A New Classified Mixed Model Predictor

HaNMEI Sun', Yiaur Luan! AND JiMING JIANG?
Shandong University, China' and University of California, Davis, USA?

We develop a new method for classified mixed model prediction (CMMP). The
original CMMP method (Jiang et al. 2018) does not incorporate covariate informa-
tion in matching the class between the new observations and the training data. As a
result, the method may not outperform the mixed model prediction (MMP) method
in terms of predictive performance. The new CMMP method that we develop utilizes
covariate information, and therefore is more accurate in terms of the matching. We
show that the new CMMP method outperform the MMP in terms of the predictive per-
formance. Furthermore, we develop a second-order unbiased estimator of the mean
squared prediction error (MSPE) for the new CMMP, which was previously not avail-
able for the original CMMP. Theoretical and empirical properties of the proposed new
CMMP method as well as the MSPE estimator are studied. A real data application is

considered.
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1 Introduction

Classified mixed model prediction (Jiang et al. 2018) is new method of prediction
based an idea of matching a random effect associated with the new observations and one

of the random effects associated with the training data. It was shown that CMMP im-
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proves predictive performance over the tradition regression-based prediction substantially.
The method has potential application in such fields as precision medicine, where the pri-
mary interests are at the subject-level, and business, where prediction of business values at
customer-level is of interest.

On the other hand, the current CMMP method does not utilize covariate information
in its matching procedure; in other words, only the observed mean response is used in the
matching. As a result, the probability of correct match is low, even though the predictive
performance of the CMMP may still be satisfactory. But, the performance can be improved,
if the precision of the matching improves. In practice, there are often covariates at the
group or cluster level, which are associated with the group-specific random effects. For
example, consider the following nested-error regression (NER) model (Battese, Fuller &
Harter 1988): y;; = ;8 +v; + €5, i = 1,...,m, j = 1,...,n;, where y;; is the jth
observed (or sampled) response in the ith cluster, ;; is a vector of covariates, /3 is a vector
of unknown regression coefficients (the fixed effects), v; is a cluster-specific random effect,
and e;; is an additional error. In practice, the random effect v; is often used to “capture
the un-captured”, that is, variation not captured by the mean function, x;j 5, at the cluster
level. On the other hand, some components of x;; may be also at the cluster level, that is,
they depend on ¢ but not j. It is natural to think that there may be association between v;
and some of the cluster-level components of x;;; however, we do not know what kind of

association it is except that it must be nonlinear (because, otherwise, it would be captured
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by x;;3). Nevertheless, if such covariate information can be utilized, the precision of the
matching of random effects in CMMP, hence the (predictive) performance of CMMP can
be improved.

Furthermore, the current CMMP method does not provide an uncertainty measure for
the predictor, such as the mean squared prediction error (MSPE). The MSPE is extensively
used in mixed model prediction (e.g., Jiang & Lahiri 2006, Rao & Malina 2015). However,
when it comes to CMMP, because the latter involves a matching procedure which is non-
differentiable, the traditional methods of deriving MSPE estimators, especially second-
order unbiased MSPE estimators, do not apply.

The goal of this paper is two-fold. First, we are going to implement the idea described
above regarding incorporating the covariate information in the CMMP matching. Second,
we develop a simple, unified, Monte-Carlo assisted (Sumca) method for estimating the
MSPE of CMMP, as noted above. Theoretical and empirical performance of the proposed
new CMMP method and the Sumca MSPE estimator are carefully studied. Our results
show that the new CMMP method can improve performance of CMMP substantially; fur-
thermore, the Sumca estimator is second-order unbiased in estimating the MSPE of CMMP.

In Section 2 we introduce a new CMMP procedure that incorporates covariate infor-
mation in matching the random effects. Estimation of MSPE of CMMP is considered in
Section 3. Section 4 presents empirical results regarding performance of the new CMMP

as well as that of the proposed MSPE estimator. A real data application is considered in
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Section 5. Proofs of theoretical results are deferred to the Appendix.

2 A new CMMP procedure

Suppose that the underlying model can be expressed as
yij = B+ wpy + i+ ey, (1)

1=1,...,m,7=1,...,n,;, where w; corresponds to the cluster-specific covatiates, and vy
is the corresponding vector of regression coefficients. Here, «; is used to capture whatever
is not captured by z;;3 + w;y. Suppose that there is a one-to-one correspondence between
i and w; so that w; = w; implies ¢ = 7/. Also assume that a similar one-to-one correspon-
dence holds between 7 and «;. Then, to match «;, one only needs to match w;. This leads

to the following simple identifier: Let the new observation satisfy
Yn = x;ﬁ + w;{Y + ay + é€n, (2

where z,, w, are observed, «; is the new random effect, and €, the new error. Let us, for
now, focus on the matched case (Jiang et al. 2017), that is, there is an actual match between

ay and one of the o;s. Our goal is to predict the mixed effect
0 = 2.f+wy+ar. 3)

First assume that all of the parameters are known. Suppose that there is a prior distribution,

m, for I over {1,...,m} that is independent with the training data. A key idea is that wy, is
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supposed to be related to the true class, 7, that is,
wy, = wr. 4)

Thus, given that / = i, (3) becomes 6 = ] /5 + w;y + «;. Therefore, the best predictor

(BP), in the sense of minimizing the MSPE, of 0 is

0iy = E(2,8+wiy+ aly)
= E(x,8 + wyy + aily:)

= .0+ wiry + E(a;|y:). (5)

It follows, by (3) and (5), that under the standard normality assumption that the a;s and €;;s

are independent with a; ~ N (0, G) and ¢;; ~ N (0, R), that the MSPE of ) is

MSPE{@@)} = E{E(ai|yi)_ai}2

- E an _ R ' 2
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On the other hand, given that I # i, oy is independent with E(«;|y;). However, suppose

that one does not know this, and therefore still assumes I = i, then the expression of é(i),
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by (5), does not change. Therefore, one has
MSPE{f} = B{(w; —wa)'y + E(ouly) — ar)?

= {(wi — wa)'7}* + B{E(aily;) — or}?

= {(w; —wn) 7} + E{E(a|y:)}* + G

n;G
= 2) ) 1 7
(w4 6 (14 22 ) g
If we combine the above results, we have
MSPE{f} = E(E[{f — 0}*|1))
= 7(I =0)E[{0) — 0}°[1 = i)+ ) _w(I =i)E[{fy — 01| =]
/751
GR
+Z7T(I =) [{(w; —w) v} +G 1+ MG
i R + HZG
= (L=l = ) — )} + G 1+
B § T W) R+ n;G
< 2n,G?
-l = )R +n,G ®)
If 7(I = i) is known, one can identify I as the minimizer of the right side of (8), that is,
I = argmin {1 —7(I =) H{(w; —w) v+ G 1+ nG
= g 1<i<m Tl = n) Y R+ n,G
27’LiG2
—n(l =i _ 9
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For example, if 7(1 = 1) = 1/m,1 < i < m, then (9) reduces to

27’LZ‘G2
m(R +n;G) ]

(10)

(10) may be interpreted as the minimizer of MSPE under the non-informative prior for /.

In particular, if n; does not depend on ¢, then (10) is equivalent to

I = argmin <, { (w; — wy)' v} (11)

In practice, when the parameters are unknown, they are replaced by their consistent esti-

mators, say, the REML estimators, 7, G, R, leading to

N m—1 N n; G
I = argmin, ., |—{(wi —w)AP+G |1+ —"—=
g 1<i< [ m {( )7} < R+mG>
2
o G (12)

for the unequal n; case, and I = argming ;. { (w; — wy)"y}* for the equal n; case.

One concern about the above procedure is that the choice of prior (e.g., uniform) is a
bit subjective. An alternative that does not depend on the choice of the prior is to focus on
the case of misspecification only. From (7), it is seen that, if I # i, the MSPE of é(i) 18

given by the right side of (7). This leads to a modified procedure:

, 13

where 7, G’, R are the same as in (12).
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A major difference between (13) and the original CMMP procedure of Jiang et al.
(2017) is that the covariate information in w is incorporated in the identification of /. Using
a similar argument as in Jiang et al. (2017), consistency of the new CMMP procedure can
be established under reasonable assumptions. Empirical performance of the new CMMP

procedure will be evaluated in Section 4.

3 Estimation of MSPE

As noted, a standard uncertainty measure for a predictor is the MSPE. A “gold standard”
for the MSPE estimation is to produce a second-order unbiased MSPE estimator, that is,
the order of bias of the MSPE estimator is o(m™!), where m is the total number of clusters
in the training data. Typically, the o(m ™) term is, in fact, O(m™?2), but this difference is
usually ignored. For the most part, there have been two approaches for producing a second-
order unbiased MSPE estimator. The first is the Prasad-Rao linearization method (Prasad
& Rao 1990). The approach uses Taylor series expansion to obtain a second-order approxi-
mation to the MSPE, then corrects the bias, again to the second-order, to produce an MSPE
estimator whose bias is o(m™!). Various extensions of the Prasad-Rao method have been
developed; see, for example, Datta & Lahiri (2000), Jiang & Lahiri (2001), Das, Jiang &
Rao (2004), and Datta, Rao & Smith (2005). Although the method often leads to an ana-

lytic expression of the MSPE estimator, the derivation is tedious, and the final expression
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is likely to be complicated. More importantly, errors often occur in the process of analytic
derivations as well as computer programming based on the lengthy expressions. Further-
more, the linearization method does not apply to situations where a non-differentiable op-
eration is involved in obtaining the predictor, such as shrinkage estimation (e.g., Tibshirani
1996), CMMP (Jiang et al. 2017), as well as the new CMMP developed in Section 2.

The second approach to second-order unbiased MSPE estimation is resampling meth-
ods. Jiang, Lahiri & Wan (2002; hereafter JLW) proposed a jackknife method to estimate
the MSPE of an empirical best predictor (EBP). The method avoids tedious derivations
of the Prasad-Rao method, and is “one formula for all”. On the other hand, there are re-
strictions on the class of predictors to which JLW applies. Namely, JLW only applies to
empirical best predictor (EBP), that is, predictor obtained by replacing the parameters in-
volved in the best predictor (BP), which is the conditional expectation, by their (consistent)
estimators. The CMMP predictor, however, is not an EBP, because it involves a matching
process. Jiang, Lahiri & Nguyen (2017) proposed a Monte-Carlo jackknife method, call
MclJack, which potentially applies to CMMP; however, the method is computationally very
expensive (see below). Another resampling-based approach is double bootstrapping (DB;
Hall & Maiti 2006a,b). Although DB is capable of producing a second-order unbiased
MSPE estimator, it is, perhaps, computationally even more intensive than the McJack. It is
also unclear whether DB can be extended to CMMP.

In a way, the method to be proposed below may be viewed as a hybrid of the lineariza-
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tion method and resampling method, by combining the best part of each method. In short,
we use a simple, analytic approach to obtain the leading term of our MSPE estimator, and
a Monte-Carlo method to take care a remaining, lower-order term. The computational cost
for the Monte-Carlo part is much lesser compared to McJack. For example, the computa-
tional burden of our method is about 1/m3 to 1/m? of that of McJack. More importantly,
the method provides a unified, conceptually easy solution to a difficult problem, that is,
obtaining a second-order unbiased MSPE estimator for CMMP (either that of Jiang et al.
2017 or the new CMMP proposed in Section 2).

Let 6 be the mixed effect corresponding to the new observations, and 0 the CMMP

predictor of . The MSPE of 0 can be expressed as
MSPE = E(6 — 0)? = E |E{(0 — 0)%|y}|, (14)

where y represents the available data. Suppose that the underlying distribution of y de-
pends on a vector of unknown parameters, ¢. Then, the conditional expectation inside the

expectation on the right side of (14) is a function of y and ¢, which can be written as

a(y, ) = E{(6 — 0)*|y} = 0° — 20E(0]y) + E(6°|y) = 6> — 20a:(y, ¢) + az(y. ¢), (15)

where a;(y, ¢) = E(#|y), j = 1, 2. If we replace the ¢ in (15) by ¢, a consistent estimator

of ¢, the result is a first-order unbiased estimator, that is, we have

Ela(y,¢) —a(y,¢)} = O(m™). (16)
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On the other hand, both MSPE = E{a(y, ¢)} [by (14), (15)] and E{a(y, ¢)} are functions
of ¢, denoted by b(¢) and c(¢), respectively. By (16), we have d(¢) = b(¢) — c(¢) =
O(m™1); thus, if we replace, again, ¢ by gg in d(¢), the difference is a lower-order term,

that is, we have

d(¢) —d(¢) = op(m™) (17)

[see, e.g., Jiang 2010, sec. 3.4 for notation like op and Op]. Now consider the estimator

~

MSPE = a(y, $) + d(¢) = a(y, ) + b($) — ¢(4). (18)

We have, by (14)~(18), E(MSPE) = E{a(y,¢)} + E{a(y, ) — a(y,¢)} + E{d(9)} =
MSPE+E{d(¢)—d(¢)} = MSPE+o(m"). Essentially, this one-line, heuristic derivation
shows the second-order unbiasedness of the proposed MSPE estimator, (18), provided that
the terms involved can be evaluated. A rigorous justification is given in Appendix.

Note that the leading term, a(y, ngS), in (18) is guaranteed positive, a desirable property
for an MSPE estimator. The lower-order term, b(q@) — c((ﬁ), corresponds to a bias correction
to the leading term. This term is typically much more difficult to evaluate than the leading
term. We propose to approximate this term using a Monte-Carlo method. Let P, denote
the distribution of y with ¢ being the true parameter vector. Given ¢, one can generate y

under Py. Let yp) denote y generated under the kth Monte-Carlo sample, £ = 1,..., K.

Then, by the law of large numbers, we have

1 K

b(p) —c(p) =~ 7 {a(y[kb ®) — a(ym, é[k])} 7 (19)
k=1
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where ngS[k] denotes ngS based on yp. If K is sufficiently large, which one has control over
during the Monte-Carlo simulation, the difference between the two sides of (19) is o(m™1).
Write the right side of (19) as dk (¢) (note that Y,k =1,..., K also depend on ¢). Then,

a Monte-Carlo assisted MSPE estimator is given by

Mw

M/SﬁEK = a(y, d) + di(¢) = { Yik]» ¢) — aly Yik]» ¢ )}7 (20)

k:
where yjy, & = 1,..., K are generated as above with ¢ = ngﬁ, and qg[k] is, again, the es-
timator of ¢ based on yj). (20) is called the Sumca estimator of the MSPE of 0 (Sumca
is abbreviation of “simple, unified, Monte-Caro assisted”). It is shown in Appendix that,
under regularity conditions, the Sumca estimator is second-order unbiased. Empirical per-

formance of the Sumca estimator will be evaluated in Section 4.

4 Simulation studies

4.1 Performance of new CMMP

In Jiang et al. (2017), the authors showed that CMMP significantly outperforms the
standard regression prediction (RP) method. On the other hand, the latter authors have not
compared CMMP with mixed model prediction (MMP; e.g., Jiang & Lahiri 2006, Rao &
Molina 2015), which is known to outperform RP as well. In fact, some unpublished sim-

ulation results suggest that CMMP may not outperform MMP, depending on the situation.
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Further investigation shows that most of the prediction errors by CMMP are due to mis-
matching the classes; in other words, if the classes are matched with high accuracy, CMMP
is expected to outperform MMP.

In this subsection, we compare empirical performance of the new CMMP, developed
in Section 2, with MMP under two scenarios. In each of the scenarios, there is no exact
match between the new observation and a group in the training data. More specifically,

under Scenario I, the training data satisfy

vij = Bo+ Biw; + oy + €5, (21)

1=1,...,m,7 =1,...,n;, where w; is an observed, cluster-level covariate, «; is a cluster-
specific random effect, and ¢;; is an error. The random effects and errors are independent

with a; ~ N(0,G) and ¢;; ~ N (0, R). The new observation, on the other hand, satisfies

Ynew = 60 + ﬁlwl + o + 0+ €new> (22)

where §, €, are independent with § ~ N (0, D) and €yey ~ N(0, R), and (0, €,ey,) are
independent with the training data. It is seen that, because of J, there is no exact match
between the new random effect (which is o1 +9) and one of the random effects «; associated
with the training data; however, the value of D is small, D = 10~%, hence there is an
approximate match between the new random effect and «, the random effect associated
with the first group in the training data.

Under Scenario 2, the training data satisfy (21) except that now «; = wf’ + v; with v; ~
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N(0, D), and v; is independent with ¢;;. Under this scenario, there is a misspecification of
the cluster-specific random effect in that the random effect represents a nonlinear function
of the covariate, plus some random noise. This is motivated by the notion of “capture the
un-captured” discussed in Section 1 (second paragraph). Similarly, the new observation
satisfies (22) with a; + § replaced by wf + Unew» Where vy, ~ N (0, D) and is independent
With €0y, and (Vpew, €new ) are independent with the training data.

We consider m = 50. The n; are chosen according to one of the following four patterns:
. n; =51 <i<m/25n =25m/24+1<i<m;2 n; =50,1<i<m/2
n; =2500m/2+1<i<m;3. n =251<i<m/2;n; =5m/2+1<i<m;4
n; = 250,1 < i < m/2;n; = 50,m/2+ 1 < i < m. The consideration of the first two
patterns is to see how results change when the cluster sizes of the training data get bigger;
the consideration of the last two patterns, in comparison with the first two patterns, is to see
if the apparent asymmetry due to the fact the the new random effect has an approximate
match with the first half of the training data (i.e., o) affects the results. The true (s are
Bo = 5 and ; = 1. The results, based on 1000 simulation runs are presented in Tables 1
and 2. The numbers in the rows of CMMP and MMP are empirical MSPEs based on the

simulation; and %Imp represents percentage improvement of CMMP over MMP, that is

MMP — CMMP
%Imp = 100% x ( )

CMMP

It is seen that, under both scenarios, CMMP improves MMP substantially, as shown
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Table 1: Comparing CMMP with MMP: Scenario I
R=1 G=1
G=25 G= G=1 G=2 G=4 |R=.25 R= R=1 R=2 R=4
Patten | CMMP | .123 156 171 172 176 049 091 183 294 485
MMP 187 342 459 590 801 190 323 476 650 836
%Imp 522 1188 1684 2433 3553 285.9 2555 1605 1210 724
Pattern2 CMMP | 019 018 020 020 021 005 010 019 039 070
MMP 178 315 494 618 780 186 321 526 633 718
%Imp | 8618 16308 23512  3023.6 36340 | 34835 31383 27015 15043 9188
Pattern3 CMMP | 034 034 035 039 041 010 019 038 084 140
MMP 175 283 481 642 894 199 335 476 620 749
%Imp | 4184 7259 12726 15621  2099.8 | 1890.1 16170 11551  638.7 4344
Pattern4 CMMP | 004 004 004 004 004 001 002 004 008 016
MMP 181 296 466 552 809 193 308 442 631 756
%Imp | 42352 71320 10918.6 129423 198730 | 16859.0 148756 106707 74818 4521.1
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Table 2: Comparing CMMP with MMP: Scenario 11
R=025 R=05 R=1 R=2 R=14

Pattern 1 CMMP | 0.049 0.104 0.216 0.498 1.004
MMP 0.264 0.539 1.273 2.736 5.357

YoImp 444.1 416.8 489.1 449.0 433.5

Pattern2 CMMP | 0.005 0.010 0.020 0.040 0.079
MMP 0.292 0.602 1.250 2.786 5.151

JImp 5656.1 57423  5998.8 68155 6457.1

Pattern3 CMMP | 0.010 0.020 0.045 0.087 0.177
MMP 0.260 0.553 1.176 2977 5.550

J%Imp | 2554.1 2613.1 25105 3307.8 3027.4

Pattern4 CMMP | 0.001 0.002 0.004 0.007 0.017
MMP 0.281 0.593 1.167 2.598 5.564

%Imp | 230129 27150.1 27283.9 35431.9 33316.0
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by, for example, %Imp. Under Scenario I, the MSPE of both CMMP and MMP increases
with G and with R when the other variance component is held fix. In term of %Imp, it
increases with GG but decreases with R. This makes sense because large G makes identi-
fication of the group (effect) more important, hence increasing the advantage of CMMP;
on the other hand, larger R makes it less accurate to estimate the group (or cluster) ef-
fect, hence decreasing the advantage of CMMP. The amount of improvement by CMMP
increases substantially, as shown by %Imp, as the cluster sizes increase. Comparatively,
the advantage of CMMP over MMP is more significant, some above 10,000, under Pat-
terns 3—4 than under Patterns 1-2. The explanation is that, under Patterns 3—4, the cluster
sizes for the matching group (i.e., group 1) is relatively larger, making estimation of the
cluster effect more accurate, hence increasing the advantage of CMMP. Under Scenario II,
the improvement of CMMP over MMP is even more substantial, with some %Imp over
30,000. The MSPEs follow the same pattern, but %Imp does not show a clear trend, with
the maximum occurring near the mid-range of R. Note that there is no G under Scenario II

because the random effect is misspecified in this situation.

4.2 Performance of Sumca estimator

In this subsection, we investigate empirical performance of the Sumca MSPE estima-
tor, developed in Section 3. We consider, again, model (21), but under two scenarios with

different accuracy in terms of matching the groups. More specifically, under the first sce-
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nario, one has (21) with 5 = 5and 8, = 1; w; = —2.5 + 0.1i; a; = w} + v; with
v; ~ N(0,107%). The new observation satisfies (22). Furthermore, we consider two cases

of sample size configurations for n;, namely,

5, 1<i<m/2 50, 1<i<m/2
Casel: n;, = Case2: n; =
25, m/24+1<i<m 250, m/24+1<i<m

The results, based on 1000 simulation runs, are presented in Table 3, where the percentage

relative bias is defined as

MSPE — MSPE
%RB:100><<S S )

MSPE

Here, MSPE is the MSPE of the CMMP 0 of O = Bo + 1wy + ag based on the simula-
tion runs, and M/Sﬁl is the mean of the Sumca estimator over the simulation runs. As a
comparison, we also consider what we call the 1st-term estimator which is the first term on
the right side of (20). It is seen that the Sumca estimator improves the 1st-term estimator,
as indicated by the %RB (note that these numbers are percentages), but the improvement
is not significant, especially when m is larger. One possible reason is that, under this sce-
nario, the percentage of correct matching (% match, that is, the group number identified by
the CMMP procedure is the same as the true group number, = 1) is 100%.

The improvement of Sumca over Ist-term is more significant, however, under the sec-
ond scenario. In this case, w; is the same as above, but a; = 0.5(w? — 1) + v; with
v; ~ N(0,0.01). In a way, the “signal”, in terms of w;, for identifying «; is weaker, but the

“noise”, in terms of v;, is stronger, compared to the first scenario. Furthermore, the cluster
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Table 3: MSPE Estimation: First Scenario
R 0.25 0.5 1 2 4

Case 1 | MSPE | 0.051 | 0.107 | 0.220 | 0.462 | 1.011
Sumca | 0.050 | 0.099 | 0.197 | 0.382 | 0.730

%RB | -0.66 | -7.17 | -10.14 | -17.28 | -27.83

Ist-term | 0.050 | 0.099 | 0.196 | 0.377 | 0.711

%RB | -0.83 | -7.49 | -10.80 | -18.46 | -29.74
Case2 | MSPE | 0.0055 | 0.0104 | 0.0209 | 0.0396 | 0.0858
Sumca | 0.0050 | 0.0100 | 0.0199 | 0.0398 | 0.0790

%RB | -845 | -4.02 | -4.38 0.56 -7.92
Ist-term | 0.0050 | 0.0100 | 0.0199 | 0.0397 | 0.0787

%RB | -8.46 | -4.05 | -4.45 0.41 -8.19

19
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Table 4: MSPE Estimation: Second Scenario
R 0.25 0.5 1 2 4

MSPE | 0.064 | 0.149 | 0.307 | 0.651 | 1.143

Sumca | 0.083 | 0.118 | 0.174 | 0.284 | 0.437

%RB | 29.43 | -20.94 | -43.37 | -56.32 | -61.79

Ist-term | 0.025 | 0.054 | 0.108 | 0.198 | 0.323

%RB | -61.03 | -63.76 | -64.93 | -69.57 | -71.72

%match | 78.2 59.1 49.8 40.0 34.6

sizes are no longer fixed; instead, the n;s are randomly selected from the integers between
5 and 25, and the selection changes with each simulation. As a result, the % match is no
longer 100%, ranging from 34.6% to 78.2%. The results, again based on 1000 simulation
runs, are presented in Table 4. It is seen that the improvement of Sumca over 1st-term, in

terms of %RB, is more significant now, especially for smaller values of R.

S Real data example

Datta, Lahiri, and Maiti (2002) considered a data set regarding median income of four-
person families for the fifty states of U.S. and the District of Columbia using cross-sectional
and time series modeling. The primary source of data is the annual supplement to the March

Sample of the Current Population Survey (CPS), which provides individual annual income
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data categorized into intervals of $2500. The direct survey estimates were obtained from
the CPS using linear interpolation. Two secondary sources of data were also available. The
first is the U.S. decennial censuses (Census) which produce median incomes for the 50
states and D.C. based on the “long form” filled out by approximately one-sixth of the U.S.
population. These census median income estimates are believed to be free of sampling
errors. The second is per-capita income estimates produced by the Bureau of Economic
Analysis (BEA) division of the U.S. Department of Commerce. Since the per-capita income
estimates are not based on any sampling techniques, they do not have any sampling errors
associated with them. From the Census and BEA data, an adjusted census median income
(adjusted Census) is obtained by multiplying the preceding census median income by the
ratio of BEA per-capita income for the current year to that of the preceding census year.
The data are used to illustrate the new CMMP method as well as the Sumca MSPE
estimation. The 51 states and D.C. are considered as 51 clusters or groups. The 1979—-1988
(10 years) are used as the training data; the 1989 data are treated as the new data. Our goal
is to predict the mixed effect associated with the new data for each of the 51 states and D.C.

The following NER model is considered for the training data:

Yii = Bo+ Bixi; +ywi + a; + €, (23)

i@ =1,...,51, 7 = 1,...,10, where y;; is the direct survey estimate obtained from the
CPS, and z;;, w; correspond to the adjusted Census and Census variables described above,

respectively. Note that, here, w; is a cluster-level covariate that can be used to help with the
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matching, and «; is a cluster-specific random effect that is used to capture the “un-captured”
variation (by the covariates) at the cluster level. A similar model is assumed for the new
data. We apply the new CMMP method of Section 2, more specifically, (13) to the data.
Furthermore, we compute the associated Sumca MSPE estimates (see Section 3), and use
the square roots of them as measures of uncertainty. The results are presented in Figure 1,
where the (red) dot represents the value of CMMP predictor while the dash line represents
the error marginal determined by plus/minus 2 times the square root of the corresponding

Sumca estimate, for each of the 51 states. Note that the % match is 100% in this case.

Appendix: Second-order unbiasedness of Sumca estimator

Al Second-order unbiasedness of (18)

We impose the following regularity conditions.

Al. E(6?|y) is finite almost surely.

A2. The parameter space for ¢, ®, is compact, and quﬁ e o.

A3 B($ - 6]) = O(m~2).

A4. E{0(0a1/09)(6 — ¢)} = O(m™), E{(9a2/0¢') (6 — ¢)} = O(m™").

AS5. The second moments of the following are finite, where || - || denotes the spectral

norm of a matrix:
2
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Figure 1: Predicted Mixed Effects for 1989 via CMMP for Income Data: Dots indicate

Predicted Values while Dash Lines Margins of Errors
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A6. The following expansion holds for d(¢):
d(¢) = di(e)m™ +r(¢)

for some d; (-), r(-) satisfying sup,cq [7(¢)| = o(m™") and E{|d1(¢) — di(¢)|} = o(1).

Al, A2 are satisfied in most practical situations. A3 is satisfied, for example, for the
consistent estimators truncated from above considered in Jiang ef al. (2002) and Das et
al. (2004). A4 is expected to hold, for example, if the data are divided into independent
clusters while the mixed effect of interest is associated with a finite number of clusters.
Due to the compactness of ¢, A5 is expected to hold. Finally, A6 is suggested by the fact
that d(¢) = O(m™?) [see below (16)], which can be shown to hold under AI-AS5; that
E{|d1(¢) — di(¢)|} = o(1) is suggested by the consistency of ¢, if d;(-) is continuous.

Theorem 1. Under Assumptions A/-A6, the MSPE estimator given by (18) is second-
order unbiased, that is, E(MSPE) = MSPE + o(m™1).

Proof. Essentially, we need to verify that (16) and (17) hold, which are used in the
heuristic derivation below (18) of the second-order unbiasedness. But first note that A2
implies that all of the conditional expectations involved in (15) exist and are finite almost

surely. To verify (16), note that, by Taylor series expansion, we have

8@2 A 1 - ’
a¢,<¢—¢>+§<¢—¢><

82(1,2

960

as(y, ) — as(y, ¢) =

) (6 —9), (A1)
é

where gzNS lies between ¢ and ngS The second term on the right side of (A.1) without the factor

1/2 is bounded in absolute value by sup g [|0°az/dp0¢'|| - | — ¢|2, whose expected value
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is bounded by

32a2

9y 1/2 ) 12
4
{E(iﬁ awwf) } (B9 =}

by the Cauchy-Schwarz inequality. Thus, by A3, A5, the second term on the right side of

(A.1)is O(m™2) in E(| - - - |). Furthermore, by A4, the first term on the right side of (A.1)
is O(m™"') in expectation. It follows that the left side of (A.1) is O(m™!) in expectation.

Similarly, we have, by Taylor expansion,

82611

D0

ay  +

1 - A
=ea¢,<¢—¢>+§<¢—¢>e<

0{ar(y, &) — ai(y, 8)}

) (b-9). (A2)
]

Thus, by A3-AS5, and similar argument as above, the left side of (A.2) is O(m ™) in expec-

tation. (16) now follows by the proved results and expression

~

(l(y, ¢) - a(ya Qb) = a2(y7 ¢E> - CL?(ya ¢) - 2@{0,1 (yv Qg) — <y7 gb)}

To verify (17), note that, by A6, we have

: _di(d) — di(9)

d(¢) — d(9) - +7(9) = (9). (A.3)

We have [r(¢) — 7(¢)| < 2supyeq [1(¢)| = o(m™'), by A2 and A6. It follows that (17)

holds, again by A6. In fact, by A6, we have

E(|di(¢) — di(9)])

— +o(m™) = o(m™),

[E{d($) - d(#)}] <

which is a key argument used in the heuristic derivation below (18).
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A2 Second-order unbiasedness of Sumca estimator

We assume that the Monte-Carlo (MC) samples, under ¢, are generated by first gener-
ating some standard [e.g., N (0, 1)] random variables, say, £, that do not depend on ¢. We
then combine £ with ¢ to produce the MC samples under ¢. For example, y;;’s are gener-
ated by first generating the ;’s and 7;;’s, which are independent /N (0, 1), and then letting
Yij = T8+ VGE& + VRim;, where G and R; are known functions of ¢.

Theorem 2. Suppose that ¢ are independent of v, the original data. Then, under the as-
sumptions of Theorem 1, we have E(M/SFE k) = MSPE + o(m ™), where the expectation
is with respect to the joint distribution of the data and Monte-Carlo sampling.

Proof. First, let us re-clarify some concepts and notation introduced in Section 3. Recall
d(¢) = b(¢) — c(¢), where b(¢) = Efa(y, ¢)}, c(¢) = E{a(y, ¢)}. Note that b(g) is the
MSPE when ¢ is the true parameter vector. Denote the right side of (19) by d(@/}), which
is an approximation to d(¢). Note that, in (19), yp is y generated under 1) through the &
introduced above, which does not depend on ¢ and is independent with ngﬁ the estimator of ¢
based on the original data (by the assumption of Theorem 2). Furthermore, Qg[k] is a function
of yj. Thus, the summand in (19) is a function of &), the copy of { generated in the kth
Monte-Carlo simulation, and ¢. Denote the summands by A(g[k], ¢),1 < k < K. Then,
we have d(¢) = Eq{a(y, ¢) — a(y,d)} = Emc{A(E, ¢)}, where Eq denotes expectation
with respect to the data, and E,,,. that with respect to the Monte-Carlo simulation. The two

expectations are equal because y can be generated the same way as yj), through &, given
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the same ¢. It follows that
. 1 E
Encld()} = D Enc{ A 0)} = Enc{A(£, ¢)} = d(¢). (A.4)
k=1
The Sumca estimator, (20), can now be expressed as
MSPEx = a(y, §) +d(¢). (A.5)

where, in d(qg), that is, the summand in (20), y) is generated via ;) and ¢ = ngS as described

above. In other words, the summands in (20) are A(p, ¢),1 <k < K.

By the proof of Theorem 1, we have Eq{d(¢) — d(¢)} = o(m™!). Thus, we have

~

E{d(9) —d(¢)} = E{d($) —d(d)} + E{d(¢) — d(¢)}

= E{d($) - d(d)} +o(m™), (A.6)
where E denotes expectation with respect to both the data and Monte-Carlo simulation.
Note that d(([ﬁ) — d(¢) depends only on y and not on &.

On the other hand, we have E{d(¢) — d(¢)} = E[E{d(¢) — d(¢)|¢}]. For any given

value of ¢, we have, by the independence of £ and y, and (A.4),

E{d(¢) — d(9)|¢ = ¢} = E{d(¢) — d(9)|¢ = ¢} = Emc{d(¢) — d(¢)} = 0.

Note that d(¢) — d(¢) depends only on ¢ and not on y. Thus, E{d(¢) — d(¢)|¢} = 0, hence

~

E{d(¢) — d($)} = 0. (A7)
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Combining (A.6), (A.7), we have E{d(¢) —d(¢)} = o(m™1). Therefore, by (A.5), we have

E(MSPEx) = E{a(y, )} + d(¢) + E{d() — d(¢)} = c(¢) + b(¢) — e(¢) + o(m™") =

b(¢) + o(m™') = MSPE + o(m™!).
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