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Abstract—Reinforcement learning (RL) for robotics is chal-
lenging due to the difficulty in hand-engineering a dense cost
function, which can lead to unintended behavior, and dynamical
uncertainty, which makes exploration and constraint satisfac-
tion challenging. We address these issues with a new model-
based reinforcement learning algorithm, Safety Augmented Value
Estimation from Demonstrations (SAVED), which uses supervi-
sion that only identifies task completion and a modest set of
suboptimal demonstrations to constrain exploration and learn
efficiently while handling complex constraints. We then com-
pare SAVED with 3 state-of-the-art model-based and model-free
RL algorithms on 6 standard simulation benchmarks involving
navigation and manipulation and a physical knot-tying task
on the da Vinci surgical robot. Results suggest that SAVED
outperforms prior methods in terms of success rate, constraint
satisfaction, and sample efficiency, making it feasible to safely
learn a control policy directly on a real robot in less than an
hour. For tasks on the robot, baselines succeed less than 5% of
the time while SAVED has a success rate of over 75% in the
first 50 training iterations. Code and supplementary material is
available at https://tinyurl.com/saved-rl.

Index Terms—Reinforcement Learning, Imitation Learning,
Optimal Control

I. INTRODUCTION

To use RL in the real world, algorithms need to be efficient,

easy to use, and safe, motivating methods which are reliable

even with significant dynamical uncertainty. Deep model-

based reinforcement learning (deep MBRL) is of significant

interest because of its sample efficiency advantages over

model-free methods in a variety of tasks, such as assembly,

locomotion, and manipulation [4, 10–12, 20, 25, 32]. However,

past work in deep MBRL typically requires dense hand-

engineered cost functions, which are hard to design and can

lead to unintended behavior [2]. It would be easier to simply

specify task completion in the cost function, but this setting is
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Figure 1: SAVED is able to safely learn maneuvers on the da Vinci surgical
robot, which is difficult to precisely control [36]. We demonstrate that SAVED
is able to optimize inefficient human demonstrations of a surgical knot-
tying task, substantially improving on demonstration performance with just
15 training iterations.

challenging due to the lack of expressive supervision. This mo-

tivates using demonstrations, which allow the user to roughly

specify desired behavior without extensive engineering effort.

However, providing high-performing trajectories of the task

may be challenging, motivating methods that can rapidly

improve upon suboptimal demonstrations that may be supplied

via a PID controller or kinesthetically. Furthermore, in many

robotic tasks, specifically in domains such as surgery, safe

exploration is critical to ensure that the robot does not damage

itself or cause harm to its surroundings. To enable this, deep

MBRL algorithms must be able to satisfy user-specified (and

possibly nonconvex) state-space constraints.

We develop a method to efficiently use deep MBRL in

dynamically uncertain environments with both sparse costs

and complex constraints. We address the difficulty of hand-

engineering cost functions by using a small number of subop-

timal demonstrations to provide a signal about task progress

in sparse cost environments, which is updated based on agent

experience. Then, to enable stable policy improvement and

constraint satisfaction, we impose two probabilistic constraints

to (1) constrain exploration by ensuring that the agent can plan
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back to regions in which it is confident in task completion and

(2) leverage uncertainty estimates in the learned dynamics to

implement chance constraints [27] during learning. The prob-

abilistic implementation of constraints makes this approach

broadly applicable, since it can handle settings with significant

dynamical uncertainty, where enforcing constraints exactly is

difficult.

We introduce a new algorithm motivated by deep model pre-

dictive control (MPC) and robust control, Safety Augmented

Value Estimation from Demonstrations (SAVED), which en-

ables efficient learning for sparse cost tasks given a small

number of suboptimal demonstrations while satisfying the

provided constraints. We specifically consider tasks with a

tight start state distribution and fixed, known goal set. SAVED

is evaluated on MDPs with unknown dynamics, which are

iteratively estimated from experience, and with a cost function

that only indicates task completion. The contributions of this

work are (1) a novel method for constrained exploration

driven by confidence in task completion, (2) a technique

for leveraging model uncertainty to probabilistically enforce

complex constraints, enabling obstacle avoidance or opti-

mizing demonstration trajectories while maintaining desired

properties, (3) experimental evaluation against 3 state-of-the-

art model-free and model-based RL baselines on 8 different

environments, including simulated experiments and physical

maneuvers on the da Vinci surgical robot. Results suggest that

SAVED achieves superior sample efficiency, success rate, and

constraint satisfaction rate across all domains considered and

can be applied efficiently and safely for learning directly on a

real robot.

II. RELATED WORK

There is significant interest in model-based planning and

deep MBRL [10–12, 20, 22, 25] due to the improvements

in sample efficiency when planning over learned dynamics

compared to model-free methods for continuous control [14,

16]. However, most prior deep MBRL algorithms use hand-

engineered dense cost functions to guide exploration and

planning, which we avoid by using demonstrations to pro-

vide signal about delayed costs. Demonstrations have been

leveraged to accelerate learning for a variety of model-free

RL algorithms, such as Deep Q Learning [17] and DDPG

[26, 39], but model-free methods are typically less sample

efficient and cannot anticipate constraint violations since they

learn reactive policies [37]. Demonstrations have also been

leveraged in model-based algorithms, such as in motion plan-

ning with known dynamics [31] and for seeding a learned

dynamics model for fast online adaptation using iLQR and a

dense cost [12], distinct from the task completion based costs

we consider. Unlike traditional motion planning algorithms,

which generate open-loop plans to a goal configuration when

dynamics are known, we consider designing a closed-loop

controller that operates in stochastic dynamical systems where

the system dynamics are initially unknown and iteratively

estimated from data. Finally, Brown et al. [8] use inverse RL

to significantly outperform suboptimal demonstrations, but do

not enforce constraints or consistent task completion during

learning.

In iterative learning control (ILC), the controller tracks a

predefined reference trajectory and data from each iteration

is used to improve closed-loop performance [7]. Rosolia et

al. [33–35] provide a reference-free algorithm to iteratively

improve the performance of an initial trajectory by using

a safe set and terminal cost to ensure recursive feasibility,

stability, and local optimality given a known, deterministic

nonlinear system or stochastic linear system under certain

regularity assumptions. In contrast to Rosolia et al. [33–35],

we consider designing a similar controller in stochastic non-

linear dynamical systems where the dynamics are unknown

and iteratively estimated from experience. Thus, SAVED uses

function approximation to estimate a dynamics model, value

function, and safe set. There has also been significant interest

in safe RL [15], typically focusing on exploration while

satisfying a set of explicit constraints [1, 21, 24], satisfying

specific stability criteria [5], or formulating planning via a

risk sensitive Markov Decision Process [23, 28]. Distinct from

prior work in safe RL and control, SAVED can be successfully

applied in settings with both uncertain dynamics and sparse

costs by using probabilistic constraints to constrain exploration

to feasible regions during learning.

III. SAFETY AUGMENTED VALUE ESTIMATION FROM

DEMONSTRATIONS (SAVED)

This section describes how SAVED uses a set of suboptimal

demonstrations to constrain exploration while satisfying user-

specified state space constraints. First, we discuss how SAVED

learns system dynamics and a value function to guide learning

in sparse cost environments. Then, we motivate and discuss

the method used to enforce constraints under uncertainty to

both ensure task completion during learning and satisfy user-

specified state space constraints.

A. Assumptions and Preliminaries

In this work, we consider stochastic, unknown dynami-

cal systems with a cost function that only identifies task

completion. We outline the framework for MBRL us-

ing a standard Markov Decision Process formulation. A

finite-horizon Markov Decision Process (MDP) is a tuple

(X ,U ,P(·, ·),T,C(·, ·)) where X is the feasible (constraint-

satisfying) state space and U is the control space. The stochas-

tic dynamics model P maps a state and control input to a

probability distribution over states, T is the task horizon, and

C is the cost function. A stochastic control policy π maps an

input state to a distribution over U .

We assume that (1) tasks are iterative in nature, and have

a fixed low-variance start state distribution and fixed, known

goal set G. This is common in a variety of repetitive tasks, such

as assembly, surgical knot-tying, and suturing. We further as-

sume that (2) the user specifies an indicator function 1(x ∈ X ),
which checks whether a state x is constraint-satisfying. Finally,

we assume that (3) a modest set of suboptimal but constraint

satisfying demos are available, for example from imprecise

human teleoperation or a hand-tuned PID controller. This en-

ables rough specification of desired behavior without having to
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design a dense cost function, allowing us to consider cost func-

tions which only identify task completion: C(x,u) = 1GC(x),
where G ⊂X defines a goal set in the state space and GC is its

complement. We define task success by convergence to G at

the end of the task horizon without violating constraints. Note

that under this definition of costs, the problem we consider

is equivalent to the shortest time control problem in optimal

control, but with initially unknown system dynamics which

are iteratively estimated from experience. The applicability of

SAVED extends beyond this particular choice of cost function,

but we focus on this class due to its convenience and notorious

difficulty for reinforcement learning algorithms [26].
Finally, we define the notion of a safe set to enable

constrained policy improvement, which is described further in
Section III-C. Recent MPC literature [33] motivates constrain-
ing exploration to regions in which the agent is confident in
task completion, which gives rise to desirable theoretical prop-
erties when dynamics are known and satisfy certain regularity
conditions [33–35]. For a trajectory at iteration k, given by
xk = {xk

t |t ∈ N}, we define the sampled safe set as

SS
j =

⋃

k∈M j

xk (III-A.1)

where M j = {k ∈ [0, j) : limt→∞ xk
t ∈G} is the set of indices of

all successful trajectories before iteration j as in Rosolia et al.

[33]. SS j contains the states from all iterations before j from

which the agent controlled the system to G and is initialized

from demonstrations. A key operating principle of SAVED is

to use SS j to guide exploration by ensuring that there always

exists a way to plan back into a continuous approximation

of SS j. This allows for policy improvement while ensuring

that the agent can always return to a state from which it

has previously completed the task, enabling consistent task

completion during learning.

B. Algorithm Overview

1) Deep Model Predictive Control: SAVED uses MPC to

optimize costs over a sequence of controls at each state.

However, when using MPC, since the current control is com-

puted by solving a finite-horizon approximation to the infinite-

horizon control problem, an agent may take shortsighted

controls which may make it impossible to complete the task

safely, such as planning the trajectory of a race car over

a short horizon without considering an upcoming curve [6].

Additionally, the planner receives no feedback or information

about task progress when using the indicator task functions

used in this work. Thus, to guide exploration in temporally-

extended tasks, we solve the problem in equation III-B.2a,

which includes a learned value function in the objective.

Note that UH refers to the set of H length control sequences

while X H+1 refers to the set of H +1 length state sequences.

This corresponds to the standard objective in MPC with an

appended value function V π
φ , which provides a terminal cost

estimate for the current policy at the end of the planning

horizon.

While prior work in deep MBRL [10, 25] has primarily

focused on planning over learned dynamics, we introduce

a learned value function, which is initialized from demon-

strations to provide initial signal, to guide planning even in

sparse cost settings. The learned dynamics model fθ and value

function V π
φ are each represented with a finite probabilistic

ensemble of n neural networks (in this work we pick n= 5), as

is used to represent system dynamics in Chua et al. [10]. The

probabilistic ensemble consists of a set of neural networks,

each of which output the parameters of a conditional axis-

aligned Gaussian distribution and are trained on bootstrapped

samples from the training dataset using a maximum likeli-

hood objective as in [10]. Each conditional Gaussian is used

to model aleatoric uncertainty in the dynamics, while the

bootstrapped ensemble of these models captures epistemic

uncertainty due to data availability in different regions of the

MDP. SAVED uses the learned stochasticity of the models

to enforce probabilistic constraints when planning under un-

certainty. These functions are initialized from demonstrations

and updated from data collected from each training iteration.

See supplementary material for further details on how these

networks are trained.

2) Probabilistic Constraints: The core novelties of SAVED

are the additional probabilistic constraints in III-B.2c to en-

courage task completion driven exploration and enforce user-

specified chance constraints. First, a non-parametric density

model ρ is trained on SS j, which includes states from prior

successful trajectories, including those from demonstrations.

ρ constraints exploration by requiring xt+H to fall in a re-

gion with high probability of task completion. This enforces

cost-driven constrained exploration and iterative improvement,

enabling reliable performance even with sparse costs. Note

that the agent can still explore new regions, as long as it

has a plan that can take it back to the safe set with high

probability. Second, we require all elements of xt:t+H to fall

in the feasible region X H+1 with probability at least β , which

enables probabilistic enforcement of state space constraints. In

Section III-C, we discuss the methods used for task completion

driven exploration and in Section III-D, we discuss how

probabilistic constraints are enforced during learning.

In summary, SAVED solves the following optimization

problem at each timestep based on the current state of the

system, xt , which is measured from observations:

u∗t:t+H−1 = argmin
ut:t+H−1∈UH

Ext:t+H

[

H−1

∑
i=0

C(xt+i,ut+i)+V π
φ (xt+H)

]

(III-B.2a)

s.t. xt+i+1 ∼ fθ (xt+i,ut+i) ∀i ∈ {0, . . . ,H −1} (III-B.2b)

ρα (xt+H)> δ ,P
(

xt:t+H ∈ X
H+1

)

≥ β (III-B.2c)

C. Task Completion Driven Exploration

Under certain regularity assumptions, if states at the end of

the MPC planning horizon are constrained to fall in the sam-

pled safe set SS j, iterative improvement, controller feasibility,

and convergence are guaranteed given known stochastic linear

dynamics or deterministic nonlinear dynamics [33–35]. The

way we constrain exploration in SAVED builds on this prior

work, but we note that unlike Rosolia et al. [33–35], SAVED

is designed for settings in which dynamics are completely
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the dynamics, value function, and safety density model at the

end of each iteration. The state density model is only updated

if the last trajectory was successful.

IV. EXPERIMENTS

We evaluate SAVED on simulated continuous control

benchmarks and on real robotic tasks with the da Vinci

Research Kit (dVRK) [19] against state-of-the-art deep RL

algorithms and find that SAVED outperforms all baselines

in terms of sample efficiency, success rate, and constraint

satisfaction rate during learning. All tasks use C(x,u)=1GC(x)
(Section III-A), which yields a controller which maximizes

the time spent inside the goal set. All algorithms are given

the same demonstrations and are evaluated by measuring

iteration cost, success rate, and constraint satisfaction rate (if

applicable). Tasks are only considered successfully completed

if the agent reaches and stays in G until the end of the episode.

Constraint violation results in early termination of the episode.

For all experiments, we run each algorithm 3 times to

control for stochasticity in training and plot the mean iteration

cost vs. time with error bars indicating the standard deviation

over the 3 runs. Additionally, when reporting task success rate

and constraint satisfaction rate, we show bar plots indicating

the median value over the 3 runs with error bars between

the lowest and highest value over the 3 runs. When reporting

the iteration cost of SAVED and all baselines, any constraint

violating trajectory is reported by assigning it the maximum

possible iteration cost T , where T is the task horizon. Thus,

any constraint violation is treated as a catastrophic failure. We

plan to explore soft constraints as well in future work. Fur-

thermore, for all simulated tasks, we also report best achieved

iteration costs, success rates, and constraint satisfaction rates

for model-free methods after 10,000 iterations since they take

much longer to start performing the task even when supplied

with demonstrations.

For SAVED, dynamics models and value functions are

each represented with a probabilistic ensemble of 5, 3 layer

neural networks with 500 hidden units per layer with swish

activations as used in Chua et al. [10]. To plan over the

dynamics, the TS-∞ trajectory sampling method from [10]

is used. We use 5 and 30 training epochs for dynamics and

value function training when initializing from demonstrations.

When updating the models after each training iteration, 5 and

15 epochs are used for the dynamics and value functions

respectively. Value function initialization is done by training

the value function using the true cost-to-go estimates from

demonstrations. However, when updated on-policy, the value

function is trained using temporal difference error (TD-1) on a

replay buffer containing prior states. The safety density model,

ρ , is trained on a fixed history of states from which the agent

was able to reach the goal (safe states), where this history

can be tuned based on the experiment (see supplement). We

represent the density model using kernel density estimation

with a tophat kernel. Instead of modifying δ for each envi-

ronment, we set δ = 0 (keeping points with positive density),

and modify α (the kernel parameter/width), which works well

in practice. See the supplementary material for additional

experiments, videos, and ablations with respect to choice of α ,

β , and demonstration quantity/quality. We also include further

details on baselines, network architectures, hyperparameters,

and training procedures.

A. Baselines

We consider the following set of model-free and model-

based baseline algorithms. To enforce constraints for model-

based baselines, we augment the algorithms with the simula-

tion based method described in Section III-D. Because model-

free baselines have no such mechanism to readily enforce

constraints, we instead apply a very large cost when constraints

are violated. See supplementary material for an ablation of the

reward function used for model-free baselines.

1) Behavior Cloning (Clone): Supervised learning on

demonstration trajectories.

2) PETS from Demonstrations (PETSfD): Probabilistic

ensemble trajectory sampling (PETS) from Chua et

al [10] with the dynamics model initialized with demo

trajectories and planning horizon long enough to plan to

the goal (judged by best performance of SAVED).

3) PETSfD Dense: PETSfD with tuned dense cost.

4) Soft Actor Critic from Demonstrations (SACfD):

Model-free RL algorithm, Soft Actor Critic [16], where

demo transitions are used for training initially.

5) Overcoming Exploration in Reinforcement Learning

from Demonstrations (OEFD): Model-free algorithm

from Nair et al. [26] which combines model-free RL

with a behavior cloning loss on the demonstrations to

accelerate learning.

6) SAVED (No SS): SAVED without the sampled safe set

constraint described in Section III-C.

B. Simulated Navigation

To evaluate whether SAVED can efficiently and safely learn

temporally extended tasks with nonconvex constraints, we

consider a 4-dimensional (x, y, vx, vy) navigation task in

which a point mass is navigating to a goal set, which is a

unit ball centered at the origin. The agent can exert force

in cardinal directions and experiences drag coefficient ψ and

Gaussian process noise zt ∼ N (0,σ2I) in the dynamics. We

use ψ = 0.2 and σ = 0.05 in all experiments in this domain.

Demonstrations trajectories are generated by guiding the robot

along a very suboptimal hand-tuned trajectory for the first

half of the trajectory before running LQR on a quadratic

approximation of the true cost. Gaussian noise is added to the

demonstrator policy. Additionally, we use a planning horizon

of 15 for SAVED and 25, 30, 30, 35 for PETSfD for tasks 1-4

respectively. The 4 experiments run on this environment are:

1) Long navigation task to the origin: x0 = (−100,0) We

use 50 demonstrations with average return of 73.9 and

kernel width α = 3.

2) Large obstacle blocking the x-axis: This environment

is difficult for approaches that use a Euclidean norm cost

function due to local minima. We use 50 demonstrations

with average return of 67.9, kernel width α = 3, and

chance constraint parameter β = 1.
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Figure 3: Navigation Domains: SAVED is evaluated on 4 navigation tasks. Tasks 2-4 contain obstacles, and task 3 contains a channel for passage to G near
the x-axis. SAVED learns significantly faster than all RL baselines on tasks 2 and 4. In tasks 1 and 3, SAVED has lower iteration cost than baselines using
sparse costs, but does worse than PETSfD Dense, which is given dense Euclidean norm costs to find the shortest path to the goal. For each task and algorithm,
we report success and constraint satisfaction rates over the first 100 training iterations and also over the first 10,000 iterations for SACfD and OEFD. We
observe that SAVED has higher success and constraint satisfaction rates than other RL algorithms using sparse costs across all tasks, and even achieves higher
rates in the first 100 training iterations than model-free algorithms over the first 10,000 iterations.

Figure 4: Simulated Robot Experiments Performance: SAVED achieves better performance than all baselines on both tasks. We use 20 demonstrations
with average iteration cost of 94.6 for the reacher task and 100 demonstrations with average iteration cost of 34.4 for the pick and place task. For the reacher
task, the safe set constraint does not improve performance, likely because the task is very simple, but for pick and place, we see that the safe set constraint
adds significant training stability.

3) Large obstacle with a small channel near the x-

axis: This environment is difficult for the algorithm to

optimally solve since the iterative improvement of paths

taken by the agent is constrained. We use x0 = (−50,0),
50 demonstrations with average return of 67.9, kernel

width α = 3, and chance constraint parameter β = 1.

4) Large obstacle surrounds the goal set with a small

channel for entry: This environment is very difficult to

solve without demonstrations. We use x0 = (−50,0), 100

demonstrations with average return of 78.3, kernel width

α = 3, and chance constraint parameter β = 1.

SAVED has a higher success rate than all other RL baselines

using sparse costs, even including model-free baselines over

the first 10,000 iterations, while never violating constraints

across all navigation tasks. Furthermore, this performance

advantage is amplified with task difficulty. Only Clone and

PETSfD Dense ever achieve a higher success rate, but Clone

does not improve upon demonstration performance (Figure

3) and PETSfD Dense has additional information about the

task. Furthermore, SAVED learns significantly more efficiently

than all RL baselines on all navigation tasks except for tasks

1 and 3, in which PETSfD Dense with a Euclidean norm

cost function finds a better solution. While SAVED (No

SS) can complete the tasks, it has a much lower success

rate than SAVED, especially in environments with obstacles

as expected, demonstrating the importance of the sampled

safe set constraint. Note that SACfD, OEFD, and PETSfD

make essentially no progress in the first 100 iterations and

never complete any of the tasks in this time, although they

mostly satisfy constraints. After 10,000 iterations of training,

SACfD and OEFD achieve average best iteration costs of 23.7
and 23.8 respectively on task 1, 21 and 21.7 respectively

on task 2, 17.3 and 19 respectively on task 3, and 23.7
and 40 respectively on task 4. Thus, we see that SAVED

achieves comparable performance in the first 100 iterations

to the asymptotic performance of model-free RL algorithms
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while maintaining consistent task completion and constraint

satisfaction during learning.

C. Simulated Robot Experiments

To evaluate whether SAVED also outperforms baselines

on standard unconstrained environments, we consider sparse

versions of two common simulated robot tasks: the torque-

controlled PR2 Reacher environment from Chua et al. [10]

with a fixed goal and on a pick and place task with a simulated,

position-controlled Fetch robot from [29]. The reacher task

involves controlling the end-effector of a simulated PR2 robot

to a small ball in R
3. The state representation consists of 7

joint positions, 7 joint velocities, and the goal position. The

goal set is specified by a 0.05m radius Euclidean ball in state

space. Suboptimal demonstrations are generated with average

cost 94.6 by training PETS with a shaped cost function that

heavily penalizes large torques. We use α = 15 for SAVED

and a planning horizon of 25 for both SAVED and PETSfD.

SACfD and OEFD achieve a best iteration cost of 9 and 60

respectively over 10,000 iterations of training averaged over

the 3 runs. The pick and place task involves picking up a block

from a fixed location on a table and also guiding it to a small

ball in R
3. The task is simplified by automating the gripper

motion, which is difficult for SAVED to learn due to the

bimodality of gripper controls, which is hard to capture with

the unimodal truncated Gaussian distribution used during CEM

sampling. The state representation for the task consists of

(end effector relative position to object, object relative position

to goal, gripper jaw positions). Suboptimal demonstrations

are generated by hand-tuning a controller that slowly but

successfully completes the task with average iteration cost

34.4. We use a safe set buffer size of 5000 and α = 0.05. We

use a planning horizon of 10 for SAVED and 20 for PETSfD.

SACfD and OEFD both achieve a best iteration cost of 6 over

10,000 iterations of training averaged over the 3 runs.

SAVED learns faster than all baselines on both tasks (Figure

4) and exhibits significantly more stable learning in the first

100 and 250 iterations for the reacher and pick and place tasks

respectively. However, while SAVED is substantially more

sample efficient than SACfD and OEFD for these tasks, both

algorithms achieve superior asymptotic performance.

D. Physical Robot Experiments

We evaluate the ability of SAVED to learn a surgical knot-

tying task with nonconvex state space constraints on the

da Vinci Research Kit (dVRK) [19]. The dVRK is cable-

driven and has relatively imprecise controls, motivating model

learning [36]. Furthermore, safety is paramount due to the cost

and delicate structure of the arms. The goal of these tasks is

to speed up demonstration trajectories while still maintaining

properties of the trajectories that result in a task completion.

This is accomplished by constraining learned trajectories to

fall within a tight, 1 cm tube of the demos. The goal set is

represented with a 1 cm ball in R
3 and the robot is controlled

via delta-position control, with a maximum control magnitude

of 1 cm during learning for safety. Robot experiments are very

time consuming due to interactive data collection, so training

RL algorithms on limited physical hardware is difficult without

sample efficient algorithms. We include additional experiments

on a Figure-8 tracking task in the supplementary material.

1) Surgical Knot-Tying: SAVED is used to optimize

demonstrations of a surgical knot-tying task on the dVRK,

using the same multilateral motion as in [38]. Demonstrations

are hand-engineered for the task, and then policies are opti-

mized for one arm (arm 1), while a hand-engineered policy is

used for the other arm (arm 2). While arm 1 wraps the thread

around arm 2, arm 2 simply moves down, grasps the other

end of the thread, and pulls it out of the phantom as shown

in Figure 1. Thus, we only expect significant performance

gain by optimizing the policy for the portion of the arm 1

trajectory which involves wrapping the thread around arm 2.

We only model the motion of the end-effectors in 3D space.

We use β = 0.8, α = 0.05, planning horizon 10, and 100

demonstrations with average cost 34.4 for SAVED. We use

a planning horizon of 20 and β = 1. for PETSfD. SAVED

quickly learns to smooth out demo trajectories, with a success

rate of over 75% (Figure 5) during training, while baselines are

unable to make sufficient progress in this time. PETSfD rarely

violates constraints, but also almost never succeeds, while

SACfD almost always violates constraints and never completes

the task. Training SAVED directly on the real robot for 50

iterations takes only about an hour, making it practical to train

on a real robot for tasks where data collection is expensive.

At execution-time (post-training), we find that SAVED is

very consistent, successfully tying a knot in 20/20 trials with

average iteration cost of 21.9 and maximum iteration cost of

25 for the arm 1 learned policy, significantly more efficient

than demos which have an average iteration cost of 34. See

supplementary material for trajectory plots of the full knot-

tying trajectory and the Figure-8 task.

V. DISCUSSION AND FUTURE WORK

We present SAVED, a model-based RL algorithm that can

efficiently learn a variety of robotic control tasks in the

presence of dynamical uncertainty, sparse cost feedback, and

complex constraints by using suboptimal demonstrations to

constrain exploration to regions in which the agent is confident

in task completion. We then empirically evaluate SAVED on

6 simulated benchmarks and on a knot-tying task on a real

surgical robot. Results suggest that SAVED is more sample

efficient and has higher success and constraint satisfaction

rates than all RL baselines and can be efficiently and safely

trained on a real robot. In future work, we will explore

convergence and safety guarantees for SAVED and extensions

to a wide distribution of start states and goal sets. Additionally,

a limitation of SAVED is that solving the MPC objective with

CEM makes high frequency control difficult. In future work,

we will explore distilling the learned controller into a reactive

policy to enable fast policy evaluation in practice.
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Supplementary Material

VII. ADDITIONAL EXPERIMENTAL DETAILS FOR SAVED AND BASELINES

For all experiments, we run each algorithm 3 times to control for stochasticity in training and plot the mean iteration cost vs. time with error bars indicating
the standard deviation over the 3 runs. Additionally, when reporting task success rate and constraint satisfaction rate, we show bar plots indicating the median
value over the 3 runs with error bars between the lowest and highest value over the 3 runs. Experiments are run on an Nvidia DGX-1 and on a desktop
running Ubuntu 16.04 with a 3.60 GHz Intel Core i7-6850K, 12 core CPU and an NVIDIA GeForce GTX 1080. When reporting the iteration cost of SAVED
and all baselines, any constraint violating trajectory is reported by assigning it the maximum possible iteration cost T , where T is the task horizon. Thus, any
constraint violation is treated as a catastrophic failure. We plan to explore soft constraints as well in future work.

A. SAVED

1) Dynamics and Value Function: For all environments, dynamics models and value functions are each represented with a probabilistic ensemble
of 5, 3 layer neural networks with 500 hidden units per layer with swish activations as used in Chua et al. [10]. To plan over the dynamics, the TS-∞ trajectory
sampling method from [10] is used. We use 5 and 30 training epochs for dynamics and value function training when initializing from demonstrations. When
updating the models after each training iteration, 5 and 15 epochs are used for the dynamics and value functions respectively. All models are trained using
the Adam optimizer with learning rate 0.00075 and 0.001 for the dynamics and value functions respectively. Value function initialization is done by training
the value function using the true cost-to-go estimates from demonstrations. However, when updated on-policy, the value function is trained using temporal
difference error (TD-1) on a buffer containing all prior states. Since we use a probabilistic ensemble of neural networks to represent dynamics models and
value functions, we built off of the provided implementation [9] of PETS in [10].

2) Constrained Exploration: Define states from which the system was successfully stabilized to the goal in the past as safe states. We train density
model ρ on a fixed history of safe states, where this history is tuned based on the experiment. We have found that simply training on all prior safe states
works well in practice on all experiments in this work. We represent the density model using kernel density estimation with a top-hat kernel. Instead of
modifying δ for each environment, we set δ = 0 (keeping points with positive density), and modify α (the kernel parameter/width). We find that this works
well in practice, and allows us to speed up execution by using a nearest neighbors algorithm implementation from scikit-learn. We are experimenting with
locality sensitive hashing, implicit density estimation as in Fu et al. [13], and have had some success with Gaussian kernels as well (at significant additional
computational cost). The exploration strategy used by SAVED in navigation task 2 is illustrated in Figure 6.

B. Behavior Cloning

We represent the behavior cloning policy with a neural network with 3 layers of 200 hidden units each for navigation tasks and pick and place, and 2
layers of 20 hidden units each for the PR2 Reacher task. We train on the same demonstrations provided to SAVED and other baselines for 50 epochs.

C. PETSfD and PETSfD Dense

PETSfD and PETSfD Dense use the same network architectures and training procedure as SAVED and the same parameters for each task unless otherwise
noted, but just omit the value function and density model ρ for enforcing constrained exploration. PETSfD uses a planning horizon that is long enough to
complete the task, while PETSfD Dense uses the same planning horizon as SAVED.

D. SACfD

We use the rlkit implementation [30] of soft actor critic with the following parameters: batch size=128, discount=0.99, soft target τ = 0.001, policy learning
rate = 3e−4, Q function learning rate = 3e−4, and value function learning rate = 3e−4, batch size = 128, replay buffer size = 1000000, discount factor =
0.99. All networks are two-layer multi-layer perceptrons (MLPs) with 300 hidden units. On the first training iteration, only transitions from demonstrations
are used to train the critic. After this, SACfD is trained via rollouts from the actor network as usual. We use a similar reward function to that of SAVED,
with a reward of -1 if the agent is not in the goal set and 0 if the agent is in the goal set. Additionally, for environments with constraints, we impose a
reward of -100 when constraints are violated to encourage constraint satisfaction. The choice of collision reward is ablated in section X-B. This reward is set
to prioritize constraint satisfaction over task success, which is consistent with the selection of β in the model-based algorithms considered.

E. OEFD

We use the implementation of OEFD provided by Jangir [18] with the following parameters: learning rate = 0.001, polyak averaging coefficient = 0.8, and
L2 regularization coefficient = 1. During training, the random action selection rate is 0.2 and the noise added to policy actions is distributed as N (0, 1). All
networks are three-layer MLPs with 256 hidden units. Hindsight experience replay uses the “future” goal replay and selection strategy with k = 4 [3]. Here k

controls the ratio of HER data to data coming from normal experience replay in the replay buffer. We use a similar reward function to that of SAVED, with
a reward of -1 if the agent is not in the goal set and 0 if the agent is in the goal set. Additionally, for environments with constraints, we impose a reward
of -100 when constraints are violated to encourage constraint satisfaction. The choice of collision reward is ablated in section X-B. This reward is set to
prioritize constraint satisfaction over task success, which is consistent with the selection of β in the model-based algorithms considered.

VIII. SIMULATED EXPERIMENTS ADDITIONAL RESULTS

In Figure 6, we illustrate the mechanism by which SAVED iteratively improves upon suboptimal demonstrations on navigation task 2 by planning into an
expanding safe set.

In Figure 7, we show the task success rate for the PR2 reacher and Fetch pick and place tasks for SAVED and baselines. We note that SAVED outperforms
RL baselines (except SAVED (No SS) for the reacher task, most likely because the task is relatively simple so the sampled safe set constraint has little effect)
in the first 100 and 250 iterations for the reacher and pick and place tasks respectively. Note that although behavior cloning has a higher success rate, it
does not improve upon demonstration performance. However, although SAVED’s success rate is not as different from the baselines in these environments
as those with constraints, this result shows that SAVED can be used effectively in a general purpose way, and still learns more efficiently than baselines in
unconstrained environments as seen in the main paper.
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