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Abstract

The security of biometric templates is of paramount im-
portance. Leakage of biometric information may result in
loss of private data and can lead to the compromise of
the biometric system. Yet, the security of templates is of-
ten overlooked in favour of performance. In this paper, we
present a plug-and-play framework for creating secure face
templates with negligible degradation in the performance
of the system. We propose a significant bit based represen-
tation which guarantees security in addition to other bio-
metric aspects such as cancelability and reproducibility. In
addition to being scalable, the proposed method does not
make unrealistic assumptions regarding the pose or illumi-
nation of the face images. We provide experimental results
on two unconstrained datasets - I/B-A and 1JB-C.

1. Introduction

Biometrics based authentication systems have been over-
whelmingly successful in providing security to a variety of
applications. Biometric authentication is more convenient
and secure than other authentication tokens that have to be
memorized, such as passwords. Even though adoption of
biometric authentication systems is increasing rapidly, a key
advantage of information or password-based systems is the
ease of cancelability associated with the authentication to-
kens. In the scenario where the stored token (password)
is compromised, it can be changed and a new password
can be registered. Since biometric data is inherently non-
cancelable there is a need to create cancelable representa-
tions for biometric data. It is also important for any bio-
metric system to create a representation that would prevent
any leak in user information if the system is compromised.
This is extremely important in preserving the privacy asso-
ciated with user data. Considering face recognition systems
in particular, [1 1] discussed how model inversion attacks
could potentially expose the weakness of any facial biomet-
ric system and lead to leakage of sensitive user information.
Analysis of biometric systems also indicates that, regardless
of the biometric modality under consideration, the chances

of two independent recordings of data (sensor recordings)
from the same data source matching exactly is infinitesi-
mally small. In light of these challenges and the concerns
presented by the aforementioned work and other similar ap-
proaches, there is a clear need for creating more robust and
secure biometric systems.

Prior research [18] [32] [25] has focused on addressing
some of these challenges. Approaches such as [26] have
created a robust representation by allocating maximum en-
tropy code words for each user with no pre-defined corre-
lation with the original biometric modality (the users face).
This property makes attacks on the template very difficult,
leaving brute force attacks in the code domain and complex
dictionary attacks in the input domain as being the only fea-
sible options. Approaches based on a fuzzy commitment
scheme [22] have used error-correcting codes to provide ex-
act matching for face templates. Most of the research efforts
to address these challenges in facial biometric systems have
limitations while adapting to real-world applications. These
limitations can be attributed mainly to three factors. 1) The
images used for developing and testing these methods are
constrained facial images, restricting their adaptability to a
large number of real-world applications. Face images in
real-world applications often have large variations in pose
or illumination and may have partial occlusions. 2) Scal-
ability of such methods is also a major concern as most of
the existing frameworks are limited in the number of distinct
identities or subjects that they can handle reliably. The num-
ber of identities in the datasets used to test these approaches
are far fewer than what is typically seen in an average real-
world system. 3) Majority of the existing research also as-
sumes that the target identities are known a priori when the
security framework is built. This assumption typically does
not hold in real world systems where new identities are en-
rolled frequently.

In the current work, we address all the three aforemen-
tioned issues by developing a method which creates a ro-
bust significant feature based template that reduces infor-
mation leak and enables exact matching of facial templates.
The plug-and-play framework that is developed can be an
add-on to any existing face recognition system. We demon-
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strate the capability of the framework for handling uncon-
strained facial images by reporting performance on the IJB-
A dataset and demonstrate the scalability of the framework
by reporting performance on the IJB-C dataset.

2. Related Work

There is a large volume of literature in the area of bio-
metric security and privacy and we will primarily focus on
methods which are related to face template security. Meth-
ods that use fuzzy commitment or fuzzy vault schemes
[2], [33] have been explored in the past. Fuzzy vault
schemes suffered from the drawback that majority of the
data was stored in the open and required substantial stor-
age capabilities. Multiple works [7] [24] [30] have also ex-
plored the use of user-specific inputs such as a password
along with the biometric data. [31] [19] proposed creat-
ing user-specific random projections which when applied on
biometric data, obfuscate the information. [25] used local
facial region based hashing to improve the security of facial
biometrics. [26] improved this method by creating a map-
ping of user-specific biometric data to maximum entropy bi-
nary bits thereby separating biometric information from the
information being stored. The binary code assigned to each
user is hashed using the cryptographic hash function(SHA-
512). Thus, the transformed face template is the crypto-
graphic hash of the binary code assigned to the user. [15]
created a more robust mapping using a deeper convolution
net architecture. [8] introduced deep learning based quan-
tization hashing to improve privacy and prevent informa-
tion leakage. Chee et al [6] proposed a modification to the
winner take all (WTA) hashing method to provide stronger
security against ARM attacks (Attack via Record Multiplic-
ity). Methods for transforming features into a new domain
so that it is non-invertible, have also been explored. [28]
provided three non-invertible transforms, namely cartesian,
polar and functional, for generating cancelable face and fin-
gerprint templates. They achieve high template security
but the face recognition performance is low. Expanding on
these approaches, researchers have also focused on combin-
ing the biometric cryptosystems with unidirectional trans-
formation functions. [10] proposed a similar approach to
face template security. [29] explored the use of multimodal
biometric fusion using deep networks and increasing secu-
rity using error correcting codes. [!8] showed the value
of using binary features in increasing security of biometric
data.

Face recognition has been a well explored area of com-
puter vision and numerous methods have been proposed in
the previous decades [1][4][20][23]. Face recognition sys-
tems aim to extract features that help distinguish face im-
ages of different people. Recent face recognition research
has mainly focused on three approaches. First, creating
deep neural networks trained on multiple large datasets such

as MS-Celeb-1M [12], UMDFaces[3], VGGFace2[5] which
has shown that training on multiple large-scale datasets
improves the performance of the system [27][21]. Sec-
ondly, applying modern and deeper convolution architec-
tures [13][14] to improve the performance of face recog-
nition. Finally, designing better loss functions to optimize
in order to create more discriminative features[9][35]. We
present a method to ensure the security of the biometric
templates generated by such state-of-the-art face recogniz-
ers while minimizing its impact on face recognition perfor-
mance.

3. Methodology

Having presented the motivation for constructing a more
robust and secure representation of biometric templates, we
explain our method for creating a scalable, template security
framework.

3.1. Feature Representation with Maximum En-
tropy Bits

Consider the problem of creating a robust representation
for facial biometric data. The face recognizer learns a func-
tion which maps F' : I ~ R? that maximizes the discrimi-
native ability of f; € R? where f; refers to the feature em-
bedding and d represents the feature dimension. Given two
feature embeddings f; and f;, the similarity between them
is measured using cosine similarity. To enhance separabil-
ity, during training an L2 normalization layer is applied,
similar to [27], which ensures that the magnitude of the fea-
ture embeddings f; are ignored and only the orientations are
considered for maximizing the separability of classes. The
softmax loss acting on the L2 normalized features, encour-
ages the feature embeddings belonging to a specific identity
to be in close proximity to one another on the surface of the
d dimensional hypersphere. Better separation is achieved
by allowing only the direction of the feature vectors to in-
fluence the loss, thereby prompting the recognizer to fo-
cus equally on both hard samples (with small feature vec-
tor magnitudes) and easy samples (with large feature vector
magnitudes). In order to further enhance separability of fea-
ture embedding, techniques such as hard negative mining
are used along with loss functions such as triplet loss. The
application of triplet loss doesn’t restrict the feature embed-
ding to be on a hypersphere, rather it spreads it across a d
dimensional manifold.

In traditional biometric systems, feature embeddings are
generated for a set of face images of users at the time of en-
rollment. These embeddings (gallery features) are saved in
a conventional database system. Storing gallery feature em-
beddings or templates in the above mentioned manner may
result in leakage of sensitive user information if the security
of the database is compromised. This is owing to the fact
that feature embeddings have a high degree of association
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Figure 1. Illustration of proposed method. Significant Binary Representation (SBR) extractor is used to extract the significant features.
SHA1 based hashing technique is applied on the unique code word generated for each gallery template

with the original biometric data and it has been shown that
approaches similar to [1 1] can be used to recover user spe-
cific information. This necessitates a need for a represen-
tation that is disentangled from the original biometric data.
This will help reduce the extent to which any information
about the original biometric data can be recovered, given
the new representation.

One approach to creating the aforementioned representa-
tion can be similar to [26] [1 5] where each user is assigned
a maximum entropy binary (MEB) code. More precisely,
let ¢; ~ B(1,0.5) be the binary variable for each bit of the
code, where B(1,0.5) is the maximum entropy Bernoulli
distribution, and the resultant MEB code with independent
bits is MEB; = [c1,¢a,...,cn]. The deep network learns
the mapping function Z : I — MEDB,;. where [ is the
input face image, M E'B; is the d dimensional binary rep-
resentation assigned to the 7" user and N is the maximum
number of users handled by the system. This representation
provides the necessary disentanglement as it has no explicit
correlation with the original biometric modality (the users
face). Also the new representation provides the cancelabil-
ity aspect to the biometric template.

The above-mentioned approach[26] that learns the map-
ping from input biometric modality to the MEB feature em-
bedding necessitates allocation of these MEB features to all
the users of the biometric system upfront. The discrim-
inability of the approach is enforced by the assignment of
the user specific maximum entropy bits (which by defini-
tion is maximally separated in the feature space) and the
deep network merely unearths a transformation of the input
face image satisfying the constraint. However, for many ap-
plications, this method may not be practical because of the
incremental nature in which a real-world biometric system
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is scaled. Often such applications would require adding new
users to the biometric system as the system scales. Han-
dling dynamic enrollment of new users would require: a)
possibly redefining N which might additionally entail in-
creasing the MEB representation dimension d; and/or b) re-
learning of the mapping between input space and the MEB
feature representation for the entire set of users, so as to ac-
commodate the new identities while maintaining separabil-
ity. Furthermore, it would be necessary to learn new MEB
representations for the entire user base even if the stored
MEB representation corresponding to only one of the users
is compromised. Another limitation from a pragmatic of
view of this representation is that, in order to incorporate the
method to work with any modern face recognizer, it would
take retraining the entire system from scratch. This would
be not feasible for real world applications which are already
deployed.

3.2. Significant Feature Representation

With these observations in mind and in order to create a
robust representation, we analyze the feature embedding of
a face recognizer f; € R?. As mentioned earlier, two fea-
ture embeddings which are similar lie in close proximity in
the d dimensional manifold. Let us consider three feature
embeddings f;, f; ,fr corresponding to images I,J,K. As-
sume images I and J belong to the same identity and image
K belongs to a different identity. So, feature embedding
fi and f; lie relatively close to each other on the manifold
as compared to fi. Mathematically, CosSim(f;, f;) >
CosSim(fi, fr) and CosSim(f;, f;) > CosSim(f;, fx).
Analyzing the feature embedding f; which is unit normal-
ized, each value in the feature embedding represents pres-
ence or absence of a direction in the d dimensional man-
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Figure 2. Illustration of the Significant Binary Representation
(SBR) extractor used to extract the significant features.

ifold. A relatively large positive value indicates a strong
presence of the feature, whereas a negative value indicates
a strong absence of the same. The proximity of feature em-
bedding in the manifold as given by cosine similarity indi-
cates the correlation in the directions of feature values in the
feature embedding. These decisive features are important in
the feature embedding. Figure 1 illustrates the overall pro-
posed architecture

The extraction of significant features in [18] and [29]
relied on the difference between person specific and com-
mon database mean feature values normalized with respect
to person specific sample standard deviation of feature val-
ues. Such calculations assume the availability of multiple
feature vector samples during enrollment for each person.
But this assumption is rather restrictive in real life applica-
tions, and in our database, for example, a large proportion
of templates is constructed from a single feature vector.

Due to the proximity of genuine templates in the d di-
mensional manifold after training, the large positive or large
negative feature values standing further away from O, are
likely to remain in the same area for genuine template pairs.
But, since we are not able to calculate the sample standard
deviation, we simply rely on two thresholds 6; _ and 6; , ;
if the jth feature value of template 4, f; ;, is less than 6; _
or greater than 6; ., then it is considered to be a significant
feature.

We select the thresholds 6; _ and 6,  for each template
4 such that a constant number of features (X % of the total
number of features) in the template lesser and greater than
these thresholds are chosen. This allows us to obtain binary
vectors of the same dimension and having same number of
0 and 1 bits. Note that there is a trade-off in the number
of selected significant features: on the one hand, we want
a smaller number of most reliable bits in the resulting bi-
nary vector which will reduce the error correction load and
increase the matching performance; and on the other hand,
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we need sufficient number of bits to prevent brute force at-
tacks on the secured templates.

This method is used to create a significant binary rep-
resentation (SBR) of all the gallery templates. Along with
these binary representations, the locations (indices) of the
significant feature values in the feature vector are also
stored. Figure 2 illustrates the SBR extraction procedure.
While processing a probe template, we rely on a single
threshold 6,,, to binarize the probe template feature vector.
All the values in the probe feature embedding greater than
0, is set to 1 and less than 8, is set to 0. At the time of ver-
ification, we compare only the significant feature values of
the gallery to the corresponding positions of the probe (us-
ing the stored indices for the gallery). In order to find the
similarity between a gallery and probe templates created us-
ing the new significant features, we can define a new metric
based on Hamming distance (H,,).

Hyn(Fy, Fp)

S=1-
Lidw

where L;q4, corresponds to the number of significant values
in the gallery feature vector(F,) and F}, is the probe feature
vector. But storing the significant bit representation as is,
in a traditional database, may result in some information
leakage. In order to avoid any leakage of information and
to provide an additional layer of security for the templates
created using significant feature representation, we employ
a fuzzy commitment scheme.

3.3. Fuzzy commitment scheme

In order to secure the extracted binary template, we uti-
lize the fuzzy commitment scheme [16]. Suppose that b; is
our significant binary vector extracted from a gallery tem-
plate, We allocate v; a unique valid code word randomly
generated for each template <. This code word is capable of
correcting ¢ errors using an error correction method. Then,
our secured gallery template is the set {b; & v;, H(v;)},
where H is some non-invertible cryptographic hash func-
tion. Given a probe binary vector b with distance from b;
less than ¢ in the significant vector positions, we can per-
form error correction on (b; @ v;) ® b; to recover v; and
check that we get same hash H(v;). To prevent the attacks
via record multiplicity, we can also employ the random per-
mutation technique described in [17]. In this technique, the
b; are permuted using a randomly generated permutation
P, before the application of the fuzzy commitment scheme;
the parameters of permutation P; are kept as auxiliary data
in the secured template.

4. Experiments

In this section, we describe the datasets, experimental
setup, evaluation methodology and also discuss the results
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obtained by employing the significant feature representa-
tion.

4.1. Datasets

We conducted our experiments on two benchmark
datasets, primarily consisting of unconstrained face images.

IJB-A.TARPA Janus Benchmark A (IJB-A) dataset con-
sists of 5712 images and 2805 videos of 500 subjects.
The 1JB-A evaluation protocol consists of verification (1:1
matching) over 10 splits. Each split contains around 11,748
pairs of templates (1,756 positive and 9,992 negative pairs)
on average. Ten random splits of training and testing are
provided as part of the protocol of IJB-A. We report 1:1 ver-
ification results on the protocol provided in the test splits.

IJB-C. The TARPA Janus BenchmarkC (IJB-C) is a
larger dataset, being an extension to the IJB-A dataset, with
3541 subjects which has around 31,334 still images and
117543 frames. Similar to IJB-A, we report 1:1 verifica-
tion results on the protocol provided.

4.2. Evaluation metric

We used cosine similarity as the evaluation measure
when analyzing probe and gallery features directly ex-
tracted from the face recognizer. On the other hand, exact
hash matching is used to evaluate the fuzzy commitment
based method. The 1:1 verification results are evaluated us-
ing the ROC curve and the TAR (True Accept Rate) per-
formance is reported for different FAR (False Accept Rate)
values.

4.3. Face Recognizer

We trained a deep convolutional neural network based
on the ResNeXt architecture[34]. The network was pre-
initialized with weights of a model trained on the Imagenet-
1K dataset and then trained on a refined version of the
MSCeleb-1M dataset of which about 55K subjects and 1M
images were used. The network was trained for 32 epochs
using mini batch stochastic gradient descent. The learning
rate was reduced by a factor of 10 on [6,12,18,24] epochs.
The network once trained, was then finetuned on the UMD-
Faces dataset. In order to improve the discriminative abil-
ity and the performance, hard negative mining was done
using the triplet loss function. Once completely trained,
128-dimensional features of face images of IJB-A and IJB-
C were extracted. The last layer of the network was lin-
early activated so that the features are spread on the 128
dimensional manifold. This results in the values of the
extracted features ranging from —oo to co. Aggregated
gallery and probe templates were created by averaging the
features which constituted the template. In the first row of
Table | and Table 2, we provide the TAR rate at different
FAR on the IJB-A and IJB-C dataset respectively using the
original, unsecured features.
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4.4. Significant Features

In accordance with the method discussed in section 3.2,
we create a binarized representation from the extracted fea-
tures by analyzing the significant features within a feature
vector. In order to find these significant features, we aggre-
gate the gallery features by finding the mean of extracted
facial image features present in a given template. Once the
aggregated feature vector corresponding to a gallery is cre-
ated, significant features are identified by sorting the feature
vector and identifying the smallest and largest set of values
in this feature vector. We empirically determined that keep-
ing lowest and highest 25% of features as significant fea-
tures gave a good trade-off between the error correction load
and performance. We assign 0 to the lowest set of signifi-
cant features and 1 to the highest set of significant features.
We also record the positional information of these features
by recording their indices in the feature vector. The rest of
the insignificant features are ignored.

To avoid any leak in information we use a fuzzy commit-
ment scheme to protect the feature template created using
the significant features. We randomly create a N-bit long
random code word for each gallery template. We follow
the process explained in section 3.3 for comparing features.
N is chosen so that the code’s payload could accommodate
our binary vector of consistent features (64 bits), and able
to correct a specified number ¢ of erroneous bits. For exam-
ple, if we set our fuzzy commitment scheme to be able to
correct 10-bit error, then we take BCH code of length 127
with 64 bits of payload data and 10 bit correction capabil-
ity. We employ a SHA1 based hashing method to hash the
corresponding cord word for each gallery template. Addi-
tional auxiliary information is also stored in the database.
The probe template is binarized by sorting the probe fea-
ture vector and by setting the highest 50% values to 1 and
remaining 50% to 0. The process of matching is done as
explained in section 3.3. Similar to the original features
in Table 1 and Table 2, the second row lists the TAR rate
at different FAR for IJB-A and IJB-C datasets when using
a hamming distance based metric on the significant binary
representation. The third row list the TAR rate at various
FAR after incorporating the fuzzy commitment scheme.

Table 1. IJB-A 1:1 Verification TAR(%)

FAR
Method 0=t 1072 107% 107*
Original unsecured | 97.96 95.83 92.64 85.65
SBR 97.49 94.05 90.27 83.92
SBR with hashing | 97.64 94.31 89.77 84.04
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Table 2. IJB-C 1:1 Verification TAR(%)

FAR
Method
10-t 1072 107* 107* 107°
Original unsecured | 98.37 96.02 92.40 86.89 74.79
SBR 97.54 9449 89.98 81.00 66.36
SBR with hashing | 97.88 95.04 90.01 81.00 62.75
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Figure 4. ROC curve for 1:1 Verification IJB-C (In log scale). Blue
curve corresponds to the ROC of original, unsecured features. Or-
ange curve corresponds to the ROC of the features secured us-
ing significant bit representation with fuzzy commitment. (Best
viewed in color)

5. Discussion

The results of our experiments show the practicality and
ease of incorporating privacy preserving significant features
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Figure 5. Bit error distribution analysis of genuine and imposter
template pairs. Blue curve indicates the distribution of genuine
template pairs and red curve indicates the distribution of imposter
template pairs. Optimal separation can be seen at 4 bit error. (Best
viewed in color)

and fuzzy commitment scheme to any ordinary face recog-
nizer. This helps improve the robustness of using the face
as a biometric without compromising private information
in case of a stolen template. We acknowledge that there
is a performance drop compared to the original unsecured
features. One of the reasons for this may be, that when sig-
nificant features are created, the degree of freedom of each
value (—o0 to 00) is restricted to just two values {0, 1}. An-
other reason for information loss and performance reduc-
tion can be attributed to the reduction in feature size when
creating the significant features. Increasing the feature di-
mension of the face recognizer, not only has the potential to
increase the performance but also could provide better se-
curity against brute force attacks. The decision to consider
a face recognizer having 128 dimensional feature vector for
the experiments was primarily due to the observation that
most of existing state-of-the-art face recognizers had a sim-
ilar feature dimension. Moreover, one of the primary objec-
tives of the paper was to explore an approach to incorporate
security into existing face recognizers, rather than advocat-
ing an alternative method to design one.

Figure 5 shows the difference in the number of bit mis-
matches while comparing genuine template pairs and im-
poster template pairs in the IJB-A dataset. For this analysis,
all the templates were binarized by identifying the lowest
and highest 25% feature values and comparing the binary
values in the corresponding positions in the templates. The
number of bit difference between a genuine template pair is
substantially less than imposter template pair. This helps in
restricting the error correction capability of the fuzzy com-
mitment scheme to a lower number, so that only the genuine
template pairs get matched.

Another interesting fact to note is that, the dataset used
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in [25] [26] are small datasets with less number of iden-
tities and limited pose variance. We report the results of
the experiment on two unconstrained image datasets. The
helps reinforce the fact that the proposed method can be
easily adapted into existing state-of-the-art face recogniz-
ers. Additionally our method doesn’t require end-to-end re-
training of the face recognizer, making it a plug-and-play
framework.

Furthermore, integration of fuzzy commitment scheme
provides the cancelability aspect to the biometric templates.
Any compromise in the security of database, resulting in a
stolen template, can be addressed by merely changing the
random code word associated with each template.

6. Conclusion and Future Work

We present a novel approach for incorporating template
level security into an existing face recognizer. By adopting
fuzzy commitment scheme, we integrate security guaran-
tees of the scheme into the face recognizer without signifi-
cantly affecting its performance. The design of the method
allows it to be easily integrated into any existing face rec-
ognizer. In order to underline the scalability and broader
applicability of our approach, we report results on two un-
constrained face datasets with large number of identities.

One possible way to improve the presented approach will
involve training of a face recognizer best suited for signifi-
cant feature representation. For example, in addition to the
currently used triplet loss optimization, one could use loss
terms penalizing for significant feature instability or flip-
ping, bias in significant feature distributions, etc. Ideally,
the network training would account for the particular way
of computing the scores in the final system with significant
feature binarization.
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