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a b s t r a c t 

The insecurity of the Internet-of-Things (IoT) paradigm continues to wreak havoc in consumer and critical 

infrastructures. The highly heterogeneous nature of IoT devices and their widespread deployments has led 

to the rise of several key security and measurement-based challenges, significantly crippling the process 

of collecting, analyzing and correlating IoT-centric data. To this end, this paper explores macroscopic, pas- 

sive empirical data to shed light on this evolving threat phenomena. The proposed work aims to classify 

and infer Internet-scale compromised IoT devices by solely observing one-way network traffic, while also 

uncovering, reporting and thoroughly analyzing “in the wild” IoT botnets. To prepare a relevant dataset, a 

novel probabilistic model is developed to cleanse unrelated traffic by removing noise samples (i.e., mis- 

configured network traffic). Subsequently, several shallow and deep learning models are evaluated in an 

effort to train an effective multi-window convolutional neural network. By leveraging active and passing 

measurements when generating the training dataset, the neural network aims to accurately identify com- 

promised IoT devices. Consequently, to infer orchestrated and unsolicited activities that have been gener- 

ated by well-coordinated IoT botnets, hierarchical agglomerative clustering is employed by scrutinizing a 

set of innovative and efficient network feature sets. Analyzing 3.6 TB of recently captured darknet traffic 

revealed a momentous 440,0 0 0 compromised IoT devices and generated evidence-based artifacts related 

to 350 IoT botnets. Moreover, by conducting thorough analysis of such inferred campaigns, we reveal 

their scanning behaviors, packet inter-arrival times, employed rates and geo-distributions. Although sev- 

eral campaigns exhibit significant differences in these aspects, some are more distinguishable; by being 

limited to specific geo-locations or by executing scans on random ports besides their core targets. While 

many of the inferred botnets belong to previously documented campaigns such as Hide and Seek , 
Hajime and Fbot , newly discovered events portray the evolving nature of such IoT threat phenomena 

by demonstrating growing cryptojacking capabilities or by targeting industrial control services. To mo- 

tivate empirical (and operational) IoT cyber security initiatives as well as aid in reproducibility of the 

obtained results, we make the source codes of all the developed methods and techniques available to the 

research community at large. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the escalating adoption of the Internet-of-Things (IoT)

aradigm in critical infrastructure, smart homes, transportation,

nd numerous other realms, an increasing number of devices
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re becoming directly Internet-facing. Although IoT devices de-

loyed behind a Network Address Translation (NAT) gateway

ight be less vulnerable to Internet-enabled attacks, a plethora

f such devices are directly connected to the Internet and/or em-

loy port-forwarding for simplified provisioning and management

 Da Xu et al., 2014 ). Unfortunately, such devices often lack basic se-

urity protocols and measures, rendering them easy targets for ex-

loitations and hence recruitment within coordinated IoT botnets

 Bertino and Islam, 2017 ). Additionally, there exists several inher-
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ent IoT factors such as their heterogeneous nature and limited pro-

cessing resources which further complicate addressing necessary

security requirements. At the same time, subpar attention is be-

ing paid to IoT security aspects by their manufacturers and users,

on top of an overwhelming lack of maturity of IoT-specific update

procedures for patch management ( Bertino and Islam, 2017 ). 

Indeed, IoT security has been an emerging area of focus after

Mirai ( Antonakakis et al., 2017 ) infected more than 20 0,0 0 0 de-

vices to conduct debilitating Distributed Denial of Service (DDoS)

attacks in late 2016, demonstrating the sheer malicious capabili-

ties by way of exploiting IoT devices. Thereafter, botnets consist-

ing of IoT devices have consistently been evolving, incorporating

new devices and services. Hence, the IoT botnet environment has

expanded to include several more players who ultimately com-

pete for control over insecure IoT devices by means of newly-

exposed vulnerabilities. In June 2019, the Echobot ( Cashdollar,

2019; Nigam, 2019 ) campaign was identified as operating “in the

wild”. Derived from Mirai ’s source code, Echobot has com-

promised millions of IoT nodes. Exploiting more than 20 unique

(software and firmware) IoT-centric vulnerabilities, the campaign

has infected devices across more than 10 diverse vendors. Indeed,

this IoT threat phenomena will undoubtedly continue to display

highly dynamic behavior as they attempt to propagate and exploit

a higher number of devices, making the inference, attribution, and

assessment of compromised IoT devices and their coordinated il-

licit activities significantly challenging. 

Despite effort s to mitigate the ever-increasing IoT security is-

sues, challenges exist due to the heterogeneity of IoT devices

and the emergence of anti-honeypot techniques to avoid discov-

ery ( Dowling et al., 2018; Luo et al., 2017; Nawrocki et al., 2016 ).

Moreover, acquiring IoT-centric empirical data to be curated and

analyzed for maliciousness is problematic, given the large-scale

deployments of such devices in Internet-wide realms. While net-

work telescope (darknet) traffic ( Fachkha and Debbabi, 2016 ) (i.e.,

Internet-scale traffic targeting routable yet unused IP addresses)

has proven to be a reliable and effective source for generating in-

sights related to Internet-wide maliciousness ( Fachkha and Deb-

babi, 2016 ), its exploration for addressing IoT security issues is still

in its infancy. Broadly, a major challenge related to the inference of

IoT maliciousness through the analysis of network telescope traffic

is the lack of sound data-driven artifacts which can be analyzed

to confirm that the perceived one-way traffic is in fact originating

from IoT devices and not from typical machines. Further, success-

ful darknet-driven methodologies should accommodate the evolv-

ing nature of IoT botnets, leveraging their empirical specifications

as perceived by the (somehow limited) vantage point of the net-

work telescope. 

Correlating darknet-inferred IP addresses with databases such

as Shodan ( Shodan, 2019 ) or Censys ( Team, 2017 ) has proven

to be a successful use-case for classifying IoT-centric data and

Internet-scale exploitations ( Shaikh et al., 2018; Torabi et al., 2018 ).

Both Shodan and Censys use IP crawlers, active scanning, and

banner grabbing to collect and index open ports and available ser-

vices on billions of Internet-facing IoT devices. While this strat-

egy provides large-scale device information, the limited scope of

services reachable by Shodan and Censys scanners makes them

incapable for identifying the complete Internet-wide set of active

IoT devices. Such generated probes and active measurements are

typically filtered by firewalls. Additionally, upon infection, IoT mal-

ware tend to block ports, modify banner information and disable

common outward facing services (i.e., Telnet, CWMP, ADB, etc.)

( Antonakakis et al., 2017; Herwig et al., 2019 ). When the afore-

mentioned events occur, the indexing of IoT devices is significantly

impeded. 

Having noted this, a number of darknet-related technical chal-

lenges exist which further hinder IoT-centric fingerprinting effort s.
ndeed, perceived packets on the network telescope (that have

een generated by IoT bots) solely resemble scan activities (i.e.,

o not include payload information and are unidirectional), which

imits the amount of available data to analyze. Furthermore, only

 small portion of unsolicited IoT-generated traffic actually targets

eployed network telescopes, rendering time-based analysis non-

rivial and complicates the process of extracting effective and ro-

ust features to infer orchestration behaviors of compromised IoT

evices. 

Motivated by the aforementioned limitations coupled with the

ack of thorough measurement-based studies on the insecurity of

he IoT paradigm at large, this paper contributes by proposing a

ulti-threaded, generic methodology for scrutinizing macroscopic

arknet data to design, develop and evaluate: 

• A novel darknet-specific, formal sanitization model that system-

atically identifies and filters out misconfiguration traffic to per-

mit the storage and processing of network telescope data. The

proposed darknet sanitization model does not rely on arbitrary

cut-off thresholds, but instead provides likelihood models to

distinguish between misconfiguration and other forms of dark-

net traffic, independent from the nature of the traffic sources.

As a result, the proposed model neatly captures the natural be-

havior of darknet-targeted misconfiguration traffic. 

• An IoT-centric fingerprinting approach rooted in deep learning
and active measurements methodologies to infer Internet-scale

compromised IoT devices by exclusively operating on network

telescope data. The addressed problem herein is illustrated in

Fig. 1 a. Using more than 3 TB of recent darknet data, the out-

come of such a proposed approach exposes more than 40 0,0 0 0

compromised IoT devices from very well-known vendors. The

results highlight that more than 75% of all the inferred IoT bots

do not match the typical Mirai signature ( Antonakakis et al.,

2017 ), concurring the evolving nature of this threat phenomena

and highlighting the added-value of the proposed methodology.

• An IoT-specific botnet inference methodology based upon effec-

tive and lightweight (darknet) data-driven features and hierar-

chical agglomerative clustering. The addressed problem herein

is shown in Fig. 1 b. The results from instrumenting such an

approach uncover more than 300 “in the wild” IoT botnets,

where close to 25 campaigns contain over 10 0 0 exploited, well-

coordinated IoT bots. Moreover, IoT botnet-specific traits are in-

vestigated, including scanning modules, probing rates and their

geo-distributions. While the results shed light on previously

documented IoT botnets that were found to still be active, the

outcome also uncovers new IoT botnets such as those possess-

ing cryptojacking capabilities (which were shown to be coordi-

nated by the same “player” due to the usage of the same key)

and those that were inferred to be targeting industrial control

systems. To facilitate the reproducibility of the results in addi-

tion to motivate passive Internet measurements for IoT secu-

rity, we make all the developed methods and techniques avail-

able to the research and operational communities at large via

https://github.com/COYD-IoT/COYD-IoT . 

The remainder of this paper is organized as follows.

ection 2 reviews the literature related to network telescope

esearch, IoT device fingerprinting and IoT botnet analysis to

emonstrate the state-of-the-art contributions of this work. In

ection 3 , we detail the darknet pre-processing model, the studied

achine/deep learning models for fingerprinting compromised

oT devices, in addition to elaborating on the IoT-centric botnet

nference methodology. In Section 4 , we report and discuss the

esults derived from executing the proposed approach. Finally,

ection 5 summarizes the contributions of this paper and paves

he way for future work by addressing a number of limitations. 

https://github.com/COYD-IoT/COYD-IoT
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Fig. 1. Leveraging network telescopes to (a) devise learning techniques for fingerprinting IoT devices; and (b) develop clustering methods for identifying campaigns of 

orchestrated IoT devices. 
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. Related work 

In this section, we review three topics central to the contem-

orary IoT security landscape. The first focuses on network tele-

copes as a powerful mechanism to capture IoT-specific, illicit net-

ork traffic. The second summarizes effort s pert aining to IoT de-

ice fingerprinting. Finally, we enumerate the literature related to

oT-specific botnet analysis. 

.1. Network telescopes and IoT security 

A network telescope (i.e., darknet), is a set of routable, allo-

ated, yet unused IP addresses deployed in order to passively ob-

erve incoming Internet-scale traffic ( Fachkha and Debbabi, 2016 ).

ince these IP addresses are not associated with any services, traf-

c targeting them is unsolicited ( Bou-Harb et al., 2016 ). Such traf-

c originates from infected devices scanning the Internet space,

ictims of Denial of Service (DoS) attacks, or misconfiguration

aused by hardware/software errors or improper routing. Net-

ork telescopes are reliable sources for investigating large-scale,

nternet-wide activities, which is supported by recent examples

f successful applications including studies on probing activities

 Dainotti et al., 2015 ) and DDoS attacks ( Fachkha et al., 2015;

oore et al., 2006 ). In the context of assessing the maliciousness

f IoT devices through network telescopes, Torabi et al. (2018) re-

ently conducted large-scale correlations between passive mea-

urements and IoT-relevant information to investigate and disclose

alicious activities associated with more than 26,0 0 0 IoT devices,

ncluding those within critical infrastructure. Leveraging a large-

cale network telescope, the authors categorized the ports and ser-

ices targeted by scans within the network telescope, attributing

hem to infected IoT devices and identifying active threats (i.e, IoT

evices launching brute-force SSH attacks). Similarly, by correlat-

ng active measurements with collected network telescope data,

haikh et al. (2018) examined nearly 14,0 0 0 compromised IoT de-
ices and extracted malicious signatures for mitigation in IoT host-

ng environments. Further investigation of the collected network

raffic revealed that nearly 20% of the identified IoT devices were

elated to DDoS attacks. Moreover, by means of applying filters to

etwork telescope data in order to discern Mirai -relevant traffic,

ntonakakis et al. (2017) were able to gather IoT-related informa-

ion pertaining to roughly 1.2 million Mirai -infected IP addresses

uring 8 months. Their work revealed crucial details of the Mirai
alware’s attack vectors, such as targeted ports (TCP/Telnet:23

nd TCP/Telnet:2323). Furthermore, after correlating their results

ith Censys ( Durumeric et al., 2015a ) scans, the authors fin-

erprinted the device types of Mirai -infected bots - confirm-

ng the IoT-centric composition of the botnet. In a related study,

etin et al. (2019) collected network traffic across a 30 0,0 0 0 IP

arknet space to conduct empirical studies focusing on IoT mal-

are cleanup effort s and remediation rates in a medium-sized In-

ernet Service Provider (ISP). Combining network traffic received

ithin their darknet with malware binaries retrieved from an IoT-

ased honeypot and IP addresses retrieved from Internet scanners

ensys and Nmap , the authors tracked the success (and failure)

f remediation effort s, reporting device reinfection rates. 

While such contributions are noteworthy, several shortcomings

xist. First, previous works rely on a specific IoT malware signa-

ure (e.g., the Mirai -specific signature of tcpSeq == dstIP). Not

very IoT bot will follow such an easily identifiable signature, pre-

enting comprehensive identification of Internet-scale botnets “in

he wild”. In fact, our measurements have revealed that less than

5% of all the inferred IoT bots match the Mirai -specific signa-

ure. Second, the majority of these related works solely depend

n databases gathered by Internet scanning services (e.g., Censys

nd Shodan), which might not be able to accurately identify ev-

ry infected IoT device at a global scale. Antonakakis et al. discov-

red that upon infection, the Mirai malware closed a number of

orts and services on newly exploited IoT bots to prevent infec-

ion by competing malware ( Antonakakis et al., 2017 ). As a result
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of such territorial nature, Internet search engines are unable to dis-

cover a large portion of infected devices due to the similarities

between their discovery methods and malware scanning trends.

In contrast, we aim to create a more comprehensive view of the

aforesaid IoT bot populations by proposing a novel approach that

synergistically leverages passive, darknet-centric assessments cou-

pled with active, Internet-scale measurements and machine/deep

learning techniques. 

2.2. IoT device fingerprinting 

Previous works that propose IoT inference methods rely on

text information retrieved from service banners, gathered by ac-

tive measurements (e.g., port scanning and banner grabbing),

or provided by Internet scanning services similar to Shodan
( Shodan, 2019 ), Censys ( Durumeric et al., 2015a ) and ZoomEye

( ZoomEye, 2019 ). For example, Kumar et al. (2019) leveraged pre-

defined text rules from Censys to fingerprint consumer IoT de-

vices, designing an ensemble of four supervised classifiers on UPnP

and DNS responses, HTTP data banners, and network-layer infor-

mation. Alternatively, several research efforts have elected to at-

tempt IoT device fingerprinting by solely observing network traf-

fic. For instance, Guo and Heidemann (2018) postulated that be-

cause IoT devices regularly exchange data with servers managed

by their manufacturers, IoT device type and vendor can be fin-

gerprinted by observing the exchanged flow-level network traffic

between devices and servers. After discovering nearly 200 can-

didate servers accessed by 26 devices across 15 vendors, their

methodology successfully identified IoT devices connected across

the University of Southern California (USC). In another work,

Meidan et al. (2017) explored a localized lab environment to ex-

tract TCP packet features from a variety of IoT devices, includ-

ing baby monitors, IP cameras, and printers. Extracted features

were employed to train a supervised learning algorithm in or-

der to distinguish between IoT devices and non-IoT. Moreover,

Miettinen et al. (2017) leveraged network traffic generated by IoT

devices during their setup process for capturing device-specific

traits. A number of automatic requests and updates were collected

and subsequently mapped as signatures, detailing the device type

by way of random forest classification. Improving upon anomaly

detection premised on device types, Nguyen et al. (2018) have

recently implemented a machine learning algorithm which dis-

criminates between the corresponding classes of devices, but ex-

hibited remarkable performance with detection rate 95.6%. Sim-

ilarly, Thangavelu et al. (2018) developed a machine learning-

based methodology capable of fingerprinting distributed devices.

Their work overcomes previous limitations hindering centralized

approaches by offering a scalable and dynamic methodology. 

Pinheiro et al. (2019) developed algorithms for distinguishing

between IoT and non-IoT devices based upon packet specifications.

The mean and standard deviation of the packet length were com-

bined with the number of bytes transmitted by each device in

one-second time intervals to accurately profile devices. Further,

Siby et al. (2017) detected devices in a local network by passively

intercepting and recording wireless signals. Extracting the encap-

sulated MAC addresses from investigated flows allowed for IoT de-

vice identification. In an alternative approach, Acar et al. (2018) im-

plemented a web script to identify the presence of IoT devices run-

ning local HTTP servers. Once identified, IoT vulnerabilities are dis-

closed, specifically the unauthorized accessing of such IoT devices

through DNS rebinding. 

A shortcoming of the aforementioned literature is that their

scope is limited to local IoT networks. Therefore, they do not

present an Internet-wide perspective; hence, their proposed ap-

proaches are not applicable on one-way scan flows arriving at net-

work telescopes. In contrast, we leverage a large-scale network
elescope to collect Internet-wide network traffic, followed by the

eployment of a strict rule set used to fingerprint hosts that re-

pond with banners when probed. Additionally, we devise learning

echniques to identify unreachable infected hosts and predict their

evice types using innovative features extracted from sequences of

CP SYN packets arriving at the network telescope. 

.3. IoT botnet analysis 

The discovery and analysis of IoT-centric botnets reveal cru-

ial cyber threat intelligence relating to the discovery of malware

ttack vectors and disclose possible vulnerabilities or intrusion

oints within globally-deployed IoT devices. Within the context of

otnet analysis through tailored honeypots, Pa et al. (2016) inferred

everal malware families by constructing a honeypot to analyze

ttacks against Telnet services. Dubbed as IoTPOT , the honeypot

as specifically tailored to mimic the CPU architectures of various

oT devices, while learning how to respond to command interac-

ions. Furthermore, Guarnizo et al. (2017) designed the IoT-centric

calable high-Interaction Honeypot (SIPHON) which demon-

trated effectiveness to attract a tremendous amount of malicious

oT botnet-generated traffic (ranging from 50,0 0 0 to 60 0,0 0 0 at-

empted TCP connections) through a combination of worldwide

ormholes and a small number of deployed IoT devices. The de-

loyed SIPHON honeypot recorded hundreds of brute-force pass-

ord attacks and retrieved credential dictionaries used for these

ttacks. Moreover, Metongnon and Sadre (2018) reported on a large

umber of exploited IoT protocols, based on an in-depth analysis of

etwork traffic from IoT-centric honeypots and network telescopes.

While such works provide crucial IoT-centric botnet analy-

is, given the copious amounts of IoT hardware in the wild and

heir accompanying heterogeneity, we note that honeypot-based

ethodologies frequently fail at mimicking the entirety of IoT de-

ice and firmware vulnerabilities. However, capturing such charac-

eristics are essential to characterizing and attributing large-scale

oT botnets. Additionally, the vantage points of honeypots are typi-

ally quite small, hindering their effectiveness in tracking Internet-

cale IoT botnets as well as accurately estimating their population

ize. 

Rather than deploying honeypots, alternative works attempted

o identify compromised IoT devices (bots) in local networks. For

xample, Meidan et al. (2018) proposed a novel, host-based intru-

ion detection system (IDS) that monitors a device’s typical be-

aviors through analyzing its network traffic using autoencoders.

he IDS creates a snapshot of what the device is expected to be

ommunicating, and will subsequently raise an alarm if any devi-

tions or anomalies are detected. To evaluate the effectiveness of

he proposed IDS, nine commercial IoT devices were deployed in

 controlled environment to generate benign traffic. These devices

ere then infected with two very notorious IoT malware, Mirai
nd BASHLITE , and tested the IDS capabilities for identifying the

ewly corrupted traffic flows. Further, Nguyen et al. (2019) present

n autonomous self-learning distributed system for detecting com-

romised IoT devices, leveraging federated learning technique to

ggregate IoT device fingerprints. These fingerprints are then clus-

ered and categorized based on device type and models. Next, a

-Nearest Neighbors classifier identified abnormal network traf-

c to discover compromised IoT devices. Evaluated on 30 differ-

nt devices and selected Mirai malware for the real-world case

tudy, ultimately, the methodology achieved a 94% detection rate

nd 257 ms average detection time. 

Alternatively, other literature works consider a macroscopic ap-

roach for generic botnet analysis by aggregating information from

arious sources. To this end, Gu et al. (2008) proposed a sys-

em for correlating aggregated IDS log files with extracted fea-

ures from network flows to detect botnet activities. The system
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Table 1 

Summary of selected recent botnet detection literature. 

Publication Employed Data Type Botnet Class Methodology and Evaluation 

Metongnon and Sadre (2018) Honeyfarm/ Network Telescope IoT Passive measurement and analysis of 

real-world IoT honeyfarm traffic. 

Meidan et al. (2018) Two-way Traffic IoT Training on normal behavior using 

autoencoders. Evaluated on 9 IoT 

devices in a lab environment tested 

with Mirai and Bashlite . 
Nguyen et al. (2019) Two-way Traffic IoT Federated learning. Evaluated on 30 

IoT devices in a lab environment 

tested with Mirai . 
Gu et al. (2008) NetFlow/ Aggregated IDS log Generic Correlation and two-step clustering. 

Evaluated on real-world dataset. 

Homayoun et al. (2018) NetFlow Generic Autoencoder/CNN. Evaluated on 

combined botnet traffic ISCX 

UNB (2019) . 

Araki et al. (2019) xFlow Generic Two-step Subspace Clustering. Tested 

on real-world ISP traffic and 

MAWI ( Fontugne et al., 2010 ). 

Ozawa et al. (2019) Network Telescope Generic Association rule mining evaluated on 

real-world /16 network telescope. 

Antonakakis et al. (2017) Network Telescope/ Censys/ Passive 

DNS/ Telnet Honeypots/ Malware 

binaries 

Mirai Mirai signature tested on /10 
network telescope. 

Herwig et al. (2019) Active Scanning/ Root DNS backscatter 

traffic 

Hajime Bug in P2P infrastructure while 

observing the effect on samples of all 

queries to the D-root DNS root server. 
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ssumed that hosts infected with the same malware behave in

 similar manner and that bot-generated flows captured within

he IDS logs will share many of the same characteristics. Subse-

uently, they were clustered in a two-stage, high dimensional clas-

ifier for identifying botnet campaigns. The evaluation results on

 university campus reveal a botnet detection rate of 99.6%. Sim-

larly, Homayoun et al. (2018) proposed BoTShark , primarily us-

ng deep learning models such as autoencoders and convolutional

eural networks relying on captured netflows to efficiently detect

alicious traffic. With a true positive rate of 0.91 and a false posi-

ive rate of 0.13, BoTShark successfully detected malicious traffic

ignatures of botnet campaigns. 

Additionally, different works attempted to identify and charac-

erize IoT botnets through passively collecting one-way network

raffic. Araki et al. (2019) proposed a methodology that not only

etected bots, but classified their primary behaviors and character-

stics. Utilizing a two-step subspace clustering method to cluster

otnets and clarify partial characteristics (such as low-size flows

r high TCP-SYN packet rates), the methodology was evaluated

n two real-world datasets, collected by upstream, backbone ISPs.

imilarly, Ozawa et al. (2019) studied IoT botnet characteristics by

ay of analyzing their scan activities. The authors applied asso-

iate rule learning ( Agrawal et al., 1993 ) on network telescope fea-

ures such as destination ports, ToS, and TCP window sizes to dis-

over the activities of bots that were infected with well-known

alware. Their work reported interesting observations on the evo-

ution of IoT botnet characteristics before and after the release of

he Mirai ’s source code. 

In contrast, other works specifically focused on a single IoT bot-

et family to retrieve relevant attack vectors and behavior, such

s the Mirai botnet ( Antonakakis et al., 2017 ). Another example

ncludes, Herwig et al. (2019) who provided a comprehensive in-

estigation related to the Hajime IoT botnet, revealing crucial in-

ights such as Hajime’s atypical infrastructure. Deviating from typ-

cal command and control infrastructures that rely on bots to com-

unicate with infected servers to receive orders, instead relying

n peer to peer connections between bots and utilizing the Bit-

orrent protocol to transfer payloads. To summarize such contri-

utions, Table 1 provides a brief classification of recent selected

orks using different dimensions. 
I
The aforementioned works present significant and important

nalysis of IoT botnets; however, a number of limitations prevent

hem from offering a generic, Internet-wide perspective of global

oT botnet populations. Target-specific studies designed to investi-

ate a singular IoT botnet take advantage of known botnet infras-

ructure or signatures, and in turn cannot be replicated or gener-

lized to study other IoT botnets. Furthermore, the vantage point

ffered by the honeypots, results in limited exposure when com-

ared with one offered by a network telescope. To this end, in this

ork, we complement and expand upon previous contributions

y developing a purely passive methodology to not only identify

nternet-scale compromised IoT devices, but also to infer ongoing

oT botnets by capturing their orchestrated artifacts. 

. Proposed methodology 

This section details the proposed approach as depicted in

ig. 2 . Its core components include (i) data collection and dataset

reparation, which introduces the darknet sanitization probabilis-

ic model to filter out misconfiguration traffic along with the infer-

nce of Internet-scale probing activities and labeling their sources;

ii) the systematic evaluation of state-of-the-art machine learning

nd deep learning classifiers for fingerprinting compromised IoT

evices; and (iii) the feature engineering process coupled with ex-

cuting hierarchical agglomerative clustering to infer and report on

oT botnets. These steps are subsequently detailed. 

.1. Network telescope sanitization model 

As previously noted, network telescopes, most commonly

nown as darknets ( Fachkha and Debbabi, 2016 ), constitute a set

f allocated and routable, yet unused, IP addresses. Since these

ddresses do not operate legitimate services, any traffic target-

ng them is considered unsolicited. From a deployment perspec-

ive, network telescopes are commonly distributed on specific In-

ernet IP subspaces operated by Internet Service Providers (ISPs),

ducational entities and corporate backbone networks. Darknet IP

ddresses are, by nature, indistinguishable from other routable

ddresses, rendering them an effective technique to amalgamate

nternet-wide, one-way unsolicited network traffic. 
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Fig. 2. The components of the proposed approach. 
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Although network telescope (darknet) data predominantly con-

sists of malicious packets originating from probes, backscattered

packets from victims of DDoS attacks, and malware propagation

attempts, it also contains misconfiguration traffic. The latter Non-

malicious packets frequently result from network, routing, hard-

ware, or software faults that were erroneously directed towards

a darknet. Such traffic might also be an artifact of improper

configurations during darknet deployment. Misconfiguration traf-

fic ( Fachkha and Debbabi, 2016 ) impedes the proper functioning

of cyber threat intelligence algorithms operating on darknet data,

which often yields numerous undesirable false positives and false

negatives and waste of valuable storage resources. Given the lack

of formalism in addressing this problem, the objective herein is to

elaborate on a probabilistic model that is specifically tailored to-

wards the preprocessing of darknet data by way of fingerprinting,

and in turn, filtering out embedded misconfiguration traffic. 

In brief, the model formulates and computes the probability

metrics of misconfigured traffic, while capturing the behavioral

perspective of misconfiguration flows as they target the darknet

space. Regarding the natural tendencies associated with typical

network flows, the model initially estimates the rarity of hosts at-

tempting to access the destination address. Secondly, the scope of

access is considered, accounting for the number of distinct darknet

IP addresses that a specific remote source has accessed, preserv-

ing the unique characteristics of the misconfiguration flow. Subse-

quently, the joint probability is formulated, computed, and com-

pared. If the probability of the source generating a misconfigura-

tion flow is higher than that of the source being malicious (or un-

solicited), then that particular source is deemed to be generating

misconfiguration traffic, flagged, and the corresponding flows are

filtered out. In the following, we detail the notions of both rareness

and scope of access. 

Let D = { d 1 , d 2 , d 3 , · · · } represent the set of darknet IP ad-
dresses, with D i being a subset of those accessed by source s i . First,

the model captures how unusual these accessed destinations are.

The underlying idea in doing so stems from the fact that miscon-

figured sources target destinations seldom called upon by others

( Ford et al., 2006 ). Thus, the model estimates the distribution of a

darknet IP d i as being accessed by such a source as 

P misc (d i ) = 

n s (d i ) ∑ 

∀ d j ∈ D n s (d j ) 
, (1)

where n s ( d i ) is the number of sources that have accessed d i ; in

contrast, a malicious darknet source will target a given destina-

tion at random. Typically, defining a suitable probability distri-

bution to exemplify the randomness of a malicious source tak-

ing aim at a specific darknet destination is quite tedious; there-

fore, a simplistic assumption is often applied to resolve this po-

tential headache. In this context, Durumeric et al. (2014) demon-

strated that sources probe their darknet targets following a Gaus-

sian distribution. By adopting that assumption, one can model the
robability of a darknet destination being accessed by a malicious

ource as P mal (d i ) = 
1 

σ
√ 

2 π
e −( x −μ) 2 / 2 σ 2 

where σ is the standard de-

iation, μ is the mean, σ 2 is the variance, and x is the location

f the darknet destination following the aforementioned distribu-

ion. Recall that not only does the model capture how unusual the

ccessed destinations are, but it also considers the number of dark-

et destinations accessed by a particular source, which we subse-

uently describe. Given a set of D i darknet destinations accessed

y a specific source s i , the model ultimately measures two prob-

bility distributions, namely, P misc ( D i ) and P mal ( D i ); the former be-

ng the probability that D i has been generated by a misconfigured

ource and the latter originating from that with a malicious intent

owards darknet D i . For example, if the darknet addresses accessed

y s 1 are D 1 = { d i 1 , d i 2 , d i 3 } , P ( D 1 ) equates to the probability of s 1
ccessing the specific combination of addresses { d i 1 , d i 2 , d i 3 } given

hree targeted destinations, multiplied by the probability of s 1 ac-

essing any three destinations. In turn, we can generalize P ( D 1 ) as

 (D i ) = P (D i = { d i 1 , d i 2 , · · · d in } | | D i | = n ) × P (| D i | = n ) . (2)

or both a misconfigured and malicious source, the first term of

q. (2) can be modeled as 

 (D i = { d i 1 , d i 2 , · · · } | | D i | ) = 

1 

K 

∏ 

∀ d j ∈ D i 
P (d i ) (3)

here K, acting as a normalization constant and solely being used

s a means of summing the probabilities to 1, could be defined as

 = 
| D | ! 

n !(| D |−n )! 
× 1 

| D | n . K is a standard normalization constant often

mployed in Bayesian probability ( Gelman et al., 2014 ). Moreover,

 encompasses all sources in the data, whereas | D | represents the

arknet IP space. Consequently, the likelihood that a source will

arget a certain number of darknet destinations (i.e., the second

erm of Eq. (2) ) depends upon whether it is malicious or miscon-

gured. Characteristically, misconfigured sources access one or few

estinations while those with malicious intent target a larger pool.

ccordingly, we model such distributions as 

 misc (| D i | ) = 

1 

(e − 1) | D i | ! (4)

 mal (| D i | ) = 

1 

| D | , (5)

here the term (e − 1) in Eq. (4) ensures the distribution’s sum-

ation equals 1. Eq. (4) guarantees a significant decrease in the

robability as the number of targeted destinations increases. In

ontrast, Eq. (5) captures that of a random number of darknet ad-

resses being accessed by a malicious source. Thereby, via plug-

ing in of Eqs. (4) and (5) into (3) , respectively, we can represent

he probability of a source being either misconfigured or malicious,
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1 https://github.com/COYD-IoT/COYD- IoT/blob/master/Port- List.txt . 
2 https://www.zoomeye.org/component . 
3 https://github.com/zmap/ztag/tree/master/ztag/annotations . 
iven a set of darknet destination addresses, as 

 misc (D i ) = 

1 

K(e − 1) | D i | ! 
∏ 

∀ d j ∈ D i 
P misc ( d i ) (6) 

 mal (D i ) = 

1 

K| D | 
∏ 

∀ d j ∈ D i 
P mal (d i ) . (7) 

Eqs. (6) and (7) provide two distinct likelihood models to

istinguish between misconfiguration and malicious, darknet- 

ound traffic, which enables their simplified and systematic post-

rocessing. Furthermore, as the proposed model generalizes and

ormalizes the concepts of misconfiguration and malicious dark-

et traffic, it does not make any assumptions regarding the nature

f the sources from which the given types of traffic are originat-

ng. Thus, the method deems a source and its corresponding flows

s misconfiguration traffic if ln P misc (D i ) − ln P mal (D i ) > 0 . To effec-

ively employ the proposed network telescope sanitization model,

e present Algorithm 1 , which provides a simplistic yet effective

echanism to flag misconfigured sources. 

lgorithm 1 Network Telescope Sanitization Algorithm. 

Input: Darknet Flows, DarkFlows 

Output: Flag, MiscFlag , indicating that the respective flow is orig-

inating from a misconfigured source 

for DarkF lows do 

MiscFlag ← 0 

i ← DarkFlows.getUniqueSources() 

Amalgamate DarkF lows i originating from a specific source s i 
Update s i (D i ) 

Compute P misc (D i ) , P mal (D i ) 

if P misc (D i ) > P mal (D i ) then 

MiscFlag ← 1 

end if 

end for 

Since the field of Internet measurements for cyber se-

urity heavily relies on processing network telescope data

 Fachkha and Debbabi, 2016; KoronIoTis et al., 2019 ), we

ake the model’s code available to researchers and secu-

ity operators at large from https://github.com/COYD-IoT/COYD-

oT/tree/master/Darknet%20Sanitization. 

.2. Data collection and dataset preparation 

This section summarizes the methodology used to infer prob-

ng activities captured at a network telescope. We also detail the

roposed mechanisms for feature engineering and active mea-

urements, in order to fingerprint IoT devices through data-driven

earning. 

.2.1. Inferring probing activities 

After employing the aforementioned pre-processing steps to

anitize misconfiguration traffic, the aim is to dissect the malicious

raffic in order to extract probing flows as perceived by a network

elescope as indicators of exploitation. This is achieved through a

hreshold Random Walk (TRW)-based probing detection algorithm

 Jung et al., 2004 ). The TRW algorithm searches for subsequent

ackets from the same source IP address for a duration of 300

econds. If the time-based threshold is exceeded without receiv-

ng a packet, the given counter is reset. If the threshold has held

nd the duration has not expired, the counter is incremented. If

he counter reaches a threshold of 64 ( Rossow, 2014 ), the flow is

eemed as a probing event. 
.2.2. Feature extraction for IoT classification 

Following the amalgamation of packets into flows, the first t

onsecutive packets are extracted from each. Given that the major-

ty of the observed scanning traffic are TCP SYN scans, the appli-

able features reside in the TCP and IP header fields (i.e., ToS, To-

al Length, Identification, TTL, Dst IP Address, srcPort, dstPort, TCP

EQ, TCP ACK SEQ, TCP offset, TCP DATA Length, TCP Reserve, TCP

lags, TCP Win, TCP URP, TCP options, Packet Inter-arrival Time).

verall, along with the inter-arrival time of the consecutive pack-

ts within a flow, d = 17 features are gathered for each packet. In

urn, the data samples for each scanner IP address would consist

f a t × d matrix. To elaborate on the model’s training procedure,

e subsequently detail the labeling process. 

.2.3. Port scanning and banner grabbing 

In order to annotate decidedly accurate labels for the train-

ng dataset, it was imperative to perform the procedure herein

pon detection of a scan activity to circumvent any potential com-

lications due to the dynamic reallocation of the associated de-

ice’s IP address (through DHCP, for instance). To accomplish this,

e utilized the gigabit open-source Internet scanning tool ZMap

 Durumeric et al., 2013 ) as well as the high-speed application

canner ZGrab ( Durumeric et al., 2015b ), in tandem, to provide

omprehensive results necessary for guaranteeing the versatility

f the classification task. Specifically, ZMap was used to probe 45

orts 1 of the IP addresses (that were previously inferred as prob- 

ng sources) that were found to be active. The port list is se-

ected based on reports by ZoomEye ( ZoomEye, 2019 ) during a one

onth analysis of returned banners, chosen to cover most of the

efault ports of various devices in order to maximize the number

f captured banners. Furthermore, via ZGrab, we obtained banner

elds and application handshakes from various protocols such as

TTP(s), CWMP, TELNET, SMTP(s), IMAP(s), POP3(s), SSH, FTP, SMB,

NP3, MODBUS, BACNET, FOX, Siemens S7 and SSL certificates. Ad-

itionally, we designed and developed two custom scanning mod-

les to extract RTSP and SIP banners. 

.2.4. Tagging and labeling 

To label discovered IoT devices, we amalgamated a comprehen-

ive list of keywords related to major Internet-facing IoT devices

nd vendors. As previously noted, these are typically the devices

hat are most targeted by IoT botnets. This list consists of de-

ices provided by Nmap along with results from ZoomEye Internet

canner 2 ( ZoomEye, 2019 ) and ZTag, Censys’s tagging module. 3 Al-

hough it is unrealistic to claim that we cover all IoT products from

very manufacturer and vendor, we carefully leverage information

rom various sources and focused on widely deployed Internet de-

ices. In addition, we implemented a parsing algorithm which ex-

racts useful keywords from banners and SSL certificates such as

he combination of letters, digits, “-” and “_” signs, which typically

epresent device models ( Feng et al., 2018 ) to enrich our list of de-

ices. We further considered devices running multi-purpose OSs as

on-IoT, which were identified using keywords such as “Win64”,

Ubuntu”, “Microsoft IIS” and “CentOS”, etc. while we deemed

ther specialized devices as IoT where their OS types were indi-

ated as being “embedded”, “RouterOS”, “FritzOS” etc. For example

TD-W8960N” is a sample keyword in the database related to a

P-LINK router that is marked as IoT. The prepared database con-

ists of 3286 patterns related to 1121 vendors. We make this list

ublicly available at https://github.com/COYD-IoT/COYD-IoT/blob/ 

aster/devices.txt . Given that not all scanning events are illicit in

https://github.com/COYD-IoT/COYD-IoT/blob/master/devices.txt
https://github.com/COYD-IoT/COYD-IoT/blob/master/Port-List.txt
https://www.zoomeye.org/component
https://github.com/zmap/ztag/tree/master/ztag/annotations
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nature (e.g., academic institutions conducting research) such enti-

ties will incorporate information into their banners. Thereby, we

leverage banners, coupled with a Greynoise list ( GreyNoise, 2019 ),

to filter out these benign scanners 4 . 

3.3. Model training for fingerprinting compromised IoT devices 

We propose herein a learning approach for the extraction of

embedded features within unsolicited scan flows for the training

of a binary classifier which distinguishes between traffic originat-

ing from both malicious IoT and non-IoT devices. The underlying

methodology is based upon determining similarities in network

traffic that are exclusively associated with IoT devices and their

corresponding IoT malware in order to fingerprint flows originat-

ing from them. Additionally, it is known that IoT products manu-

factured by the same vendor possess a uniform, low-level architec-

ture such as sharing a similar network card, operating system, etc.,

and happen to share the same TCP/IP stack information, includ-

ing but not limited to TTL value and initial TCP window size, thus

permitting the fingerprinting of IP addresses that Internet scanning

services (i.e., Shodan) may have overlooked or could not identify. 

To select a suitable and sound learning technique, we com-

pare and contrast the performance of five models to permit the

classification of compromised IoT devices in order to distinguish

them from compromised, multi-purpose hosts. The first three are

based on Convolutional Neural Network (CNN) deep learning mod-

els. Deep learning is an emerging branch of machine learning that

use multiple layers of neural networks, backpropagation, and er-

ror correction to automatically learn features (i.e., representations)

from a given data input. CNN is a state-of-the-art deep learning

algorithm that uses dynamic kernels along a given data input to

automatically extracts (i.e., pool) features. To this end, we asses

a two-dimensional CNN (2D-CNN), a one-dimensional CNN (1D-

CNN) ( Collobert et al., 2011 ) and a multi-window one-dimensional

CNN (MW-1D-CNN) ( Cheng et al., 2016 ) in addition to two “shal-

low” learning methods rooted in Random Forest (RF) models. 

In this context, an input sample consists of a matrix representa-

tion X of a flow with t packets and the number of extracted fields

d from a packet is considered, yielding X ∈ R 
t×d . Namely, the i th 

packet in a given flow is x i ∈ R 
d . Convolution operations are also

defined by applying local kernels w ∈ R 
h ×w on the input to extract

spatially local correlations in the data. In terms of the 2D-CNN

model, it contains L number of consecutive two dimensional con-

volutional layers (with k kernels of size w × w ) and max pooling,

followed by two dense hidden layers of sizes 64 and 32, respec-

tively, and a Softmax classifier at the end ( Fig. 3 a). The 1D-CNN

model has a similar architecture to the 2D-CNN, but instead, the

convolution kernels have a fixed kernel width equal to the input

sample width (i.e., h × d ) ( Fig. 3 b). Further, the MW-1D-CNN model

mixes the outputs of various kernel heights h to capture the fea-

tures. In turn, the output of the first layer of the proposed model

is given by c i = f (w · x i : i + h −1 + b) , where x i : i + h −1 defines the nota-

tion for a sequence of packets x i , x i +1 , ., x i + h −1 , b representing the

bias, and f denoting the non-linear activation function. The filter

is applied to each 2D sample instance to produce a feature map

c = [ c 1 , . . . , c t−h +1 ] . Subsequently, max pooling is applied over the

feature map c , taking the value max c . We used kernels w of differ-

ent window heights h ( h = [2 , 4 , 6 , . . . , h max ] ) to enable the capture

of varying dynamics specific to darknet packet flows ( Fig. 3 c). 

We also devise two RF models. The first was constructed based

on raw packet features. The second operates on statistical fea-

tures. We define feature statistics as the 5-tuple { min , 1- quantile ,

median , 3- quantile , max } of each field in flows of packets, which
4 https://github.com/COYD-IoT/COYD- IoT/blob/master/Benign- Scanners.txt . 

 

a  

c  
verall produces 85 features. These statistics can be considered as

n estimation of the probability distribution function related to

ach field of the packet sequence in each flow. Please note that

e make available the source code of the developed models, in-

luding their specificities from https://github.com/COYD-IoT/COYD-

oT/tree/master/IoT%20classifier%20models. 

.4. IoT Botnets: Features’ extraction and campaign inference 

Following the binary classification of IoT-generated scanning ac-

ivities while filtering out non-IoT sources by employing the de-

eloped model, we conduct a thorough investigation on each in-

ividual flow’s characteristics Flow IP . Such flows are comprised of

t least 500 ( t ≥500) sequential packets, originating from a par-

icular unsolicited IoT device. We proceed by extracting the corre-

ponding feature set from aggregated flows F IP = < Ports IP , πππ IP ,

lag IP , ARR IP > . Ports IP is the grouping of the targeted transport

rotocols paired with their associated ports in ascending order

e.g., Ports IP x = {TCP:23, TCP:80, TCP:8080}). In turn, πππ IP is the cor-

esponding discrete probability distribution function which repre-

ents the frequency of appearance of each of these ports within the

iven flow of packets (e.g., πππ IP x = [0.15,0.70,0.15]). This is relevant

ince IoT devices typically possess a limited supply of resources.

s a result, in the midst of conducting illicit scanning activities,

hey are often allocated to different ports and weighted based on

he expected return. Flag IP is Boolean, holding a value 1 if the IoT

evice conducting the scanning has the signature tcpSeq == dstIP 

nd 0 otherwise. This inference provides insights about a Mirai -

ike behavior, possibly indicating a variant or a code-reuse prac-

ice. Lastly, the Address Repetition Ratio, or ARR IP , is the ratio

f the total number of packets sent by a source IP address over

he number of unique destination IP addresses, and is defined as

RR IP = 

| F low F low F low IP | |{ d stIP| d stIP∈ F low F low F low IP ) }| . Such scenarios as an ARR IP greater than
ne are a consequence of the sending of multiple packets to a par-

icular destination in order to compensate for packet loss and/or

he probing of multiple ports at each destination. Note that, each

nstance of the same probing campaign will exhibit an equivalent

RR IP due to the underlying IoT orchestrated probing machinery. 

.5. Minimum number of packets (t) for robust feature estimation 

To derive an accurate estimation of the discrete probability dis-

ribution πππ, we perform statistical analysis to compute a suitable

 . By generating a lower bound on the number of packets, we can

uarantee a minimum error of 5% within a confidence level of 0.5.

ote that within the /8 network telescope, scan packets arrive with

 random probability of 1/256, resembling the random sampling

rocedure. We consider the population of scan packets originated

y a compromised IoT device, and adopt a simple random sampling

echanism, as shown in Eq. (8) ( Cochran, 2007 ), to derive a lower

ound on the sample size (equivalently, the number of received

ackets within the network telescope). The method herein is thus

sed to estimate the minimum sample size necessary to find the

ower bound. By leveraging the requirements of a population pro-

ortion interval ( Cochran, 2007 ), we perform the estimation at a

 − α confidence level, margin of error E and a planned proportion

stimate p . By selecting more than n 0 samples, we assure that the

robability that the actual error to be larger than E is not more

han a small value α, i.e., P r(| p − P | ≥ E) = α; where z α/2 is the

00(1 − α/ 2) percentile of the standard normal distribution. 

 0 = 

z 2 α/ 2 p(1 − p) 

E 2 
(8)

Since the product p(1 − p) increases as p moves toward 0.5,

 conservative estimation of the sample size is obtained by

hoosing p = . 5 , regardless of the actual estimated value of p .

https://github.com/COYD-IoT/COYD-IoT/blob/master/Benign-Scanners.txt
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Fig. 3. CNN models for IoT/non-IoT binary classification. 
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herefore, using a 0.5 planned portion estimate, the sample size

eeded to achieve a 5% margin of error at 95% confidence level

s computed at 385. In this work, we select the number of pack-

ts equal to 500 ( ≥385) to significantly minimize the risk of errors

n the extracted features, namely πππ, to avoid subsequent issues in

lustering and campaign detection. 

.6. Clustering mechanism 

We hierarchically divide the IP addresses of the IoT scanners

nto separate groups G G G i based on the given Ports IP , Flag IP and

RR IP of their feature set F IP . Upon completion, we cluster mem-

ers of each group G G G i to identify those scanning for the same set

f ports but with a different probability distribution function πππ .

his enables us to leverage hierarchical agglomerative clustering

 Xu and Tian, 2015 ), which determines the proximity matrix by

alculating the distance between every pair of probability distri-

ution functions { πππ IP | IP ∈ G G G i } based upon the Jensen-Shannon Di-

ergence (JSD) ( Cha, 2007 ) distance metric. JSD, defined in (9) , es-

imates the distance between two discrete distribution functions,

nd is the symmetrized version of the well-known Kullback-Leibler

ivergence (KLD). 

SD ( πππ i || πππ j ) = 

1 

2 
KLD ( πππ i || M M M ) + 

1 

2 
KLD ( πππ j || M M M ) , (9)

here M M M = 
1 
2 ( πππ i + πππ j ) . and KLD ( P P P || Q Q Q ) = −∑ 

i P P P (i ) log ( 
Q Q Q (i ) 
P P P (i ) 

) for

iscrete PDF P P P and Q Q Q . 

We select hierarchical agglomerative clustering due to the fact

hat based on statistical analysis, the estimated πππ values are within

he specific distance from the actual distribution (cluster centers)

ith high confidence. Therefore, it can correctly identify centers

y merging close samples and executing a bottom-up approach. In

ddition, other clustering methods (such as k -means) assume equal

luster sizes which is not correct in the context of IoT campaigns

hile density-based techniques (such as DBSCAN ( Khan et al.,

014 )) are only suitable when the density of the data is non-

niform and the clusters can be shaped arbitrarily. As noted, hier-

rchical agglomerative clustering operates in a bottom-up fashion.
ach observation forms its own cluster and begins moving up the

istance-based hierarchy, subsequently merging with the clusters.

o designate appropriate consolidation, we use a distance thresh-

ld (0.05) in which merging only occurs if the distance between

he two given cluster centers falls beneath. 

. Empirical evaluation 

The evaluation was executed using 3.6 TB of darknet traffic that

as collected throughout a 24-h period on December 13th, 2018.

his data is provided by the Center for Applied Internet Data Anal-

sis (CAIDA) /8 network telescope. While this specific dataset per

e is subject to MOUs and thus cannot be shared as is, inter-

sted readers can request access to CAIDA’s real-time darknet data

hrough DHS IMPACT ( Policy and Trust, 2019 ). Additionally, while

e make available a sample collected at another /13 darknet IP

pace available through the GitHub repository for experimenta-

ion purposes, the developed and open-source methods are generic

nough to be applied on any darknet data within any desired time

rame. 

.1. Results of the darknet sanitization model 

By executing the proposed model of Section 3.1 , the distribution

f malicious and misconfiguration traffic with respect to the num-

er of packets was found to be 88.21% and 11.79%, while the distri-

ution of source IP addresses was 26.17% and 73.83%, respectively.

alidation of such outcome revealed that close to 90% of the mis-

onfiguration traffic defines packets that hit the /8 network tele-

cope only once, while the remaining appeared to be malformed

ackets. Further, it can be observed that even though misconfigu-

ation traffic is relatively low (11.79%), it is responsible for a large

roportion of the source IP addresses (73.83%). These findings shed

ore light on the problematic nature of misconfiguration traffic

ith regards to Internet measurements via network telescopes and

mphasize the effectiveness of the proposed pre-processing model

 Table 2 ). 



10 M. Safaei Pour, A. Mangino and K. Friday et al. / Computers & Security 91 (2020) 101707 

Table 2 

Distribution of malicious and misconfiguration 

traffic in the /8 network telescope dataset. 

Malicious Misconfiguration 

Traffic 88.21% 11.79% 

Sources 26.17% 73.83% 
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In terms of runtime, the implementation heavily relied on the

Linux-derived libpcap C++ library while running on an Ubuntu

18.04 system. Testing our model on a machine with a quad core In-

tel i7-8550 at 1.80GHz processor and 16GB of RAM, the developed

approach processed 8GB files containing close to 67.5 million pack-

ets with an average 636 second execution time, consuming close to

11.6GB of RAM. We believe runtime can be considerably improved

by using SSD storage (since most of the delay was I/O related) and

adopting multithreading. 

4.2. Results of dataset preparation 

Regarding the data collection and dataset preparation steps of

Section 3.2 , and by immediately scanning back about 1.7M In-

ternet scanners inferred through the network telescope, about

25.84% of them were found to have at least one open port. Fur-

ther, amongst the total 543,392 gathered banners, the majority

were HTTP (54.11%), FTP (11.10%), SSL Certificate (10.50%), TELNET

(10.19%), RTSP (7.00%), and CWMP (2.60%). We were able to dis-

tinguish between 45,184 IoT and 7763 non-IoT devices to generate

the training dataset. At this juncture, the label and corresponding

metadata were incorporated into t × d training and test data ma-

trices of IoT and non-IoT devices. We shuffled the training dataset

and then performed normalization by way of the Min-Max method

( García et al., 2015 ). Subsequently, we computed and removed the

mean. To evaluate the proposed model, we trained it using a pre-

pared dataset captured in November 2018 and then tested it using

our dataset from December 2018. The one month gap between the

training and test datasets ensured that there exists no correlation

between them for sound evaluation. The test dataset consisted of

34,974 IoT and 7193 non-IoT sources. 

4.3. Evaluating the IoT classification models 

The proposed CNN models were implemented in Keras

( Chollet et al., 2015 ). To address the problem of class imbalance

within the training dataset, cost-sensitive learning was applied

( Thai-Nghe et al., 2010 ). The number of epochs was found to be

30 to avoid over-fitting. Further, we performed a search on sub-

spaces of hyper-parameters as presented in Table 3 , leveraging

Tree-structured Parzen Estimator (TPE) ( Bergstra et al., 2011 ) in

Hyperas ( Pumperla, 2019 ), and selected the best model (out of

100 trials) with regards to the loss. RF models were implemented

and trained using the scikit-learn ( Pedregosa et al., 2011 ) package.

The best model was retrieved based upon random search (using

the RandomizedSearchCV method) in the search space as summa-

rized in Table 4 . In Tables 3 and 4 , parameter ranges are reported

with begin:step:end format. For evaluating the CNN models,

we leverage an NVIDIA GeForce RTX 2070 GPU with 8GB of mem-

ory, 2304 CUDA cores and 288 Tensor cores to accommodate for

parallelization. 

To compare the performance of the different models, we rely

on standard machine learning metrics such as precision, recall, F-

measure and AUC-ROC for the IoT class. Precision is the ratio of

correctly classified IoT devices over all the instances that have been

designated as IoT using the proposed model ( precision = 
t p 

t p+ f p ).
Recall is the ratio of correctly classified IoT devices over the to-

tal number that is actually existing within the test data ( recall =
t p 
t p+ f n ). Recall demonstrates the model’s ability to find all relevant

ases within a given dataset, whereas precision gives the model’s

bility to designate only the actual relevant cases as relevant. In

rder to bring these two metrics together, often F-measure is em-

loyed which takes the weighted average of precision and recall,

.e., the harmonic mean ( F − measure = 2 . precision.recall 
precision + recall ). The Area

nder the Receiver Operating Characteristic Curve (AUC-ROC) is

 threshold-independent performance measurement for classifica-

ion. It measures the entire two-dimensional area underneath the

OC curve (i.e., true positive rate vs false positive rate at all classi-

cation thresholds) from (0,0) to (1,1). 

We report the results in Figs. 4 and 5 . We can note that the

UC-ROC score for the RF model trained on quantiles is slightly

igher than that of the other models. Further, both of the figures

eveal that the CNN-based models result in higher recall and lower

recision scores in contrast to the RF models. The outcome also

hows that the multi-window 1D-CNN (MW-1D-CNN) outperforms

he 1D-CNN and the 2D-CNN; this is quite expected, since packet

elds (unlike image pixels) lack temporal or spatial relationships

ith one another. Therefore, moving the kernels over the horizon-

al dimension would not lead to better learning. Furthermore, the

ulti-window 1D-CNN can capture varying dynamics given that

nly a portion of the scan packets actually hit the /8 darknet. 

.3.1. Feature importance 

To shed light on which features were most decisive in the

earning process, and given that the RF models performed the

ighest, we illustrate the features’ scores (derived from the RF

odel on quantiles) in Fig. 6 . As expected, the distribution of desti-

ation ports which typically reveals the scans’ intentions plays the

ost noteworthy role for fingerprinting IoT devices. This is closely

ollowed by other fields such as the total packet length and the to-

al header length, in addition to the TCP/IP stack and OS-related

elds including the TCP window size, option fields and the TTL. 

.3.2. Effect of number of packets ( t t t ) on the classifiers 

Figs. 7 and 8 illustrate the impact of the number of packets

ithin the input sample X ∈ R 
t×d on the AUC-ROC and processing

ime (loading and training data). To quantify the effect for each

alue of t , we execute the training process 10 times using param-

ters taken from the best models, retrieved from Tables 3 and 4 .

lthough it is expected that increasing the number of packets will

ncrease the total amount of information to be processed, subse-

uently increasing a model’s performance, it is not consistently

roven. Reviewing the results in Fig. 7 , when a RF model is trained

sing raw features, adding an increasing amount of packet data

ill eventually confuse the model, lowering the AUC-ROC of the

F model. In contrast, when a RF model is trained on quantiles,

ncreasing the amount of input packet data actually lead to an im-

rovement in the AUC-ROC of the model, with diminishing returns.

n addition, it can be seen that changing t has no significant trend-

ng effect on the AUC-ROC of CNN-based models. 

Fig. 8 reveals that an increased sample size, containing a larger

umber of packets, will generally increase the processing time.

ost evidently perceived in the MW-1D-CNN model, its high com-

lexity leads to a significant increase in processing time as the

ample size is increased. However, an increased sample size leads

o a slight decrease in processing time for a quantile-trained

F model. Ultimately, the results depict that maximum AUC is

chieved through training an RF model with t = 90. Furthermore,

he non-RF models have an acceptable performance and AUC value

t t = 90 . Therefore, to facilitate future implementations and ex-

erimentation, t = 90 is found to be a suitable choice for efficient

nd accurate classification. 
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Table 3 

Tuned hyperparameters of the selected CNN models. 

Parameters Space 2D-CNN 1D-CNN MW-1D-CNN 

Optimizer SGD, Adam, RMSProp RMSProp RMSProp RMSProp 

Num. of kernels ( k ) 32,64,128 32 128 64 

Kernel size ( w × w ) (2,2),(3,3) (2,2) - - 

Kernel height (h) 2,4,8,16,32,64 - 64 - 

Max kernel height ( h max ) 40:10:80 - - 80 

Pool size (p) 2,3 2 3 - 

Batch size 128, 256 128 256 256 

Activations Relu, Sigmoid, Tanh Sigmoid Tanh Sigmoid 

Dropout U (0.1, 0.3) 0.195 0.296 0.298 

learning rate 0.001 0.001 0.001 0.001 

Num. CNN layers (L) 1:1:4 4 3 - 

Fig. 4. Performance metrics of the devised models. 

Fig. 5. AUC-ROC curves to evaluate the devised models. 

Fig. 6. Ranking of features’ importance. 
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Fig. 7. Effect of packet number ( t ) on AUC-ROC. 

Fig. 8. Effect of packet number ( t ) on processing time. 

Table 4 

Tuned hyperparameters of the RF models. 

Parameters Space RF on raw fields RF on Quantiles 

Num. estimators 20:20:100 60 60 

Max depth 4:4:20 12 12 

Min samples leaf 2:10:102 52 52 

Min samples split U (2, 10) 6 4 

Bootstrap True, False False False 

Criterion Gini, Entropy Entropy Gini 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Top countries hosting infected IoT devices. 

Country (%) Country (%) 

Brazil 41.93 Greece 1.70 

Iran 10.17 Italy 1.60 

China 5.14 United States 1.42 

Russian 3.59 Indonesia 1.25 

Egypt 3.36 Mexico 1.24 

India 2.47 Ukraine 1.21 

Turkey 2.32 Korea (south) 1.07 

Taiwan 2.13 United Kingdom 0.83 

Vietnam 1.91 Thailand 0.72 

Argentina 1.83 Spain 0.66 
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4.4. Inferring and characterizing compromised IoT devices and 

campaigns 

Given the aforementioned classification results, we selected the

MW-1D-CNN model since it provided the highest true positive rate

while limiting the false positive rate to around 0.08 ( Fig. 5 ). We

further re-trained the model on recent data from December 2018

to accompany for any evolving dynamics. 

By applying the binary classifier on 24 hours of darknet data

of December 13th, it was capable of fingerprinting 441,766 out of

the 1,787,718 unique scanners to be originating from compromised

IoT devices. Although previous works solely considered those with

a Mirai signature as IoT-related ( Antonakakis et al., 2017 ), we in-

ferred that in fact, they make up less than 25% of the IoT scanner

population that the proposed model was able to uncover, leaving

a whopping 75% to go about their malicious activities without any

semblance of an adequate attribution. 

Table 5 summarizes the location of these exploited devices,

where Brazil (41.93%) was found to be hosting a significant por-

tion, followed by Iran (10.17%), China (5.14%), Russia (3.59%), Egypt

(3.36%), India (2.47%) and Turkey (2.32%). 
Furthermore, the top three ISPs hosting the largest number of

ompromised IoT devices were Vivo (134,021), TE Data (11,804) and

ran Telecom Co. (9912). 

While the extensive presence of IoT scanners alone gives pause

or concern, a relatively significant proportion residing within the

elecommunication and ISP sectors is rather expected; conversely,

heir existence within sectors including but not limited to criti-

al sectors is quite alarming. In Table 6 , critical sectors which ap-

ear in lists provided by the U.S. Department of Homeland Security

DHS) and the European Union (EU) are highlighted ( Husák et al.,

018 ). Amongst the inferred instances, quite a few were found to

e located within that of medical infrastructures (87), government



M. Safaei Pour, A. Mangino and K. Friday et al. / Computers & Security 91 (2020) 101707 13 

Table 6 

Top Sectors hosting infected IoT devices. 
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ntities (86), manufacturing realms (99), and commercial busi-

esses (38). 

Along those lines, the lengthy list of 50 identified vendors re-

eals a broad range of manufactures and device types that IoT

otnets demonstrate preference for exploitation. Amongst them,

ikroTik (14,090), Aposonic (2,222), Huawei (732), Foscam
594) and Hikvision (417) are the topmost five targeted by the

agged compromised devices. Routers (53.64%) and IP Camera/DVR

28.93%) continue to be the most frequently infected devices. 

Moreover, the most commonly targeted ports based upon the

umber of scanning packets generated by the compromised IoT

evices are reported in Table 7 . The top targeted ports include

3 (41.9%), 80 (23.9%), 8080 (19.7%), 5555 (4.9%), 81 (3.2%), 2323

1.7%) and 22 (1.3%). Intriguingly, we identified the presence of

on-IoT targeted ports such as 2480 (OrientDB), 5984 (CouchDB),

389 (RDP), 7001 (Oracle), 5900 (VNC) and 2004 (Drupal), as

ell as that of uncommonly used IoT ports 32,764 (router back-

oor), 37,215 (UPnP in SOHO routers) and 52,869 (UPnP in wireless

hipsets). Set {23,80,8080} is the most prevalent target port com-

ination; 54% of devices actually only scan this port combination. 

.4.1. Inferring and reporting on orchestrated IoT botnets 

Among the 441,766 IoT scanners that were detected on Dec.

3th, 2018, based on the results in Section 3.5 , those that sent less
Table 7 

TCP port distribution determined by quantifying the number 

cluded port. Grey cells highlight unconventional, rarely probed
han 500 packets were filtered out to exclude any of those that can

egrade the estimation of the probability distribution function πππ . 

Subsequently, the respective features were extracted and the

lustering method described in Section 3.4 was executed. In

oughly 40,0 0 0 scan flows, we witnessed less than 0.01% of pack-

ts in each scan flow arriving at specific UDP ports (e.g., 5998,

3922, 48715, 31,869 etc.). After analyzing such occurrences, we

educed they resulted from associated bugs or attacks on P2P

etworks such as BitTorrent; an observation that is also consis-

ent with previous works ( Benson, 2016 ). As a result, in order to

void the ill-effects of uncorrelated incidents, the identified pack-

ts were removed prior to clustering. Regarding the inferred cam-

aigns, the proposed approach detected over 350 orchestrated IoT

otnets. Since the size of each IoT probing campaign translates to

ts given severity, we summarize those botnets possessing more

han 300 coordinated IoT bots in Table 8 . Interestingly, in solely

onsidering IoT scanners that targeted the set of ports {23, 80,

080}, we detected 30 distinct botnets with differing distributions,

lag (i.e., Mirai -like signature/behavior), and ARR. 

.4.2. Packet inter-arrival time analysis generated from the inferred 

otnets. 

Following the investigation of scan-based behaviors of the in-

erred compromised IoT devices, we deduced two separate classes

f unique scan traits. Class 1 includes devices that present periodic

ehavior in the time series of their packet Inter-Arrival Time (IAT).

or rate limiting purposes ( Ceron et al., 2019 ), such devices seem

o generate a fixed number of packets then wait exactly 1 second

o re-confirm their desired scanning rate (in packets per second

pps)). This leads to high peaks in their histograms of packet IATs

s seen in Fig. 9 a. In contrast, the members of the Class 2 do not

ortray any related periodic behavior when analyzing their packet

AT. Fig. 9 b portrays the IAT of the packets generated by the IoT de-

ices of Class 2, demonstrating an exponential distribution. To de-

ect the aforementioned behaviors, we first calculate the histogram

f packet IATs and then identify the peaks with an auto-correlation

oefficient ( Figs. 9 c and 9 d). To reveal the population of such in-

erred classes in the context of the identified probing campaigns,

ig. 10 illustrates the fraction of scanning classes in each campaign.

.4.3. Scan rate analysis of the inferred IoT botnets 

Fig. 11 presents the distribution of scanning rates extracted

rom the inferred IoT botnets, as perceived by the network tele-

cope. Campaigns in which their scan rates follow a normal distri-

ution with a single peak and a narrow width (such as #1, #2,
of compromised IoT scan packets received by each in- 

 ports and services. 
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Table 8 

Orchestrated IoT botnets in the wild. 

Coinhive xmrMiner 
Id Ports Flag ARR #Bots πππ Crypto Miners Compromised Devices 

1 23, 80, 8080 1 139,858 [0.33 0.33 0.34] MikroTik, Hikvision, Foscam, 

Vivotek, Huawei, Aposonic, 

Intelbras, Ubiquiti, Netgear, 

Mitrastar, Askey, Archer 

2 23, 80, 8080 1 55,139 [0.294 0.295 0.411] MikroTik, Hikvision, Intelbras, 

TP-LINK, D-Link, Huawei, ZTE, 

Foscam, QNAP, ZyXEL, Cisco, 

SERCOMM, Vivotek 

3 23, 2323 � � � 1 36,464 [0.9 0.1] Huawei, Aposonic, Foscam, 

Hikvision, Mikrotik, Cisco, 

TP-LINK, CIG Shanghai, ZTE, 

Ubiquiti 

4 80 � � � 1 12,895 [1.] Huawei, Hikvision, MikroTik, 

AvTech, ZTE, Foscam, Cisco, 

Ubiquiti, NUUO 

5 5555 � � � 1 11,050 [1.] Huawei, TP-Link, Hikvision, 

Aposonic, Foscam, MikroTik, 

Sagemcom, iGate, VNPT, 

Trendchip 

6 23, 81 1 9805 [0.495 0.505] Aposonic, Foscam, Huawei, 

Hikvision, ZTE, Lilin, 

Sagemcom, Netgear 

7 23, 80, 8080 2 7610 [0.171 0.650 0.179] MikroTik, TP-LINK, Hikvision, 

AvTech, Foscam, D-Link 

8 23 � � � 1 7200 [1.] Huawei, Hikvision, TP-Link, 

AvTech, TP-LINK, Aposonic, 

ZEM800, ZTE 

9 23, 80, 8080 1 5971 [0.242 0.244 0.514] MikroTik, ZTE, Hikvision, 

TP-LINK, Foscam 

10 23 3 5491 [1.] DZS, Foscam, MikroTik, 

Synology, ZyXEL, Hikvision 

11 80, 8080 1 5162 [0.492 0.508] MikroTik, Foscam, Hikvision, 

Huawei, TP-LINK, Ubiquiti 

12 23 1 4689 [1.] D-LINK, Hikvision, Aposonic, 

MikroTik, Broadcom, ASUS, 

AVM, Netgear 

13 23, 80, 8080 1 4468 [0.442 0.032 0.526] MikroTik, TP-LINK, Hikvision, 

D-Link 

14 23 4 3911 [1.] GPON (DZS), Hikvision, 

Huawei, MikroTik, Dasan, 

Foscam, Mercusys 

15 22, 2222 � � � 1 3783 [0.897 0.103] QNAP, Huawei, Hikvision, 

ASUS, Foscam, SERCOMM, 

MikroTik, Intelbras, Ubiquiti 

16 23, 2323, 5555 � � � 1 3545 [0.249 0.032 0.719] ZyXEL, MikroTik, Avtech, 

Broadcom, Foscam, TP-LINK, 

Hikvision, D-Link 

17 23, 2323 � � � 1 2727 [0.967 0.033] Huawei, ZTE, Hikvision, 

MikroTik, Aposonic, ZEM800, 

Foscam 

18 23 2 2146 [1.] TP-LINK, Hikvision 

19 23, 32764, 80, 8000, 8080, 

8081, 8089, 8090, 81, 8181, 

8443, 8888, 9000 

� � � 1 2140 [0.034 0.122 0.153 0.02 0.154 

0.02 0.019 0.02 0.068 0.123 

0.122 0.022 0.121] 

NUUO, Foscam, Hikvision, 

Huawei, AVM, MikroTik, 

Aposonic 

20 23, 8080 1 1591 [0.48 0.52] MikroTik, Hikvision, D-Link, 

TP-LINK 

21 23, 80, 8080 1 1286 [0.384 0.319 0.298] MikroTik, SERCOMM, Foscam 

22 80, 8080 + rnd 1 1247 [0.45 0.45] MikroTik 

23 23, 81 1 1191 [0.095 0.905] Aposonic, Foscam, Hikvision 

24 23, 80, 8080 1 1083 [0.226 0.5 0.274] MikroTik, D-Link, Foscam, 

Aposonic 

25 23, 5358 1 1059 [0.5 0.5] Hikvision, Foscam, Intelbras 

26 23, 2480, 5555, 5984, 80, 

8080 + rnd 

� � � 1 783 [0.126 0.120 0.134 0.121 0.128 

0.121] 

Foscam, Huawei, Aposonic, 

Hikvision 

27 80, 8080 3 756 [0.814 0.186] MikroTik, TP-LINK 

28 443, 80, 8000, 8001, 8080, 

8081, 8088, 81, 82, 83, 84, 85, 

88, 8888 

� � � 1 723 [0.071 0.071 0.071 0.071 0.071 

0.071 0.071 0.072 0.072 0.072 

0.071 0.072 0.071 0.072] 

Synology, Hikvision 

( continued on next page ) 
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Table 8 ( continued ) 

29 23, 2323 � � � 1 691 [0.794 0.206] Huawei, Aposonic, Hikvision 

30 23, 9000 1 677 [0.49 0.51] Sagemcom, SERCOMM, 

Hikvision, Cisco, Huawei, 

Aposonic, AVM, Mikrotik, 

Foscam 

31 23 5 642 [1.] ZTE, Hikvision, Foscam, 

MikroTik, Netgear 

32 80 1 616 [1.] MikroTik, Hikvision, Huawei 

33 23, 80, 8080 1 544 [0.15 0.3 0.55] MikroTik, Huawei, ZTE, 

Hikvision, Vivotek, Foscam, 

Aposonic 

34 23, 81 1 541 [0.291 0.709] Aposonic, Huawei, Hikvision, 

Foscam, TP-LINK 

35 23, 445, 80, 8080 1 376 [0.3142 0.0587 0.3155 0.3115] MikroTik, Aposonic 

36 23, 7547, 80, 8080, 8291 1 340 [0.334 0.002 0.33 0.331 0.002] MikroTik, Hikvision 

#  

e  

fi  

#  

l  

s  

t  

t  

e  

o  

p  

f  

(  

t  

F

p

6, #11, #14, #15, #18 and #20 of Table 8 ) were found to be

xhibiting strong rate limiting policies regardless of their identi-

ed scanning class. In contrast, the rates of botnets #3, #8 and

17 are distributed over a wider range, showing no artificial rate

imiting behaviors. In fact, this inference matches the released

ource code of the Mirai malware (which botnet #3 is attributed

o), demonstrating the lack of rate limiting practices. For classes
ig. 9. Sample of packet IAT’s histograms for Class 1 (a) and Class 2 (b) scanning practice

eaks. 
hat were discovered to have no artificial rate limiting usages,

ach individually-compromised device sent a maximized number

f scan packets based on their processing power and through-

ut. By focusing on the scanning rates’ distributions of the in-

erred campaigns coupled with their population of scanning classes

 Fig. 10 ), we can deduce some facts about the purity of the clus-

ered campaigns. This enable further scrutiny of such campaigns to
s. (c) and (d) respectively show the auto-correlation of (a) and (b) and the detected 
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Fig. 10. Fraction of the derived scanning practices within the top populated campaigns (as detailed in Table 8 ). 

Fig. 11. A Violin illustration of the top 20 populated campaigns’ scanning rated as observed on the /8 network telescope. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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determine if they contain a singular or multiple botnets. Note that

IAT-related features were not included during the clustering mech-

anism of Section 3.4 . With this in mind, we further examined the

identified campaigns looking for Class 1 scan traits (those employ-

ing rate limiting practices) while their rates’ distributions showing

negative outcomes related to following a single normal distribu-

tion. The outcome, for instance, showed that although botnet #5

was identified as possessing Class 1 scan traits, its distribution of

scanning rate shows 3 distinct peaks. Therefore, we postulate that

there may be three unique botnets that were misidentified within

a single cluster. Nevertheless, this is expected for campaigns with

a single target port (and eventually πππ = [1] ), similar to campaign

#5. 

4.4.4. Geo-distributions of the inferred IoT botnets 

By examining the geo-distribution characteristics of the identi-

fied botnets, we observe significant differences. Fig. 12 depicts the

geo-distribution of the most populated campaigns generating scan

events from multiple continents. Indeed, geo-distribution charac-

teristics are likely a direct result of the popularity differences re-

lated to the adopted device types and manufacturers, which is

known to be unique to each region ( Kumar et al., 2019 ). Since

botnets leverage definitive attack vectors, they are typically cus-

tomized to target specific vendors; coherently, the vendor’s pop-
larity will also attract botnets, which is reflected in the con-

entration of such popular devices/bots in certain geo-locations.

or further analysis, Fig. 13 displays the cumulative distribution

f campaigns over Autonomous Systems (AS). Despite a few cases

ith highly similar distributions (e.g., #2 and #9), other spe-

ially less populated botnets are discovered to have a larger dif-

erence between distributions, as shown in Fig. 13 b. Furthermore,

midst the inferred campaigns, there exists campaigns whose geo-

istributions do not comply with that of the global distribution of

nfections ( Table 5 ). For instance, with respect to campaigns #7,

13, #24 and #27, over 98% of infected IoT devices are located in

ran. Campaign #30 has upwards of 50% and 10% of compromised

oT devices located in USA and UK, respectively. Further, campaign

28 shows a 40% infection rate in North America, and a 21% in-

ection rate in Europe. Spread across multiple geographic regions,

hese campaigns contradict the global distribution of infections. 

.4.5. IoT botnets with cryptojacking capability 

Aside from the dominant monetization method for IoT botnets

erforming DDoS attacks, cryptojacking has emerged as a critical

oT botnet capability ( ISTR, 2018; Tuttle, 2018 ). In essence, com-

romised routers have become responsible for injecting JavaScript

rypto-currency miners into the HTTP pages requested by de-

ices on their network ( Zimba et al., 2019 ). JavaScript miners such
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Fig. 12. Geo-distribution of the top 20 populated campaigns over different continents. 

Fig. 13. Cumulative distribution of the top 20 populated campaigns (of Table 8 ) over different Autonomous Systems. 
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s Coinhive ( Coinhive, 2018 ) and xmrMiner ( xmrMiner, 2019 )

trive for Monero altcoin in particular. To this end, we examined

he responses to HTTP requests derived from the IoT scanners, tag-

ing those that contain the xmrMiner or Coinhive JavaScript

odules, and exporting their corresponding keys. By doing so, we

iscovered 1134 xmrMiner and 923 Coinhive instances with 23

nd 30 distinct keys, respectively. The campaigns designated as

ontaining members with cryptojacking capabilities are highlighted

n Table 8 . The relation of crypto-mining keys appearing in each

ampaign is illustrated using a 3-partite graph as in Fig. 14 . We an-

lyzed the graph to find the number of components to uncover any

urther relations between the campaigns. Interestingly, the graph

s connected. This demonstrates that salient connections exist be-

ween all the campaigns involved in cryptojacking activities. 

In addition, we uncovered large campaigns maintaining crypto-

iner instances with and without the presence of Mirai -like sig-

atures. Moreover, 943 out of 1134 devices, belonging to a total

f 18 campaigns (#1, #2, #4, #5, #7, #8, #11, #13, #15, #16, #19,

(  
20 #21, #24, #32, #33, #35 and #36), share the same xmrMiner-

elated key “4983e34ef01b4b579725b3a228e59e79” (red edges in 

ig. 14 ). In other words, large portions of significant IoT campaigns

ould be reported to be attributed to the same “player”. Addition-

lly, upon exploring the key within Censys , 54,743 Mikrotiks
ere shown to possess it. In total, these campaigns equate to ap-

roximately 250,0 0 0 compromised IoT devices, or 54% of all the

dentified compromised devices. 

.4.6. A closer look at other campaigns of interest. 

Campaign #3 with 36,464 bots was inferred to be targeting

orts 23 and 2323 with a proportion of 9:1, which is the same

s instructed within the Mirai released code. Another interest-

ng observation pertains to botnet #26 (of Table 8 ) where packets

o random TCP and UDP ports were sent in addition to targeting

he defined set of ports of {23, 2480, 5555, 5984, 80, 8080}. Ad-

itionally, this campaign targeted port 2480 (OrientDB) and 5984

CouchDB), as well as other common IoT-related ports including
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Fig. 14. A 3-partite graph of discovered cryptomining-related keys within each 

campaign. Each key is represented by its first 5 characters. Red threads highlight 

the reuse of the same key “4983e34ef01b4b579725b3a228e59e79” in 18 different 

campaigns. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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23, 5555 (ADB) and 8080. Upon further analysis, this behavior

could be attributable to the infamous Hide and Seek botnet

( Rootkiter, 2018b ). 

For port 32,764 which is related to a backdoor vulnerability

( Thomas, 2018 ), the proposed IoT botnet clustering approach re-

vealed a campaign of substantial size (#19 in Table 8 ), consisting

of 2140 active IoT scanners with the signature of < {23, 32764, 80,

80 0 0, 8080, 8081, 8089, 8090, 81, 8181, 8443, 8888, 90 0 0}, Flag = 1,

ARR = 1 > . We did not come across any previously reported botnet

families that scan such ports. As a result, we postulated that this

campaign is either new or specific ports have been recently added

to the target list of a previously known IoT botnet. Another aspect

is that this is the only large campaign that exploited a relatively

significant number of NUUO products, which is a common indica-

tor of the Reaper IoT botnet. The JenX botnet ( Exchange, 2018 ),

which scans ports 37,215 and 52869, was also disclosed. More-

over, a botnet with < {2004, 80, 8080, 81}, Flag = 0, ARR = 2 > was

also discovered and consisted of 35 coordinated IoT scanners, all of

which compromised QNAP NAS. This campaign strongly resembles

the Muhstik botnet ( Rootkiter, 2018a ), with the exception of the

substitution of port 7001 with 81 in the target port set. 

With the prevalence of IoT botnets, port 5555 (Android debug

bridge) has become a popular target port. We found 23 IoT botnets

that include port 5555 as part of their target set. Based on the re-

ports on ADB miner ( Netlab, 2019a ) and the similarity of its scan-

ning module to Mirai , we can attribute the inferred large IoT bot-

net (#5 in Table 8 ) to Mirai or its variant Fbot ( Netlab, 2019b ).

Additionally, we found xmrMiner instances with the same previ-

ously noted key (of Fig. 14 in the latter campaign and in campaign

#16. Based off the set of target ports pertaining to campaign #25

(port 23, 5358), it seems to be highly likely attributed to that of

the Hajime ( Herwig et al., 2019; Radware, 2018 ) IoT botnet. In to-
al, this campaign possessed 1059 active IoT scanners (made up of

P cameras/DVRs). 

.4.7. A note on Industrial Control Systems (ICS). 

We also inferred an IoT botnet of 25 bots with the signature

 {102, 8888, 993}, Flag = 0, ARR = 1 > , probing Siemens S7 (heavily

sed in SCADA systems), IEC 61,850 and ICCP (both are mostly used

n utility/electric substations) on port 102. To provide additional

nsights, we also actively scanned each of the identified compro-

ised IoT devices for ICS open ports on TCP and UDP 102 (S7), 502

MODBUS), 20,0 0 0 (DNP3), 47,808 (BACNET) and 1911 (FOX) and

ound 100, 101, 465, 70 and 85 devices with open ports, respec-

ively. We note that we have also inferred close to 40 devices hav-

ng simultaneously all the above-mentioned ICS ports open, which

e thought are related to ICS honeypots. Nevertheless, the appear-

nce of compromised IoT devices within ICS setups is alarming. 

. Concluding remarks 

With the continuous adoption of the IoT paradigm in critical in-

rastructure and consumer sectors, their security and privacy con-

erns are becoming quite serious, leading to devastating conse-

uences. This work compliments current IoT-centric research by

ffering a macroscopic, generic and passive methodology to infer

nternet-scale compromised IoT devices and to report on ongoing

oT botnets. The work initially introduces a novel darknet-specific

anitization model that contributes to the field of Internet mea-

urements at large. Subsequently, by devising a binary classifier

ased upon a CNN in conjunction with active measurements, the

roposed work is capable of fingerprinting compromised IoT de-

ices by solely operating on darknet traffic. Consequently, by au-

omating the generation of signatures related to the ports being

robed coupled with their distribution in addition to other simplis-

ic yet effective features, the proposed approach provides the ca-

ability to infer ongoing orchestrated botnets. The results demon-

trate the significant security issue with the IoT paradigm by ex-

osing more than 40 0,0 0 0 exploited IoT devices during only a 24-

our period, some of which have been deployed in critical sec-

ors such medical and manufacturing. Additionally, the outcome

rovides evidence-based indicators related to ongoing IoT botnets

uch as those of Mirai , Hide and Seek , and Reaper , to name

 few. More interestingly, the results demonstrate evolving IoT bot-

ets with cryptojacking capabilities, where many of those seem to

e attributed to the same mastermind by exposing the same em-

loyed key. 

Future work will address current limitations. This includes ad-

ressing the misidentification of two distinct IoT botnets (as one

arger campaign) by including packet IAT related features, and im-

roving the tagging/labeling procedure. We will also examine IoT-

pecific malware samples and devising formal methodologies be-

ween the traffic they generate from one side and the correspond-

ng darknet traffic from the other side, to fortify the attribution

vidence. Moreover, extracting a number of features from IoT mal-

are binaries will empower the attribution of each malware sam-

le to their respective campaigns, enabling agile IoT botnet infer-

nce and characterization for mitigation and remediation purposes.
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