to varying demonstration quality, achieving similar performance even for very slow demonstrations

Figure-8 Full Trajectory
0.10 1 R

0.09 14 ~ « LY

0.08 4

0.074
> 0064 ’

0.05 .

0.04 " > 4

0.03 h »

0.024

-0.12 -0.10 -0.08 -0.06 —0.04 —-0.02 0.00 0.02 0.04
X

Figure 10: Full Figure-8 trajectory: We show the full figure-8 trajectory, obtained by evaluating learned policies for the first and second figure-8 segments in
succession. Even when segmenting the task, the agent can smoothly interpolate between the segments, successfully navigating the uncertainty in the transition
at execution-time and stabilizing in the goal set.

THANANJEYAN*, BALAKRISHNA* et al.: SAFETY AUGMENTED VALUE ESTIMATION FROM DEMONSTRATIONS (SAVED) 13

Full Test Trajectory: Knot Tying Arm 1 Full Test Trajectory: Knot Tying Arm 2
N
N -0.02
—0.02 \
004 N —0.04
N
—0.0f Y —0.0
z : z
—0.0: > —0.0i
4
_ i
0.1 > —0.1!
=0.1] o1
-0.14
0.030
— 0.0350
learned A
g 0.1
—0.005 0.125 - -0.
O o oazs 0120 hand-coded 0.0340 0090 85

Figure 11: Knot-Tying Full Trajectories: (a) Arm 1 trajectory: We see that the learned part of the arm 1 trajectory is significantly smoothed compared to
the demonstrations at execution-time as well, consistent with the training results. Then, in the hand-coded portion of the trajectory, arm 1 is simply moved
down towards the phantom along with arm 2, which grasps the thread and pulls it up; (b) Arm 2 trajectory: This trajectory is hand-coded to move down
towards the phantom after arm 1 has fully wrapped the thread around it, grasp the thread, and pull it up.

Navigation 1: Demo Quantity Ablation Navigation 1: Demo Quality Ablation
100 1
., 100 &=l 100 Demos e & Avg demo cost: 117.56
8 [&=] 50 Demos & 80 4 #=s Avg demo cost: 77.92
S e W 20 Demos >
£ 601 2 60+
2 2
T 40 - °
404
= = I
201 T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Iteration fteration

Figure 12: SAVED Ablations on Navigation Task 1: Number of Demonstrations: SAVED is able to consistently complete the task with just both demo
qualities considered without significant performance decay. The 100 demonstrations provided in this task have average trajectory cost of 117.56 (black)
and 77.82 (red) and SAVED significantly outperforms both, converging in less than 10 iterations in all runs to a policy with trajectory cost less than 30.
Demonstration quality: SAVED is able to consistently complete the task with just 20 demonstrations (red) after 15 iterations. The demonstrations provided
in this task have average trajectory cost of 77.82.

Alpha Ablation: Iteration Cost vs. Time Beta Ablation: Iteration Cost vs. Time
100 100 —
0© = 3 00 -1
% 80 == 05 3 80 == 05
o - 20 o — 0
§ 601 § 60
g g
£ 404 A o £ 40
201 ; kil s At —— T ; 204 —
0 25 50 75 100 125 150 175 200 100 125 150 175 200
Iteration Iteration
Navigation 2: Demo Quantity Ablation Navigation 2: Demo Quality Ablation
100] = T
. 100 &= 100 Demos = \ | Avg demo cost: 158.34
§ &= 50 Demos § 80 4 | Avg demo cost: 117.56
> 751 === 20 Demos > W= Avg demo cost: 77.92
8 #== 10 Demos S 60+
8 50 ¢
o T 40
= 254 =
T T T T T T 20 A T T T T T T
0 20 40 60 80 100 0 10 20 30 40 50
Iteration Iteration

Figure 13: SAVED Ablations on Navigation Task 2: Kernel width o: We see that o must be chosen to be high enough such that SAVED is able to
explore enough to find the goal set, but not so high that SAVED starts to explore unsafe regions of the state space; Chance constraint parameter [:
Decreasing 8 results in many more collisions with the obstacle. Ignoring the obstacle entirely results in the majority of trials ending in collision or failure.
Demonstration quantity: In this experiment, we vary the number of demonstrations that SAVED is provided. We see that SAVED is able to complete the
task with just 20 demonstrations (red), but more demonstrations result in increased stability during learning. Even with 10 demonstrations (green), SAVED
is able to sometimes complete the task. The demonstrations provided in this task have average trajectory cost of 77.82. Demonstration quality: SAVED
efficiently learns a controller in all runs in all cases, the worst of which has demos that attain an iteration cost 5 times higher than the converged controller.
‘We do occasionally observe some instability in the value function, which begins to display somewhat volatile behavior after initially finding a good controller.
Constraints are never violated during learning in any of the runs.

14 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020

B. Model-Free

Model-Free Collision Cost Ablation

10 Navigation Task 2 Success Rate Navigation Task 2 Constraint Satisfaction Rate
X o 10
N
-6 c 08
Qo074 -8 0.7
© -
o 06| ug 0.6
7 051 o5
Q ©
S 044 Y
o
3 03 % 03 M SACfD (10K, OBS_COST=100)
0.2 202 A SACD (10K, OBS_COST=1)
0.11 5 01 W OEFD (10K, OBS_COST=100)
0.04 0.0 @A OEFD (10K, OBS_COST=1)

Figure 14: A high cost for constraint violations results in conservative behavior that learns to avoid the obstacle, but also makes it take longer to learn to
perform the task. Setting the cost low results in riskier behavior that more often achieves task success.

To convey information about constraints to model-free methods, we provide an additional cost for constraint violations. We ablate this parameter for
navigation task 2 in Figure 14. We find that a high cost for constraint violations results in conservative behavior that learns to avoid the obstacle, but also takes
much longer to achieve task success. Setting the cost low results in riskier behavior that succeeds more often. This trade-off is also present for model-based
methods, as seen in the prior ablations. Additionally, we also ablate the demonstration quality for the model-free baselines, and find that increasing the iteration
cost of the demonstrations by almost 50% does not significantly change the learning curve of OEFD (Figure 15), and in both cases, OEFD takes much longer
than SAVED to start performing the task successfully (Figure 12). We also perform the same study on the model-free RL baseline algorithm Soft Actor Critic
from Demonstrations (SACfD) [16]. We observe that increasing demonstration length results in somewhat faster learning, and hypothesize this could be due
to the replay buffer having more data to initially train from. We note that this method has high variance across the runs, and all runs took close to 900
iterations to converge (Figure 15) while SAVED converges in less than 10 iterations (Figure 12). We also ablate demo quantity for SACD on navigation task
1 in Figure 16 and find that although SACfD has a performance improvement with additional demonstrations, it takes a few hundred iterations to converge
and more than a 100 iterations to even complete the task, while SAVED converges within 15 iterations (Figure 12).

OEFD Demo Quality Ablation: Trajectory Cost vs. Time SACfD Demo Quality Ablation: Trajectory Cost vs. Time

. 1004 W Avg demo cost: 117.56 . 100 1 I i, wir | == Avg demo cost: 117.56
§ &= Avg demo cost: 77.92 é _ [Avg demo cost: 77.92
> 801 =& Best cost (10K iterations) > 751 == Best cost (10K iterations)
g o0 g 2l
5 o 501 W -
& 40 g ol i
= s N

20 1 T T T T T T T T T T T T

0 200 400 600 800 1000 0 200 400 600 800 1000
Iteration Iteration

Figure 15: SAVED Model-Free RL Demo Quality Ablations on Navigation Task 1: OEFD: We see that the baseline OEFD has similar performance
across demonstration qualities. OEFD takes hundreds of iterations to start performing the task successfully, while SAVED converges less than 10 iterations;
SACED: We see that the baseline SACfD does slightly better with worse demonstrations. This could be due to the fact that more samples are placed in the
agent’s replay buffer with longer demonstrations. We note that both cases take hundreds of iterations to start completing the task, while SAVED starts to the
complete the task almost immediately.

SACfD Demo Quantity Ablation: Trajectory Cost vs. Time

| 20 demonstrations
== 50 demonstrations
| &= 100 demonstrations
m [Best cost (10K iterations)
A — 11l

100 -

0 1L

| \.Wﬁ

1

80

60

40

Trajectory Cost

20

fteration

Figure 16: SACfD Demo Quantity Ablation on Navigation Task 1: We study the effect of varying demonstration numbers on the model free RL baseline
algorithm SACD [16]. We see that the baseline SACfD has high variance across all demonstration quantities, and takes roughly similar time to converge in
all settings with 50 demonstrations (green) being the fastest. We also plot the best observed cost in 10,000 iterations across all runs (dashed blue) and note
that unlike OEFD (Figure 15), the SACD runs all converge close to this value.

	Introduction
	Related work
	Safety Augmented Value Estimation from Demonstrations (SAVED)
	Assumptions and Preliminaries
	Algorithm Overview
	Deep Model Predictive Control
	Probabilistic Constraints

	Task Completion Driven Exploration
	Chance Constraint Enforcement
	Algorithm Pseudocode

	Experiments
	Baselines
	Simulated Navigation
	Simulated Robot Experiments
	Physical Robot Experiments
	Surgical Knot-Tying

	Discussion and Future Work
	Acknowledgments
	Additional Experimental Details for SAVED and Baselines
	SAVED
	Dynamics and Value Function
	Constrained Exploration

	Behavior Cloning
	PETSfD and PETSfD Dense
	SACfD
	OEFD

	Simulated Experiments Additional Results
	Physical Experiments: Additional Details and Experiments
	Figure-8
	Knot-Tying

	Ablations
	SAVED
	Model-Free

