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The insecurity of the Internet-of-Things (IoT) paradigm continues to wreak havoc in consumer and critical
infrastructures. The highly heterogeneous nature of IoT devices and their widespread deployments has led
to the rise of several key security and measurement-based challenges, significantly crippling the process
of collecting, analyzing and correlating loT-centric data. To this end, this paper explores macroscopic, pas-
sive empirical data to shed light on this evolving threat phenomena. The proposed work aims to classify
and infer Internet-scale compromised IoT devices by solely observing one-way network traffic, while also
uncovering, reporting and thoroughly analyzing “in the wild” IoT botnets. To prepare a relevant dataset, a
novel probabilistic model is developed to cleanse unrelated traffic by removing noise samples (i.e., mis-
configured network traffic). Subsequently, several shallow and deep learning models are evaluated in an
effort to train an effective multi-window convolutional neural network. By leveraging active and passing
measurements when generating the training dataset, the neural network aims to accurately identify com-
promised IoT devices. Consequently, to infer orchestrated and unsolicited activities that have been gener-
ated by well-coordinated IoT botnets, hierarchical agglomerative clustering is employed by scrutinizing a
set of innovative and efficient network feature sets. Analyzing 3.6 TB of recently captured darknet traffic
revealed a momentous 440,000 compromised IoT devices and generated evidence-based artifacts related
to 350 IoT botnets. Moreover, by conducting thorough analysis of such inferred campaigns, we reveal
their scanning behaviors, packet inter-arrival times, employed rates and geo-distributions. Although sev-
eral campaigns exhibit significant differences in these aspects, some are more distinguishable; by being
limited to specific geo-locations or by executing scans on random ports besides their core targets. While
many of the inferred botnets belong to previously documented campaigns such as Hide and Seek,
Hajime and Fbot, newly discovered events portray the evolving nature of such IoT threat phenomena
by demonstrating growing cryptojacking capabilities or by targeting industrial control services. To mo-
tivate empirical (and operational) IoT cyber security initiatives as well as aid in reproducibility of the
obtained results, we make the source codes of all the developed methods and techniques available to the
research community at large.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

are becoming directly Internet-facing. Although IoT devices de-
ployed behind a Network Address Translation (NAT) gateway

With the escalating adoption of the Internet-of-Things (IoT)
paradigm in critical infrastructure, smart homes, transportation,
and numerous other realms, an increasing number of devices
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might be less vulnerable to Internet-enabled attacks, a plethora
of such devices are directly connected to the Internet and/or em-
ploy port-forwarding for simplified provisioning and management
(Da Xu et al., 2014). Unfortunately, such devices often lack basic se-
curity protocols and measures, rendering them easy targets for ex-
ploitations and hence recruitment within coordinated IoT botnets
(Bertino and Islam, 2017). Additionally, there exists several inher-
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ent IoT factors such as their heterogeneous nature and limited pro-
cessing resources which further complicate addressing necessary
security requirements. At the same time, subpar attention is be-
ing paid to IoT security aspects by their manufacturers and users,
on top of an overwhelming lack of maturity of IoT-specific update
procedures for patch management (Bertino and Islam, 2017).

Indeed, IoT security has been an emerging area of focus after
Mirai (Antonakakis et al., 2017) infected more than 200,000 de-
vices to conduct debilitating Distributed Denial of Service (DDoS)
attacks in late 2016, demonstrating the sheer malicious capabili-
ties by way of exploiting IoT devices. Thereafter, botnets consist-
ing of IoT devices have consistently been evolving, incorporating
new devices and services. Hence, the IoT botnet environment has
expanded to include several more players who ultimately com-
pete for control over insecure IoT devices by means of newly-
exposed vulnerabilities. In June 2019, the Echobot (Cashdollar,
2019; Nigam, 2019) campaign was identified as operating “in the
wild”. Derived from Mirai’s source code, Echobot has com-
promised millions of IoT nodes. Exploiting more than 20 unique
(software and firmware) IoT-centric vulnerabilities, the campaign
has infected devices across more than 10 diverse vendors. Indeed,
this IoT threat phenomena will undoubtedly continue to display
highly dynamic behavior as they attempt to propagate and exploit
a higher number of devices, making the inference, attribution, and
assessment of compromised IoT devices and their coordinated il-
licit activities significantly challenging.

Despite efforts to mitigate the ever-increasing IoT security is-
sues, challenges exist due to the heterogeneity of IoT devices
and the emergence of anti-honeypot techniques to avoid discov-
ery (Dowling et al., 2018; Luo et al., 2017; Nawrocki et al., 2016).
Moreover, acquiring loT-centric empirical data to be curated and
analyzed for maliciousness is problematic, given the large-scale
deployments of such devices in Internet-wide realms. While net-
work telescope (darknet) traffic (Fachkha and Debbabi, 2016) (i.e.,
Internet-scale traffic targeting routable yet unused IP addresses)
has proven to be a reliable and effective source for generating in-
sights related to Internet-wide maliciousness (Fachkha and Deb-
babi, 2016), its exploration for addressing IoT security issues is still
in its infancy. Broadly, a major challenge related to the inference of
IoT maliciousness through the analysis of network telescope traffic
is the lack of sound data-driven artifacts which can be analyzed
to confirm that the perceived one-way traffic is in fact originating
from IoT devices and not from typical machines. Further, success-
ful darknet-driven methodologies should accommodate the evolv-
ing nature of IoT botnets, leveraging their empirical specifications
as perceived by the (somehow limited) vantage point of the net-
work telescope.

Correlating darknet-inferred IP addresses with databases such
as Shodan (Shodan, 2019) or Censys (Team, 2017) has proven
to be a successful use-case for classifying loT-centric data and
Internet-scale exploitations (Shaikh et al., 2018; Torabi et al., 2018).
Both Shodan and Censys use IP crawlers, active scanning, and
banner grabbing to collect and index open ports and available ser-
vices on billions of Internet-facing IoT devices. While this strat-
egy provides large-scale device information, the limited scope of
services reachable by Shodan and Censys scanners makes them
incapable for identifying the complete Internet-wide set of active
IoT devices. Such generated probes and active measurements are
typically filtered by firewalls. Additionally, upon infection, IoT mal-
ware tend to block ports, modify banner information and disable
common outward facing services (i.e., Telnet, CWMP, ADB, etc.)
(Antonakakis et al., 2017; Herwig et al., 2019). When the afore-
mentioned events occur, the indexing of IoT devices is significantly
impeded.

Having noted this, a number of darknet-related technical chal-
lenges exist which further hinder IoT-centric fingerprinting efforts.

Indeed, perceived packets on the network telescope (that have
been generated by IoT bots) solely resemble scan activities (i.e.,
do not include payload information and are unidirectional), which
limits the amount of available data to analyze. Furthermore, only
a small portion of unsolicited IoT-generated traffic actually targets
deployed network telescopes, rendering time-based analysis non-
trivial and complicates the process of extracting effective and ro-
bust features to infer orchestration behaviors of compromised IoT
devices.

Motivated by the aforementioned limitations coupled with the
lack of thorough measurement-based studies on the insecurity of
the IoT paradigm at large, this paper contributes by proposing a
multi-threaded, generic methodology for scrutinizing macroscopic
darknet data to design, develop and evaluate:

« A novel darknet-specific, formal sanitization model that system-
atically identifies and filters out misconfiguration traffic to per-
mit the storage and processing of network telescope data. The
proposed darknet sanitization model does not rely on arbitrary
cut-off thresholds, but instead provides likelihood models to
distinguish between misconfiguration and other forms of dark-
net traffic, independent from the nature of the traffic sources.
As a result, the proposed model neatly captures the natural be-
havior of darknet-targeted misconfiguration traffic.

An loT-centric fingerprinting approach rooted in deep learning
and active measurements methodologies to infer Internet-scale
compromised IoT devices by exclusively operating on network
telescope data. The addressed problem herein is illustrated in
Fig. 1a. Using more than 3TB of recent darknet data, the out-
come of such a proposed approach exposes more than 400,000
compromised IoT devices from very well-known vendors. The
results highlight that more than 75% of all the inferred IoT bots
do not match the typical Mirai signature (Antonakakis et al.,
2017), concurring the evolving nature of this threat phenomena
and highlighting the added-value of the proposed methodology.
An loT-specific botnet inference methodology based upon effec-
tive and lightweight (darknet) data-driven features and hierar-
chical agglomerative clustering. The addressed problem herein
is shown in Fig. 1b. The results from instrumenting such an
approach uncover more than 300 “in the wild” IoT botnets,
where close to 25 campaigns contain over 1000 exploited, well-
coordinated IoT bots. Moreover, IoT botnet-specific traits are in-
vestigated, including scanning modules, probing rates and their
geo-distributions. While the results shed light on previously
documented IoT botnets that were found to still be active, the
outcome also uncovers new IoT botnets such as those possess-
ing cryptojacking capabilities (which were shown to be coordi-
nated by the same “player” due to the usage of the same key)
and those that were inferred to be targeting industrial control
systems. To facilitate the reproducibility of the results in addi-
tion to motivate passive Internet measurements for IoT secu-
rity, we make all the developed methods and techniques avail-
able to the research and operational communities at large via
https://github.com/COYD-10T/COYD-IoT.

The remainder of this paper is organized as follows.
Section 2 reviews the literature related to network telescope
research, IoT device fingerprinting and IoT botnet analysis to
demonstrate the state-of-the-art contributions of this work. In
Section 3, we detail the darknet pre-processing model, the studied
machine/deep learning models for fingerprinting compromised
IoT devices, in addition to elaborating on the IoT-centric botnet
inference methodology. In Section 4, we report and discuss the
results derived from executing the proposed approach. Finally,
Section 5 summarizes the contributions of this paper and paves
the way for future work by addressing a number of limitations.
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Fig. 1. Leveraging network telescopes to (a) devise learning techniques for fingerprinting IoT devices; and (b) develop clustering methods for identifying campaigns of

orchestrated IoT devices.

2. Related work

In this section, we review three topics central to the contem-
porary IoT security landscape. The first focuses on network tele-
scopes as a powerful mechanism to capture loT-specific, illicit net-
work traffic. The second summarizes efforts pertaining to IoT de-
vice fingerprinting. Finally, we enumerate the literature related to
lIoT-specific botnet analysis.

2.1. Network telescopes and IoT security

A network telescope (i.e., darknet), is a set of routable, allo-
cated, yet unused IP addresses deployed in order to passively ob-
serve incoming Internet-scale traffic (Fachkha and Debbabi, 2016).
Since these IP addresses are not associated with any services, traf-
fic targeting them is unsolicited (Bou-Harb et al., 2016). Such traf-
fic originates from infected devices scanning the Internet space,
victims of Denial of Service (DoS) attacks, or misconfiguration
caused by hardware/software errors or improper routing. Net-
work telescopes are reliable sources for investigating large-scale,
Internet-wide activities, which is supported by recent examples
of successful applications including studies on probing activities
(Dainotti et al., 2015) and DDoS attacks (Fachkha et al., 2015;
Moore et al., 2006). In the context of assessing the maliciousness
of IoT devices through network telescopes, Torabi et al. (2018) re-
cently conducted large-scale correlations between passive mea-
surements and loT-relevant information to investigate and disclose
malicious activities associated with more than 26,000 IoT devices,
including those within critical infrastructure. Leveraging a large-
scale network telescope, the authors categorized the ports and ser-
vices targeted by scans within the network telescope, attributing
them to infected IoT devices and identifying active threats (i.e, IoT
devices launching brute-force SSH attacks). Similarly, by correlat-
ing active measurements with collected network telescope data,
Shaikh et al. (2018) examined nearly 14,000 compromised IoT de-

vices and extracted malicious signatures for mitigation in IoT host-
ing environments. Further investigation of the collected network
traffic revealed that nearly 20% of the identified IoT devices were
related to DDoS attacks. Moreover, by means of applying filters to
network telescope data in order to discern Mirai-relevant traffic,
Antonakakis et al. (2017) were able to gather IoT-related informa-
tion pertaining to roughly 1.2 million Mirai-infected IP addresses
during 8 months. Their work revealed crucial details of the Mirai
malware’s attack vectors, such as targeted ports (TCP/Telnet:23
and TCP/Telnet:2323). Furthermore, after correlating their results
with Censys (Durumeric et al., 2015a) scans, the authors fin-
gerprinted the device types of Mirai-infected bots - confirm-
ing the IoT-centric composition of the botnet. In a related study,
Cetin et al. (2019) collected network traffic across a 300,000 IP
darknet space to conduct empirical studies focusing on IoT mal-
ware cleanup efforts and remediation rates in a medium-sized In-
ternet Service Provider (ISP). Combining network traffic received
within their darknet with malware binaries retrieved from an IoT-
based honeypot and IP addresses retrieved from Internet scanners
Censys and Nmap, the authors tracked the success (and failure)
of remediation efforts, reporting device reinfection rates.

While such contributions are noteworthy, several shortcomings
exist. First, previous works rely on a specific IoT malware signa-
ture (e.g., the Mirai-specific signature of tcpSeq == dstIP). Not
every IoT bot will follow such an easily identifiable signature, pre-
venting comprehensive identification of Internet-scale botnets “in
the wild”. In fact, our measurements have revealed that less than
25% of all the inferred IoT bots match the Mirai-specific signa-
ture. Second, the majority of these related works solely depend
on databases gathered by Internet scanning services (e.g., Censys
and Shodan), which might not be able to accurately identify ev-
ery infected IoT device at a global scale. Antonakakis et al. discov-
ered that upon infection, the Mirai malware closed a number of
ports and services on newly exploited IoT bots to prevent infec-
tion by competing malware (Antonakakis et al., 2017). As a result
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of such territorial nature, Internet search engines are unable to dis-
cover a large portion of infected devices due to the similarities
between their discovery methods and malware scanning trends.
In contrast, we aim to create a more comprehensive view of the
aforesaid IoT bot populations by proposing a novel approach that
synergistically leverages passive, darknet-centric assessments cou-
pled with active, Internet-scale measurements and machine/deep
learning techniques.

2.2. IoT device fingerprinting

Previous works that propose IoT inference methods rely on
text information retrieved from service banners, gathered by ac-
tive measurements (e.g., port scanning and banner grabbing),
or provided by Internet scanning services similar to Shodan
(Shodan, 2019), Censys (Durumeric et al., 2015a) and ZoomEye
(ZoomEye, 2019). For example, Kumar et al. (2019) leveraged pre-
defined text rules from Censys to fingerprint consumer IoT de-
vices, designing an ensemble of four supervised classifiers on UPnP
and DNS responses, HTTP data banners, and network-layer infor-
mation. Alternatively, several research efforts have elected to at-
tempt IoT device fingerprinting by solely observing network traf-
fic. For instance, Guo and Heidemann (2018) postulated that be-
cause IoT devices regularly exchange data with servers managed
by their manufacturers, IoT device type and vendor can be fin-
gerprinted by observing the exchanged flow-level network traffic
between devices and servers. After discovering nearly 200 can-
didate servers accessed by 26 devices across 15 vendors, their
methodology successfully identified IoT devices connected across
the University of Southern California (USC). In another work,
Meidan et al. (2017) explored a localized lab environment to ex-
tract TCP packet features from a variety of IoT devices, includ-
ing baby monitors, IP cameras, and printers. Extracted features
were employed to train a supervised learning algorithm in or-
der to distinguish between IoT devices and non-loT. Moreover,
Miettinen et al. (2017) leveraged network traffic generated by IoT
devices during their setup process for capturing device-specific
traits. A number of automatic requests and updates were collected
and subsequently mapped as signatures, detailing the device type
by way of random forest classification. Improving upon anomaly
detection premised on device types, Nguyen et al. (2018) have
recently implemented a machine learning algorithm which dis-
criminates between the corresponding classes of devices, but ex-
hibited remarkable performance with detection rate 95.6%. Sim-
ilarly, Thangavelu et al. (2018) developed a machine learning-
based methodology capable of fingerprinting distributed devices.
Their work overcomes previous limitations hindering centralized
approaches by offering a scalable and dynamic methodology.

Pinheiro et al. (2019) developed algorithms for distinguishing
between IoT and non-IoT devices based upon packet specifications.
The mean and standard deviation of the packet length were com-
bined with the number of bytes transmitted by each device in
one-second time intervals to accurately profile devices. Further,
Siby et al. (2017) detected devices in a local network by passively
intercepting and recording wireless signals. Extracting the encap-
sulated MAC addresses from investigated flows allowed for IoT de-
vice identification. In an alternative approach, Acar et al. (2018) im-
plemented a web script to identify the presence of IoT devices run-
ning local HTTP servers. Once identified, IoT vulnerabilities are dis-
closed, specifically the unauthorized accessing of such IoT devices
through DNS rebinding.

A shortcoming of the aforementioned literature is that their
scope is limited to local IoT networks. Therefore, they do not
present an Internet-wide perspective; hence, their proposed ap-
proaches are not applicable on one-way scan flows arriving at net-
work telescopes. In contrast, we leverage a large-scale network

telescope to collect Internet-wide network traffic, followed by the
deployment of a strict rule set used to fingerprint hosts that re-
spond with banners when probed. Additionally, we devise learning
techniques to identify unreachable infected hosts and predict their
device types using innovative features extracted from sequences of
TCP SYN packets arriving at the network telescope.

2.3. IoT botnet analysis

The discovery and analysis of IoT-centric botnets reveal cru-
cial cyber threat intelligence relating to the discovery of malware
attack vectors and disclose possible vulnerabilities or intrusion
points within globally-deployed IoT devices. Within the context of
botnet analysis through tailored honeypots, Pa et al. (2016) inferred
several malware families by constructing a honeypot to analyze
attacks against Telnet services. Dubbed as IoTPQOT, the honeypot
was specifically tailored to mimic the CPU architectures of various
IoT devices, while learning how to respond to command interac-
tions. Furthermore, Guarnizo et al. (2017) designed the loT-centric
Scalable high-Interaction Honeypot (SIPHON) which demon-
strated effectiveness to attract a tremendous amount of malicious
[IoT botnet-generated traffic (ranging from 50,000 to 600,000 at-
tempted TCP connections) through a combination of worldwide
wormbholes and a small number of deployed IoT devices. The de-
ployed SIPHON honeypot recorded hundreds of brute-force pass-
word attacks and retrieved credential dictionaries used for these
attacks. Moreover, Metongnon and Sadre (2018) reported on a large
number of exploited IoT protocols, based on an in-depth analysis of
network traffic from IoT-centric honeypots and network telescopes.

While such works provide crucial IoT-centric botnet analy-
sis, given the copious amounts of IoT hardware in the wild and
their accompanying heterogeneity, we note that honeypot-based
methodologies frequently fail at mimicking the entirety of IoT de-
vice and firmware vulnerabilities. However, capturing such charac-
teristics are essential to characterizing and attributing large-scale
IoT botnets. Additionally, the vantage points of honeypots are typi-
cally quite small, hindering their effectiveness in tracking Internet-
scale [oT botnets as well as accurately estimating their population
size.

Rather than deploying honeypots, alternative works attempted
to identify compromised IoT devices (bots) in local networks. For
example, Meidan et al. (2018) proposed a novel, host-based intru-
sion detection system (IDS) that monitors a device’s typical be-
haviors through analyzing its network traffic using autoencoders.
The IDS creates a snapshot of what the device is expected to be
communicating, and will subsequently raise an alarm if any devi-
ations or anomalies are detected. To evaluate the effectiveness of
the proposed IDS, nine commercial IoT devices were deployed in
a controlled environment to generate benign traffic. These devices
were then infected with two very notorious IoT malware, Mirai
and BASHLITE, and tested the IDS capabilities for identifying the
newly corrupted traffic flows. Further, Nguyen et al. (2019) present
an autonomous self-learning distributed system for detecting com-
promised IoT devices, leveraging federated learning technique to
aggregate IoT device fingerprints. These fingerprints are then clus-
tered and categorized based on device type and models. Next, a
K-Nearest Neighbors classifier identified abnormal network traf-
fic to discover compromised IoT devices. Evaluated on 30 differ-
ent devices and selected Mirai malware for the real-world case
study, ultimately, the methodology achieved a 94% detection rate
and 257 ms average detection time.

Alternatively, other literature works consider a macroscopic ap-
proach for generic botnet analysis by aggregating information from
various sources. To this end, Gu et al. (2008) proposed a sys-
tem for correlating aggregated IDS log files with extracted fea-
tures from network flows to detect botnet activities. The system
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Table 1
Summary of selected recent botnet detection literature.

Publication Employed Data Type

Botnet Class ~ Methodology and Evaluation

Metongnon and Sadre (2018) Honeyfarm/ Network Telescope

Meidan et al. (2018) Two-way Traffic

Nguyen et al. (2019) Two-way Traffic

Gu et al. (2008) NetFlow/ Aggregated IDS log

Homayoun et al. (2018) NetFlow

Araki et al. (2019) xFlow

Ozawa et al. (2019) Network Telescope

Antonakakis et al. (2017)
binaries

Herwig et al. (2019)
traffic

Network Telescope/ Censys/ Passive
DNS/ Telnet Honeypots/ Malware

Active Scanning/ Root DNS backscatter

IoT Passive measurement and analysis of
real-world IoT honeyfarm traffic.
loT Training on normal behavior using

autoencoders. Evaluated on 9 loT
devices in a lab environment tested
with Mirai and Bashlite.

IoT Federated learning. Evaluated on 30
IoT devices in a lab environment
tested with Mirai.

Generic Correlation and two-step clustering.
Evaluated on real-world dataset.
Generic Autoencoder/CNN. Evaluated on
combined botnet traffic ISCX
UNB (2019).
Generic Two-step Subspace Clustering. Tested
on real-world ISP traffic and
MAWI (Fontugne et al., 2010).
Generic Association rule mining evaluated on
real-world /16 network telescope.
Mirai Mirai signature tested on /10
network telescope.
Hajime Bug in P2P infrastructure while

observing the effect on samples of all
queries to the D-root DNS root server.

assumed that hosts infected with the same malware behave in
a similar manner and that bot-generated flows captured within
the IDS logs will share many of the same characteristics. Subse-
quently, they were clustered in a two-stage, high dimensional clas-
sifier for identifying botnet campaigns. The evaluation results on
a university campus reveal a botnet detection rate of 99.6%. Sim-
ilarly, Homayoun et al. (2018) proposed BoTShark, primarily us-
ing deep learning models such as autoencoders and convolutional
neural networks relying on captured netflows to efficiently detect
malicious traffic. With a true positive rate of 0.91 and a false posi-
tive rate of 0.13, BoTShark successfully detected malicious traffic
signatures of botnet campaigns.

Additionally, different works attempted to identify and charac-
terize IoT botnets through passively collecting one-way network
traffic. Araki et al. (2019) proposed a methodology that not only
detected bots, but classified their primary behaviors and character-
istics. Utilizing a two-step subspace clustering method to cluster
botnets and clarify partial characteristics (such as low-size flows
or high TCP-SYN packet rates), the methodology was evaluated
on two real-world datasets, collected by upstream, backbone ISPs.
Similarly, Ozawa et al. (2019) studied IoT botnet characteristics by
way of analyzing their scan activities. The authors applied asso-
ciate rule learning (Agrawal et al., 1993) on network telescope fea-
tures such as destination ports, ToS, and TCP window sizes to dis-
cover the activities of bots that were infected with well-known
malware. Their work reported interesting observations on the evo-
lution of IoT botnet characteristics before and after the release of
the Mirai’s source code.

In contrast, other works specifically focused on a single IoT bot-
net family to retrieve relevant attack vectors and behavior, such
as the Mirai botnet (Antonakakis et al., 2017). Another example
includes, Herwig et al. (2019) who provided a comprehensive in-
vestigation related to the Hajime IoT botnet, revealing crucial in-
sights such as Hajime’s atypical infrastructure. Deviating from typ-
ical command and control infrastructures that rely on bots to com-
municate with infected servers to receive orders, instead relying
on peer to peer connections between bots and utilizing the Bit-
Torrent protocol to transfer payloads. To summarize such contri-
butions, Table 1 provides a brief classification of recent selected
works using different dimensions.

The aforementioned works present significant and important
analysis of IoT botnets; however, a number of limitations prevent
them from offering a generic, Internet-wide perspective of global
IoT botnet populations. Target-specific studies designed to investi-
gate a singular IoT botnet take advantage of known botnet infras-
tructure or signatures, and in turn cannot be replicated or gener-
alized to study other IoT botnets. Furthermore, the vantage point
offered by the honeypots, results in limited exposure when com-
pared with one offered by a network telescope. To this end, in this
work, we complement and expand upon previous contributions
by developing a purely passive methodology to not only identify
Internet-scale compromised IoT devices, but also to infer ongoing
IoT botnets by capturing their orchestrated artifacts.

3. Proposed methodology

This section details the proposed approach as depicted in
Fig. 2. Its core components include (i) data collection and dataset
preparation, which introduces the darknet sanitization probabilis-
tic model to filter out misconfiguration traffic along with the infer-
ence of Internet-scale probing activities and labeling their sources;
(ii) the systematic evaluation of state-of-the-art machine learning
and deep learning classifiers for fingerprinting compromised IoT
devices; and (iii) the feature engineering process coupled with ex-
ecuting hierarchical agglomerative clustering to infer and report on
IoT botnets. These steps are subsequently detailed.

3.1. Network telescope sanitization model

As previously noted, network telescopes, most commonly
known as darknets (Fachkha and Debbabi, 2016), constitute a set
of allocated and routable, yet unused, IP addresses. Since these
addresses do not operate legitimate services, any traffic target-
ing them is considered unsolicited. From a deployment perspec-
tive, network telescopes are commonly distributed on specific In-
ternet IP subspaces operated by Internet Service Providers (ISPs),
educational entities and corporate backbone networks. Darknet IP
addresses are, by nature, indistinguishable from other routable
addresses, rendering them an effective technique to amalgamate
Internet-wide, one-way unsolicited network traffic.
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Fig. 2. The components of the proposed approach.

Although network telescope (darknet) data predominantly con-
sists of malicious packets originating from probes, backscattered
packets from victims of DDoS attacks, and malware propagation
attempts, it also contains misconfiguration traffic. The latter Non-
malicious packets frequently result from network, routing, hard-
ware, or software faults that were erroneously directed towards
a darknet. Such traffic might also be an artifact of improper
configurations during darknet deployment. Misconfiguration traf-
fic (Fachkha and Debbabi, 2016) impedes the proper functioning
of cyber threat intelligence algorithms operating on darknet data,
which often yields numerous undesirable false positives and false
negatives and waste of valuable storage resources. Given the lack
of formalism in addressing this problem, the objective herein is to
elaborate on a probabilistic model that is specifically tailored to-
wards the preprocessing of darknet data by way of fingerprinting,
and in turn, filtering out embedded misconfiguration traffic.

In brief, the model formulates and computes the probability
metrics of misconfigured traffic, while capturing the behavioral
perspective of misconfiguration flows as they target the darknet
space. Regarding the natural tendencies associated with typical
network flows, the model initially estimates the rarity of hosts at-
tempting to access the destination address. Secondly, the scope of
access is considered, accounting for the number of distinct darknet
IP addresses that a specific remote source has accessed, preserv-
ing the unique characteristics of the misconfiguration flow. Subse-
quently, the joint probability is formulated, computed, and com-
pared. If the probability of the source generating a misconfigura-
tion flow is higher than that of the source being malicious (or un-
solicited), then that particular source is deemed to be generating
misconfiguration traffic, flagged, and the corresponding flows are
filtered out. In the following, we detail the notions of both rareness
and scope of access.

Let D ={dy,dy,ds,---} represent the set of darknet IP ad-
dresses, with D; being a subset of those accessed by source s;. First,
the model captures how unusual these accessed destinations are.
The underlying idea in doing so stems from the fact that miscon-
figured sources target destinations seldom called upon by others
(Ford et al., 2006). Thus, the model estimates the distribution of a
darknet IP d; as being accessed by such a source as

b gy Ts(@)

mzsc( 1) ZvdjeD ng (d]) ’
where ng(d;) is the number of sources that have accessed d;; in
contrast, a malicious darknet source will target a given destina-
tion at random. Typically, defining a suitable probability distri-
bution to exemplify the randomness of a malicious source tak-
ing aim at a specific darknet destination is quite tedious; there-
fore, a simplistic assumption is often applied to resolve this po-
tential headache. In this context, Durumeric et al. (2014) demon-
strated that sources probe their darknet targets following a Gaus-
sian distribution. By adopting that assumption, one can model the

(1)

probability of a darknet destination being accessed by a malicious

source as Ppq (d;) = G;Ee*(xfu>2/202 where o is the standard de-

viation, p is the mean, o2 is the variance, and x is the location
of the darknet destination following the aforementioned distribu-
tion. Recall that not only does the model capture how unusual the
accessed destinations are, but it also considers the number of dark-
net destinations accessed by a particular source, which we subse-
quently describe. Given a set of D; darknet destinations accessed
by a specific source s;, the model ultimately measures two prob-
ability distributions, namely, Pp,;.(D;) and P,4(D;); the former be-
ing the probability that D; has been generated by a misconfigured
source and the latter originating from that with a malicious intent
towards darknet D;. For example, if the darknet addresses accessed
by s; are D; = {d;;, d;. di3}, P(Dq) equates to the probability of s;
accessing the specific combination of addresses {d;;, dj, di3} given
three targeted destinations, multiplied by the probability of s; ac-
cessing any three destinations. In turn, we can generalize P(D;) as

P(D;) = P(D; = {dj1, dip. - - - di} | |ID;j| =n) x P(|D;| = n). (2)

For both a misconfigured and malicious source, the first term of
Eq. (2) can be modeled as

PO, = (. da. ) 11D4) = & [] Pedp

Vd;eD;

(3)

where K, acting as a normalization constant and solely being used
as a means of summing the probabilities to 1, could be defined as
K= % X ﬁ. K is a standard normalization constant often
employed in Bayesian probability (Gelman et al., 2014). Moreover,
n encompasses all sources in the data, whereas |D| represents the
darknet IP space. Consequently, the likelihood that a source will
target a certain number of darknet destinations (i.e., the second
term of Eq. (2)) depends upon whether it is malicious or miscon-
figured. Characteristically, misconfigured sources access one or few
destinations while those with malicious intent target a larger pool.
Accordingly, we model such distributions as

Pusc (1D = 577 (@)
1
Pmal(|Di|) = Ws (5)

where the term (e — 1) in Eq. (4) ensures the distribution’s sum-
mation equals 1. Eq. (4) guarantees a significant decrease in the
probability as the number of targeted destinations increases. In
contrast, Eq. (5) captures that of a random number of darknet ad-
dresses being accessed by a malicious source. Thereby, via plug-
ging in of Eqgs. (4) and (5) into (3), respectively, we can represent
the probability of a source being either misconfigured or malicious,



M. Safaei Pour, A. Mangino and K. Friday et al./Computers & Security 91 (2020) 101707 7

given a set of darknet destination addresses, as
1

Pmisc(Di) = WVED‘ Pmisc(di) (6)
1
Pmul(Di) = WVED.PmaI(di) (7)

Egs. (6) and (7) provide two distinct likelihood models to
distinguish between misconfiguration and malicious, darknet-
bound traffic, which enables their simplified and systematic post-
processing. Furthermore, as the proposed model generalizes and
formalizes the concepts of misconfiguration and malicious dark-
net traffic, it does not make any assumptions regarding the nature
of the sources from which the given types of traffic are originat-
ing. Thus, the method deems a source and its corresponding flows
as misconfiguration traffic if In Py (D;) — In Py, (D;) > 0. To effec-
tively employ the proposed network telescope sanitization model,
we present Algorithm 1, which provides a simplistic yet effective
mechanism to flag misconfigured sources.

Algorithm 1 Network Telescope Sanitization Algorithm.

Input: Darknet Flows, DarkFlows
Output: Flag, MiscFlag, indicating that the respective flow is orig-
inating from a misconfigured source
for DarkFlows do
MiscFlag < 0
i < DarkFlows.getUniqueSources()
Amalgamate DarkFlows; originating from a specific source s;
Update s;(D;)
Compute Pyisc(D;). Bnqi (Di)
if Pryisc (D) > Prng (D;) then
MiscFlag < 1
end if
end for

Since the field of Internet measurements for cyber se-
curity heavily relies on processing network telescope data
(Fachkha and Debbabi, 2016; KoronloTis et al, 2019), we
make the model's code available to researchers and secu-
rity operators at large from https://github.com/COYD-IoT/COYD-
[oT/tree/master/Darknet%20Sanitization.

3.2. Data collection and dataset preparation

This section summarizes the methodology used to infer prob-
ing activities captured at a network telescope. We also detail the
proposed mechanisms for feature engineering and active mea-
surements, in order to fingerprint IoT devices through data-driven
learning.

3.2.1. Inferring probing activities

After employing the aforementioned pre-processing steps to
sanitize misconfiguration traffic, the aim is to dissect the malicious
traffic in order to extract probing flows as perceived by a network
telescope as indicators of exploitation. This is achieved through a
Threshold Random Walk (TRW)-based probing detection algorithm
(Jung et al., 2004). The TRW algorithm searches for subsequent
packets from the same source IP address for a duration of 300
seconds. If the time-based threshold is exceeded without receiv-
ing a packet, the given counter is reset. If the threshold has held
and the duration has not expired, the counter is incremented. If
the counter reaches a threshold of 64 (Rossow, 2014), the flow is
deemed as a probing event.

3.2.2. Feature extraction for IoT classification

Following the amalgamation of packets into flows, the first t
consecutive packets are extracted from each. Given that the major-
ity of the observed scanning traffic are TCP SYN scans, the appli-
cable features reside in the TCP and IP header fields (i.e., ToS, To-
tal Length, Identification, TTL, Dst IP Address, srcPort, dstPort, TCP
SEQ, TCP ACK SEQ, TCP offset, TCP DATA Length, TCP Reserve, TCP
Flags, TCP Win, TCP URP, TCP options, Packet Inter-arrival Time).
Overall, along with the inter-arrival time of the consecutive pack-
ets within a flow, d = 17 features are gathered for each packet. In
turn, the data samples for each scanner IP address would consist
of a t xd matrix. To elaborate on the model’s training procedure,
we subsequently detail the labeling process.

3.2.3. Port scanning and banner grabbing

In order to annotate decidedly accurate labels for the train-
ing dataset, it was imperative to perform the procedure herein
upon detection of a scan activity to circumvent any potential com-
plications due to the dynamic reallocation of the associated de-
vice’s IP address (through DHCP, for instance). To accomplish this,
we utilized the gigabit open-source Internet scanning tool ZMap
(Durumeric et al., 2013) as well as the high-speed application
scanner ZGrab (Durumeric et al, 2015b), in tandem, to provide
comprehensive results necessary for guaranteeing the versatility
of the classification task. Specifically, ZMap was used to probe 45
ports' of the IP addresses (that were previously inferred as prob-
ing sources) that were found to be active. The port list is se-
lected based on reports by ZoomEye (ZoomEye, 2019) during a one
month analysis of returned banners, chosen to cover most of the
default ports of various devices in order to maximize the number
of captured banners. Furthermore, via ZGrab, we obtained banner
fields and application handshakes from various protocols such as
HTTP(s), CWMP, TELNET, SMTP(s), IMAP(s), POP3(s), SSH, FTP, SMB,
DNP3, MODBUS, BACNET, FOX, Siemens S7 and SSL certificates. Ad-
ditionally, we designed and developed two custom scanning mod-
ules to extract RTSP and SIP banners.

3.2.4. Tagging and labeling

To label discovered IoT devices, we amalgamated a comprehen-
sive list of keywords related to major Internet-facing IoT devices
and vendors. As previously noted, these are typically the devices
that are most targeted by IoT botnets. This list consists of de-
vices provided by Nmap along with results from ZoomEye Internet
Scanner? (ZoomEye, 2019) and ZTag, Censys’s tagging module.® Al-
though it is unrealistic to claim that we cover all IoT products from
every manufacturer and vendor, we carefully leverage information
from various sources and focused on widely deployed Internet de-
vices. In addition, we implemented a parsing algorithm which ex-
tracts useful keywords from banners and SSL certificates such as
the combination of letters, digits, “-” and “_" signs, which typically
represent device models (Feng et al., 2018) to enrich our list of de-
vices. We further considered devices running multi-purpose OSs as
non-loT, which were identified using keywords such as “Win64”,
“Ubuntu”, “Microsoft 1IS” and “CentOS”, etc. while we deemed
other specialized devices as IoT where their OS types were indi-
cated as being “embedded”, “Router0S”, “FritzOS” etc. For example
“TD-W8960N” is a sample keyword in the database related to a
TP-LINK router that is marked as IoT. The prepared database con-
sists of 3286 patterns related to 1121 vendors. We make this list
publicly available at https://github.com/COYD-IoT/COYD-IoT/blob/
master/devices.txt. Given that not all scanning events are illicit in

1 https://github.com/COYD-IoT/COYD-I0T/blob/master/Port- List.txt.
2 https://www.zoomeye.org/component.
3 https://github.com/zmap/ztag/tree/master/ztag/annotations.
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nature (e.g., academic institutions conducting research) such enti-
ties will incorporate information into their banners. Thereby, we
leverage banners, coupled with a Greynoise list (GreyNoise, 2019),
to filter out these benign scanners?®.

3.3. Model training for fingerprinting compromised IoT devices

We propose herein a learning approach for the extraction of
embedded features within unsolicited scan flows for the training
of a binary classifier which distinguishes between traffic originat-
ing from both malicious IoT and non-loT devices. The underlying
methodology is based upon determining similarities in network
traffic that are exclusively associated with IoT devices and their
corresponding IoT malware in order to fingerprint flows originat-
ing from them. Additionally, it is known that IoT products manu-
factured by the same vendor possess a uniform, low-level architec-
ture such as sharing a similar network card, operating system, etc.,
and happen to share the same TCP/IP stack information, includ-
ing but not limited to TTL value and initial TCP window size, thus
permitting the fingerprinting of IP addresses that Internet scanning
services (i.e., Shodan) may have overlooked or could not identify.

To select a suitable and sound learning technique, we com-
pare and contrast the performance of five models to permit the
classification of compromised IoT devices in order to distinguish
them from compromised, multi-purpose hosts. The first three are
based on Convolutional Neural Network (CNN) deep learning mod-
els. Deep learning is an emerging branch of machine learning that
use multiple layers of neural networks, backpropagation, and er-
ror correction to automatically learn features (i.e., representations)
from a given data input. CNN is a state-of-the-art deep learning
algorithm that uses dynamic kernels along a given data input to
automatically extracts (i.e., pool) features. To this end, we asses
a two-dimensional CNN (2D-CNN), a one-dimensional CNN (1D-
CNN) (Collobert et al.,, 2011) and a multi-window one-dimensional
CNN (MW-1D-CNN) (Cheng et al., 2016) in addition to two “shal-
low” learning methods rooted in Random Forest (RF) models.

In this context, an input sample consists of a matrix representa-
tion X of a flow with t packets and the number of extracted fields
d from a packet is considered, yielding X € R4, Namely, the ith
packet in a given flow is x; € R%. Convolution operations are also
defined by applying local kernels w € R"*Y on the input to extract
spatially local correlations in the data. In terms of the 2D-CNN
model, it contains L number of consecutive two dimensional con-
volutional layers (with k kernels of size w x w) and max pooling,
followed by two dense hidden layers of sizes 64 and 32, respec-
tively, and a Softmax classifier at the end (Fig. 3a). The 1D-CNN
model has a similar architecture to the 2D-CNN, but instead, the
convolution kernels have a fixed kernel width equal to the input
sample width (i.e., h x d) (Fig. 3b). Further, the MW-1D-CNN model
mixes the outputs of various kernel heights h to capture the fea-
tures. In turn, the output of the first layer of the proposed model
is given by ¢; = f(W - X;.j,p_1 +b), where X;.;,;_; defines the nota-
tion for a sequence of packets X;, X;,1,.,X;,;_1. b representing the
bias, and f denoting the non-linear activation function. The filter
is applied to each 2D sample instance to produce a feature map
c=|cq,...,C_pyq]. Subsequently, max pooling is applied over the
feature map c, taking the value maxc. We used kernels w of differ-
ent window heights h (h =[2,4,6, ..., hnmax]) to enable the capture
of varying dynamics specific to darknet packet flows (Fig. 3c).

We also devise two RF models. The first was constructed based
on raw packet features. The second operates on statistical fea-
tures. We define feature statistics as the 5-tuple {min, 1-quantile,
median, 3-quantile, max } of each field in flows of packets, which

4 https://github.com/COYD-10T/COYD-IoT/blob/master/Benign-Scanners.txt.

overall produces 85 features. These statistics can be considered as
an estimation of the probability distribution function related to
each field of the packet sequence in each flow. Please note that
we make available the source code of the developed models, in-
cluding their specificities from https://github.com/COYD-IoT/COYD-
loT/tree/master/loT%20classifier%20models.

3.4. IoT Botnets: Features’ extraction and campaign inference

Following the binary classification of IoT-generated scanning ac-
tivities while filtering out non-IoT sources by employing the de-
veloped model, we conduct a thorough investigation on each in-
dividual flow’s characteristics Flow;p. Such flows are comprised of
at least 500 (t>500) sequential packets, originating from a par-
ticular unsolicited IoT device. We proceed by extracting the corre-
sponding feature set from aggregated flows Fp = < Ports;p, 7 p,
Flag;p, ARRp >. Ports;p is the grouping of the targeted transport
protocols paired with their associated ports in ascending order
(e.g., Ports;p, = {TCP:23, TCP:80, TCP:8080}). In turn, 7 p is the cor-
responding discrete probability distribution function which repre-
sents the frequency of appearance of each of these ports within the
given flow of packets (e.g., wp, = [0.15,0.70,0.15]). This is relevant
since IoT devices typically possess a limited supply of resources.
As a result, in the midst of conducting illicit scanning activities,
they are often allocated to different ports and weighted based on
the expected return. Flagp is Boolean, holding a value 1 if the IoT
device conducting the scanning has the signature tcpSeq == dstIP
and 0 otherwise. This inference provides insights about a Mirai-
like behavior, possibly indicating a variant or a code-reuse prac-
tice. Lastly, the Address Repetition Ratio, or ARRjp, is the ratio
of the total number of packets sent by a source IP address over
the number of unique destination IP addresses, and is defined as

_ [Flow,p| ;
ARRjp= T(@stiPldstiP<Flow;p)]] - Such scenarios as an ARRjp greater than

one are a consequence of the sending of multiple packets to a par-
ticular destination in order to compensate for packet loss and/or
the probing of multiple ports at each destination. Note that, each
instance of the same probing campaign will exhibit an equivalent
ARR;p due to the underlying IoT orchestrated probing machinery.

3.5. Minimum number of packets (t) for robust feature estimation

To derive an accurate estimation of the discrete probability dis-
tribution 7, we perform statistical analysis to compute a suitable
t. By generating a lower bound on the number of packets, we can
guarantee a minimum error of 5% within a confidence level of 0.5.
Note that within the /8 network telescope, scan packets arrive with
a random probability of 1/256, resembling the random sampling
procedure. We consider the population of scan packets originated
by a compromised IoT device, and adopt a simple random sampling
mechanism, as shown in Eq. (8) (Cochran, 2007), to derive a lower
bound on the sample size (equivalently, the number of received
packets within the network telescope). The method herein is thus
used to estimate the minimum sample size necessary to find the
lower bound. By leveraging the requirements of a population pro-
portion interval (Cochran, 2007), we perform the estimation at a
1 — o confidence level, margin of error E and a planned proportion
estimate p. By selecting more than ny samples, we assure that the
probability that the actual error to be larger than E is not more
than a small value e, ie., Pr(|p—P|>E) = a; where z,, is the
100(1 — «/2) percentile of the standard normal distribution.

2
z4,p(1—p)

o = 20— (8)
Since the product p(1 - p) increases as p moves toward 0.5,

a conservative estimation of the sample size is obtained by
choosing p =.5, regardless of the actual estimated value of p.
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Fig. 3. CNN models for IoT/non-IoT binary classification.

Therefore, using a 0.5 planned portion estimate, the sample size
needed to achieve a 5% margin of error at 95% confidence level
is computed at 385. In this work, we select the number of pack-
ets equal to 500 ( > 385) to significantly minimize the risk of errors
in the extracted features, namely 7r, to avoid subsequent issues in
clustering and campaign detection.

3.6. Clustering mechanism

We hierarchically divide the IP addresses of the IoT scanners
into separate groups G; based on the given Portsp, Flagp and
ARRjp of their feature set Fp. Upon completion, we cluster mem-
bers of each group G; to identify those scanning for the same set
of ports but with a different probability distribution function 7.
This enables us to leverage hierarchical agglomerative clustering
(Xu and Tian, 2015), which determines the proximity matrix by
calculating the distance between every pair of probability distri-
bution functions {m p|IP € G;} based upon the Jensen-Shannon Di-
vergence (JSD) (Cha, 2007) distance metric. JSD, defined in (9), es-
timates the distance between two discrete distribution functions,
and is the symmetrized version of the well-known Kullback-Leibler
Divergence (I(LD).

JSD(m;l||m ;) = KLD(Jt |IM) + KLD(n [IM), 9)
where M= 1(w;+m;). and KLD(P||Q) =
discrete PDF P and Q.

We select hierarchical agglomerative clustering due to the fact
that based on statistical analysis, the estimated & values are within
the specific distance from the actual distribution (cluster centers)
with high confidence. Therefore, it can correctly identify centers
by merging close samples and executing a bottom-up approach. In
addition, other clustering methods (such as k-means) assume equal
cluster sizes which is not correct in the context of IoT campaigns
while density-based techniques (such as DBSCAN (Khan et al,
2014)) are only suitable when the density of the data is non-
uniform and the clusters can be shaped arbitrarily. As noted, hier-
archical agglomerative clustering operates in a bottom-up fashion.

— ¥ P(i) log(%) for

Each observation forms its own cluster and begins moving up the
distance-based hierarchy, subsequently merging with the clusters.
To designate appropriate consolidation, we use a distance thresh-
old (0.05) in which merging only occurs if the distance between
the two given cluster centers falls beneath.

4. Empirical evaluation

The evaluation was executed using 3.6 TB of darknet traffic that
was collected throughout a 24-h period on December 13th, 2018.
This data is provided by the Center for Applied Internet Data Anal-
ysis (CAIDA) /8 network telescope. While this specific dataset per
se is subject to MOUs and thus cannot be shared as is, inter-
ested readers can request access to CAIDA’s real-time darknet data
through DHS IMPACT (Policy and Trust, 2019). Additionally, while
we make available a sample collected at another /13 darknet IP
space available through the GitHub repository for experimenta-
tion purposes, the developed and open-source methods are generic
enough to be applied on any darknet data within any desired time
frame.

4.1. Results of the darknet sanitization model

By executing the proposed model of Section 3.1, the distribution
of malicious and misconfiguration traffic with respect to the num-
ber of packets was found to be 88.21% and 11.79%, while the distri-
bution of source IP addresses was 26.17% and 73.83%, respectively.
Validation of such outcome revealed that close to 90% of the mis-
configuration traffic defines packets that hit the /8 network tele-
scope only once, while the remaining appeared to be malformed
packets. Further, it can be observed that even though misconfigu-
ration traffic is relatively low (11.79%), it is responsible for a large
proportion of the source IP addresses (73.83%). These findings shed
more light on the problematic nature of misconfiguration traffic
with regards to Internet measurements via network telescopes and
emphasize the effectiveness of the proposed pre-processing model
(Table 2).
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Table 2
Distribution of malicious and misconfiguration
traffic in the /8 network telescope dataset.

Malicious  Misconfiguration
Traffic 88.21% 11.79%
Sources 26.17% 73.83%

In terms of runtime, the implementation heavily relied on the
Linux-derived libpcap C++ library while running on an Ubuntu
18.04 system. Testing our model on a machine with a quad core In-
tel i7-8550 at 1.80GHz processor and 16GB of RAM, the developed
approach processed 8GB files containing close to 67.5 million pack-
ets with an average 636 second execution time, consuming close to
11.6GB of RAM. We believe runtime can be considerably improved
by using SSD storage (since most of the delay was I/O related) and
adopting multithreading.

4.2. Results of dataset preparation

Regarding the data collection and dataset preparation steps of
Section 3.2, and by immediately scanning back about 1.7M In-
ternet scanners inferred through the network telescope, about
25.84% of them were found to have at least one open port. Fur-
ther, amongst the total 543,392 gathered banners, the majority
were HTTP (54.11%), FTP (11.10%), SSL Certificate (10.50%), TELNET
(10.19%), RTSP (7.00%), and CWMP (2.60%). We were able to dis-
tinguish between 45,184 IoT and 7763 non-loT devices to generate
the training dataset. At this juncture, the label and corresponding
metadata were incorporated into t x d training and test data ma-
trices of IoT and non-IoT devices. We shuffled the training dataset
and then performed normalization by way of the Min-Max method
(Garcia et al., 2015). Subsequently, we computed and removed the
mean. To evaluate the proposed model, we trained it using a pre-
pared dataset captured in November 2018 and then tested it using
our dataset from December 2018. The one month gap between the
training and test datasets ensured that there exists no correlation
between them for sound evaluation. The test dataset consisted of
34,974 10T and 7193 non-IoT sources.

4.3. Evaluating the IoT classification models

The proposed CNN models were implemented in Keras
(Chollet et al., 2015). To address the problem of class imbalance
within the training dataset, cost-sensitive learning was applied
(Thai-Nghe et al., 2010). The number of epochs was found to be
30 to avoid over-fitting. Further, we performed a search on sub-
spaces of hyper-parameters as presented in Table 3, leveraging
Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011) in
Hyperas (Pumperla, 2019), and selected the best model (out of
100 trials) with regards to the loss. RF models were implemented
and trained using the scikit-learn (Pedregosa et al., 2011) package.
The best model was retrieved based upon random search (using
the RandomizedSearchCV method) in the search space as summa-
rized in Table 4. In Tables 3 and 4, parameter ranges are reported
with begin:step:end format. For evaluating the CNN models,
we leverage an NVIDIA GeForce RTX 2070 GPU with 8GB of mem-
ory, 2304 CUDA cores and 288 Tensor cores to accommodate for
parallelization.

To compare the performance of the different models, we rely
on standard machine learning metrics such as precision, recall, F-
measure and AUC-ROC for the IoT class. Precision is the ratio of
correctly classified IoT devices over all the instances that have been
designated as IoT using the proposed model (precision = tpfffp ).
Recall is the ratio of correctly classified IoT devices over the to-
tal number that is actually existing within the test data (recall =

tptffn ). Recall demonstrates the model’s ability to find all relevant
cases within a given dataset, whereas precision gives the model’s
ability to designate only the actual relevant cases as relevant. In
order to bring these two metrics together, often F-measure is em-
ployed which takes the weighted average of precision and recall,
i.e., the harmonic mean (F — measure = 2.%). The Area
Under the Receiver Operating Characteristic Curve (AUC-ROC) is
a threshold-independent performance measurement for classifica-
tion. It measures the entire two-dimensional area underneath the
ROC curve (i.e., true positive rate vs false positive rate at all classi-
fication thresholds) from (0,0) to (1,1).

We report the results in Figs. 4 and 5. We can note that the
AUC-ROC score for the RF model trained on quantiles is slightly
higher than that of the other models. Further, both of the figures
reveal that the CNN-based models result in higher recall and lower
precision scores in contrast to the RF models. The outcome also
shows that the multi-window 1D-CNN (MW-1D-CNN) outperforms
the 1D-CNN and the 2D-CNN; this is quite expected, since packet
fields (unlike image pixels) lack temporal or spatial relationships
with one another. Therefore, moving the kernels over the horizon-
tal dimension would not lead to better learning. Furthermore, the
multi-window 1D-CNN can capture varying dynamics given that
only a portion of the scan packets actually hit the /8 darknet.

4.3.1. Feature importance

To shed light on which features were most decisive in the
learning process, and given that the RF models performed the
highest, we illustrate the features’ scores (derived from the RF
model on quantiles) in Fig. 6. As expected, the distribution of desti-
nation ports which typically reveals the scans’ intentions plays the
most noteworthy role for fingerprinting IoT devices. This is closely
followed by other fields such as the total packet length and the to-
tal header length, in addition to the TCP/IP stack and OS-related
fields including the TCP window size, option fields and the TTL.

4.3.2. Effect of number of packets (t) on the classifiers

Figs. 7 and 8 illustrate the impact of the number of packets
within the input sample X € Rt*? on the AUC-ROC and processing
time (loading and training data). To quantify the effect for each
value of t, we execute the training process 10 times using param-
eters taken from the best models, retrieved from Tables 3 and 4.
Although it is expected that increasing the number of packets will
increase the total amount of information to be processed, subse-
quently increasing a model’s performance, it is not consistently
proven. Reviewing the results in Fig. 7, when a RF model is trained
using raw features, adding an increasing amount of packet data
will eventually confuse the model, lowering the AUC-ROC of the
RF model. In contrast, when a RF model is trained on quantiles,
increasing the amount of input packet data actually lead to an im-
provement in the AUC-ROC of the model, with diminishing returns.
In addition, it can be seen that changing t has no significant trend-
ing effect on the AUC-ROC of CNN-based models.

Fig. 8 reveals that an increased sample size, containing a larger
number of packets, will generally increase the processing time.
Most evidently perceived in the MW-1D-CNN model, its high com-
plexity leads to a significant increase in processing time as the
sample size is increased. However, an increased sample size leads
to a slight decrease in processing time for a quantile-trained
RF model. Ultimately, the results depict that maximum AUC is
achieved through training an RF model with t = 90. Furthermore,
the non-RF models have an acceptable performance and AUC value
at t = 90. Therefore, to facilitate future implementations and ex-
perimentation, t = 90 is found to be a suitable choice for efficient
and accurate classification.
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Table 3
Tuned hyperparameters of the selected CNN models.
Parameters Space 2D-CNN 1D-CNN MW-1D-CNN
Optimizer SGD, Adam, RMSProp RMSProp RMSProp  RMSProp
Num. of kernels (k) 32,64,128 32 128 64
Kernel size (w x w) (2,2),(3,3) (2,2) - -
Kernel height (h) 2,4,8,16,32,64 - 64 -
Max kernel height (hmax) ~ 40:10:80 - - 80
Pool size (p) 2,3 2 3 -
Batch size 128, 256 128 256 256
Activations Relu, Sigmoid, Tanh Sigmoid Tanh Sigmoid
Dropout U(0.1, 0.3) 0.195 0.296 0.298
learning rate 0.001 0.001 0.001 0.001
Num. CNN layers (L) 1:1:4 4 3 -
o
N 3
0 X un
0.99 a 25 - @
S o
= o D
0.97 3 2 °
S 0 o ]
095 S & & 2B
: s S 9g B 82
& n Q5§ O
0.93 S o 2 — O o g
Qo
0.91 S 8o
S o
X
0.89 S 5 I
o
0.87 I
F-MEASURE RECALL PRECISION AUC-ROC
EMW-1D-CNN ®1D-CNN B2D-CNN HERFonraw features ERF on quantiles
Fig. 4. Performance metrics of the devised models.
1 T T T T T T T
0.95 -
Q@ 09 r
@©
X 085
()
=
o 08¢
o)
P 0.75
g : —-+— 2D-CNN (AUC=0.921)
F oo7h —A— 1D-CNN (AUC=0.923) ]
—<&— MW-1D-CNN (AUC=0.925)
0.65 RF on raw features (AUC=0.931) |
—+H— RF on quantiles (AUC=0.936)
06 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
False Positive Rate
Fig. 5. AUC-ROC curves to evaluate the devised models.
<
\(\ \6(\ g@o‘ ‘40 \}6\
N N
ST o o @ ST S
<
«Q «Q ,\O Q ,(\ 06 © o"o ,\C) ,\0 ,\0 «C) «Q ,\Q & OQ o1
Min 0.1
0.09
Q1 0.08
) 0.07
Median 0.05
0.04
Q3 0.03
0.02
Max 0.01
0

Fig. 6. Ranking of features’ importance.



12 M. Safaei Pour, A. Mangino and K. Friday et al./Computers & Security 91 (2020) 101707
094 T T T T T
0.93 i
(6]
%
D) 0.92 B
<3( —-+-— 2D-CNN
—4A— 1D-CNN
0.91 | —&— MW-1D-CNN )
RF on raw features
—+&— RF on quantiles
O g I 1 1 1 1
0 50 100 150 200 250 300
Number of Packets
Fig. 7. Effect of packet number (t) on AUC-ROC.
= 1000 : T
c —-+-— 2D-CNN
8 gog H —A— 1D-CNN ]
2 —4&— MW-1D-CNN
© oo - RF on raw features J
S —F8&— RF on quantiles
|_
o L J
2 400
A
© 200 [ ey 1
o O——a—8—8—8—f— =
S RO O R . iy
o 0 4 I I I I I
0 50 100 150 200 250 300
Number of Packets
Fig. 8. Effect of packet number (t) on processing time.
Table 4 Table 5
Tuned hyperparameters of the RF models. Top countries hosting infected IoT devices.
Parameters Space RF on raw fields  RF on Quantiles Country (%) Country (%)
Num. estimators 20:20:100 60 60 e .
Max depth 4:4:20 12 12 - Brazil 4193 == Greece 1.70
an samples leaf 2:10:102 52 52 & iran 1017 ' ' Italy 1.60
Min samples split  U(2, 10) 6 4 =
Bootstrap True, False False False China 5.14 = United States 1.42
Criterion Gini, Entropy  Entropy Gini a
® Russian 3.59 Indonesia 1.25
i '.'
W Egypt 3.36 Mexico 1.24
0 &
o~ India 2.47 Ukraine 1.21
4.4. Inferring and characterizing compromised IoT devices and 3 Turkey 232 . Korea (south) 1.07
campaigns Sk
paig Taiwan 2.13 %LE‘ United Kingdom  0.83
Given the aforementioned classification results, we selected the ° Vietnam 1.91 ™™ Thailand 0.72
MW-1D-CNN model since it provided the highest true positive rate Argentina 183 @ spain 0.66

while limiting the false positive rate to around 0.08 (Fig. 5). We
further re-trained the model on recent data from December 2018
to accompany for any evolving dynamics.

By applying the binary classifier on 24 hours of darknet data
of December 13th, it was capable of fingerprinting 441,766 out of
the 1,787,718 unique scanners to be originating from compromised
IoT devices. Although previous works solely considered those with
a Mirai signature as loT-related (Antonakakis et al., 2017), we in-
ferred that in fact, they make up less than 25% of the IoT scanner
population that the proposed model was able to uncover, leaving
a whopping 75% to go about their malicious activities without any
semblance of an adequate attribution.

Table 5 summarizes the location of these exploited devices,
where Brazil (41.93%) was found to be hosting a significant por-
tion, followed by Iran (10.17%), China (5.14%), Russia (3.59%), Egypt
(3.36%), India (2.47%) and Turkey (2.32%).

Furthermore, the top three ISPs hosting the largest number of
compromised IoT devices were Vivo (134,021), TE Data (11,804) and
Iran Telecom Co. (9912).

While the extensive presence of IoT scanners alone gives pause
for concern, a relatively significant proportion residing within the
telecommunication and ISP sectors is rather expected; conversely,
their existence within sectors including but not limited to criti-
cal sectors is quite alarming. In Table 6, critical sectors which ap-
pear in lists provided by the U.S. Department of Homeland Security
(DHS) and the European Union (EU) are highlighted (Husak et al.,
2018). Amongst the inferred instances, quite a few were found to
be located within that of medical infrastructures (87), government
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Table 6
Top Sectors hosting infected IoT devices.

| Sector | Count |
Telecommunications 175,642
Internet Service Provider 82,238
Private Service 1,319
Internet Hosting Services 780
Education 485
Internet Colocation Services 314
Data Services 99

Lodging
Professional Service

entities (86), manufacturing realms (99), and commercial busi-
nesses (38).

Along those lines, the lengthy list of 50 identified vendors re-
veals a broad range of manufactures and device types that IoT
botnets demonstrate preference for exploitation. Amongst them,
MikroTik (14,090), Aposonic (2,222), Huawei (732), Foscam
(594) and Hikvision (417) are the topmost five targeted by the
tagged compromised devices. Routers (53.64%) and IP Camera/DVR
(28.93%) continue to be the most frequently infected devices.

Moreover, the most commonly targeted ports based upon the
number of scanning packets generated by the compromised IoT
devices are reported in Table 7. The top targeted ports include
23 (41.9%), 80 (23.9%), 8080 (19.7%), 5555 (4.9%), 81 (3.2%), 2323
(1.7%) and 22 (1.3%). Intriguingly, we identified the presence of
non-loT targeted ports such as 2480 (OrientDB), 5984 (CouchDB),
3389 (RDP), 7001 (Oracle), 5900 (VNC) and 2004 (Drupal), as
well as that of uncommonly used IoT ports 32,764 (router back-
door), 37,215 (UPnP in SOHO routers) and 52,869 (UPnP in wireless
chipsets). Set {23,80,8080} is the most prevalent target port com-
bination; 54% of devices actually only scan this port combination.

4.4.1. Inferring and reporting on orchestrated IoT botnets
Among the 441,766 IoT scanners that were detected on Dec.
13th, 2018, based on the results in Section 3.5, those that sent less

Table 7

than 500 packets were filtered out to exclude any of those that can
degrade the estimation of the probability distribution function .

Subsequently, the respective features were extracted and the
clustering method described in Section 3.4 was executed. In
roughly 40,000 scan flows, we witnessed less than 0.01% of pack-
ets in each scan flow arriving at specific UDP ports (e.g., 5998,
43922, 48715, 31,869 etc.). After analyzing such occurrences, we
deduced they resulted from associated bugs or attacks on P2P
networks such as BitTorrent; an observation that is also consis-
tent with previous works (Benson, 2016). As a result, in order to
avoid the ill-effects of uncorrelated incidents, the identified pack-
ets were removed prior to clustering. Regarding the inferred cam-
paigns, the proposed approach detected over 350 orchestrated IoT
botnets. Since the size of each IoT probing campaign translates to
its given severity, we summarize those botnets possessing more
than 300 coordinated IoT bots in Table 8. Interestingly, in solely
considering IoT scanners that targeted the set of ports {23, 80,
8080}, we detected 30 distinct botnets with differing distributions,
Flag (i.e., Mirai-like signature/behavior), and ARR.

4.4.2. Packet inter-arrival time analysis generated from the inferred
botnets.

Following the investigation of scan-based behaviors of the in-
ferred compromised IoT devices, we deduced two separate classes
of unique scan traits. Class 1 includes devices that present periodic
behavior in the time series of their packet Inter-Arrival Time (IAT).
For rate limiting purposes (Ceron et al., 2019), such devices seem
to generate a fixed number of packets then wait exactly 1 second
to re-confirm their desired scanning rate (in packets per second
(pps))- This leads to high peaks in their histograms of packet IATs
as seen in Fig. 9a. In contrast, the members of the Class 2 do not
portray any related periodic behavior when analyzing their packet
IAT. Fig. 9b portrays the IAT of the packets generated by the IoT de-
vices of Class 2, demonstrating an exponential distribution. To de-
tect the aforementioned behaviors, we first calculate the histogram
of packet IATs and then identify the peaks with an auto-correlation
coefficient (Figs. 9c and 9 d). To reveal the population of such in-
ferred classes in the context of the identified probing campaigns,
Fig. 10 illustrates the fraction of scanning classes in each campaign.

4.4.3. Scan rate analysis of the inferred IoT botnets

Fig. 11 presents the distribution of scanning rates extracted
from the inferred IoT botnets, as perceived by the network tele-
scope. Campaigns in which their scan rates follow a normal distri-
bution with a single peak and a narrow width (such as #1, #2,

TCP port distribution determined by quantifying the number of compromised IoT scan packets received by each in-
cluded port. Grey cells highlight unconventional, rarely probed ports and services.

| Port | Service | (%) || Port | Service | (%) || Port [ Service | (%) |
23 Telnet 41912 8181 HTTP-alt | 0.114 83 HTTP-alt 0.028
80 HTTP 23.917 88 HTTP-alt | 0.057 443 HTTPS 0.025
8080 HTTP-alt 19.784 || 21 FTP 0.056 || 3389 RDP 0.023
5555 ADB 4.995 7547 TR-064 0.053 8090 HTTP-alt | 0.018
81 HTTP-alt 3.288 8081 HTTP-alt | 0.050 || 8089 HTTP-alt | 0.018
2323 Telnet-alt 1.705 8888 HTTP-alt | 0.047 139 SMB 0.006
22 SSH 1.391 37215 | UPnP 0.045 || 7001 WebLogic | 0.005
9000 MCTP 0.470 || 2480 OrientDB | 0.041 52869 | UPnP 0.005
445 SMB 0.315 5984 CouchDB | 0.040 || 8291 ‘Winbox 0.004
5358 Telnet 0.238 82 HTTP-alt | 0.029 1433 MS-SQL 0.004
8000 HTTP-alt 0.197 8001 HTTP-alt | 0.029 5900 VNC 0.003
2222 SSH 0.165 8088 HTTP-alt | 0.028 || 2004 Drupal 0.003
8443 HTTP 0.121 84 HTTP-alt | 0.028 1900 UPnP 0.002
32764 | Linksys Vuln. 0.117 85 HTTP-alt | 0.028 Other - 0.596
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Table 8
Orchestrated IoT botnets in the wild.

Coinhive @ xmrMiner

Id Ports Flag ARR  #Bots b 4 Crypto Miners Compromised Devices
1 23, 80, 8080 1 139,858  [0.33 0.33 0.34] M] MikroTik, Hikvision, Foscam,
Vivotek, Huawei, Aposonic,
Intelbras, Ubiquiti, Netgear,
Mitrastar, Askey, Archer
2 23, 80, 8080 1 55,139 [0.294 0.295 0.411] M) MikroTik, Hikvision, Intelbras,
TP-LINK, D-Link, Huawei, ZTE,
Foscam, QNAP, ZyXEL, Cisco,
SERCOMM, Vivotek
3 23, 2323 v 1 36,464 [0.9 0.1] Huawei, Aposonic, Foscam,
Hikvision, Mikrotik, Cisco,
TP-LINK, CIG Shanghai, ZTE,
Ubiquiti
4 80 v 1 12,895 [1.] M) Huawei, Hikvision, MikroTik,
AvTech, ZTE, Foscam, Cisco,
Ubiquiti, NUUO
5 5555 v 1 11,050 [1.] (M) Huawei, TP-Link, Hikvision,
Aposonic, Foscam, MikroTik,
Sagemcom, iGate, VNPT,
Trendchip
6 23, 81 1 9805 [0.495 0.505] (M) Aposonic, Foscam, Huawei,
Hikvision, ZTE, Lilin,
Sagemcom, Netgear
7 23, 80, 8080 2 7610 [0.171 0.650 0.179] M] MikroTik, TP-LINK, Hikvision,
AvTech, Foscam, D-Link
8 23 v 1 7200 [1.] M] Huawei, Hikvision, TP-Link,
AvTech, TP-LINK, Aposonic,
ZEMS8O00, ZTE
9 23, 80, 8080 1 5971 [0.242 0.244 0.514] M] MikroTik, ZTE, Hikvision,
TP-LINK, Foscam
10 23 3 5491 [1.] DZS, Foscam, MikroTik,
Synology, ZyXEL, Hikvision
11 80, 8080 1 5162 [0.492 0.508] (M) MikroTik, Foscam, Hikvision,
Huawei, TP-LINK, Ubiquiti
12 23 1 4689 [1.] D-LINK, Hikvision, Aposonic,
MikroTik, Broadcom, ASUS,
AVM, Netgear
13 23, 80, 8080 1 4468 [0.442 0.032 0.526] M] MikroTik, TP-LINK, Hikvision,
D-Link
14 23 4 3911 [1.] GPON (DZS), Hikvision,
Huawei, MikroTik, Dasan,
Foscam, Mercusys
15 22,2222 v 1 3783 [0.897 0.103] M] QNAP, Huawei, Hikvision,
ASUS, Foscam, SERCOMM,
MikroTik, Intelbras, Ubiquiti
16 23, 2323, 5555 v 1 3545 [0.249 0.032 0.719] M] ZyXEL, MikroTik, Avtech,
Broadcom, Foscam, TP-LINK,
Hikvision, D-Link
17 23,2323 v 1 2727 [0.967 0.033] Huawei, ZTE, Hikvision,
MikroTik, Aposonic, ZEM800,
Foscam
18 23 2 2146 [1.] TP-LINK, Hikvision
19 23, 32764, 80, 8000, 8080, v 1 2140 [0.034 0.122 0.153 0.02 0.154 NUUO, Foscam, Hikvision,
8081, 8089, 8090, 81, 8181, 0.02 0.019 0.02 0.068 0.123 Huawei, AVM, MikroTik,
8443, 8888, 9000 0.122 0.022 0.121] Aposonic
20 23, 8080 1 1591 [0.48 0.52] M] MikroTik, Hikvision, D-Link,
TP-LINK
21 23, 80, 8080 1 1286 [0.384 0.319 0.298] M] MikroTik, SERCOMM, Foscam
22 80, 8080+rnd 1 1247 [0.45 0.45] MikroTik
23 23,81 1 1191 [0.095 0.905] Aposonic, Foscam, Hikvision
24 23, 80, 8080 1 1083 [0.226 0.5 0.274] M] MikroTik, D-Link, Foscam,
Aposonic
25 23,5358 1 1059 [0.5 0.5] Hikvision, Foscam, Intelbras
26 23, 2480, 5555, 5984, 80, v 1 783 [0.126 0.120 0.134 0.121 0.128 Foscam, Huawei, Aposonic,
8080+rnd 0.121] Hikvision
27 80, 8080 3 756 [0.814 0.186] M] MikroTik, TP-LINK
28 443, 80, 8000, 8001, 8080, v 1 723 [0.071 0.071 0.071 0.071 0.071 Synology, Hikvision

8081, 8088, 81, 82, 83, 84, 85,
88, 8888

0.071 0.071 0.072 0.072 0.072
0.071 0.072 0.071 0.072]

(continued on next page)
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Table 8 (continued)

29 23,2323 v 1 691 [0.794 0.206] Huawei, Aposonic, Hikvision

30 23,9000 1 677  [0.49 0.51] Sagemcom, SERCOMM,
Hikvision, Cisco, Huawei,
Aposonic, AVM, Mikrotik,
Foscam

31 23 5 642 [1.] ZTE, Hikvision, Foscam,
MikroTik, Netgear

32 80 1 616  [1.] M) MikroTik, Hikvision, Huawei

33 23, 80, 8080 1 544  [0.15 0.3 0.55] M] MikroTik, Huawei, ZTE,
Hikvision, Vivotek, Foscam,
Aposonic

34 23,81 1 541 [0.291 0.709] Aposonic, Huawei, Hikvision,
Foscam, TP-LINK

35 23, 445, 80, 8080 1 376 [0.3142 0.0587 0.3155 0.3115] @ MikroTik, Aposonic

36 23, 7547, 80, 8080, 8291 1 340 [0.334 0.002 0.33 0.331 0.002] @ MikroTik, Hikvision

#6, #11, #14, #15, #18 and #20 of Table 8) were found to be
exhibiting strong rate limiting policies regardless of their identi-
fied scanning class. In contrast, the rates of botnets #3, #8 and
#17 are distributed over a wider range, showing no artificial rate
limiting behaviors. In fact, this inference matches the released
source code of the Mirai malware (which botnet #3 is attributed
to), demonstrating the lack of rate limiting practices. For classes
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that were discovered to have no artificial rate limiting usages,
each individually-compromised device sent a maximized number
of scan packets based on their processing power and through-
put. By focusing on the scanning rates’ distributions of the in-
ferred campaigns coupled with their population of scanning classes
(Fig. 10), we can deduce some facts about the purity of the clus-
tered campaigns. This enable further scrutiny of such campaigns to
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Fig. 9. Sample of packet IAT’s histograms for Class 1 (a) and Class 2 (b) scanning practices. (c) and (d) respectively show the auto-correlation of (a) and (b) and the detected

peaks.
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determine if they contain a singular or multiple botnets. Note that
[AT-related features were not included during the clustering mech-
anism of Section 3.4. With this in mind, we further examined the
identified campaigns looking for Class 1 scan traits (those employ-
ing rate limiting practices) while their rates’ distributions showing
negative outcomes related to following a single normal distribu-
tion. The outcome, for instance, showed that although botnet #5
was identified as possessing Class 1 scan traits, its distribution of
scanning rate shows 3 distinct peaks. Therefore, we postulate that
there may be three unique botnets that were misidentified within
a single cluster. Nevertheless, this is expected for campaigns with
a single target port (and eventually st = [1]), similar to campaign
#5.

4.4.4. Geo-distributions of the inferred IoT botnets

By examining the geo-distribution characteristics of the identi-
fied botnets, we observe significant differences. Fig. 12 depicts the
geo-distribution of the most populated campaigns generating scan
events from multiple continents. Indeed, geo-distribution charac-
teristics are likely a direct result of the popularity differences re-
lated to the adopted device types and manufacturers, which is
known to be unique to each region (Kumar et al, 2019). Since
botnets leverage definitive attack vectors, they are typically cus-
tomized to target specific vendors; coherently, the vendor’s pop-

ularity will also attract botnets, which is reflected in the con-
centration of such popular devices/bots in certain geo-locations.
For further analysis, Fig. 13 displays the cumulative distribution
of campaigns over Autonomous Systems (AS). Despite a few cases
with highly similar distributions (e.g., #2 and #9), other spe-
cially less populated botnets are discovered to have a larger dif-
ference between distributions, as shown in Fig. 13b. Furthermore,
amidst the inferred campaigns, there exists campaigns whose geo-
distributions do not comply with that of the global distribution of
infections (Table 5). For instance, with respect to campaigns #7,
#13, #24 and #27, over 98% of infected IoT devices are located in
Iran. Campaign #30 has upwards of 50% and 10% of compromised
IoT devices located in USA and UK, respectively. Further, campaign
#28 shows a 40% infection rate in North America, and a 21% in-
fection rate in Europe. Spread across multiple geographic regions,
these campaigns contradict the global distribution of infections.

4.4.5. IoT botnets with cryptojacking capability

Aside from the dominant monetization method for IoT botnets
performing DDoS attacks, cryptojacking has emerged as a critical
IoT botnet capability (ISTR, 2018; Tuttle, 2018). In essence, com-
promised routers have become responsible for injecting JavaScript
crypto-currency miners into the HTTP pages requested by de-
vices on their network (Zimba et al., 2019). JavaScript miners such
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as Coinhive (Coinhive, 2018) and xmrMiner (xmrMiner, 2019)
strive for Monero altcoin in particular. To this end, we examined
the responses to HTTP requests derived from the IoT scanners, tag-
ging those that contain the xmrMiner or Coinhive JavaScript
modules, and exporting their corresponding keys. By doing so, we
discovered 1134 xmrMiner and 923 Coinhive instances with 23
and 30 distinct keys, respectively. The campaigns designated as
containing members with cryptojacking capabilities are highlighted
in Table 8. The relation of crypto-mining keys appearing in each
campaign is illustrated using a 3-partite graph as in Fig. 14. We an-
alyzed the graph to find the number of components to uncover any
further relations between the campaigns. Interestingly, the graph
is connected. This demonstrates that salient connections exist be-
tween all the campaigns involved in cryptojacking activities.

In addition, we uncovered large campaigns maintaining crypto-
miner instances with and without the presence of Mirai-like sig-
natures. Moreover, 943 out of 1134 devices, belonging to a total
of 18 campaigns (#1, #2, #4, #5, #7, #8, #11, #13, #15, #16, #19,

#20 #21, #24, #32, #33, #35 and #36), share the same xmrMiner-
related key “4983e34ef01b4b579725b3a228e59e79” (red edges in
Fig. 14). In other words, large portions of significant IoT campaigns
could be reported to be attributed to the same “player”. Addition-
ally, upon exploring the key within Censys, 54,743 Mikrotiks
were shown to possess it. In total, these campaigns equate to ap-
proximately 250,000 compromised IoT devices, or 54% of all the
identified compromised devices.

4.4.6. A closer look at other campaigns of interest.

Campaign #3 with 36,464 bots was inferred to be targeting
ports 23 and 2323 with a proportion of 9:1, which is the same
as instructed within the Mirai released code. Another interest-
ing observation pertains to botnet #26 (of Table 8) where packets
to random TCP and UDP ports were sent in addition to targeting
the defined set of ports of {23, 2480, 5555, 5984, 80, 8080}. Ad-
ditionally, this campaign targeted port 2480 (OrientDB) and 5984
(CouchDB), as well as other common IoT-related ports including
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Fig. 14. A 3-partite graph of discovered cryptomining-related keys within each
campaign. Each key is represented by its first 5 characters. Red threads highlight
the reuse of the same key “4983e34ef01b4b579725b3a228e59e79” in 18 different
campaigns. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

23, 5555 (ADB) and 8080. Upon further analysis, this behavior
could be attributable to the infamous Hide and Seek botnet
(Rootkiter, 2018b).

For port 32,764 which is related to a backdoor vulnerability
(Thomas, 2018), the proposed IoT botnet clustering approach re-
vealed a campaign of substantial size (#19 in Table 8), consisting
of 2140 active IoT scanners with the signature of <{23, 32764, 80,
8000, 8080, 8081, 8089, 8090, 81, 8181, 8443, 8888, 9000}, Flag=1,
ARR=1 > . We did not come across any previously reported botnet
families that scan such ports. As a result, we postulated that this
campaign is either new or specific ports have been recently added
to the target list of a previously known IoT botnet. Another aspect
is that this is the only large campaign that exploited a relatively
significant number of NUUO products, which is a common indica-
tor of the Reaper IoT botnet. The JenX botnet (Exchange, 2018),
which scans ports 37,215 and 52869, was also disclosed. More-
over, a botnet with <{2004, 80, 8080, 81}, Flag=0, ARR=2 > was
also discovered and consisted of 35 coordinated IoT scanners, all of
which compromised QNAP NAS. This campaign strongly resembles
the Muhstik botnet (Rootkiter, 2018a), with the exception of the
substitution of port 7001 with 81 in the target port set.

With the prevalence of 10T botnets, port 5555 (Android debug
bridge) has become a popular target port. We found 23 IoT botnets
that include port 5555 as part of their target set. Based on the re-
ports on ADB miner (Netlab, 2019a) and the similarity of its scan-
ning module to Mirai, we can attribute the inferred large IoT bot-
net (#5 in Table 8) to Mirai or its variant Fbot (Netlab, 2019b).
Additionally, we found xmrMiner instances with the same previ-
ously noted key (of Fig. 14 in the latter campaign and in campaign
#16. Based off the set of target ports pertaining to campaign #25
(port 23, 5358), it seems to be highly likely attributed to that of
the Hajime (Herwig et al., 2019; Radware, 2018) IoT botnet. In to-

tal, this campaign possessed 1059 active IoT scanners (made up of
IP cameras/DVRs).

4.4.7. A note on Industrial Control Systems (ICS).

We also inferred an IoT botnet of 25 bots with the signature
< {102, 8888, 993}, Flag=0, ARR=1 >, probing Siemens S7 (heavily
used in SCADA systems), IEC 61,850 and ICCP (both are mostly used
in utility/electric substations) on port 102. To provide additional
insights, we also actively scanned each of the identified compro-
mised IoT devices for ICS open ports on TCP and UDP 102 (S7), 502
(MODBUS), 20,000 (DNP3), 47,808 (BACNET) and 1911 (FOX) and
found 100, 101, 465, 70 and 85 devices with open ports, respec-
tively. We note that we have also inferred close to 40 devices hav-
ing simultaneously all the above-mentioned ICS ports open, which
we thought are related to ICS honeypots. Nevertheless, the appear-
ance of compromised IoT devices within ICS setups is alarming.

5. Concluding remarks

With the continuous adoption of the IoT paradigm in critical in-
frastructure and consumer sectors, their security and privacy con-
cerns are becoming quite serious, leading to devastating conse-
quences. This work compliments current IoT-centric research by
offering a macroscopic, generic and passive methodology to infer
Internet-scale compromised IoT devices and to report on ongoing
IoT botnets. The work initially introduces a novel darknet-specific
sanitization model that contributes to the field of Internet mea-
surements at large. Subsequently, by devising a binary classifier
based upon a CNN in conjunction with active measurements, the
proposed work is capable of fingerprinting compromised IoT de-
vices by solely operating on darknet traffic. Consequently, by au-
tomating the generation of signatures related to the ports being
probed coupled with their distribution in addition to other simplis-
tic yet effective features, the proposed approach provides the ca-
pability to infer ongoing orchestrated botnets. The results demon-
strate the significant security issue with the IoT paradigm by ex-
posing more than 400,000 exploited IoT devices during only a 24-
hour period, some of which have been deployed in critical sec-
tors such medical and manufacturing. Additionally, the outcome
provides evidence-based indicators related to ongoing IoT botnets
such as those of Mirai, Hide and Seek, and Reaper, to name
a few. More interestingly, the results demonstrate evolving IoT bot-
nets with cryptojacking capabilities, where many of those seem to
be attributed to the same mastermind by exposing the same em-
ployed key.

Future work will address current limitations. This includes ad-
dressing the misidentification of two distinct IoT botnets (as one
larger campaign) by including packet IAT related features, and im-
proving the tagging/labeling procedure. We will also examine IoT-
specific malware samples and devising formal methodologies be-
tween the traffic they generate from one side and the correspond-
ing darknet traffic from the other side, to fortify the attribution
evidence. Moreover, extracting a number of features from [oT mal-
ware binaries will empower the attribution of each malware sam-
ple to their respective campaigns, enabling agile IoT botnet infer-
ence and characterization for mitigation and remediation purposes.
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