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Abstract

The emergence of advanced in-vehicle infotainment (IVI) systems,
such as Apple CarPlay and Android Auto, calls for fast and intuitive
device pairing mechanisms to discover newly introduced devices
and make or break a secure, high-bandwidth wireless connection.
Current pairing schemes are tedious and lengthy as they typically
require users to go through pairing and verification procedures
by manually entering a predetermined or randomly generated pin
on both devices. This inconvenience usually results in prolonged
usage of old pins, significantly degrading the security of network
connections.

To address this challenge, we propose IVPAIR, a secure and usable
device pairing protocol that extracts an identical pairing pin or
fingerprint from vehicle’s vibration response caused by various
factors such as driver’s driving pattern, vehicle type, and road
conditions. Using 1VPAIR, users can pair a mobile device equipped
with an accelerometer with the vehicle’s IVI system or other mobile
devices by simply holding it against the vehicle’s interior frame.
Under realistic driving experiments with various types of vehicles
and road conditions, we demonstrate that all passenger-owned
devices can expect a high pairing success rate with a short pairing
time, while effectively rejecting proximate adversaries attempting
to pair with the target vehicle.

CCS Concepts

« Human-centered computing — Ubiquitous and mobile com-
puting systems and tools; « Security and privacy — Authenti-
cation.

Keywords

Device pairing; device authentication; pin generation

ACM Reference Format:

Kyuin Lee, Neil Klingensmith, Dong He, Suman Banerjee, and Younghyun
Kim. 2020. 1vPAIR: Context-Based Fast Intra-Vehicle Device Pairing for
Secure Wireless Connectivity. In 13th ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec °20), July 8-10, 2020, Linz
(Virtual Event), Austria. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3395351.3399436

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8006-5/20/07...$15.00
https://doi.org/10.1145/3395351.3399436

25

1 Introduction

With the prevalence of mobile devices with miniaturized form fac-
tors and limited user-interfaces, such as smart watches and wireless
earbuds, there is an increasing need for a new pairing mechanism to
spontaneously and securely authenticate newly introduced devices
to an existing network. For instance, connecting a mobile device
to an in-vehicle infotainment (IVI) system has long been a prob-
lem that is much more bothersome than it sounds. To do this, the
user has to navigate through multiple steps to discover the device
to pair and enter a randomly generated pin to verify the device’s
authenticity. This pairing process is often tedious and lengthy, and
sometimes not so user-friendly and unsafe to do while driving that
it even discourages users from using it unless the pairing purpose
is expected to have a long lifetime. When the pairing procedure is
deemed necessary, since this inconvenient procedure is not consid-
ered to be an everyday task, the vehicle’s on-board computer system
would remember the paired device and reuse the pre-negotiated
pin, which can be vulnerable to number of attacks [3].

Unfortunately, this pairing mechanism remains surprisingly out-
dated in spite of the emerging advanced IVI systems, such as Apple
CarPlay and Android Auto, that acts more like a smartphone embed-
ded in the car. As the sensitivity of personal data exchanged within
the network is much more higher than just an audio playback or
personal contact information, today’s IVI systems demand higher
level of security than conventional car audio systems. Additionally,
the utility of such systems would be maximized by inter-operating
with mobile devices, often not only the driver’s device but also
(sometimes anonymous) passengers’ devices with short-lived pair-
ing. To meet this emerging demand, a secure and usable mechanism
for spontaneous pairing is required to eliminate the inconveniences
of conventional methods.

As a promising solution to enable fast and convenient yet secure
device authentication, context-based authentication has recently
emerged [4]. The coexistence of two (or multiple) devices is veri-
fied by comparing a random key or pin independently generated
from an ambient source of randomness, such as wireless signal
strength [13], luminosity and acoustic noise [15, 19]. Because of the
pervasive and continuous nature of randomness in such ambient
sources, it prevents the risk of using poorly chosen passwords over
a long period across multiple pairs of devices. Due to its high secu-
rity and convenience, it has been studied to replace conventional
authentication methods or be used in tandem to augment it.

In this paper, we propose a secure and usable pairing protocol to
extract entropy from the road conditions to automatically generate
authentication pins for multiple devices within the same car. While
mechanical vibration has been used in some previous work for
device pairing [7, 11] due to ubiquitous presence of accelerometers
in today’s mobile devices (e.g., smartwatches, smartbands, and
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Figure 1: Passenger-owned mobile devices in the legiti-
mate user’s vehicle are pairing with the vehicular computer
(host).

smartphones), there has been little investigation in the context of
in-vehicle usage. More specifically, this paper investigates the use
of vibration simultaneously measured by a vehicular computer and
a mobile phone in the same vehicle to subsequently establish a
secure wireless connection (e.g., Bluetooth or Wi-Fi) between them.
The contributions of this paper are as follows:

e We present an intra-vehicle device pairing protocol called 1vPAIR,
which exploits simultaneously measured vibration to generate a
common pin to establish a secure wireless connection.

o We design and implement integral techniques to overcome chal-
lenges in realizing IvPAIR on commercial mobile devices, such as
lack of time synchronization and sampling frequency mismatch.

e We conduct real-world experiments under various driving en-
vironments and demonstrate successful pin generation and its
robustness against adversaries.

2 System Models

The assumptions and system models of 1vPAIR, including its threat
model, are as follows.

System model: We consider a scenario where passenger-owned
mobile devices within a vehicle are trying to establish a secure
high-bandwidth wireless connection (e.g., Bluetooth or Wi-Fi) to
the vehicle’s computer system by generating identical pins while the
vehicle is actively in motion, as illustrated in Figure 1. We assume
that there exists an on-board reference accelerometer attached
within the center console of the host vehicle.

Threat model: To be considered as a secure pairing scheme,
some common attack scenarios need to be taken into account. We
assume an active adversary that is maliciously or unintentionally
trying to pair with the legitimate victim’s vehicle or their mobile
devices to tamper with or control the system. The adversary does
not have direct physical access and is not present within the victim’s
vehicle but knows the type of the car and can drive closely to the
victim within its wireless range. Additionally, we assume that the
adversary can eavesdrop on any plaintext wireless messages that
are used in the legitimate pairing process.

3 Proposed Pairing Protocol

In this section, we present the overall protocol of 1VPAIR to pair
two devices with no prior knowledge.
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Figure 2: Overall protocol to extract identical pins on two
devices to bootstrap high-bandwidth wireless connection.

3.1 Overview

The only additional hardware component required by 1vPAIR is
a reference accelerometer embedded in vehicle in the direction
parallel to the car, with y-axis pointing towards the direction of
travel and z-axis pointing downwards through the chassis. To pair
with a mobile device on the go, the user simply holds the device
(embedded with an accelerometer) against the moving vehicle’s
interior door frame closest to his/her sitting position.

Figure 2 illustrates the pairing process, which consists of three
phases: i) measurement, ii) conditioning, and iii) pin generation. To
initiate pairing, Device B (user’s mobile device) transmits a pairing
request to Device A (host vehicle), and both devices independently
measure its own acceleration in y- and z- axes. For simplicity, we
assume that the user contacts the accelerometer of the mobile device
oriented the same direction as the reference accelerometer since
the orientation of two accelerometers observing identical linear
acceleration in two orthogonal directions can be easily aligned [2,
21]. Following the conditioning and pin generation phases, the two
devices generate identical pins to communicate through a secure
encrypted channel. Note that all information exchanged between
two devices until the completion of the pin generation phase is in
plaintext that can be eavesdropped by the adversary.

3.2 Measurement and conditioning

The main source of entropy to generate a pin is the vibration re-
sponse of the moving vehicle perpendicular to the direction of travel.
That is, the acceleration signal from z-axis, Acc,, 4, is utilized to
extract pins from both devices, where u denotes one of the devices,
A or B. However, the raw measurement cannot be directly used to
extract bits due to significant temporal misalignment caused by:
i) time offset resulting from the transmission delay of the pairing
request message and ii) sampling frequency mismatch caused by
variation between the devices. To achieve temporal alignment with-
out revealing secret, two devices leverage the acceleration in y-axis,
Accy, y,, which represents the vehicle’s linear acceleration towards
the direction of travel resulting from the driver’s behavior of ac-
celerating and breaking. Note that, since Accy is more predictable
by an external observer, it is used for signal conditioning only, but
should not be used for actual pin generation.

More specifically, the devices utilize the sliding window approach
to find the index of a sample that exhibits the highest correlation
between its own Accy and the other’s Accy. However, while this
process may synchronize the starting points, the sampling rate
variation between the devices results in additional misalignment as
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Figure 3: Measured Accy and Acc,, sample-wise error, and cor-
relation coefficient r between two devices (a) before and (b)
after sampling frequency alignment using DTW.

the number of measurements accumulate. Therefore, after aligning
the starting points, we correct the sampling frequency discrepancy
by adopting dynamic time warping (DTW) [1] on synchronized
Accy, 4 and Accy, g to calculate the optimal correspondence between
them. Each device extracts its non-linear warping path i4 and i
which represents the indices of Accy, 4 and Accy, g with minimum
distance with respect to each other. Then the devices independently
apply their warping path iy and ig on Accy, y, to obtain tightly
aligned fingerprints F,, with respect to each device.

Figure 3 compares Accy and Acc, measured from two devices
and their sample-wise error before and after the proposed signal
conditioning. As shown in Figure 3(a), without the DTW-based
alignment, two signals on both axes are severely misaligned even
within a 10-s measurement. The sample-wise error plot shows that
the magnitude of the error gradually increases as the sampling time
increases, due to the sampling frequency variation between two
devices. On the other hand, after they are aligned using the warping
path calculated from Accy, as illustrated in Figure 3(b), the error
rate of two axes is drastically reduced (from root mean square error
(RMSE) of 0.10 to 0.01, and 0.16 to 0.12, respectively), resulting in a
significant improvement in correlation between Acc, 4 and Acc,
from 0.39 to 0.65.

3.3 Pin generation

The two time-aligned fingerprints F,, obtained by two devices are
the main source of randomness to harvest identical bit sequences.
To quantize F, into bit sequences K;,, we employ the noise-based
random bit generation method [10], where time-series fingerprint
signals are uniformly segmented into several subsections nj, and
the index of the maximum absolute value, T}, in each subsection
is exchanged to be converted into bits. If the signal value at each
index is greater than the mean of the subsection, a bit 1 is extracted;
otherwise a bit 0 is extracted. Because there exists no periodic
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nature in the high-frequency components of F,,, we segment the
entire fingerprint into n; subsections which represents the number
of extracted bits and extract bits as follows:

1 if F 3(Tp) 2 mean(F, p)
Ku,b = 0

if Fy, 5(Tp) < mean(Fy, p).

This bit extraction scheme results in nearly identical sequences
but may exhibit occasional bit errors due to remaining timing mis-
match. To resolve these errors without leaking any information
about the pin itself, the following reconciliation phase utilizes error-
correcting code (ECC) to map equivalently segmented bit sequences
to one of the pre-computed codewords. For instance, when using
Hamming(n, k) as a base ECC, the results of equally segmented
n-bits from the bit extraction phase will map to a n-bit codeword
that exhibits the minimum Hamming distance.

(1)

4 Implementation and Evaluation

In this section, we evaluate IvPAIR under realistic usage and adver-
sarial scenarios.

4.1 Experimental setup and metrics

We evaluate the performance of 1vPaIRr with different body types
of vehicles driven on various types of roads. In total, more than 3-
hour worth of real-world driving data is collected using triple-axis
ADXL345 MEMS accelerometer connected to Arduino Uno boards
at a sampling frequency of 800 Hz. For each pairing attempt, 10-s
long accelerometer measurement is used to extract 14-bit pins. We
employ Hamming(7, 4) as the ECC for reconciliation to resolve bit
errors. To simulate the user holding the mobile device against the
interior panel of the vehicle, we use adhesive tape to fix a reference
accelerometer (representing the host) to the center console as well
as different positions within the car. For all driving environments,
the driver maintained safe driving behavior without any aggres-
sive or abrupt accelerating and breaking activities to intentionally
improve signal-to-noise ratio.

We primarily focus on two evaluation metrics: the bit agreement
rate and the success rate of pairing attempts. Bit agreement rate
refers to the rate of equal bit-wise comparison results between two
generated pins before reconciliation, and success rate represents
the rate of successful pairing that exhibits a perfect (100%) bit
agreement rate after reconciliation. Additionally, as a measure of
user experience accounting for pairing failure scenarios, we define
expected pairing time to be inversely proportional to the success
rate times the duration of the measurement (10 s).

4.2 Bit randomness

First, in order to investigate the quality of bit sequences gener-
ated from the ivPair, we record the histogram of the frequency
of bit 1’s in the generated bit sequences. To prevent an adversary
from randomly guessing the pin, a high-quality pin should con-
tain statistically equal number of bit 0’s and 1’s. If the sequence
dominantly embeds more number of 1’s than 0’s or vice-versa (i.e.,
biased), the contexts that are used for the fingerprint extraction is
not considered ideal.

Since 1vPAIR determines each bit by the relative magnitude of
random noise and the mean value based on (1), the probability
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Figure 5: (a) Bit agreement rates and (b) success rate on sedan
and SUV driven on different roads.

of appearance of a bit 1 and a bit 0 are equally likely. Ideally, in
the case of a 14-bit pin sequence, the number of bit 1’s should
be around 7 to indicate frequent contextual changes within the
measured fingerprint signals. Figure 4 illustrates the histogram of
100 sequences generated from the city, highway and suburb driving
conditions. All three distributions exhibit a binomial distribution
centered around 7 with no sequence that exhibits continuous 0s or
1s, which indicates the presence of entropy and randomness in the
fingerprints that makes it difficult for the adversary to randomly
guess the established pin.

4.3 Vehicle and road types

Different vibration responses resulting from different types of ve-
hicles, roads, and traffic conditions can affect the overall pairing
process. In order to investigate these variations, we conduct exper-
iments using a sedan and a sport utility vehicle (SUV) driven on
the city, freeway and rural roads. One accelerometer fixed to the
driver side door frame is requesting to pair with the host fixed to
the center front console. For each road type, 100 pairing attempts
are made. Overall, as Figure 5(a) illustrates, both types of vehicles
show high bit agreement rates. In particular, the sedan type vehicle
achieves 98.1% bit agreement rate in the city, while the SUV type
exhibits 95.0%. This is due to the fact that the higher chassis and
clearance height of the SUV results in a higher sensitivity to road
and traffic conditions that leads to a slight difference in vibration
responses between two devices. The results also show overall high
bit agreement rates for all types of roads, close to exceeding 90%.
Rural driving exhibits slightly lower agreement rates in both vehi-
cle types compared to the freeway and city driving due to unstable
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Figure 6: (a) Location of devices (H: host, 1-4: mobile de-
vices). (b) Pairing success rate and bit agreement rate be-
tween pairs of devices.

accelerometer data from frequent and larger bumps and cracks on
unpaved road surfaces. As illustrated in Figure 5(b) the high bit
agreement rates lead to high success rates above 85% for all freeway
and city driving in both vehicle types. While the SUV case in rural
driving shows the lowest success rate out of all cases at around
69%, city driving exhibits high success rates of 97% and 91% for
the sedan and SUV, respectively. These results indicate that even
under variations caused by different roads and vehicle types, a high
success rate is maintained at 87% on average.

4.4 Location of mobile devices

Next, we investigate the performance of 1vPAIR at varying locations
within the vehicle. Figure 6(a) shows the locations of the host as
well as other mobile devices’ location. For each device pairs, 100
pairing attempts are made on the city roads. Figure 6(b) shows the
bit agreement rate and the pairing success rate for four different lo-
cation pairs. The devices placed in the front seats, closer to the host
accelerometer, show an average agreement rate of 94.7% and 94.0%
for the driver side (H-1) and the passenger side (H-2), respectively.
The devices that are located in the rear seats achieve slightly lower
agreement rates due to the natural location variation that leads to a
slight difference in its fingerprints. However, our experiments sug-
gest all the passengers in the vehicle will experience an acceptable
success rate of above 70% with a mean of 85%, regardless of their
seat position.

We also show that 1vPAIR’s conditioning process (DTW-based
sampling frequency alignment) significantly improves the correla-
tion between fingerprints generated by device pairs. As presented
in Table 1, all fingerprint pairs exhibit low mean correlations (0.15
on average) before conditioning. However, after conditioning, the
mean correlations are dramatically improved to 0.71 on average,
enabling successful pairing at a high probability.

A low success rate due to unresolved bit error after reconciliation
means that the device has to repeatedly attempt to pair with the host,
which directly degrades the user experience due to long pairing
time. Specifically, a user sitting in the driver side of the car (the
Host-1 pair) can expect an average pairing time of 11.0 s thanks
to the higher success rate as compared to other location pairs. For
passengers sitting in rear seats, it will take 13.5 s on average. Overall,
regardless of their sitting positions, all the users within the same
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Table 1: Expected pairing time and mean correlation coeffi-
cient before and after conditioning.

Device pair  Correlation coefficient Expected time
Host-1 0.11 — 0.79 11.0s
Host-2 0.06 — 0.78 120 s
Host-3 0.32 — 0.65 135s
Host-4 0.09 — 0.61 12.8 s
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Figure 7: Bit agreement rate achieved by the adversary under
two different attack scenarios.

vehicle can expect a reasonably short expected pairing time of less
than 14 s.

4.5 Adversarial scenarios

We consider two adversarial attack scenarios according to our threat
model where we assume that the legitimate vehicle is within the
sight of the adversary. The same-lane scenario is where the adver-
sary is actively driving with the target vehicle in the same lane. To
maximize the adversary’s bit agreement rate against the victim vehi-
cle, the adversary is driving in front of the victim vehicle and delays
its measured fingerprint signal to account for slight timing differ-
ence caused by the distance between two vehicles. Additionally,
in the side-lane scenario, the adversary is driving the car side-by-
side in a multi-lane road. We conduct this experiment with two
sedan vehicles within the city driving condition and assume that
the adversary is equipped with identical accelerometer hardware
as the victim. In total, the adversary attempts 50 pairing requests
in each scenario, utilizing the acceleration measured from the ad-
versary’s vehicle. The bit agreement rates resulting from the two
attack scenarios are presented in Figure 7. Overall, the adversary
conducting the side-lane attack is able to achieve a mean bit agree-
ment rate of 61.3% compare to the legitimate pin. The adversary
was able to guess only up to 85.7% of the legitimate key in two out
of 50 attempts before reconciliation, which is below the threshold
to pair with the victim vehicle. On the other hand, in the same-lane
attack scenario, the adversary achieves a slightly higher mean bit
agreement rate of 70%. This is because the adversary mimicking the
legitimate fingerprint in the same-lane is more likely to experience
the same bumps and cracks than in the side-lane scenario. However,
under both attack scenarios, none of the attempts successfully pairs
with the victim’s vehicle.
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4.6 Sampling frequency analysis

Generally, the higher the sampling frequency, the better the accu-
racy to capture the vehicle’s vibration responses, which increases
the overall bit agreement and pairing success rates. Therefore, in
order to examine the minimum sampling frequency to maintain a
reasonable success rate, we downsample the measured fingerprints
from 800 Hz down to 25 Hz and attempt to pair a device attached
to the driver’s door panel (H-1 pair in Figure 6). As illustrated
in Figure 8, the success rate is maintained above 85% as long as
the sampling frequency is greater than 200 Hz. As the frequency
reduces to below 200 Hz, the success rate starts to decrease. Specif-
ically, frequency of 50 and 25 Hz exhibit success rate of 22% and
12%, respectively, significantly degrading the usability of 1vPAIR.
Therefore, to maintain an acceptable success rate higher than 80%,
which corresponds to an expected pairing time of 12.5 s, the sam-
pling frequency must be kept above around 170 Hz. Most modern
mobile devices are equipped with MEMS accelerometers that can
easily meet this sampling frequency requirement.

4.7 Computational overhead of DTW

The main computational overhead of 1vPAIR is the execution of
DTW algorithm in the signal conditioning phase to achieve sam-
pling rate alignment. In order to validate the feasibility of computing
DTW on commercial mobile devices, we implement an Android
application running on LG Nexus 5X (Android 5.0) with 1.8 GHz
processor, which is a mid-range smartphone nowadays, and mea-
sure the algorithm’s computational run time. The application takes
in two discrete time series of 8,000 samples (10-s long fingerprint
at 800 Hz) and matches the samples of one series to another. On
average, computing the alignment path takes only 564 ms, which
indicates that the computational overhead does not significantly
affect the usability of 1vPAIR.

5 Discussion

In this section, we further discuss remaining challenges and future
directions of 1vPAIR.

Vehicle must be in motion: For 1vPAIR to work, we need a
common source of linear acceleration in one direction to obtain
tightly synchronized fingerprints, which requires the vehicles to be
in motion. This requirement makes 1vPAIR slightly constrained in
terms of its usability to pair anytime. However, considering that the
need for a convenient device pairing method is more imperative
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when the driver should not be distracted, ivPAIR would be useful
in practical scenarios.

Entropy vs usability trade-off: In our evaluation, we found
that it takes about 10 s to extract a 14-bit pin—roughly the same
amount of information as in a four decimal-digit Bluetooth pin. If
the length of bits extracted increases, the bit agreement rate would
decrease due to the differences in the fingerprints caused by sensor
variation and locality. Therefore, further investigation is needed
in order to evaluate the trade-off between security (bit length) and
usability (expected pairing time).

Human factors: Ideally, the pairing process should be seamless—
the user should be able to pair a device while holding it in their
hand or in the pocket. To deal with this problem, we could treat the
user’s body—including the seat and their hand grasping the phone—
as a linear time-invariant system that filters bumps from the road
before the bumps can be measured by the device’s accelerometer.
Additionally, our experiments are conducted in the vehicle with no
background audio or music. We imagine that loud sounds can cause
the door frames to vibrate since the speakers are usually embedded
in the frames.

6 Related Work

Context-based pairing and authentication have actively been stud-
ied to leverage various ambient contextual information that can
be measured by rich sensing capabilities on today’s mobile and
stationary IoT devices. Specifically, devices deployed in homes and
offices can leverage various surrounding physical contexts to mu-
tually authenticate colocated devices. For example, measurements
from ambient audio, received signal strength indicator (RSSI), visual
channel and luminosity can be used to generate identical keys to
establish secure communication channel [13, 15, 17, 19]. Addition-
ally, [4] provides first large-scale public dataset of various devices in
multiple environments (i.e., car and office) and re-evaluates various
zero interaction pairing and authentication schemes.

In the wearable and mobile device domain, identical keys for pair-
ing can be extracted from the legitimate user’s electrocardiography
(ECG) signal by extracting the time interval between two consecu-
tive peaks from piezo or ECG sensors [12]. To authenticate multiple
mobile devices carried by the walking user, [11, 21] proposes key
generation method from walking characteristics (gait) of the user
based on their acceleration signal from different parts of their body.
As an interactive pairing method, [14] proposes device-to-device
authentication by letting the user simultaneously shake two devices
and use its movement patterns for key generation purposes.

Mechanical vibration context has proven to be useful for estab-
lishing a common secret only between colocated devices thanks to
its proximity nature and the ubiquitous availability of accelerom-
eters in various devices. Much like NFC and ultrasound [8, 20], it
can be used as an out-of-band communication channel to explic-
itly transmit and receive data using a vibration generator and an
accelerometer [7, 9, 16, 18], but it requires the devices to be in di-
rect physical contact to transfer a secret generated by one device
to another. Relevant research proposes to use vibration measured
by multiple vehicles in the same lanes (a platoon of vehicles) to
authenticate a newly joining vehicle for vehicle platooning pur-
poses [6]. Recently, [5] addressed secure pairing of devices within
multi-modal transport (i.e., train, tram, bike, and vehicle). Compared
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to this work, we specifically focus on the vehicular application with
extensive experiments including adversarial attacks and multiple
device locations under various road conditions and achieve consis-
tently higher pairing success rates.

7 Conclusion

We proposed a fast and convenient method for pairing devices
within the same vehicle, called 1vPAIR. The results from extensive
experiments show that 1vPAIR can complete device pairing within a
reasonable time at a high success rate in various vehicle types and
road conditions as validated with extensive real-world experiments.
It is shown that it can successfully reject nearby adversaries in the
same or next lane. The proposed method would enable seamless
connection between mobile devices and emerging IVI systems,
potentially facilitating innovative mobile applications with short-
lived device pairing.
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