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Abstract—The last decade has seen a growing interest in
adversarial classification, where an attacker tries to mislead a
classifier meant to detect anomalies. We study this problem in a
setting where anomaly detection is being used in conjunction
with differential privacy to protect personal information. We
show that a strategic attacker can leverage the additional noise
(introduced to ensure differential privacy) to mislead the classifier
beyond what the attacker could do otherwise; we also propose
countermeasures against such attacks. We then evaluate the
impact of our attacks and defenses in road traffic congestion
and smart metering examples.

I. INTRODUCTION

The large-scale collection of user data has enabled a variety
of new services, from better online search recommendations,
to improved transportation services with crowdsourced vehicle
routing applications like Waze. This fine-grained collection
of user data provides many benefits to society, but it also
raises privacy concerns, and to address these concerns, many
techniques have been proposed, including differential privacy
(DP) [1]. DP adds noise to sensitive data, or computations done
on sensitive data, in order to ensure privacy while not overly
degrading the utility of the data.

Although privacy is an important concern for systems
collecting user data, it is unfortunately not the only risk, as
widespread vulnerabilities [2], [3], [4] can be exploited by
attackers to inject false data into the system. For example,
attackers can inject fake data in crowdsourced vehicular ser-
vices [5], [6], [7], [8] to cause non-existent congestion alarms
and accidents that never happened, triggering the services to
automatically reroute traffic because of false information.

When the integrity of the data cannot be fully trusted,
anomaly detection can provide defense-in-depth solutions to
mitigate the impact of false data injection attacks. Anomaly de-
tection is at the heart of several information security problems,
including intrusion detection, fraud detection, and detecting
false data injected into a system. While the classical problem
in anomaly detection assumes that the anomalies are not
adaptive or strategic, there is a growing interest to design
attack-resilient anomaly detection algorithms. In particular,
adversarial classification deals with anomaly detection in a
setting where the attacker knows the classification algorithm
being used and actively tries to avoid detection (while still
attacking the system) [9]. Adversarial classification has been

explored in a variety of settings, including network intrusion
detection [10], host-based intrusion detection [11], [12], mis-
behavior in wireless networks [13], and detection of false data
in cyber-physical systems [14], [15], [16], [17].

As the previous paragraphs suggest, there is a growing need
to deploy DP mechanisms to protect the privacy of individuals,
while at the same time, there is also a need to develop anomaly
detection algorithms over DP data that are resilient to evasion
attacks. In this paper we formulate this problem, and analyze
the trade-offs between (1) the utility of the data, (2) the
privacy provided by DP, and (3) the security of the anomaly
detector against evasion attacks. We then show that DP makes
adversarial classification attacks easier, and then show how to
design new attack-detection algorithms with better resilience
to such attacks.

While prior work has considered trade-offs between privacy
and utility in the context of statistical data analysis [18], [19],
[20], [21], [22], adversarial classification needs to consider
not only the trade-off between three components: (1) utility
(making accurate estimates with DP data), (2) privacy (prevent
the identification of personal data from individuals), and (3)
security (detecting false data injection attacks).

The adversary model in this paper does not seek to violate
privacy; rather, the adversary exploits privacy mechanisms that
are implemented in a system and weaponizes them to degrade
the utility of the system, while at the same time trying to evade
the anomaly detection algorithm that looks for maliciously
injected data.

Contributions. To the best of our knowledge, we are the first
to (1) formulate the problem of adversarial classification in a
system that uses DP to protect the privacy of its users, (2) find
optimal false-data-injection attacks that degrade the anomaly
detection capabilities of the system, while allowing the attacker
to remain undetected by “hiding” false data in DP noise, and
(3) design optimal attack-detection defenses to minimize the
impact of such attacks.

The rest of the paper is organized as follows: in section II
we give a brief motivation for our problem formulation the
adversary model. Our main contributions are then presented
in sections III and IV; in section III we prove theorems
showing how an attacker can leverage DP to design optimal
attacks against an anomaly detection model while remaining
stealthy; and in section IV, we show how we can design an
optimal defense against the sophisticated attacker introduced
in the previous section. In section V we extend our results
for time-series data. We then apply our theoretical results to
a transportation problem in section VI and to a power grid
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problem in section VII. Finally in section VIII, we discuss
related work, and in section IX we conclude the paper.

II. MOTIVATION AND PROBLEM STATEMENT

We begin with an intuitive overview illustrating how differ-
ential privacy can affect anomaly detection. Suppose we have
a central entity monitoring a sequence of real values (e.g.,
sensor readings from a device that measures the number of cars
passing on a given segment of a street), y(0), y(1), y(2), . . ..
Assume further that, under normal conditions, it will always
be the case that |y(k−1)−y(k)| ≤ c for some constant c, and
so a simple form of anomaly detection is to raise an alarm if
this condition is ever violated.

An attacker who is able to modify the data
y(0), y(1) . . . , y(N) sent to the monitor will be able to
bias those values and make them, say, artificially larger;
however, if the attacker wishes to remain undetected it
will be limited to biasing each value by at most c relative
to the previous value, and in particular can only achieve
y(N) ≤ y(0) + c ·N .

Now suppose that the sequence of values is protected using
a differentially private mechanism in which noise η(k) is added
to each value y(k) to obtain a perturbed value ȳ(k) that is then
sent to the monitor. Assume further that the parameters are
such that with 99% probability |ȳ(i) − ȳ(i + 1)| ≤ 1.1c, and
the anomaly-detection algorithm is modified to raise an alarm
only if this condition is violated. The attacker can leverage this
change in at least two ways. First, it can now bias the values
by a larger amount without being detected. Furthermore, the
anomaly-detection algorithm now has a nonzero false-positive
rate, and the attacker can try to exploit that as well, e.g., by
modifying data in a more extreme way that raises the alarm
but only a small percentage of the time.

We now provide a formal model for the scenario described
above.

A. Problem Statement

The type of systems that we consider in this work are
composed of four main elements: 1) a source of data N ,
2) an attack-detection algorithm D, 3) a differential privacy
mechanism M, and 4) an adversary A.

The randomized source of data N (i.e., nature) generates
a value y; we write this as y ← N . An adversary A that
can inject false data into the system (e.g., by hacking an IoT
sensor); we write this as ya ← A(y). To detect attacks, an
attack-detection algorithm D takes as input a value y and
outputs 1 to raise an alert if it views the data as suspicious, and
outputs 0 if it deems the value to be normal. The performance
of the classifier against a specific adversary A is usually
characterized by its false positive rate Pry←N [D(y) = 1]
and true positive rate Prya←A[D(ya) = 1].

We assume the attacker wishes to remain undetected (i.e.,
to output ya such that D(ya) = 0) while otherwise ensuring
that the injected data is as far as possible from the true data
(e.g., ya � y or ya � y).

Attack-detection algorithms are usually analyzed without
differential privacy, but as differential privacy becomes more

prevalent, we need to start studying its effect in adversarial
classification problems. We now assume that to protect the
privacy of the users, a differential privacy (DP) mechanism
M adds randomness to the values y and generates a new value
ȳ to guarantee (ε, δ)-differential privacy (δ can be zero)

ȳ ←M(y, (ε, δ)).

When the DP mechanism is introduced, the attacker A can
leverage the information about the additional structured noise
to inject false data into the system:

ȳa ← A(ȳ, y).

The false positive rate is then
P fa := Pr y←N ;ȳ←M(y)[D(ȳ) = 1],

and the probability of detection is
P d := Pr y←N ;ȳa←A(y,ȳ)[D(ȳa) = 1].

We want to design attack detection algorithms D with high
true positive rates and low false positive rates, even when faced
with a strategic attacker A trying to evade our classifier.

B. Adversary Model

We consider an attacker that gives false data to consumers
of a query that is expected to contain DP noise.

The adversary model for classical DP is one where the
attacker is a man-in-the-middle, as shown in Figure 1. This
adversary model represents an attacker that has hijacked the
secure connection between the database and the client, but has
not compromised either end point. For example the attacker
can present a fake certificate to the client to become a man-
in-the-middle between the database and the client, and the
attacker then replaces the query response (which is sent with
the added DP noise) with malicious values.

DP

 𝑑1
 𝑑2

 𝑑𝑛

Database

Query 
Response

Figure 1. The adversary can be a man-in-the-middle between the source of
DP data and the receiver, as illustrated above, or it can compromise one of
the sources of information as illustrated in Figure 2.

The adversary model for local DP considers an attacker
that has compromised a subset of the information sources (e.g.,
sensors) as illustrated in Figure 2. In this case the attacker has
either compromised a subset of the sensors delivering the data,
or in the case of crowdsourced data, the attacker could own a
subset of the devices sending false data [8].

We follow the conservative approach preferred in cryptog-
raphy where to test the security of the algorithms we develop,
we consider worst-case attackers. In particular, we give the
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Figure 2. An adversary can compromise a sensor and inject false data that
is hard to distinguish from a measurement with DP-noise.

attacker access to the raw data and the DP data to generate
the attack (ya ← A(ȳ, y)). This powerful adversary models
the case when the attacker compromises the data source of a
distributed DP mechanism, as the attacker can then see the
original data, and knows the noise that would be added to it.

In practice, not all attackers will be as powerful; however,
as we show later in the paper, our proposed attack-detection
algorithm will perform much better against weaker adversaries
that have less knowledge about the system—i.e., adversaries
without access to the raw data, DP parameters, or both, will
be detected more easily by our proposed defenses.

Notice also that our adversary model covers local and non-
local DP use-cases, as we are agnostic to the way in which
the adversary is able to modify the records of a database. In
the next section we will use a toy example with classical DP,
and in our time-series use-cases at the end of the paper, we
will use local DP.

Goal of the Attacker:

Recall that our attacker is not the classical curious attacker
from DP because in this paper we focus on the integrity of the
data protected by DP; instead, our adversary tries to leverage
DP noise to attack the utility of the system while bypassing
our security mechanism (attack-detection).

Our attacker has two main objectives:

U To maximize the damage to the system as much
as possible (by sending false data), and

S To remain undetected by evading our anomaly
detection system D.

To model the first objective, we point out that in most
cases, the attacker will want to deviate an estimate of a value.
For example, for a query to a database containing the average
height of a population, the attacker may want to increase (or
decrease) the reported average height as much as possible.
This type of attack has happened before, in the case of
users submitting false data to Waze [8] (attackers wanted the
application to show a heavy traffic jam in their neighborhood
so that no cars would be routed to their streets). Therefore the
objective function U should depend on how much deviation
the adversary can induce to the real (or differentially private)
value y.

To model the second objective of the attacker, we need
to incorporate the true positive rate; that is, the ability of the
anomaly detector to correctly detect the attack. The attacker
wants this probability to be zero or close to zero, so an intuitive
objective of the attacker is to minimize the probability of being
detected.

Therefore, the attacker has two objectives that are in
conflict with each other. To maximize the damage to the
system, the attacker needs to send the user of the system false
values as large (or small) as possible; however, these large
values would be detected immediately as anomalies by our
classifier. On the other hand, to minimize the probability of
detection, the attacker needs to send false data as close to the
real values as possible, but that perhaps would not create the
desired effect by the attacker in the first objective. As such,
the attacker needs to balance these two objectives in what is
usually called multi-criteria optimization.

To maximize a utility U while at the same time minimizing
a conflicting utility S, we only need to set one of these
objectives as a constraint, and then maximize (or minimize) the
other. The answer as to which objective we chose to maximize
and which one we use as a constraint can be exchanged and
we still get the same result thanks to the duality principle [23],
[24]. Therefore, without loss of generality we assume that the
attacker wants to maximize the damage to the system subject
to the following constraint about the stealthiness of the attack:

Definition 2.1: We say that an attack is stealthy if the
probability of raising an alarm when there is an ongoing attack
is close to (or perhaps even lower than) the probability of
raising an alarm during normal operations (i.e., a security
analyst notices no operational difference between the statis-
tical behavior of alarms under normal conditions and under
an attack). More precisely, we say the attack is stealthy if
P d − P fa ≤ ξ, for ξ > 0 the desired level of stealthiness.

Therefore, the adversary has to solve the following opti-
mization problem:

Problem 1: Adversary’s Goal
max
A

U(A,D)

s.t.

P d − P fa ≤ ξ. (1)

Goal of the Defender: We now show how to design better
attack-detection algorithms against a strategic attacker hiding
her attack in DP noise. We need to design D (and M) so that
1) differential privacy is maintained (for any attacker without
access to the raw data), 2) we have an upper bound on the
false positive rate, and 3) the attacker’s maximum achievable
payoff is as low as possible subject to the first two constraints.
In other words, the problem for the defender is the following:

Problem 2: Defender’s Goal
min
D

max
A

U(A,D)

s.t.

P d − P fa ≤ ξ. (2)

It is important to note that (to model realistic adversarial
conditions) this is a leader-follower game, where the defender
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has to make the first move (minimize the maximum damage
the attacker can do) and disclose the selected attack-detection
algorithm D∗ (which can be a randomized algorithm) and the
attacker then, given the fixed D∗, will find an optimal attack
strategy (maximize the payoff function with a fixed D∗).

The next sections show concrete examples of how to solve
these problems. In section III, we first show how optimal
attacks can be designed by solving Problem 1, and then
we show how a new resilient classifier can be designed in
section IV. In particular, in section IV, we show that our
solution to Problem 2 satisfies a saddle-point equilibrium
between the two players, and therefore, the optimal strategy
for the attacker is the same one that the defender anticipated
a priori.

III. OPTIMAL ATTACK

We are now ready to prove our main results; (1) in this
section we find an optimal attack, and (2) in Section IV we
an optimal defense against this attack, and any other attack
perpetrated by weaker adversaries.

Consider is a numerical database X = {x1, x2, . . . , xn}
that is used to generate a value Y that is made public (e.g.,
a trusted aggregator takes the information of the database

and publishes the sum Y =
n∑
j=1

xj). A differential privacy

mechanism M adds zero-mean random noise η ∈ Ω to the
query response Y to guarantee specific levels of privacy (ε,
or (ε, δ)) such that the new published information becomes
Ȳ = Y + η. Due to the noise, Ȳ follows a probability
distribution f0 with mean θ = Y .

A malicious adversary is able to intercept the published
information Ȳ and replace it with Y a, which follows a
probability distribution fa (as illustrated in Figure 1).

First Objective of the Attacker
As explained in the previous section, the attacker has two
goals: 1) find the probability distribution fa that maximizes
the damage to the system, and 2) remain undetected. For
the first goal, the impact of an attack is defined in terms
of the amount of bias an attacker can introduce into our
computations—this definition is typically used as a metric
of the impact of attacks in cyber-phyiscal systems [25],
[15], [26]. For this reason, we assume the attacker wants to
maximize (or minimize) the mean E[Y a] =

∫
r∈Ω

rfa(r)dr as
the difference between the mean of Y a and the mean of Y is
a measure of the damage to the system (i.e., how much can
the attacker deviate our computation). Therefore, the payoff
of the attacker is U(A,D) = E[Y a].

Second Objective of the Attacker
We assume the adversary knows the DP mechanism and the
probability distribution f0 of the data without attack. For
example, the attacker who managed to get the control of the
sensor, can observe the actual data generated by the sensor
and learn the statistical distribution of the data. To remain
undetected according to Definition 2.1, the attacker needs to
find a probability distribution fa that is close enough to f0

so that, no matter what statistical test the anomaly detection
performs to find attacks, the results under fa will be similar
to the results under f0. Stein’s lemma [27], [28] relates
the Kullback-Leibler divergence between two probability
distributions DKL(fa‖f0) to the Neyman-Pearson criterion
for the ability of a classifier to be able to correctly identify
data with low false alarms and a high true positive rate. As
the Kullback-Leibler divergence between the two distributions
decreases, the error rates (false alarms and missed detections)
increases.

Multi-Criteria Optimization So far we have identified two
optimization criteria for the attacker (1) maximize E[Y a] and
(2) minimize DKL(fa‖f0). Optimizing two competing objec-
tives falls within the theory of multi-criteria optimization. The
most popular way of solving these two competing objectives
is to select one objective as the utility to be maximized (or
minimized) and the second objective as the constraints of the
problem by selecting a fixed parameter γ for the constraint.
The solution parameterized by γ can then be used to find
the Pareto optimal curve between these competing objectives.
Therefore, the attacker’s strategy to maximize the chance of
remaining undetected while introducing a bias in the data can
be found by solving the following optimization problem:

Problem 1

max
fa

E[Y a]

s.t.

DKL(fa‖f0) ≤ γ
fa ∈ F (3)

where F corresponds to the set of all probability distributions,
and γ > 0 is a constant that indicates how tolerable the
adversary is to being detected (or the cost she is willing to
pay). For instance, a large γ implies that the adversary does
not care to be detected, and small γ will make the adversary
distribution hard to distinguish from f0.

Remark: Functional Optimization
Notice that the optimization problem in equation (3) is not a
typical problem with a numerical solution. Instead, in this case
the solution is a function (a probability density function) fa,
and the search space corresponds to all the possible probability
density functions that satisfy the constraints. Variational meth-
ods is one of the ways that can be used to attempt to solve
functional optimization problems [29].

We are now ready to present one of the main results of the
paper.

Theorem 3.1: For any probability distribution f0, the op-
timal strategy f∗a that solves the optimization problem in
equation (3) is given by

f∗a (y) =
f0(y)e

y
κ1∫

f0(r)e
r
κ1 dr

, (4)

where κ1 is the solution to DKL(f∗a‖f0) = γ.
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Proof: Maximizing the expected value is the same as minimiz-
ing the following equation

−E[Y a] = −
∫
r∈Ω

rfa(r)dr. (5)

This is the objective function we will use in the Lagrangian (we
will see why we changed the objective to a negative function
when we find the Lagrange multipliers).

We want to find the probability density that will maximize
Equation 5 Subject to the following two constraints: The first
constraint is that we want fa to be stealthy, that is, to follow as
close as possible the probability density function of the added
DP noise (we model this as being close to f0 in the Kullback-
Leibler sense)

DKL(fa‖f0) =

∫
r∈Ω

fa(r) ln

(
fa(r)

f0(r)

)
dr ≤ γ. (6)

The second constraint for the function fa is that it needs to be
a probability density function:∫

r∈Ω

fa(r)dr = 1. (7)

In variational methods, the trick is to find a function (or
matrix) by using a perturbation of the optimal function with a
parameter α; this trick allows us to optimize a function with a
fixed parameter, and that fixed parameter will help us find the
shape of the function. Therefore we define the small variation
of the optimal function as:

q(r, α) = f∗a (r) + αp(r). (8)

where the function we are looking for f∗a (r) has a small
perturbation with parameter α and an unknown function p(r).

By replacing fa with q(r, α) in the original optimization
problem, we can now optimize with respect to α. Because the
problem is a constrained optimization problem, we need to find
the Lagrangian, which is the objective function in equation (5)
and the constraints in equations (6) and (7) multiplied by a
Lagrange multiplier.

The Lagrangian of the objective function with fa(r) re-
placed with q(r, α) and the constraints is then

L(α) =

∫
r∈Ω

rq(r, α)dr + κ1

 ∫
r∈Ω

q(r, α) ln
q(r, α)

f0(r)
dr − γ

+

+ κ2

 ∫
r∈Ω

q(r, α)dr − 1

 ,

where κj is the jth Lagrange multiplier.

Next, we take the derivative of the Lagrangian with respect
to α and set α = 0 (the optimal point), for all possible p(r):

dL(α)

dα
|α=0 for all p(x)

leading to

−r + κ1 ln
f∗a
f0

+ κ2 = 0.

We can now solve the above optimality condition for f∗a in
terms of the Lagrange multipliers:

f∗a = f0e
r
κ1
−κ2κ1 .

We now need to find the values of the Lagrange multipliers,
and we do so by solving replacing the above solution in the
constraints of the problem. By forcing f∗a to be a probability
distribution, i.e.,

∫
r∈Ω

f∗a (r)dr = 1, we can solve for one of the

Lagrange multipliers (κ2) and we obtain equation (4), which
is the answer to our theorem.

In equation (4) we still have one Lagrange multiplier
(κ1) without a fixed value. Unfortunately we cannot get an
analytical solution for that remaining Lagrange multiplier, but
κ1 can be found numerically for a given f0, by solving in
terms of κ1 the following nonlinear equation

DKL(f∗a‖f0) = γ. (9)

�

As our first main result we found the optimal attack: given
a DP mechanism which creates a distribution on the data
with a probability density function f0, we can find the
optimal attack distribution by using equation (4) and
finding the Lagrange multiplier κ1 by solving numerically
equation (9).

In the following example we show how to find the optimal
attack for the Laplace DP mechanism. We will then show the
optimal attack for the Gaussian DP mechanism.

A. Example: DP with Laplace Mechanism

Figure 3 illustrates the setup for our problem. Suppose
a trusted aggregator takes information from a database and

publishes the sum
n∑
j=1

xj .

User ID Data
User 1 0.5
User 2 0.3
User 3 0.7
User 4 1

2.5 Diff.
Privacy

2.3

2.2

2.7
2.4

2.4

2.9

2.8
2.6

Database Query 
response

Possible 
private
response

Possible 
compromised
response

Aggregation

Figure 3. Example to illustrate our main results. The data generated by the
DP mechanism follows distribution f0 (e.g., Laplace mechanism), and the
data generated by the attacker follows distribution fa.

Let us assume that the privacy of the users of the system is
protected with a DP mechanism that uses a Laplace distribution
with mean zero and variance 2b2. Therefore the query response

with DP is Ȳ =
n∑
j=1

xj + L, where L is a random variable

with the Laplace distribution with zero mean and 2b2 variance.
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Let θ =
n∑
j=1

xj . Then, Ȳ is a random variable with Laplace

distribution:
f0(y) =

1

2b
e−|y−θ|/b (10)

with mean θ and variance 2b2 = σ2.

Now assume the attacker wants to maximize the bias
added to the query, but at the same time, in order to remain
undetected, she wants to add noise with a distribution close to
f0 in equation (10). Using our theorem, the attacker now only
needs to use equation (10) in equation (4), to get the following
attack distribution:

f∗a (y) =
κ2

1 − b2
2bκ2

1

e−
|y−θ|
b +

(y−θ)
κ1 (11)

where κ1 can be found by solving the following equation
2b2

κ2
1−b2

+ ln(1− b2

κ2
1
) = γ for κ1 > b.

Now that we found the optimal attack distribution against a
Laplace DP mechanism, we can also find the average amount
of bias introduced in the sampled data (the damage to the
utility of the data). We call this the “impact” of the optimal
attack, µ∗a = E[Y a], which is given by

µ∗a =
b2(θ − 2κ1)− θκ2

1

b2 − κ2
1

. (12)

Remark 3.1: Notice that, if γ = 0, then κ1 → ∞, such
that lim

κ1→∞
µa∗ = θ and f∗a = f0.

Figure 4 illustrates the optimal attack distribution f∗a for
different γ when the ε-differential privacy mechanism follows
a Laplace distribution with b = 2 and when the original query
response is Y = 2.5 (as in Figure 3).

-10 -5 0 5 10 15 20 25 30
DP Aggregation
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0.25
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 = 0
 = 0.1
 = 2

Figure 4. Example of f∗a with a Laplace differential privacy mechanism for
ε = 0.5 and b = 1

ε
. Notice that, for γ = 0, f∗a = f0. When γ > 0, f∗a is

not a Laplace distribution, which illustrates the value of our results.

Trade-off between Impact of the Attack and Privacy:
For a fixed γ, we can show the relationship between the

privacy loss ε that dictates the level of privacy, and the bias
introduced by the attacker µ∗a.

For the example described in Figure 3, let us assume that
b = 1

ε i.e., the sensitivity is 1. The trade-off between the impact
of the attack µ∗a = E[Y a] and the privacy loss ε is illustrated
in Figure 5. Clearly, more privacy (i.e., small ε) leads to more
noise, which results in a larger attack impact (i.e., it becomes
easier for an adversary to hide in the differential privacy noise).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Privacy loss (  )
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Figure 5. Trade-off between the impact of the attack µ∗a and the privacy loss
(ε) for different γ. Clearly, larger ε (lower privacy) leads to less noise, which
results in lower attack impact.

B. Use Case 2: Gaussian Mechanism

In the above example we assumed the DP mechanism
was Laplace. We now show how to obtain the optimal attack
distribution if the DP mechanism is Gaussian. Let us assume
a Gaussian distribution with mean θr and variance σ2

r of the
form

f0(r) =
1√

2πσr
e
− (r−θ)2

2σ2r

We can replace f0 with a Gaussian distribution in equation (4)
and then we need to solve for κ1 in equation (9).

In order to obtain κ1, we need
∫
f∗1 ln

f∗1
f0
≤ γ. Solving the

integral for all the domain of the normal distribution, we have
that κ2

1 =
σ2
r

2γ . This result shows that the solution to κ1 does not
need to be numerical all the time, in the case of the Gaussian
distribution we find this Lagrange multiplier analytically.

Replacing κ1 with the above result, we obtain the optimal
attack distribution:

f∗a (r) =
1√

2πσr
e
− (r−θr−

√
2γσr)

2

2σ2r . (13)

Clearly, the optimal attack f∗a that maximizes the impact of
the attack against a Gaussian DP mechanism is also described
by a Gaussian distribution with the same variance of the
residuals without the attack but with shifted expected value
µa∗ = θr +

√
2γσr.

IV. COUNTERMEASURE: DESIGNING AN OPTIMAL
DEFENSE

We have shown how to design optimal attacks that take
advantage of the differential privacy mechanism to hide ma-
licious data perturbations. Now, we assume that a defender
takes the differentially-private query response and analyzes it
in order to determine if there was an attack.

The defender’s goal is to decide whether a random vari-
able y belongs to hypothesis H0 (normal behavior) or H1

(anomalous behavior). This is a classification problem that
can be generally solved using a variety of machine learning
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methods. Machine learning is good whenever we do not know
a priori the exact distribution of data under a normal situation;
however, in the particular case of DP, we do know the exact
distribution of the data f0.

One of the most well-known results in hypothesis testing
is that if we know both the exact distribution f0 of the
values under H0 and the exact distribution of the data f1

under the alternative hypothesis H1, then the classifier that
finds the optimal trade-off curve (the ROC curve) between
the probability of a false alarm and the probability of a true
detection is the log-likelihood ratio test:

D(y) := Λ(y) = ln
f1(y)

f0(y)
,

where an alarm is triggered if Λ(y) > τ .

The big challenge of using the test above for adversarial
situations, is the fact that the attacker can tailor the attack so
that y follows an arbitrary distribution fa, but the defender
in general does not know that distribution, i.e., f1 6= fa,
because the defender acts first. To describe this defender-
attacker interaction, we can define a sequential game, where
the defender plays first and selects the detection D which
depends on f0 and f1 (where f1 is what the defender assumes
the attacker is going to use), and then the attacker chooses an
attack distribution fa which may or may not be equal to f1.

We define the pair (fa, f1) as a strategy of the game, where
the defender move is to assume f1 and the attacker’s move is to
select fa. We define the payoff U(fa,D) as the utility gained
by each player when playing the strategy (fa, f1). They payoff
in this case is the likelihood that D(y) will not raise an alarm.

Let Ea[Λ] denote the expected value of the log-likelihood
ratio test when the adversary chooses fa, where

Ea[Λ] =

∫
y∈Ω

fa(y)Λ(y)dy. (14)

Since the defender acts first, we assume the attacker knows
f1, and therefore can design an attack fa in such a way
that Ea[Λ] ≤ γ̃. In other words, a stealthy attacker wants to
guarantee that the expectation of the log-likelihood ratio test
remains below the threshold γ̃, which dictates the cost that
the adversary is willing to pay for not being detected. For
instance, if the adversary wants to decrease the possibility of
being detected, she can select γ̃ < τ .

Notice that when the defender chooses f∗a and the attacker
chooses the same distribution, then Ea[Λ] becomes the KL
divergence we studied in the last section.

The goal of the adversary is to maximize the payoff
U(fa,D) = E[Y a] while minimizing the probability of being
detected. The goal of the defender is to anticipate the worst-
possible probability distribution the attacker can select to
damage the system, and then try to minimize the negative
impact of this attack. In other words, the game-theoretic
problem we would like to solve is:

min
f1∈F

max
fa∈Fa

U(fa,D) (15)

where F is the set of all valid pdfs, and Fa ⊂ F is the set of
pdfs such that Ea[Λ] ≤ γ̃.

A. Solution of the min-max Problem

Solving a min-max problem is not easy and it typically
requires the use of numerical tools. However, in this paper, we
show a method to prove analytically that the max-min solution
is the same as the min-max solution.

In particular, to solve the min-max problem in (15), we
follow these steps:

1: Formulate a max-min problem assuming that the at-
tacker plays first, such that the detection strategy is
always f1 = fa.

2: Find the optimal solution f∗a .

3: Show that the solution of the max-min problem f∗a and
f1 = f∗a corresponds to a saddle point (also known as
a Nash equilibrium) and that it is also a solution of
the original min-max problem in equation (15).

Max-min Problem: For the first step we assume that the
attacker plays first, and then the defender selects the strategy
f1 = fa. In this case, Ea[Λ] = DKL(fa‖f0), such that the
max-min game is equivalent to Problem 1. Thus, the solution
of the max-min game f∗a = f∗1 corresponds to the solution of
Problem 1 in equation (4).

For the third step, we can prove that the solution in
equation (4) is also the solution of the min-max problem in
equation (15), by showing that it is a saddle point of the
function U , according to the following definition.

Definition 4.1: A pair (f∗a ,D∗) is called a saddle point of
the function U if

U(fa,D∗) ≤ U(f∗a ,D∗) ≤ U(f∗a ,D) (16)

The connection with our min-max problem in equation (15)
lies in the fact that the saddle point (f∗a ,D∗) also solves the
min-max problem [30].

We are now ready to prove the second main result of the
paper.

Theorem 4.1: Let D be the defender strategy with pdfs
f0 and f1. Suppose the adversary launches an attack with
distribution fa. The solution of Theorem 3.1, when f1 = fa,
corresponds to a saddle point (D∗, f∗a ) of U , such that the
defender or the attacker do not have any incentive to chose
anything other than f∗1 = f∗a = f∗.

Proof: The right-hand inequality in equation (16) is the result
of the optimality of the log-likelihood ratio if we know the
probability distributions of both classes.

In order to show that the left-hand inequality in (16) holds,
we can assume that the adversary selects any pdf fa = f2 ∈
Fa with mean µ2, and the defender chooses the solution of
Problem 1, f1 = f∗ according to (4) with mean µ∗. Therefore,
from (14) we have that the expected value of the log-likelihood
ratio test with respect to f2, E2[Λ∗(y)] is∫

f2(r) ln
f∗a (r)

f0(r)
dr =

∫
f2(r) ln

er/κ1∫
f0es/κ1ds

dr

=

∫
f2(r)r

κ1
dr − ln

∫
f0e

s/κ1ds

=
µ2

κ1
− ln

∫
f0e

s/κ1ds. (17)
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On the other hand, notice that if we had selected f∗a instead
of f2, the log-likelihood ratio test becomes∫

f∗a (r) ln
f∗a (r)

f0(r)
dr =

µ∗

κ1
− ln

∫
f0e

s/κ1ds = γ.

Therefore, this equation shows us how the parameter for
stealthiness γ is related to the mean value µ∗, which is what
we had maximized in the previous section. If we decide to be
stealthier, then the mean value must decrease and vice versa.
The Lagrangian κ1 will change signs depending on whether
we are maximizing our bias or minimizing it.

Summary of main contributions: The solution to problem 1,
which is a functional optimization problem with an analytic
solution, shows the optimal way for an attacker to imitate
the noise added by DP to remain as close as possible to the
statistical properties of DP, while adding the maximum amount
of deviation to the data. The solution to our defense shows that
the optimal way to detect this attack is to use a log-likelihood
ratio test with the DP noise as the distribution under normal
conditions, and the solution of problem 1 as the distribution
under attack conditions. The Saddle point equilibrium proof of
the solution of problem 2 shows that if the attacker deviates
from this strategy, its payoff will be smaller. That is if we
assume a weaker attacker (with less knowledge of the
system), then our countermeasure will work even better.

V. EXTENSION TO TIME SERIES SYSTEMS

Our previous results were specified for static databases;
however, our results can easily be extended to time-series
analysis when using a sequential anomaly detection strategy
and given a differential privacy mechanism. We are interested
in particular in anomaly detection algorithms used in cyber-
physical systems such as in transportation systems or the power
grid.

A. Differential Privacy for Time-Series

Let X = {x(0)>, . . . ,x(T − 1)>} for X ∈ RnT be a
sequence (which we will call state trajectory as it denotes the
“state” of a system or sensor) over a time window of size T
that we want to keep private.

Definition 5.1: Two vectors x(k) and x′(k) are adjacent
at a time instant k if there exists a j such that xj(k) 6= x′j(k)
and xi(k) = xi(k) for all i 6= j. In other words, the pair
x(k),x′(k) differ only in one element.
Two trajectories X,X′ are adjacent if the pair x(k),x′(k) is
adjacent for all time instants k = 0, 1, . . . , T − 1.

We can extend the standard differential privacy definition
for state trajectories during a window of time T as follows

Definition 5.2 ((ε, δ)-Differential Privacy [31]): A
randomized mechanism M : RnT × Ω → M preserves
(ε, δ)-differential privacy for the state trajectories of a
physical process if for all adjacent sequences X,X′ and for
all subsets of possible observations O ⊆M

Pr[M(X) ∈ O] ≤ eε Pr[M(X ′) ∈ O] + δ.

If δ = 0 we say the mechanism preserves ε-differential privacy.

Remark 5.1: If the privacy mechanism ensures (ε, δ)-DP
up to time T , then it also guarantees (ε, δ)-DP for all k ≤ T .

In particular, we are interested in mechanisms that add
a random noise ηi(k) ∈ Ω to sensor readings, so that
the differentially private sensor ȳi(k) = yi(k) + ηi(k). Let
Y = {y(0),y(1), . . . ,y(T − 1)} be the sequence of sensor
readings that depend on the state trajectories, i.e., for any set
of trajectories X , there is a sequence of sensor readings Y .
Similarly, we can define Y ′ as the readings obtained from an
adjacent trajectory X′. The global sensitivity for two adjacent
traces X,X′ is then

∆y,q = max
X,X′

‖Y − Y ′‖q (18)

where q indicates the `q-norm.

The composition properties of the sequence of states is in-
herent in the calculation of the Sensitivity by assuming that our
dataset is not given by the states x(k) at each time instant, but
by a sequences of states of size T, X . In other words, we have
an extended dataset formed by {x(0),x(1), . . . ,x(T − 1)}.
Therefore, any DP that guarantees privacy for this extended
dataset, also guarantees DP for any k < T . In this case, we
ensure that for the first T samples, (ε, δ) differential privacy is
guaranteed. For instance, if we calculate the 1-sensitivity for a
pair of adjacent states x(k),x(k)′ and compare it with the 1-
sensitivity of two adjacent sequences X,X′, we can observe
that the latter is T times larger, which leads to larger noise
that already takes into consideration the composition theorem.
However, selecting T is challenging because in most cases, it
implies that very large T induces large noises that may lead to
a significant deterioration of the system estimation and control.

Two common randomized mechanisms that guarantee
(ε, δ)-differential privacy are described in the following lem-
mas:

Lemma 5.1: Laplace Mechanism [32]: For a dataset X
and an output Y , a Laplace mechanism preserves (ε, 0)-
differential privacy if η(k) is drawn from a zero-mean Laplace
distribution with parameter bη ≥ ∆y,1/ε.

Lemma 5.2: Gaussian Mechanism[32]: For a dataset X
and an output Y , a Gaussian mechanism preserves (ε, δ)-
differential privacy if at each ηi(k) is drawn from a zero-mean
Gaussian distribution with ση,i ≥

√
2 ln(1.25/δ)∆y,2/ε.

We will first show what are the state-of-the-art algorithms
used for Bad Data Detection in cyber-physical systems, then
show how vulnerable they are to our attacks, and then show
the design of a new anomaly detection algorithm based in our
optimal defenses.

B. Vanilla Bad Data Detection (BDD) in Cyber-Physical Sys-
tems

Anomaly detection algorithms used in cyber-physical sys-
tems leverage temporal and geographical correlations between
sensors to validate what is expected (or physically possible)
with what is received from the sensors. These algorithms are
usually referred to as Bad Data Detection (BDD) algorithms.
The first step is usually to generate a prediction or estimation
of the sensor readings ŷ(k) and comparing it with the reading
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reported by the sensors y(k). If they are significantly different,
then the BDD algorithm raises an alarm.

We can define the residuals ri(k) generated from compar-
ing the differentially private sensor measurement ȳi(k) with a
prediction ŷi(k) as follows

ri(k) = ȳi(k)− ŷi(k). (19)

Because of the DP mechanism, ri(k) is a random variable with
mean θr,i and variance σ2

r,i.

There is a strong type of attacks that have been introduced
in [33], [34], whose aim to force each residual to follow a
specific random distribution fa,i. The attack is as follows:

ȳai (k) = ŷi(k) + ηai (k), (20)

where ηai (k) is the value the attacker controls, which is drawn
from a fa,i. Replacing (20) in (19), the residuals under attack
are given by

rai (k) = ȳai (k)− ŷi(k) = ηai (k), (21)

Then, classical BDD algorithms can be represented as
follows:

Di(ȳi) :=

{
1, if |ri(k)| > τ̄i
0, otherwise

, (22)

for all i = 1, . . . , p.

C. Optimal Defense: DP-BDD

We now adapt our results to the problem of sequen-
tial hypothesis testing. Our problem is to decide whether a
sequence of observations r = {r(1), r(2), . . .} belongs to
hypothesis H0 (normal behavior) or H1 (anomalous behavior).
From sequential decision theory, we know that the test that
minimizes the time to detection subject to fixed bounds on the
number of false alarms and missed detections is the sequential
probability ratio test [35]:

λ(k + 1) = λ(k) + Λ(k),

for λ(0) = 0, k ∈ Z+, and Λ(k) = ln f1(rk)
f0(rk) (where f0(·)

is the pdf of r under H0 and f1(·) the pdf of r under H1).
The detection algorithm then raises alerts after N iterations if
the anomaly detection tool is either above or below a given
threshold; otherwise it just keeps collecting data:

D =

{
1, if λ(N) > τU
0, if λ(N) < τL
undecided, if τL ≤ λ(k) ≤ τU , for k=0,1,. . .

Notice that this algorithm requires the defender to know
the distribution of the residuals subject to attack. However,
similar to our formulation for the static case, the defender
plays first and needs to anticipate the worst possible attack.
Meanwhile, the attacker also adapts its attack according to
the defender strategy. This interaction can be modeled as a
minmax game, similar to the one introduced in (15), where
f1 is the distribution of the residuals under attack assumed by
the defender and fa is the distribution of the residuals caused
by the adversary.

Wald’s identity [36] decouples the probability of detection
(P̃ d = Pr1[D = 1]) and false alarms (P̃ fa = Pr0[D = 1])

from the time it takes for the detector D to make a decision.
In other words, P̃ d and P̃ a are fixed parameters, and the only
thing the defender and attacker can modify for D is the time
the test remains undecided (i.e., the time λ(k) remains above
τL and below τU ) in the presence of an attack. Therefore, the
attacker will try to maximize the time D remains undecided to
remain stealthy for as long as possible while maximizing its
impact with respect to the expected deviation of the residuals
E[ra]. Using Wald’s identity, the expected value of this time
is given by:

Ea[N ] =
P̃ di τU + (1− P̃ di )τL∫

fa(r) ln f1(r)
f0(r)dx

. (23)

Therefore, the interaction between the attacker and the de-
fender can be described by the following minimax optimization
problem

min
f1∈F

max
fa∈Fa

U(fa,D) (24)

where F is the set of all valid pdfs, and Fa ⊂ F is the set of
pdfs such that Ea[N ] ≥ Td, for Td > 0 the minimum expected
time that the detection test remains undetected.

Theorem 5.1: Let us consider the optimal sequential de-
fense with fixed τL, τU chosen to guarantee desired proba-
bilities of detection and false alarms, P̃ d, P̃ fa. Let f0 be the
distribution of the residuals without attack. The solution of the
minimax problem in (24) when U(fa,D) = E[ra] is given by
(4) where κ1 is such that DKL(fa||f0) ≤ γ̃ and

γ̃ =
P̃ di τU + (1− P̃ di )τL

Td
.

Proof: Notice that if the attacker wants Ea[N ] to satisfy a
constraint (e.g. force the average time for D to make a decision
greater than some specific value), then, according to (23)), it
will be equivalent as forcing a constraint on the denominator
(as the numerator is a fixed value). Recall that the denominator
of (23) is the expectation of the log-likelihood test with respect
to fa,

Ea[Λ(r)] =

∫
f∗a ln

f1

f0(r)
dr. (25)

Therefore, the constraint Ea[N ] > Td can be rewritten as

Ea[Λ] ≤ P̃ di τU + (1− P̃ di )τL
Td

.

As a consequence the minimax problem in (24) is equiv-
alent to the minimax problem in (15), such that the
solution introduced in (4) is the one that maximizes the
impact of the attack while guaranteeing that the time the
sequential detector remains undecided is lower bounded
by Td. Clearly, since the solution is also a saddle point (as
proven in Section 4.1), the attacker and defender do not
have any incentive to select a different strategy. �

Remark 5.2: Notice that our previous results for the non-
time-series formulation still hold because the optimization
problems (for the attacker and for the defender) become the
same thanks to equation (23). The saddle point proof is also
the same one.

Remark 5.3: One of the main advantages of our saddle-
point result (as in the case of a static database considered in
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the previous section), is that, if the attacker is weaker (e.g.,
does not have all the knowledge necessary to launch optimal
attacks), then our optimal attack detection will perform even
better.

We now illustrate the practicality of our optimal attacks
and optimal defenses by implementing these solutions in a real-
world traffic estimation system, and a smart metering case.

VI. FIRST CASE STUDY: TRAFFIC DENSITY ESTIMATION

We look at the problem of traffic density estimation for a
variety of reasons, (1) location data is highly sensitive as it can
reveal a variety of personal habits [37], [38], (2) loop detector
data can be used to re-identify vehicles in roads [39], [40],
[41], and (3) differential privacy algorithms have already been
proposed for addressing privacy concerns in traffic density
estimation problem [42].

In Section VI-A, we illustrate how traffic density is esti-
mated by a transportation management center, in Section VI-B
we describe a previously proposed differential privacy mech-
anism for traffic density estimation, and we then finalize the
section studying our optimal attacks and optimal defenses.

A. Traffic Density Estimation Model

Transportation Management Centers (TMCs) use traffic
density–the number of vehicles per mile per lane–for a variety
of services, including intersection control (coordinating red
lights) [43], ramp metering (stop lights before allowing you to
enter a freeway) [44], and pricing in managed lanes (adjusting
the toll rate upward and downward based on congestion) [45].
The TMC processes and fuses measurements from sensors in
the road, with other operational and control data, and then it
releases traffic information that can be used by the media and
the public.

To estimate traffic density, TMCs use loop detector sensors.
A loop detector consists of an induction electromagnetic device
placed at a fixed location along a road segment that changes
its current when a vehicle passes by. The information from
inductive loops is collected in the traffic control cabinet, which
transmits the data to the TMC. To leverage loop detector
measurements, a road is usually divided in cells. A cell i is
characterized by its length Li, and its number of lanes li. This
setup is illustrated in Figure 6.

For each cell i and lane j, a loop detector provides two
main measurements (at periodic time intervals T ) [46]: 1) flow
estimate yφ,i(k) of each cell, based on the vehicle count cji (k),
i.e., the number of vehicles that crossed the sensor during the
last T seconds at each lane j, and 2) occupancy oji (k), which
is the fraction of the time interval during which the cross-
section is occupied by a vehicle. In particular, the flow estimate
(vehicles per hour per lane) is computed as follows:

yφ,i(k) =
1

liT
∑li

j=1
cij(k). (26)

Besides from the loop detector measurements, sections of the
road are characterized using historical data in order to fit a
fundamental diagram, which is a state-of-the-art procedure
that helps to relate the traffic flow with the traffic density,
depending on the conditions of the road, i.e., if the road is

Cabinet

TMC

F out
i (k)F in

i (k)

Li+1

Cell i− 1 Cell i Cell i+ 1

li−1 = 3
Loop
detector

Figure 6. A road is divided into I cells, each one of length Li and number
of lanes li. The information from loop detectors is collected in the cabinet,
and transmitted to the TMC.

congested or in freeflow mode (see [47] for the details about
the fundamental diagram). The notation used in this section is
summarized in Table I.

Given the loop detector measurements and the fundamental
diagram parameters, traffic density estimation is computed by
the steps shown in Figure 7. Notice that the loop detectors
information is sent to the TMC, which first computes a raw
density value y, and then sanitizes it through a density estimate,
as follows.

Table I. NOTATION OF THE TRAFFIC DENSITY ESTIMATION

Symbol Description
li Number of lanes

yi, ŷi Traffic density / density estimation.
yφ,i Traffic flow approximation
mi Mode estimation (F or C)
Li Length of the cell.
cij Vehicle count of lane j in cell i.
oij Vehicle occupancy of lane j in cell i.
T Loop detector sampling period

w, vf , q
max, ρC , ρJ Fundamental diagram parameters

Users
Trajectories

Sensors
(loop

detectors)

Meas.
Computation

Density 
Estimation

𝑜
𝜂

𝑋
TMC

Figure 7. General description of the traffic estimation process with the
differential privacy mechanism. o is the occupancy and ȳφ is the differentially
private flow reading that is sent to the TMC. An adversary can falsify that
information.

Mode estimate m: Highways can have two modes of
operation: freeflow or congested. The characterization of these
modes is given by the fundamental diagram of the lane, which
is a triangular-shaped diagram that relates traffic density to
traffic flow given the mode of operation—freeflow represents
the part of the graph where the flow increases as the density in-
creases, and congestion represents the part of the graph where
the actual flow of cars decreases when the car density increases
[47]. The loop detector can help us decide in which interval
we currently are. Let mi(k) ∈ {C,F} be the current traffic
mode in cell i where C = congested and F = freeflow.
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If the sensed occupancy value oij produced by the sensor is
larger than a predefined threshold, then the cell is assumed to
be in congested mode (i.e., mi(k) = C), and if the sensed
value is lower than the threshold then the cell is assumed to
be in freeflow mode (i.e., mi(k) = C).

Density measurement computation y: Given the esti-
mated mode m, we know in which part of the fundamental
diagram we are, and we can then use the approximated flow
yφ to compute a traffic density measurement:

yi(k) =

{
yφ,i(k)
vf,i

, if mi(k) = F

ρJ − yφ,i(k)
wi

, if mi(k) = C
(27)

Predicted density estimate ŷ: Raw sensor data is generally
noisy and sensitive to measurement errors. Similar to how
power systems use state estimation to reconcile Kirchhoff’s
current and voltage physical laws with the sensed data re-
ceived [48] (and to eliminate bad data), traffic algorithms
also use state estimation to reconcile traffic flow equations
(modeling the expected physical behavior of vehicles in a
highway) with the values computed from raw measurements.
The foundation of traffic flow models are the hydrodynamic
flow-density equations describing the conservation of vehicles
in the road, and they basically describe the notion that the
traffic flow yi(k + 1) in a cell i, is equal to the current traffic
flow yi(k) plus the flow of cars into the cell F ini and minus
the flow of cars out of the cell F outi (normalized by some
parameters). The discrete-time version of these equations is
called the Cell Transmission Model (CTM) [49]:

ŷi(k + 1) =ŷi(k) +
T
li

(
li−1

li
F ini (k)− F outi (k)

)
+Qi(yi(k)− ŷi(k)) (28)

where Qi ∈ R is the estimator gain (e.g., from a Kalman filter).

Notice how the estimator takes advantage of the traffic
dynamics to obtain a sanitized density estimation while min-
imizing the distance between the raw estimate yi(k) and the
sanitized estimate ŷi(k). For example, if yi(k) is greater than
ŷi(k), the term Qi(yi(k)−ŷi(k)) will cause our future estimate
ŷi(k + 1) to increase. One particular property of this kind of
estimators is that, for a proper selection of Qi, the estimator
acts as a filter. In our case, since yi(k) is noisy, the estimator
provides smooth and accurate density values. Details about the
hydro-dynamic model can be found in [47].

B. Differential Privacy for Traffic Density

We now focus on a differentially-private estimator for
traffic density [42]. We begin by considering the discrete-
time trajectories of users (vehicles), where each element of
the trajectory at the kth instant xl(k) for each user l, can
be considered as a position in the road or GPS coordinates.
For n vehicles, x(k) = [x1(k), . . . , xn(k)]> is the vector
of states and the dataset consists of set of trajectories X =
{x(0)>, x(1)>, . . .}.

Now, let us consider the flow approximation from raw
sensor data yφ,i(k) for i = 1, . . . ,M based on the count
information provided by the loop detectors described in (26).
The output vector is then yφ(k) = [yφ,1, . . . , yφM ]>. The
count of vehicles at each loop detector can be considered as the
response of a count query, where the dataset is the location X

and the query output is Yφ = {yφ(1), yφ,2(2), . . .}. According
to Definition 5.1, two sets X,X′ are adjacent if they only
differ by at most a single trace. Therefore, based on (18), the
sensitivity is described by

∆φ,p = max
Adj{X,X′}

‖Yφ − Y ′
φ‖p

Previous work [42] have proposed the use of a Gaussian
mechanism, and they obtained the 2-norm sensitivity given
by:

∆φ,2 = ‖Yφ − Y ′
φ‖2 ≤

√
2

T

√∑M

i=1

1

l2i
. (29)

On the other hand, for a Laplace mechanism, it is easy to
verify that the sensitivity is given by

∆φ,1 = ‖Yφ − Yφ′‖1 ≤
2

T
∑M

i=1

1

li
.

Notice that in this particular case, the sensitivity is in-
dependent of T because each vehicle only affects a sensor
for a single time instant (because the road does not have
loops), such that there is no need for composition and we
can consider T →∞. Recall that the sensitivity is calculated
as ∆φ,2 = ‖Yφ − Y ′φ‖2. Then,

‖Yφ − Y ′φ‖22 =
T∑
k=0

p∑
i=1

|yφ,i(k)− yφ,i(k)′|2

where p is the number of sensors. Now, for each sensor i we
have that

T−1∑
k=0

|yφ,i(k)− yφ,i(k)′|2 =
1

T 2l2i

T−1∑
k=0

∣∣∣∣∣∣
li∑
j=1

(cij(k)− cij(k)′)

∣∣∣∣∣∣
2

An adjacent trace can affect sensor i in only two scenarios: at
a different time than the original trace (i.e., the adjacent trace
considers a vehicle that crosses the sensor at a different time)
and/or by passing through a different lane. Notice that once
a vehicle goes through sensor i, it would never affect future
counts of the same sensor. For this reason, even if T →∞,∑T−1

k=0
|yφ,i(k)− yφ,i(k)′|2 ≤ 2

T 2l2i
.

The reasoning is the same for all p sensors, such that

‖Yφ − Y ′φ‖2 ≤
√
2

T

√√√√ p∑
i=1

1

l2i

Therefore, the sensitivity is independent of T .

The objective of the differential privacy mechanism is
to preserve privacy of the vehicle traces by adding a zero-
mean random noise ηi to each flow measurement according to
Lemmas 5.2 or 5.1. Thus, ȳφ,i(k) = yφ,i(k) + ηi(k) for each
instant k and the new traffic density measurement becomes

ȳi(k) =

{
yφ,i(k)+ηi(k)

vf,i
, if mi(k) = F

ρJ − yφ,i(k)+ηi(k)
wi

, if mi(k) = C
.

The goal is to keep the count of cars during all the time in all
loop detectors indistinguishable from any adjacent count.
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Remark 6.1: Since ȳ preserves (ε, δ)-differential privacy,
the estimation ŷ also guarantees the same level of privacy
due to the post processing property of differential privacy
mechanisms, according to [32].

C. Optimal Stealthy Attack

Recall that the residuals are defined as ri(k) = ȳi(k) −
ŷi(k). Using historical data, it is possible to obtain an empirical
cumulative function of the residuals [50].

Note that without attack, ri(k) includes two sources of
noise or uncertainty, one caused by the variable vehicle count
and the change of mode, and one from the differential privacy
mechanism. Therefore, let σr,i, θr,i be the standard deviation
of and mean ri(k) in normal conditions, respectively, that can
be obtained by analyzing historical data.

For this problem, since the objective of the TMC is to
obtain an accurate estimation of the traffic density, we define
the payoff U as the deviation of the density estimation ŷ from
a specific operational or desired state yref during the entire
duration of the attack, i.e., from an attack starting at k = ka
and finishing at k = kf .

U =
1

|Va|(kf − ka)

√√√√ kf+1∑
k=ka+1

∑
i∈Va

(E[(ŷi(k)− yrefi )]2 (30)

An adversary with enough historical data about ŷref (k) can
design an attack that solves Problems 1 or 2.

From our formulation in Section V, we can define the
stealthy attack adapted from (20) as follows

yaφ,i(k) =

{
vf,i(ŷi(k) + ηai (k)), if mi(k) = F

ρJwi − wi(ŷi(k) + ηai (k)), if mi(k) = C
, (31)

where ηai (k) is the attacker’s random variable with µai =
E[ηai ]. Replacing the attack in (31) into (27) leads to yai (k) =
ŷi(k) + ηai (k).

Applying the results introduced in Sections III and V,
the adversary can design ηai (k) that maximizes her payoff
while remaining stealthy for our optimal sequential defense
strategy DP-BDD. We will compare our propose defense with
the typical bad data detection (BDD) algorithm as well.

D. Experiments

We use the loop detectors data available from the Mobile
Century experiment database [51]. This data consists of counts
and occupancy measurements from single loop detectors for
each lane of the freeway I-880 CA in California from post-
mile1 16.5 to 27.7. 27 loop detectors (M=27) are located as
illustrated in Figure 8, and their information is transmitted to
the TMC with a sampling period of T = 30 seconds. The
fundamental diagrams of each section are the same, and have
the following parameters: vf = 65 mph, w = 11.6 mph, ρJ =
193 vehicles/mile/lane, ρC = 30 vehicles/mile/lane. In
particular, between Tennyson Rd. and CA92 (i.e., postmile 26
to 27), the northbound (NB) direction presents a recurrent and
severe bottleneck during the afternoon. Besides, on the day

1Postmile refers to a location marker in miles, used by the California
Department of Transportation

Figure 8. Stretch of the I-880 freeway used for the Mobile Century
Experiment. Red circles indicate the location of loop detectors. The road is
divided to 27 cells of non-uniform length (i.e., M = 27).

of the experiment, there was an accident during the morning,
which caused a non-recurrent bottleneck at the same location.

We design and launch stealthy attacks with and without the
differential privacy mechanism. The objective of the adversary
is to disrupt the density estimate when the traffic is in freeflow
condition by alerting operators of a fake congestion when in
reality there is none.

1) Attacks Against a System Without DP: We initially focus
our attention on the segment between postmiles 17.5 to 23.5
(loop detectors 1 to 15), which are not affected by the accident
(we later consider the accident).

We select the threshold τi such that the residuals of the
anomaly detector maintains a probability of false alarms lower
than P fai = 2% for all i.

We assume the attacker compromises all measurements in
the segment (15 loop detectors out of 27). Because the attacker
knows the threshold τi and the model estimation parameters,
she is able to design an attack according to Section VI-C.

First, let us consider the case without differential privacy.
Using historical data, we estimate the standard deviation σr,i
of the residuals without attack in freeflow conditions. We then
design an optimal stealthy attack by adding Normal noise with
σr,i. Figure 9 illustrates the effects of the attack in the density
map. The attack causes an increment on the estimated density,
and in particular, the attacker can add 2.37 veh/mile/lane
per cell, and per unit of time.

2) Attacks Against a System Using DP: Now let us study
a particular case where a differential privacy mechanism is
included. We consider a Gaussian mechanism with parameters
ε = 0.4, δ = 3.5 × 10−5. Notice that with these parameters
(e.g., large δ value), the level of privacy provided by DP
is minimal, and yet, as we show, this gives an attacker a
significant ability to manipulate the system. The sensitivity
obtained according to (29) is ∆φ,2 = 196, so the mechanism
adds a zero-mean Gaussian noise with ση,i = 1406. Adding
differential privacy affects the density maps by making them
more noisy, as illustrated in Figure 10 (Top). However, for
the selected DP mechanism, the map still provides a good
estimation of the state of the freeway. When an optimal stealthy
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Figure 9. Density map without differential privacy mechanism between
postmiles 17.5 to 23.5 from 10 AM to 6 PM. At 2:30 PM the effect of
the recurrent bottleneck can be observed (Top). A stealthy attack is deployed
from 11:50 AM to 1:50 PM for P fa = 2% and ξ = 1% (bottom).

attack is launched, however, it causes a large increase in the
estimated density during the time of the attack (Figure 10
bottom) with an impact of S = 38.3 veh/mile/lane. This in
return causes TMC to observe a fake traffic jam. However, for

Figure 10. Density map between postmiles 17.5 to 23.5 with (0.4, 3.5 ×
10−5)-Differential private mechanism. The map under normal conditions
(Top) and when a stealthy attack is deployed in 15 sensors from 11:50 AM
to 1:50 PM (bottom) when BDD is present. The attacks is designed for
P fa = 2% and ξ = 1%

the same level of privacy, it is possible to decrease the impact
of the attack by using the DP-BDD detection mechanism, as
depicted in Figure 11. Even though the adversary is still able
to deviate the normal estimation, the deviation is not as large

as with the BDD.

Figure 11. Density map between postmiles 17.5 to 23.5 with (0.4, 3.5 ×
10−5)-Differential private mechanism. The stealthy attack is deployed in 15
sensors from 11:50 AM to 1:50 PM when DP-BDD is implemented. The
attacks is designed for P fa = 2% and ξ = 1%

Figure 12 illustrates the traffic density estimation in sensor
11 for both cases, with and without DP. Note that when the
attack is launched at 11:50 AM, the traffic density estimation
increases, as desired by the adversary. Without DP the rate of
increase is relatively low, and it does not reach congestion.
The optimal stealthy attack against a system that uses DP and
BDD has a considerable effect, causing the illusion of a traffic
jam in less than an hour. On the other hand, when the detection
strategy uses DP-BDD, the rate of increase is lower than with
BDD with the same level of DP, causing the illusion of slight
traffic congestion, but not a traffic jam. Figure 13 show the
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Figure 12. Density estimation in sensor 11 for the cases with and without
the (0.4, 3.5x10−5)-Differential private mechanism. The optimal attacks are
designed in both cases with P fa = 2% and ξ = 1%. Clearly, including DP
allows an adversary to launch worse stealthy attacks; however using DP-BDD
limits considerably the impact of the attack.

anomaly detection statistics (and thresholds) with and without
attack for both detection strategies, BDD and DP-BDD. Notice
that the anomaly detection statistics without attack and with
attack look very similar in both cases (even though they cause
significant deviations to our traffic flow estimates). This is the
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behavior we were expecting given the constraints we added to
our optimization problems.
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Figure 13. Distance measure of the BDD (left) and DP-BDD (right) in sensor
11 for the case without attack and with the optimal attack for P fa = 2%
and ξ = 1%, and a (0.4, 3.5x10−5)-Differential private mechanism. The red
dashed lines indicate the decision thresholds.

Now we want to analyze the trade-off between security
and privacy for the two detection mechanisms proposed above.
We assume that the objective of the adversary is to maintain
the probability of being detected bounded by ξ = 1%, while
attacking a subset of 15 loop detectors for 2 hours. At the same
time, an (ε, δ)-differential privacy mechanism is implemented,
which preserves a desired level of privacy.

First, for a specific level of privacy, the detection mecha-
nism selects proper thresholds that satisfy the desired probabil-
ity of false alarms. Based on the selected threshold, we are able
to calculate optimal false-data injection attacks that maximize
the impact on the system while preserving the statistical
properties that make the attack stealthy. Using the Mobile
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Figure 14. Maximum impact achieved by the optimal attack for several dif-
ferential privacy mechanisms with BDD (left) and DP-BDD (right). Increasing
ε or δ (i.e., decreasing the level of privacy ) reduces the impact an adversary
can cause because the added noise is reduced.

Century experiment data, we launch several optimal attacks
for different levels of privacy for both detection strategies,
and we compute the maximum impact it causes in the traffic
density estimation, as illustrated in Figure 14. As expected,
higher levels of privacy allow the attacker to launch more and
more damaging attacks; however, according to Figure 14, the
maximum impact the attacker can cause when we use the DP-
BDD solution is significantly lower when compared with the
impact the attacker can launch against BDD algorithms.

Our trade-off results can be used by the TMC to select
an appropriate differential privacy mechanism that offers good
privacy properties and low attack impact depending on the
anomaly detection strategy implemented. From Figure 14, for
each δ, there exists a Pareto optimal solution that maximizes
both, privacy and security. For instance, assume we fix δ = 0,

(i.e., the Laplace mechanism); in this case ε = 0.4, has 18% in-
crease in privacy when compared to ε = 0.1 (i.e., e0.1 = 1.102
and e0.2 = 1.284); however, it reduces the maximum impact by
approximately 75%. Therefore, by reducing the given privacy
protections, we can significantly reduce the negative impact of
the adversary.

On the other hand, the selection of δ is strongly related
to the number of sensors (size of the query output). For the
Laplace mechanism, increasing the size of the query results
in adding large amounts of noise, such that the quality of
each answer deteriorates with the sum of the sensitivities of
the queries (i.e., ∆φ,2 increases considerably with the number
of sensors) [31]. This can be mitigated to some extent using
Gaussian noise instead of Laplacian. As a result, less noise is
needed and the room for injecting false information is reduced.
In our case, since our query output is of size M = 27, Gaussian
mechanisms with δ 6= 0 are perhaps a more adequate choice.
As illustrated, in Figure 14, increasing δ minimizes drastically
the damage caused by the adversary. Therefore, our analysis
also facilitates the selection of an adequate δ that preserves a
certain level of privacy while minimizing the attack impact.

VII. SECOND CASE STUDY: REAL-TIME PRICING FOR
THE SMART GRID

To show the generality of our results, we now briefly
outline how to apply them to a different problem.

The model considers an electricity market with n con-
sumers of electricity, a set of suppliers of electricity, and a
third party entity—a demand response operator—with the goal
of matching supply and demand by setting the retail market
price for electricity.

The general assumption is that the ISO determines, at each
time instant k ∈ N+, a clearing price u(k) valid for the period
of time [k·T, (k+1)·T ] (this is called an ex-ante market) every
T hours (e.g., T = 0.5h) and announces it to the suppliers and
consumers.

The electricity demand of each user is characterized by
two components: a baseline electricity consumption bc,i(k)
that captures the electricity consumption that is independent
of the pricing mechanism (i.e., the necessary power to satisfy
the main consumer needs at each instant k such as refrigerator,
cooking devices, light bulbs), and a price-responsive demand
wi(u(k)), which captures the amount of electricity consump-
tion that can be controlled by the pricing signal u(k). For
instance, doing laundry when the price is low, or turning off
the lights of rooms that are not being used.

The demand of consumer i at each time instant k is
xci (k) = wi(u(k)) + bi(k), for xci (k) ∈ [0, xcmax kW ]. The
total power consumed can be defined as the aggregated demand
xcT (k) =

∑n
i=1 x

c
i (k) = w(u(k)) + bT (k).

Similarly, for the supply of electricity, Tan et al. [52],
propose a linear regression between supply and cost, a model
they validated from the Australian Energy Market Operator and
the electricity market in California. Under these assumptions
the total supply of electricity can be modeled by the following
equation:

xsT (λ(k)) = au(k) + f, (32)
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where a and f are parameters estimated by the historical
market data from the area of study.

The control objective of the ISO is to send price signals
u(k) to the users to keep the error between supply and demand
of electric power E(k) = xcT (k) − xsT (k) close to zero for
every time instant k in order to guarantee a stable operation
of the grid (if the mismatch is too large, it will cause frequency
deviations which can damage equipment and trip relays).

This can be seen as a control problem in which the system
to be controlled is the outcome of a market, the control variable
is the price signal u(k) and measured variable is the error
between supply and demand ymE (k) = xcT (k)− xsT (k).

The price signal u(k) must be carefully designed because
a direct feedback of the wholesale prices to the users might
cause oscillations or even instability [52], [53].

Tan et al. [52] propose the following price-setting algo-
rithm:

u(k) = u(k − 1)−KymE (k − 1), (33)

where K is the control parameter selected in such a way that
the overall feedback system remains stable (i.e., the supply-
demand mismatch remains bounded).

A. Differential Privacy for RTP

Smart meters allow the utility provider to monitor con-
sumption in order to update prices or adjust electricity gen-
eration. However, due to the accuracy and granularity of the
data, it could be possible for a curious party to infer behavior
profiles for each consumer. For example, in the field of non-
intrusive load monitoring, it is possible to extract information
about the type of appliance that is being used [54], [55]. We
consider the differential privacy mechanism proposed by Ács
and Castellucia [56], where each smart meter adds noise from
Gamma distributions, such that the aggregation results in a
Laplace noise η(k), such that ȳmE = ymE + η(k).

Two set of adjacent traces differ only in the consumption
of one user. Since the power consumption of each individual
is bounded by xcmax and since there is only one query, the
sensitivity is then ∆1 = |Txcmax| . Therefore, the Laplace
noise has mean zero and parameter bη = ∆1/ε = Txcmax/ε.

B. Attack Detection

We assume that an adversary can modify the data from
a subset of smart meters or tamper directly with the infor-
mation disclosed to the control center. An anomaly detection
mechanism can take the measurement with DP mechanism
ȳmE (k) = ymE + η(k) and compare it with a prediction ŷE(k).
For our experiments, we use the same CEO model from [52],
but to predict the expected behavior (so our expected measure-
ment is different from the real value), we assume a linearized
model of the form w(k) = βu(k) +w0, where β is a constant
selected such that the model fits the price-responsive demand.
The predicted error is obtained by the use of a classic Kalman
filter [57], with the linear models of the total supply in (32)
and the consumption as follows:

ŷE(k+ 1) = (a−β)u(k) +Q(ȳmE (k)− ŷE(k)) + f −w0− bT .

Q is the Kalman filter gain that minimizes the estimation error.
The residuals are r(k) = ȳmE (k)− ŷE(k).

Therefore in this case-study we need to find the worst type
of attacks based on the results in Sections III and IV.

C. Experiments

We use a distribution feeder specification [58], which
covers a moderately populated urban area composed by 1405
households. For our experiments with real-time pricing and its
control, we use the same parameters from Tan et al. [52].

The detection threshold τ is selected such that P fa = 0.05.
The attacker launches an attack after 8 days of simulation, and
we evaluate it for different levels of privacy.

Figure 15 shows the performance of the system (ideally the
mismatch between supply and demand should be zero) when it
is subject to worst-possible attacks (fake price signal) against a
system that does not use differential privacy but uses BDD for
anomaly detection (in black) a system that uses differential
privacy (with differential privacy for ε = 0.1) and a BDD
anomaly detection (in red) and a system that uses differential
privacy and the proposed DP-BDD for attack-detection.

Note that when there is no DP noise, the maximum attack
that an adversary can launch has little effect on the system;
however, due to the addition of noise, an adversary has enough
room to launch a stealthy attack that causes a significant
deviation. The impact of the attack with the DP-BDD is overall
smaller.

Figure 16 illustrates the impact in expectation for the
proposed stealthy attack. For each ε, we launch the optimal
stealthy attack against BDD and the DP-BDD. Note that there
is a trade-off between privacy and impact. Increasing privacy
(low ε) allows the attacker to inject larger stealthy attacks, and
as a result, produce larger deviations from the desired state.
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Figure 15. Supply-demand mismatch with and without Differential Privacy
for a stealthy attack launched starting day 8.

VIII. RELATED WORK

The main contribution of our paper when compared to
previous work on (1) adversarial classification (which studies
security vs. utility) and on (2) differential privacy (which
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studies privacy vs. utility), is to start the discussion of the trade-
offs between security and privacy, as illustrated in Figure 17.
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Figure 17. The literature on adversarial classification focuses on the Security
vs. Utility trade-off and the literature on DP focuses on the Utility and Privacy
trade-off. Some systems will need to provide both; attack detection algorithms,
and DP, and we need to identify the trade-offs between security, privacy and
utility, this paper is the first step in this direction.

The closest work to our own is the use of DP as a defense
for adversarial machine learning [59]—instead of using DP
as a way to attack a system (like we do in this paper), they
use DP as a way to defend it. Their proposal falls into the
topic of robustness evaluation of machine learning classifiers to
adversarial attacks [60], which focus on finding the minimum
accuracy a machine learning classifier can have when they
have been exposed to adversarial training examples. The goal
of robustness evaluation is to achieve prediction robustness,
which means that adversarial examples cannot change the
expected prediction of the classifier.

Most of the literature on robustness evaluation focuses
on heuristics, and provable robustness approaches have seen
limited progress. Lecuyer et al. [59] proposed a provable robust
method by using DP at prediction time. The key idea is that
adversarial examples consist of small inputs that can change
the output significantly, and the solution is to make prediction
models DP. In particular, their framework is called randomized
smoothing (by [61]), which inherits theoretical results from the
differential privacy community, allowing them to evaluate the
level of accuracy under attack of their method. Follow up work

to Lecuyer et al. include [62] and [61].

In contrast to using DP as a defense mechanism, in this
paper we look at the converse problem; i.e., how DP can be
exploited by attackers to improve their attacks, and how to
design a classifier that minimizes the impact of these new DP-
enhanced attacks.

In addition to work on adversarial machine learning, our
work is related to the literature studying the security of Cyber-
Physical Systems (CPS) against integrity attacks (also known
as false data injection attacks). These attacks happen when
sensors are not trusted or they can be compromised by an
attacker, so traditional message authentication codes cannot
prevent false data injected by an attacker. For example, attacks
to traffic estimation in transportation networks have been
studied before [7], [5], [6], where false information is used
to modify the state estimation of traffic conditions. Similarly,
attacks in the power industry have also received significant
attention [14], [52]. The transportation community has also
developed algorithms to detect failures of loop detector sensors
in highways [63].

Work in Bad Data Detection (BDD) [14], [63], [15], [16],
[17] has focused on identifying these false data injection
attacks. The typical trade-off considered by the literature on
BDD is one between the safe operation of the system (utility)
and one of security. For example a fully secure system can
be easily designed by raising an alert at every instance (this
way we are guaranteed to have a 100% true detection rate).
However this system will also generate several false alarms,
and therefore (a system that detects even the most subtle
attacks) can have a negative impact on the performance and
safety of the system (when the system is not under attack).
As far as we are aware, none of these papers has considered
how to detect sensor failures (or false-data injection attacks)
in systems that use differential privacy.

Another related line of work to our own results is the focus
on privacy for CPS. For example, privacy has been considered
before in transportation network applications [64], [65], and
location privacy [38]. Differential Privacy in particular has
been applied to a variety of location and traffic estimation
problems [66], [67], [42], [68]. Privacy in the smart grid has
also received significant attention [55]. None of these papers
has considered how to develop BDD algorithms in systems
with DP, or how to develop attack-resilient BDD algorithms
against adaptive adversaries that exploit DP to hide their
attacks.

Our motivation for formulating the problem of adversarial
classification as a least-favorable probability distribution in a
functional space comes from our previous work in the study
of MAC-layer misbehavior in Wi-Fi networks [13], where we
identified the optimal attack distribution to obtain unfair access
to the transmission medium, while minimizing the deviation
from the probability distribution of the Wi-Fi standard.

As far as we are aware we are the first to (1) consider
the problem of bad data detection in a system protected by
differential privacy, (2) formulate optimal bad data injection
attacks tailored to maximize the dissemination of false infor-
mation while remaining undetected, and (3) formulate optimal
attack-detection defenses to minimize the negative impact of
this attacker.
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IX. CONCLUSIONS

We study of how attackers can affect the utility and
integrity of a system by leveraging DP noise. While research
in DP considers a curious adversary, our new attacker is not
interested in the privacy of the data, instead, it takes advantage
of the fact that DP adds noise and then strategically uses this
noise to hide false data that affects the utility of the system.

We showed how attacks for systems providing DP have a
negative impact that is orders of magnitude higher than attacks
against systems without DP. We then proposed a better detec-
tion strategy based on solving a game-theory problem in the
functional space of all possible distributions. Our experiments
show the value of our defenses by comparing our DP-BDD
solution to state of the art BDD tools currently used in practice
for traffic estimation.

Our main contribution, summarized by Eq. 4, shows how
the optimal attack (characterized by the probability density
function f∗a ) is related to the probability distribution that DP
uses to inject noise to the data (Laplace or Gaussian noise).
We also show how our optimal DP-BDD algorithm is a Nash
equilibrium between an attacker trying to find an optimal attack
distribution, and the defender trying to design an optimal bad
data detection algorithm.

As far as we are aware, our results are the first to consider
adversarial evasion in the context of differential privacy, and
we believe they open a new research area considering the trade-
offs between utility, security, and privacy.
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Eds., vol. 426. ACM, 2010, pp. 123–134. [Online]. Available:
http://doi.acm.org/10.1145/1739041.1739059

[22] G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright, “A practical
differentially private random decision tree classifier,” Transactions on
Data Privacy, vol. 5, no. 1, pp. 273–295, 2012. [Online]. Available:
http://www.tdp.cat/issues11/abs.a082a11.php

[23] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[24] D. P. Bertsekas and A. Scientific, Convex optimization algorithms.
Athena Scientific Belmont, 2015.

[25] R. Lanotte, M. Merro, and S. Tini, “Towards a formal notion of
impact metric for cyber-physical attacks,” in International Conference
on Integrated Formal Methods. Springer, 2018, pp. 296–315.

[26] R. Mitchell, I.-R. Chen et al., “Effect of intrusion detection and
response on reliability of cyber physical systems,” IEEE Transactions
on Reliability, vol. 62, no. 1, pp. 199–210, 2013.

[27] J.-F. Chamberland and V. V. Veeravalli, “Decentralized detection in
sensor networks,” IEEE Transactions on Signal Processing, vol. 51,
no. 2, pp. 407–416, 2003.

[28] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

17



[29] M. Struwe and M. Struwe, Variational methods. Springer, 1990, vol.
31999.

[30] D. P. Bertsekas, A. Nedi, A. E. Ozdaglar et al., Convex analysis and
optimization. Athena Scientific, 2003.

[31] C. Dwork, “Differential privacy: A survey of results,” in Theory and
applications of models of computation. Springer, 2008, pp. 1–19.

[32] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends R© in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[33] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ser. ASIACCS
’11. New York, NY, USA: ACM, 2011, pp. 355–366.

[34] C. Murguia and J. Ruths, “Cusum and chi-squared attack detection of
compromised sensors,” in 2016 IEEE Conference on Control Applica-
tions (CCA), Sep. 2016, pp. 474–480.

[35] A. Wald and J. Wolfowitz, “Optimum character of the sequential
probability ratio test,” The Annals of Mathematical Statistics, pp. 326–
339, 1948.

[36] A. Wald, Sequential analysis. Courier Corporation, 1973.

[37] A.-M. Olteanu, K. Huguenin, R. Shokri, M. Humbert, and J.-P. Hubaux,
“Quantifying interdependent privacy risks with location data,” IEEE
Transactions on Mobile Computing, 2016.

[38] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux,
“Quantifying location privacy,” in 2011 IEEE Symposium on Security
and Privacy. IEEE, 2011, pp. 247–262.

[39] B. Coifman, “Vehicle re-identification and travel time measurement in
real-time on freeways using existing loop detector infrastructure,” Trans-
portation Research Record: Journal of the Transportation Research
Board, no. 1643, pp. 181–191, 1998.

[40] B. Coifman and M. Cassidy, “Vehicle reidentification and travel time
measurement on congested freeways,” Transportation Research Part A:
Policy and Practice, vol. 36, no. 10, pp. 899–917, 2002.

[41] K. Kwong, R. Kavaler, R. Rajagopal, and P. Varaiya, “Arterial travel
time estimation based on vehicle re-identification using wireless mag-
netic sensors,” Transportation Research Part C: Emerging Technologies,
vol. 17, no. 6, pp. 586–606, 2009.

[42] J. Le Ny, A. Touati, and G. J. Pappas, “Real-time privacy-preserving
model-based estimation of traffic flows,” in ICCPS’14: ACM/IEEE 5th
International Conference on Cyber-Physical Systems (with CPS Week
2014). IEEE Computer Society, 2014, pp. 92–102.

[43] S. Datta, J. Carroll, V. Petit, B. Sathyamangalam, and M. G. R Hebner,
“Attributes of direct measurement of inductance in a loop detector for
traffic control,” CEM Publications, 2015.

[44] J. Lee, R. Jiang, and E. Chung, “Traffic queue estimation for metered
motorway on-ramps through use of loop detector time occupancies,”
Transportation Research Record: Journal of the Transportation Re-
search Board, no. 2396, pp. 45–53, 2013.

[45] E. Sullivan and M. Burris, “Benefit-cost analysis of variable pricing
projects: Sr-91 express lanes,” Journal of transportation engineering,
vol. 132, no. 3, pp. 191–198, 2006.

[46] B. Coifman and S. Neelisetty, “Improved speed estimation from single-
loop detectors with high truck flow,” Journal of Intelligent Transporta-
tion Systems, vol. 18, no. 2, pp. 138–148, 2014.

[47] M. Treiber and A. Kesting, “Traffic flow dynamics,” Traffic Flow
Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Hei-
delberg, 2013.

[48] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks
against state estimation in electric power grids,” ACM Transactions on
Information and System Security (TISSEC), vol. 14, no. 1, p. 13, 2011.

[49] C. F. Daganzo, “The cell transmission model: A dynamic representation
of highway traffic consistent with the hydrodynamic theory,” Trans-
portation Research Part B: Methodological, vol. 28, no. 4, pp. 269–287,
1994.

[50] N. Henze, “Empirical-distribution-function goodness-of-fit tests for dis-
crete models,” Canadian Journal of Statistics, vol. 24, no. 1, pp. 81–93,
1996.

[51] J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, and A. M.
Bayen, “Evaluation of traffic data obtained via gps-enabled mobile
phones: The mobile century field experiment,” Transportation Research
Part C: Emerging Technologies, vol. 18, no. 4, pp. 568–583, 2010.

[52] R. Tan, V. Badrinath Krishna, D. K. Yau, and Z. Kalbarczyk, “Impact
of integrity attacks on real-time pricing in smart grids,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 439–450.

[53] M. Roozbehani, M. Rinehart, M. Dahleh, S. Mitter, D. Obradovic, and
H. Mangesius, “Analysis of competitive electricity markets under a new
model of real-time retail pricing,” in Energy Market (EEM), 2011 8th
International Conference on the European, may 2011, pp. 250–255.

[54] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin,
“Private memoirs of a smart meter,” in Proceedings of the 2nd ACM
workshop on embedded sensing systems for energy-efficiency in build-
ing. ACM, 2010, pp. 61–66.

[55] M. Jawurek, F. Kerschbaum, and G. Danezis, “Privacy technologies
for smart grids - a survey of options,” Tech. Rep. MSR-TR-2012-119,
November 2012.

[56] G. Ács and C. Castelluccia, “I have a dream!(differentially private smart
metering),” in Information Hiding. Springer, 2011, pp. 118–132.

[57] T. K. Moon and W. C. Stirling, Mathematical methods and algorithms
for signal processing. Prentice hall, 2000.

[58] K. P. Schneider, Y. Chen, D. P. Chassin, R. Pratt, D. Engel, and
S. Thompson, “Modern grid initiative distribution taxonomy final re-
port,” PNNL-18035, Pacific Northwest National Laboratory, Richland,
Washington, 2008.

[59] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
robustness to adversarial examples with differential privacy,” in 40th
IEEE Symposium on Security and Privacy, 2019.

[60] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. Goodfellow, A. Madry, and A. Kurakin, “On evaluating adversarial
robustness,” arXiv preprint arXiv:1902.06705, 2019.

[61] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97.
Long Beach, California, USA: PMLR, 09–15 Jun 2019, pp. 1310–1320.
[Online]. Available: http://proceedings.mlr.press/v97/cohen19c.html

[62] R. Pinot, L. Meunier, A. Araujo, H. Kashima, F. Yger, C. Gouy-Pailler,
and J. Atif, “Theoretical evidence for adversarial robustness through
randomization: the case of the exponential family,” arXiv preprint
arXiv:1902.01148, 2019.

[63] C. Chen, J. Kwon, J. Rice, A. Skabardonis, and P. Varaiya, “Detecting
errors and imputing missing data for single-loop surveillance systems,”
Transportation Research Record: Journal of the Transportation Re-
search Board, no. 1855, pp. 160–167, 2003.

[64] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady, “Preserving privacy
in gps traces via uncertainty-aware path cloaking,” in Proceedings of
the 14th ACM conference on Computer and communications security.
ACM, 2007, pp. 161–171.

[65] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. B. Work, J. C. Herrera,
A. M. Bayen, M. Annavaram, and Q. Jacobson, “Virtual trip lines
for distributed privacy-preserving traffic monitoring,” in Proceedings of
the 6th International Conference on Mobile Systems, Applications, and
Services (MobiSys 2008), Breckenridge, CO, USA, June 17-20, 2008,
2008, pp. 15–28.

[66] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
“Geo-indistinguishability: Differential privacy for location-based sys-
tems,” in Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security. ACM, 2013, pp. 901–914.

[67] D. J. Mir, S. Isaacman, R. Caceres, M. Martonosi, and R. N. Wright,
“Dp-where: Differentially private modeling of human mobility,” in Big
Data, 2013 IEEE International Conference on. IEEE, 2013, pp. 580–
588.

[68] R. Chen, G. Acs, and C. Castelluccia, “Differentially private sequential
data publication via variable-length n-grams,” in Proceedings of the
2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 638–649.

18


