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We develop a new method for classified mixed model prediction (CMMP). The

original CMMP method (Jiang et al. 2018) does not incorporate covariate informa-

tion in matching the class between the new observations and the training data. As a

result, the method may not outperform the mixed model prediction (MMP) method

in terms of predictive performance. The new CMMP method that we develop utilizes

covariate information, and therefore is more accurate in terms of the matching. We

show that the new CMMP method outperform the MMP in terms of the predictive per-

formance. Furthermore, we develop a second-order unbiased estimator of the mean

squared prediction error (MSPE) for the new CMMP, which was previously not avail-

able for the original CMMP. Theoretical and empirical properties of the proposed new

CMMP method as well as the MSPE estimator are studied. A real data application is

considered.
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1 Introduction

Classified mixed model prediction (Jiang et al. 2018) is new method of prediction

based an idea of matching a random effect associated with the new observations and one

of the random effects associated with the training data. It was shown that CMMP im-
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proves predictive performance over the tradition regression-based prediction substantially.

The method has potential application in such fields as precision medicine, where the pri-

mary interests are at the subject-level, and business, where prediction of business values at

customer-level is of interest.

On the other hand, the current CMMP method does not utilize covariate information

in its matching procedure; in other words, only the observed mean response is used in the

matching. As a result, the probability of correct match is low, even though the predictive

performance of the CMMP may still be satisfactory. But, the performance can be improved,

if the precision of the matching improves. In practice, there are often covariates at the

group or cluster level, which are associated with the group-specific random effects. For

example, consider the following nested-error regression (NER) model (Battese, Fuller &

Harter 1988): yij = x′ijβ + vi + eij , i = 1, . . . ,m, j = 1, . . . , ni, where yij is the jth

observed (or sampled) response in the ith cluster, xij is a vector of covariates, β is a vector

of unknown regression coefficients (the fixed effects), vi is a cluster-specific random effect,

and eij is an additional error. In practice, the random effect vi is often used to “capture

the un-captured”, that is, variation not captured by the mean function, x′ijβ, at the cluster

level. On the other hand, some components of xij may be also at the cluster level, that is,

they depend on i but not j. It is natural to think that there may be association between vi

and some of the cluster-level components of xij; however, we do not know what kind of

association it is except that it must be nonlinear (because, otherwise, it would be captured
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by x′ijβ). Nevertheless, if such covariate information can be utilized, the precision of the

matching of random effects in CMMP, hence the (predictive) performance of CMMP can

be improved.

Furthermore, the current CMMP method does not provide an uncertainty measure for

the predictor, such as the mean squared prediction error (MSPE). The MSPE is extensively

used in mixed model prediction (e.g., Jiang & Lahiri 2006, Rao & Malina 2015). However,

when it comes to CMMP, because the latter involves a matching procedure which is non-

differentiable, the traditional methods of deriving MSPE estimators, especially second-

order unbiased MSPE estimators, do not apply.

The goal of this paper is two-fold. First, we are going to implement the idea described

above regarding incorporating the covariate information in the CMMP matching. Second,

we develop a simple, unified, Monte-Carlo assisted (Sumca) method for estimating the

MSPE of CMMP, as noted above. Theoretical and empirical performance of the proposed

new CMMP method and the Sumca MSPE estimator are carefully studied. Our results

show that the new CMMP method can improve performance of CMMP substantially; fur-

thermore, the Sumca estimator is second-order unbiased in estimating the MSPE of CMMP.

In Section 2 we introduce a new CMMP procedure that incorporates covariate infor-

mation in matching the random effects. Estimation of MSPE of CMMP is considered in

Section 3. Section 4 presents empirical results regarding performance of the new CMMP

as well as that of the proposed MSPE estimator. A real data application is considered in
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Section 5. Proofs of theoretical results are deferred to the Appendix.

2 A new CMMP procedure

Suppose that the underlying model can be expressed as

yij = x′ijβ + w′
iγ + αi + ǫij, (1)

i = 1, . . . ,m, j = 1, . . . , ni, where wi corresponds to the cluster-specific covatiates, and γ

is the corresponding vector of regression coefficients. Here, αi is used to capture whatever

is not captured by x′ijβ + w′
iγ. Suppose that there is a one-to-one correspondence between

i and wi so that wi = wi′ implies i = i′. Also assume that a similar one-to-one correspon-

dence holds between i and αi. Then, to match αi, one only needs to match wi. This leads

to the following simple identifier: Let the new observation satisfy

yn = x′nβ + w′
nγ + αI + ǫn, (2)

where xn, wn are observed, αI is the new random effect, and ǫn the new error. Let us, for

now, focus on the matched case (Jiang et al. 2017), that is, there is an actual match between

αI and one of the αis. Our goal is to predict the mixed effect

θ = x′nβ + w′
nγ + αI . (3)

First assume that all of the parameters are known. Suppose that there is a prior distribution,

π, for I over {1, . . . ,m} that is independent with the training data. A key idea is that wn is
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supposed to be related to the true class, I , that is,

wn = wI . (4)

Thus, given that I = i, (3) becomes θ = x′nβ + w′
iγ + αi. Therefore, the best predictor

(BP), in the sense of minimizing the MSPE, of θ is

θ̃(i) = E(x′nβ + w′
iγ + αi|y)

= E(x′nβ + w′
iγ + αi|yi)

= x′nβ + w′
iγ + E(αi|yi). (5)

It follows, by (3) and (5), that under the standard normality assumption that the αis and ǫijs

are independent with αi ∼ N(0, G) and ǫij ∼ N(0, R), that the MSPE of θ̃(i) is

MSPE{θ̃(i)} = E{E(αi|yi)− αi}2

= E

(

niG

R + niG
ǭi· −

R

R + niG
αi

)2

=
GR

R + niG
. (6)

On the other hand, given that I 6= i, αI is independent with E(αi|yi). However, suppose

that one does not know this, and therefore still assumes I = i, then the expression of θ̃(i),
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by (5), does not change. Therefore, one has

MSPE{θ̃(i)} = E{(wi − wn)
′γ + E(αi|yi)− αI}2

= {(wi − wn)
′γ}2 + E{E(αi|yi)− αI}2

= {(wi − wn)
′γ}2 + E{E(αi|yi)}2 +G

= {(wi − wn)
′γ}2 +G

(

1 +
niG

R + niG

)

. (7)

If we combine the above results, we have

MSPE{θ̃(i)} = E(E[{θ̃(i) − θ}2|I])

= π(I = i)E[{θ̃(i) − θ}2|I = i] +
∑

i′ 6=i

π(I = i′)E[{θ̃(i) − θ}2|I = i′]

= π(I = i)
GR

R + niG

+
∑

i′ 6=i

π(I = i′)

[

{(wi − wn)
′γ}2 +G

(

1 +
niG

R + niG

)]

= {1− π(I = i)}{(wi − wn)
′γ}2 +G

(

1 +
niG

R + niG

)

−π(I = i)
2niG

2

R + niG
. (8)

If π(I = i) is known, one can identify I as the minimizer of the right side of (8), that is,

Ĩ = argmin1≤i≤m

[

{1− π(I = i)}{(wi − wn)
′γ}2 +G

(

1 +
niG

R + niG

)

−π(I = i)
2niG

2

R + niG

]

. (9)
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For example, if π(I = i) = 1/m, 1 ≤ i ≤ m, then (9) reduces to

Ĩ = argmin1≤i≤m

[

m− 1

m
{(wi − wn)

′γ}2 +G

(

1 +
niG

R + niG

)

− 2niG
2

m(R + niG)

]

. (10)

(10) may be interpreted as the minimizer of MSPE under the non-informative prior for I .

In particular, if ni does not depend on i, then (10) is equivalent to

Ĩ = argmin1≤i≤m{(wi − wn)
′γ}2. (11)

In practice, when the parameters are unknown, they are replaced by their consistent esti-

mators, say, the REML estimators, γ̂, Ĝ, R̂, leading to

Î = argmin1≤i≤m

[

m− 1

m
{(wi − wn)

′γ̂}2 + Ĝ

(

1 +
niĜ

R̂ + niĜ

)

− 2niĜ
2

m(R̂ + niĜ)

]

(12)

for the unequal ni case, and Î = argmin1≤i≤m{(wi − wn)
′γ̂}2 for the equal ni case.

One concern about the above procedure is that the choice of prior (e.g., uniform) is a

bit subjective. An alternative that does not depend on the choice of the prior is to focus on

the case of misspecification only. From (7), it is seen that, if I 6= i, the MSPE of θ̃(i) is

given by the right side of (7). This leads to a modified procedure:

Î = argmin1≤i≤m

[

{(wi − wn)
′γ̂}2 + Ĝ

(

1 +
niĜ

R̂ + niĜ

)]

, (13)

where γ̂, Ĝ, R̂ are the same as in (12).
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A major difference between (13) and the original CMMP procedure of Jiang et al.

(2017) is that the covariate information in w is incorporated in the identification of I . Using

a similar argument as in Jiang et al. (2017), consistency of the new CMMP procedure can

be established under reasonable assumptions. Empirical performance of the new CMMP

procedure will be evaluated in Section 4.

3 Estimation of MSPE

As noted, a standard uncertainty measure for a predictor is the MSPE. A “gold standard”

for the MSPE estimation is to produce a second-order unbiased MSPE estimator, that is,

the order of bias of the MSPE estimator is o(m−1), where m is the total number of clusters

in the training data. Typically, the o(m−1) term is, in fact, O(m−2), but this difference is

usually ignored. For the most part, there have been two approaches for producing a second-

order unbiased MSPE estimator. The first is the Prasad-Rao linearization method (Prasad

& Rao 1990). The approach uses Taylor series expansion to obtain a second-order approxi-

mation to the MSPE, then corrects the bias, again to the second-order, to produce an MSPE

estimator whose bias is o(m−1). Various extensions of the Prasad-Rao method have been

developed; see, for example, Datta & Lahiri (2000), Jiang & Lahiri (2001), Das, Jiang &

Rao (2004), and Datta, Rao & Smith (2005). Although the method often leads to an ana-

lytic expression of the MSPE estimator, the derivation is tedious, and the final expression
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is likely to be complicated. More importantly, errors often occur in the process of analytic

derivations as well as computer programming based on the lengthy expressions. Further-

more, the linearization method does not apply to situations where a non-differentiable op-

eration is involved in obtaining the predictor, such as shrinkage estimation (e.g., Tibshirani

1996), CMMP (Jiang et al. 2017), as well as the new CMMP developed in Section 2.

The second approach to second-order unbiased MSPE estimation is resampling meth-

ods. Jiang, Lahiri & Wan (2002; hereafter JLW) proposed a jackknife method to estimate

the MSPE of an empirical best predictor (EBP). The method avoids tedious derivations

of the Prasad-Rao method, and is “one formula for all”. On the other hand, there are re-

strictions on the class of predictors to which JLW applies. Namely, JLW only applies to

empirical best predictor (EBP), that is, predictor obtained by replacing the parameters in-

volved in the best predictor (BP), which is the conditional expectation, by their (consistent)

estimators. The CMMP predictor, however, is not an EBP, because it involves a matching

process. Jiang, Lahiri & Nguyen (2017) proposed a Monte-Carlo jackknife method, call

McJack, which potentially applies to CMMP; however, the method is computationally very

expensive (see below). Another resampling-based approach is double bootstrapping (DB;

Hall & Maiti 2006a,b). Although DB is capable of producing a second-order unbiased

MSPE estimator, it is, perhaps, computationally even more intensive than the McJack. It is

also unclear whether DB can be extended to CMMP.

In a way, the method to be proposed below may be viewed as a hybrid of the lineariza-
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tion method and resampling method, by combining the best part of each method. In short,

we use a simple, analytic approach to obtain the leading term of our MSPE estimator, and

a Monte-Carlo method to take care a remaining, lower-order term. The computational cost

for the Monte-Carlo part is much lesser compared to McJack. For example, the computa-

tional burden of our method is about 1/m3 to 1/m2 of that of McJack. More importantly,

the method provides a unified, conceptually easy solution to a difficult problem, that is,

obtaining a second-order unbiased MSPE estimator for CMMP (either that of Jiang et al.

2017 or the new CMMP proposed in Section 2).

Let θ be the mixed effect corresponding to the new observations, and θ̂ the CMMP

predictor of θ. The MSPE of θ̂ can be expressed as

MSPE = E(θ̂ − θ)2 = E
[

E{(θ̂ − θ)2|y}
]

, (14)

where y represents the available data. Suppose that the underlying distribution of y de-

pends on a vector of unknown parameters, φ. Then, the conditional expectation inside the

expectation on the right side of (14) is a function of y and φ, which can be written as

a(y, φ) = E{(θ̂ − θ)2|y} = θ̂2 − 2θ̂E(θ|y) + E(θ2|y) = θ̂2 − 2θ̂a1(y, φ) + a2(y, φ), (15)

where aj(y, φ) = E(θj|y), j = 1, 2. If we replace the φ in (15) by φ̂, a consistent estimator

of φ, the result is a first-order unbiased estimator, that is, we have

E{a(y, φ̂)− a(y, φ)} = O(m−1). (16)
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On the other hand, both MSPE = E{a(y, φ)} [by (14), (15)] and E{a(y, φ̂)} are functions

of φ, denoted by b(φ) and c(φ), respectively. By (16), we have d(φ) = b(φ) − c(φ) =

O(m−1); thus, if we replace, again, φ by φ̂ in d(φ), the difference is a lower-order term,

that is, we have

d(φ̂)− d(φ) = oP(m
−1) (17)

[see, e.g., Jiang 2010, sec. 3.4 for notation like oP and OP]. Now consider the estimator

M̂SPE = a(y, φ̂) + d(φ̂) = a(y, φ̂) + b(φ̂)− c(φ̂). (18)

We have, by (14)–(18), E(M̂SPE) = E{a(y, φ)} + E{a(y, φ̂) − a(y, φ)} + E{d(φ̂)} =

MSPE+E{d(φ̂)−d(φ)} = MSPE+o(m−1). Essentially, this one-line, heuristic derivation

shows the second-order unbiasedness of the proposed MSPE estimator, (18), provided that

the terms involved can be evaluated. A rigorous justification is given in Appendix.

Note that the leading term, a(y, φ̂), in (18) is guaranteed positive, a desirable property

for an MSPE estimator. The lower-order term, b(φ̂)−c(φ̂), corresponds to a bias correction

to the leading term. This term is typically much more difficult to evaluate than the leading

term. We propose to approximate this term using a Monte-Carlo method. Let Pφ denote

the distribution of y with φ being the true parameter vector. Given φ, one can generate y

under Pφ. Let y[k] denote y generated under the kth Monte-Carlo sample, k = 1, . . . , K.

Then, by the law of large numbers, we have

b(φ)− c(φ) ≈ 1

K

K
∑

k=1

{

a(y[k], φ)− a(y[k], φ̂[k])
}

, (19)
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where φ̂[k] denotes φ̂ based on y[k]. If K is sufficiently large, which one has control over

during the Monte-Carlo simulation, the difference between the two sides of (19) is o(m−1).

Write the right side of (19) as dK(φ) (note that y[k], k = 1, . . . , K also depend on φ). Then,

a Monte-Carlo assisted MSPE estimator is given by

M̂SPEK = a(y, φ̂) + dK(φ̂) = a(y, φ̂) +
1

K

K
∑

k=1

{

a(y[k], φ̂)− a(y[k], φ̂[k])
}

, (20)

where y[k], k = 1, . . . , K are generated as above with φ = φ̂, and φ̂[k] is, again, the es-

timator of φ based on y[k]. (20) is called the Sumca estimator of the MSPE of θ̂ (Sumca

is abbreviation of “simple, unified, Monte-Caro assisted”). It is shown in Appendix that,

under regularity conditions, the Sumca estimator is second-order unbiased. Empirical per-

formance of the Sumca estimator will be evaluated in Section 4.

4 Simulation studies

4.1 Performance of new CMMP

In Jiang et al. (2017), the authors showed that CMMP significantly outperforms the

standard regression prediction (RP) method. On the other hand, the latter authors have not

compared CMMP with mixed model prediction (MMP; e.g., Jiang & Lahiri 2006, Rao &

Molina 2015), which is known to outperform RP as well. In fact, some unpublished sim-

ulation results suggest that CMMP may not outperform MMP, depending on the situation.
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Further investigation shows that most of the prediction errors by CMMP are due to mis-

matching the classes; in other words, if the classes are matched with high accuracy, CMMP

is expected to outperform MMP.

In this subsection, we compare empirical performance of the new CMMP, developed

in Section 2, with MMP under two scenarios. In each of the scenarios, there is no exact

match between the new observation and a group in the training data. More specifically,

under Scenario I, the training data satisfy

yij = β0 + β1wi + αi + ǫij, (21)

i = 1, . . . ,m, j = 1, . . . , ni, wherewi is an observed, cluster-level covariate, αi is a cluster-

specific random effect, and ǫij is an error. The random effects and errors are independent

with αi ∼ N(0, G) and ǫij ∼ N(0, R). The new observation, on the other hand, satisfies

ynew = β0 + β1w1 + α1 + δ + ǫnew, (22)

where δ, ǫnew are independent with δ ∼ N(0, D) and ǫnew ∼ N(0, R), and (δ, ǫnew) are

independent with the training data. It is seen that, because of δ, there is no exact match

between the new random effect (which is α1+δ) and one of the random effects αi associated

with the training data; however, the value of D is small, D = 10−4, hence there is an

approximate match between the new random effect and α1, the random effect associated

with the first group in the training data.

Under Scenario 2, the training data satisfy (21) except that now αi = w3
i + vi with vi ∼
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N(0, D), and vi is independent with ǫij . Under this scenario, there is a misspecification of

the cluster-specific random effect in that the random effect represents a nonlinear function

of the covariate, plus some random noise. This is motivated by the notion of “capture the

un-captured” discussed in Section 1 (second paragraph). Similarly, the new observation

satisfies (22) with α1+ δ replaced by w3
1 +vnew, where vnew ∼ N(0, D) and is independent

with ǫnew, and (vnew, ǫnew) are independent with the training data.

We considerm = 50. The ni are chosen according to one of the following four patterns:

1. ni = 5, 1 ≤ i ≤ m/2; ni = 25,m/2 + 1 ≤ i ≤ m; 2. ni = 50, 1 ≤ i ≤ m/2;

ni = 250,m/2 + 1 ≤ i ≤ m; 3. ni = 25, 1 ≤ i ≤ m/2; ni = 5,m/2 + 1 ≤ i ≤ m; 4.

ni = 250, 1 ≤ i ≤ m/2; ni = 50,m/2 + 1 ≤ i ≤ m. The consideration of the first two

patterns is to see how results change when the cluster sizes of the training data get bigger;

the consideration of the last two patterns, in comparison with the first two patterns, is to see

if the apparent asymmetry due to the fact the the new random effect has an approximate

match with the first half of the training data (i.e., α1) affects the results. The true βs are

β0 = 5 and β1 = 1. The results, based on 1000 simulation runs are presented in Tables 1

and 2. The numbers in the rows of CMMP and MMP are empirical MSPEs based on the

simulation; and %Imp represents percentage improvement of CMMP over MMP, that is

%Imp = 100%×
(

MMP− CMMP

CMMP

)

.

It is seen that, under both scenarios, CMMP improves MMP substantially, as shown
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Table 1: Comparing CMMP with MMP: Scenario I

R = 1 G = 1

G = .25 G = .5 G = 1 G = 2 G = 4 R = .25 R = .5 R = 1 R = 2 R = 4

Pattern 1 CMMP .123 .156 .171 .172 .176 .049 .091 .183 .294 .485

MMP .187 .342 .459 .590 .801 .190 .323 .476 .650 .836

%Imp 52.2 118.8 168.4 243.3 355.3 285.9 255.5 160.5 121.0 72.4

Pattern 2 CMMP .019 .018 .020 .020 .021 .005 .010 .019 .039 .070

MMP .178 .315 .494 .618 .780 .186 .321 .526 .633 .718

%Imp 861.8 1630.8 2351.2 3023.6 3634.0 3483.5 3138.3 2701.5 1504.3 918.8

Pattern 3 CMMP .034 .034 .035 .039 .041 .010 .019 .038 .084 .140

MMP .175 .283 .481 .642 .894 .199 .335 .476 .620 .749

%Imp 418.4 725.9 1272.6 1562.1 2099.8 1890.1 1617.0 1155.1 638.7 434.4

Pattern 4 CMMP .004 .004 .004 .004 .004 .001 .002 .004 .008 .016

MMP .181 .296 .466 .552 .809 .193 .308 .442 .631 .756

%Imp 4235.2 7132.0 10918.6 12942.3 19873.0 16859.0 14875.6 10670.7 7481.8 4521.1
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Table 2: Comparing CMMP with MMP: Scenario II

R = 0.25 R = 0.5 R = 1 R = 2 R = 4

Pattern 1 CMMP 0.049 0.104 0.216 0.498 1.004

MMP 0.264 0.539 1.273 2.736 5.357

%Imp 444.1 416.8 489.1 449.0 433.5

Pattern 2 CMMP 0.005 0.010 0.020 0.040 0.079

MMP 0.292 0.602 1.250 2.786 5.151

%Imp 5656.1 5742.3 5998.8 6815.5 6457.1

Pattern 3 CMMP 0.010 0.020 0.045 0.087 0.177

MMP 0.260 0.553 1.176 2.977 5.550

%Imp 2554.1 2613.1 2510.5 3307.8 3027.4

Pattern 4 CMMP 0.001 0.002 0.004 0.007 0.017

MMP 0.281 0.593 1.167 2.598 5.564

%Imp 23012.9 27150.1 27283.9 35431.9 33316.0
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by, for example, %Imp. Under Scenario I, the MSPE of both CMMP and MMP increases

with G and with R when the other variance component is held fix. In term of %Imp, it

increases with G but decreases with R. This makes sense because large G makes identi-

fication of the group (effect) more important, hence increasing the advantage of CMMP;

on the other hand, larger R makes it less accurate to estimate the group (or cluster) ef-

fect, hence decreasing the advantage of CMMP. The amount of improvement by CMMP

increases substantially, as shown by %Imp, as the cluster sizes increase. Comparatively,

the advantage of CMMP over MMP is more significant, some above 10,000, under Pat-

terns 3–4 than under Patterns 1–2. The explanation is that, under Patterns 3–4, the cluster

sizes for the matching group (i.e., group 1) is relatively larger, making estimation of the

cluster effect more accurate, hence increasing the advantage of CMMP. Under Scenario II,

the improvement of CMMP over MMP is even more substantial, with some %Imp over

30,000. The MSPEs follow the same pattern, but %Imp does not show a clear trend, with

the maximum occurring near the mid-range of R. Note that there is no G under Scenario II

because the random effect is misspecified in this situation.

4.2 Performance of Sumca estimator

In this subsection, we investigate empirical performance of the Sumca MSPE estima-

tor, developed in Section 3. We consider, again, model (21), but under two scenarios with

different accuracy in terms of matching the groups. More specifically, under the first sce-
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nario, one has (21) with β0 = 5 and β1 = 1; wi = −2.5 + 0.1i; αi = w3
i + vi with

vi ∼ N(0, 10−4). The new observation satisfies (22). Furthermore, we consider two cases

of sample size configurations for ni, namely,

Case 1 : ni =















5, 1 ≤ i ≤ m/2

25, m/2 + 1 ≤ i ≤ m

Case 2 : ni =















50, 1 ≤ i ≤ m/2

250, m/2 + 1 ≤ i ≤ m

The results, based on 1000 simulation runs, are presented in Table 3, where the percentage

relative bias is defined as

%RB = 100×
(

M̂SPE−MSPE

MSPE

)

.

Here, MSPE is the MSPE of the CMMP θ̂ of θ = β0 + β1w1 + αI based on the simula-

tion runs, and M̂SPE is the mean of the Sumca estimator over the simulation runs. As a

comparison, we also consider what we call the 1st-term estimator which is the first term on

the right side of (20). It is seen that the Sumca estimator improves the 1st-term estimator,

as indicated by the %RB (note that these numbers are percentages), but the improvement

is not significant, especially when m is larger. One possible reason is that, under this sce-

nario, the percentage of correct matching (% match, that is, the group number identified by

the CMMP procedure is the same as the true group number, I = 1) is 100%.

The improvement of Sumca over 1st-term is more significant, however, under the sec-

ond scenario. In this case, wi is the same as above, but αi = 0.5(w2
i − 1) + vi with

vi ∼ N(0, 0.01). In a way, the “signal”, in terms of wi, for identifying αi is weaker, but the

“noise”, in terms of vi, is stronger, compared to the first scenario. Furthermore, the cluster
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Table 3: MSPE Estimation: First Scenario

R 0.25 0.5 1 2 4

Case 1 MSPE 0.051 0.107 0.220 0.462 1.011

Sumca 0.050 0.099 0.197 0.382 0.730

%RB -0.66 -7.17 -10.14 -17.28 -27.83

1st-term 0.050 0.099 0.196 0.377 0.711

%RB -0.83 -7.49 -10.80 -18.46 -29.74

Case 2 MSPE 0.0055 0.0104 0.0209 0.0396 0.0858

Sumca 0.0050 0.0100 0.0199 0.0398 0.0790

%RB -8.45 -4.02 -4.38 0.56 -7.92

1st-term 0.0050 0.0100 0.0199 0.0397 0.0787

%RB -8.46 -4.05 -4.45 0.41 -8.19
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Table 4: MSPE Estimation: Second Scenario

R 0.25 0.5 1 2 4

MSPE 0.064 0.149 0.307 0.651 1.143

Sumca 0.083 0.118 0.174 0.284 0.437

%RB 29.43 -20.94 -43.37 -56.32 -61.79

1st-term 0.025 0.054 0.108 0.198 0.323

%RB -61.03 -63.76 -64.93 -69.57 -71.72

%match 78.2 59.1 49.8 40.0 34.6

sizes are no longer fixed; instead, the nis are randomly selected from the integers between

5 and 25, and the selection changes with each simulation. As a result, the % match is no

longer 100%, ranging from 34.6% to 78.2%. The results, again based on 1000 simulation

runs, are presented in Table 4. It is seen that the improvement of Sumca over 1st-term, in

terms of %RB, is more significant now, especially for smaller values of R.

5 Real data example

Datta, Lahiri, and Maiti (2002) considered a data set regarding median income of four-

person families for the fifty states of U.S. and the District of Columbia using cross-sectional

and time series modeling. The primary source of data is the annual supplement to the March

Sample of the Current Population Survey (CPS), which provides individual annual income
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data categorized into intervals of $2500. The direct survey estimates were obtained from

the CPS using linear interpolation. Two secondary sources of data were also available. The

first is the U.S. decennial censuses (Census) which produce median incomes for the 50

states and D.C. based on the “long form” filled out by approximately one-sixth of the U.S.

population. These census median income estimates are believed to be free of sampling

errors. The second is per-capita income estimates produced by the Bureau of Economic

Analysis (BEA) division of the U.S. Department of Commerce. Since the per-capita income

estimates are not based on any sampling techniques, they do not have any sampling errors

associated with them. From the Census and BEA data, an adjusted census median income

(adjusted Census) is obtained by multiplying the preceding census median income by the

ratio of BEA per-capita income for the current year to that of the preceding census year.

The data are used to illustrate the new CMMP method as well as the Sumca MSPE

estimation. The 51 states and D.C. are considered as 51 clusters or groups. The 1979–1988

(10 years) are used as the training data; the 1989 data are treated as the new data. Our goal

is to predict the mixed effect associated with the new data for each of the 51 states and D.C.

The following NER model is considered for the training data:

yij = β0 + β1xij + γwi + αi + ǫij, (23)

i = 1, . . . , 51, j = 1, . . . , 10, where yij is the direct survey estimate obtained from the

CPS, and xij, wi correspond to the adjusted Census and Census variables described above,

respectively. Note that, here, wi is a cluster-level covariate that can be used to help with the
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matching, and αi is a cluster-specific random effect that is used to capture the “un-captured”

variation (by the covariates) at the cluster level. A similar model is assumed for the new

data. We apply the new CMMP method of Section 2, more specifically, (13) to the data.

Furthermore, we compute the associated Sumca MSPE estimates (see Section 3), and use

the square roots of them as measures of uncertainty. The results are presented in Figure 1,

where the (red) dot represents the value of CMMP predictor while the dash line represents

the error marginal determined by plus/minus 2 times the square root of the corresponding

Sumca estimate, for each of the 51 states. Note that the % match is 100% in this case.

Appendix: Second-order unbiasedness of Sumca estimator

A1 Second-order unbiasedness of (18)

We impose the following regularity conditions.

A1. E(θ2|y) is finite almost surely.

A2. The parameter space for φ, Φ, is compact, and φ̂ ∈ Φ.

A3. E(|φ̂− φ|4) = O(m−2).

A4. E{θ̂(∂a1/∂φ′)(φ̂− φ)} = O(m−1), E{(∂a2/∂φ′)(φ̂− φ)} = O(m−1).

A5. The second moments of the following are finite, where ‖ · ‖ denotes the spectral

norm of a matrix:

|θ̂| sup
φ∈Φ

∥

∥

∥

∥

∂2a1
∂φ∂φ′

∥

∥

∥

∥

, sup
φ∈Φ

∥

∥

∥

∥

∂2a2
∂φ∂φ′

∥

∥

∥

∥

.
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Figure 1: Predicted Mixed Effects for 1989 via CMMP for Income Data: Dots indicate

Predicted Values while Dash Lines Margins of Errors
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A6. The following expansion holds for d(φ):

d(φ) = d1(φ)m
−1 + r(φ)

for some d1(·), r(·) satisfying supφ∈Φ |r(φ)| = o(m−1) and E{|d1(φ̂)− d1(φ)|} = o(1).

A1, A2 are satisfied in most practical situations. A3 is satisfied, for example, for the

consistent estimators truncated from above considered in Jiang et al. (2002) and Das et

al. (2004). A4 is expected to hold, for example, if the data are divided into independent

clusters while the mixed effect of interest is associated with a finite number of clusters.

Due to the compactness of Φ, A5 is expected to hold. Finally, A6 is suggested by the fact

that d(φ) = O(m−1) [see below (16)], which can be shown to hold under A1–A5; that

E{|d1(φ̂)− d1(φ)|} = o(1) is suggested by the consistency of φ̂, if d1(·) is continuous.

Theorem 1. Under Assumptions A1–A6, the MSPE estimator given by (18) is second-

order unbiased, that is, E(M̂SPE) = MSPE + o(m−1).

Proof. Essentially, we need to verify that (16) and (17) hold, which are used in the

heuristic derivation below (18) of the second-order unbiasedness. But first note that A2

implies that all of the conditional expectations involved in (15) exist and are finite almost

surely. To verify (16), note that, by Taylor series expansion, we have

a2(y, φ̂)− a2(y, φ) =
∂a2
∂φ′

(φ̂− φ) +
1

2
(φ̂− φ)′

(

∂2a2
∂φ∂φ′

∣

∣

∣

∣

φ̃

)

(φ̂− φ), (A.1)

where φ̃ lies between φ and φ̂. The second term on the right side of (A.1) without the factor

1/2 is bounded in absolute value by supφ∈Φ ‖∂2a2/∂φ∂φ′‖· |φ̂−φ|2, whose expected value
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is bounded by
{

E

(

sup
φ∈Φ

∥

∥

∥

∥

∂2a2
∂φ∂φ′

∥

∥

∥

∥

)2
}1/2

{

E(|φ̂− φ|4)
}1/2

,

by the Cauchy-Schwarz inequality. Thus, by A3, A5, the second term on the right side of

(A.1) is O(m−2) in E(| · · · |). Furthermore, by A4, the first term on the right side of (A.1)

is O(m−1) in expectation. It follows that the left side of (A.1) is O(m−1) in expectation.

Similarly, we have, by Taylor expansion,

θ̂{a1(y, φ̂)− a1(y, φ)} = θ̂
∂a1
∂φ′

(φ̂− φ) +
1

2
(φ̂− φ)θ̂

(

∂2a1
∂φ∂φ′

∣

∣

∣

∣

φ̃

)

(φ̂− φ). (A.2)

Thus, by A3–A5, and similar argument as above, the left side of (A.2) is O(m−1) in expec-

tation. (16) now follows by the proved results and expression

a(y, φ̂)− a(y, φ) = a2(y, φ̂)− a2(y, φ)− 2θ̂{a1(y, φ̂)− a1(y, φ)}.

To verify (17), note that, by A6, we have

d(φ̂)− d(φ) =
d1(φ̂)− d1(φ)

m
+ r(φ̂)− r(φ). (A.3)

We have |r(φ̂) − r(φ)| ≤ 2 supφ∈Φ |r(φ)| = o(m−1), by A2 and A6. It follows that (17)

holds, again by A6. In fact, by A6, we have

|E{d(φ̂)− d(φ)}| ≤ E(|d1(φ̂)− d1(φ)|)
m

+ o(m−1) = o(m−1),

which is a key argument used in the heuristic derivation below (18).
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A2 Second-order unbiasedness of Sumca estimator

We assume that the Monte-Carlo (MC) samples, under φ, are generated by first gener-

ating some standard [e.g., N(0, 1)] random variables, say, ξ, that do not depend on φ. We

then combine ξ with φ to produce the MC samples under φ. For example, yij’s are gener-

ated by first generating the ξi’s and ηij’s, which are independent N(0, 1), and then letting

yij = x′ijβ +
√
Gξi +

√
Riηi, where G and Ri are known functions of φ.

Theorem 2. Suppose that ξ are independent of y, the original data. Then, under the as-

sumptions of Theorem 1, we have E(M̂SPEK) = MSPE+ o(m−1), where the expectation

is with respect to the joint distribution of the data and Monte-Carlo sampling.

Proof. First, let us re-clarify some concepts and notation introduced in Section 3. Recall

d(φ) = b(φ) − c(φ), where b(φ) = E{a(y, φ)}, c(φ) = E{a(y, φ̂)}. Note that b(φ) is the

MSPE when φ is the true parameter vector. Denote the right side of (19) by d̂(ψ), which

is an approximation to d(ψ). Note that, in (19), y[k] is y generated under ψ through the ξ

introduced above, which does not depend on φ and is independent with φ̂, the estimator of φ

based on the original data (by the assumption of Theorem 2). Furthermore, φ̂[k] is a function

of y[k]. Thus, the summand in (19) is a function of ξ[k], the copy of ξ generated in the kth

Monte-Carlo simulation, and φ. Denote the summands by ∆(ξ[k], φ), 1 ≤ k ≤ K. Then,

we have d(φ) = Ed{a(y, φ) − a(y, φ̂)} = Emc{∆(ξ, φ)}, where Ed denotes expectation

with respect to the data, and Emc that with respect to the Monte-Carlo simulation. The two

expectations are equal because y can be generated the same way as y[k], through ξ, given
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the same φ. It follows that

Emc{d̂(φ)} =
1

K

K
∑

k=1

Emc{∆(ξ[k], φ)} = Emc{∆(ξ, φ)} = d(φ). (A.4)

The Sumca estimator, (20), can now be expressed as

M̂SPEK = a(y, φ̂) + d̂(φ̂), (A.5)

where, in d̂(φ̂), that is, the summand in (20), y[k] is generated via ξ[k] and φ = φ̂ as described

above. In other words, the summands in (20) are ∆(ξ[k], φ̂), 1 ≤ k ≤ K.

By the proof of Theorem 1, we have Ed{d(φ̂)− d(φ)} = o(m−1). Thus, we have

E{d̂(φ̂)− d(φ)} = E{d̂(φ̂)− d(φ̂)}+ E{d(φ̂)− d(φ)}

= E{d̂(φ̂)− d(φ̂)}+ o(m−1), (A.6)

where E denotes expectation with respect to both the data and Monte-Carlo simulation.

Note that d(φ̂)− d(φ) depends only on y and not on ξ.

On the other hand, we have E{d̂(φ̂) − d(φ̂)} = E[E{d̂(φ̂) − d(φ̂)|φ̂}]. For any given

value of φ, we have, by the independence of ξ and y, and (A.4),

E{d̂(φ̂)− d(φ̂)|φ̂ = φ} = E{d̂(φ)− d(φ)|φ̂ = φ} = Emc{d̂(φ)− d(φ)} = 0.

Note that d̂(φ)−d(φ) depends only on ξ and not on y. Thus, E{d̂(φ̂)−d(φ̂)|φ̂} = 0, hence

E{d̂(φ̂)− d(φ̂)} = 0. (A.7)
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Combining (A.6), (A.7), we have E{d̂(φ̂)−d(φ)} = o(m−1). Therefore, by (A.5), we have

E(M̂SPEK) = E{a(y, φ̂)} + d(φ) + E{d̂(φ̂) − d(φ)} = c(φ) + b(φ) − c(φ) + o(m−1) =

b(φ) + o(m−1) = MSPE + o(m−1).
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