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ABSTRACT: Rosette nanotubes (RNTs) are a class of materials formed by molecular self-assembly of a fused guanine—cytosine
base (GAC base). An important feature of these self-assembled nanotubes is their precise atomic structure, intriguing for rational
design and optimization as synthetic transmembrane porins. Here, we present experimental observations of ion transport across 1.1
nm inner diameter RNT porins (RNTPs) of various lengths in the range 5—200 nm. In a typical experiment, custom lipophilic
RNTPs were first inserted into lipid vesicles; the vesicles then spontaneously fused with a planar lipid bilayer, which produced
stepwise increases of ion current across the bilayer. Our measurements in 1 M KCl solution indicate ion transport rates of ~50 ions
s~' V™! m, which for short channels amounts to conductance values of ~1 nS, commensurate with naturally occurring toxin channels
such as a-hemolysin. Measurements of interaction times of a-cyclodextrin with RNTPs reveal two distinct unbinding time scales,
which suggest that interactions of either face of a-cyclodextrin with the RNTP face are differentiable, backed with all-atom molecular
dynamics simulations. Our results highlight the potential of RNTPs as self-assembled nonproteinaceous single-molecule sensors and
selective nanofilters with tunable functionality through chemistry.

ntrigued by nature’s biochemical machinery,"” scientists The discovery of hierarchical self-assembly of heteroar-

have been trying to create de novo design of transmembrane
channels that can be engineered and tuned to exhibit selective
transport of ions and molecules, sense and recognize specific
chemicals/biomolecules, and behave as actuatable gates that
open and close in response to various stimuli’ Indeed,
numerous conventional building blocks such as polypeptides™”
and organic polymers® have been used to produce mimics of
biological channels and transporters, although de novo design is
enormously challenging because polymer folding is often
difficult to predict and poor solubility in water can complicate
experiments.”® While several examples of self-assembled
supramolecular structures were produced,””"" single-molecule
sensing using these pores was not demonstrated, presumably
because of their small size (<100 pS conductance values were
found in 1-2 M KClI electrolytes). To generate larger self-
assembled pores, origami-based folding of DNA into well-
defined and predictable transmembrane channels has been
achieved recently'””'* and further utilized for single-molecule
sensing.15 However, issues that remain with DNA-based
nanopores include the high cost and low yield of

omatic bicyclic GAC base (Figure 1A) allows us to create
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Figure 1. Synthetic rosette nanotube porins (RNTPs) in lipid bilayer
de novo from fused GAC base. (A) Chemical structure of fused
porphyrin modified GAC base. (B) Top view of rosette stack formed
via hydrogen bonding of six GAC bases. (C) Perspective view of an

manufacturing the DNA precursors, possibilities of misfolding RNTP of length L, formed by z—7 stacking of several rosettes. (D)
via incorrect hybridization to the staple DNA oligomers, and RNTP insertion into the lipid bilayer results in a water-filled RNTP
ion leakage through the skeleton of the DNA Pores_ls’17 lumen. Application of voltage across the membrane results in ion flow
Recent studies suggest that a DNA duplex spanning the lipid across the pore, as shown here for K" ions.

bilayer can also produce an ion current,"® further proving the

leaky nature of DNA-lipid interface to ions.'” In principle, for Received: October 14, 2019

de novo design of transmembrane channels, molecular building Published: January 8, 2020

blocks should be as small as possible and should be organized
together with strong forces to provide a stable, rigid, and well-
defined nanostructure.
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Figure 2. Ion conductance of RNTPs. (A) Representative TEM image of an ~40 nm long RNTP reconstituted in a lipid vesicle (see black arrow).
(B) Observation of a stepwise increase in ion current due to incorporation of single RNTP in lipid-bilayer of estimated length 5.5 nm. The traces
shown here were recorded at 1 M KCl, 10 mM HEPES, pH 7.5 at 100 mV, and current signal was low-pass filtered at 5 kHz (C) All-point
histogram of the current trace shown in (B). (D) Histogram of estimated RNTP lengths (L) based on data from 257 insertions. (E) Current vs
voltage for different salt conditions for an ~25 nm long RNTP. A snapshot from the all-atom MD simulation of a 5 nm long RNTP showing the
(F) top and (G) side views. The non-hydrogen atoms of RNTP are shown as spheres colored according to atom type (carbon in cyan, nitrogen in
blue, oxygen in red); Cl~ and K* are shown as pink and yellow spheres, respectively. Water and lipid molecules are not shown for clarity. The
snapshot shows that the cations are only present in the central channel lumen, and the anions are distributed in the periphery of the channel. The
simulation explains the weak selectivity of RNTP toward K' transport due to binding of CI™ to positively charged ammonium groups at the

junction of GAC bases and porphyrin.

predictable and rigid rosette nanotube porins (RNTPs) with
tunable dimensions and chemical/physical properties.”””!
RNTPs can be promising alternatives to top-down pore
structures, as the molecules that self-assemble into RNTPs are
relatively straightforward. Recently, carbon nanotube porins

have been incorporated in the lipid bilayer and in live cell
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membranes to explore water and ion transport.””** Here, we
measure the ion transport properties of RNTPs by creating
synthetic channels constructed entirely from the self-assembly
of bicyclic base GAC, anchored into planar lipid bilayers
through porphyrin side chains. The bicyclic system GAC
undergoes a hierarchical self-assembly process. First, it forms a

https://dx.doi.org/10.1021/jacs.9b10993
J. Am. Chem. Soc. 2020, 142, 1680—1685
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six-membered rosette-like ring (Figure 1B), stabilized by 18 H-
bonds.””*" Several rosette rings then organize via 7—7 stacking
to produce an arbitrary-length RNTP with an internal diameter
of 1.1 nm, resulting in barrel-like architecture (Figure 1C).*'
Because of the presence of porphyrin moieties, the RNTPs
easily partition into lipid bilayers and are insoluble in water.
We overcome this challenge by following recently reported
strategies,'”*” and reconstituting porphyrin modified RN'TPs
into lipid vesicles, such that fusion of a vesicle into the lipid
bilayer results in a transmembrane channel (Figure 1D). We
find that RN'TPs transport ions at rates of ~50 ions s~ V™' m,
comparable to previously reported naturally occurring” and
artificial channels,”'>'>***® despite the differences in electro-
static and hydrophobic environments of their inner space.

The synthesis of porphyrin-modified heteroaromatic bicyclic
base GAC is detailed in the Supporting Information (SI)
(section S1A). Transmission electron microscopy (TEM)
images of RNTP samples established their tubular structure
and dimensions (SI: section S1E, Figure S2A, S2B). We
purified RNTP samples (SI: section S1B and Figure S2B) to
obtain RNTPs shorter in length and reconstituted them in
lipid vesicles (section S1C). TEM imaging of RNTPs
reconstituted in lipid vesicles show that the RNTPs can stick
to lipid bilayer membranes as shown in Figure 2A and Figure
S3.

To insert RNTPs in the lipid bilayer and explore the
transport properties, we formed a planar lipid bilayer using the
Montal—Mueller technique (section SID) on a 50—100 um
aperture on PTFE film separating two-compartment cis/trans,
each containing 1 M KCIl, 10 mM HEPES, and pH 7.5, and
applied an electric potential to the trans compartment, keeping
cis grounded (Figure 1D). Upon addition of 2—S5 uL of a
solution of RNTP reconstituted in the vesicle, we observed a
stepwise increase in ionic current. We did not observe any
ionic current upon addition of vesicles alone. This suggest that
the observed stepwise increase in ionic current with RNTP-
reconstituted vesicles must be due to the insertion of RNTP in
the lipid bilayer. Typical ionic current traces, manifesting the
spontaneous insertion of single RNTP in the lipid bilayer, are
shown in Figure 2B and in Figure S4A. Notably, the stepwise
jumps in ionic current are not identical in magnitude (Figure
S4B), which we attribute to insertions of RNTPs with different
lengths. We quantified the length of the inserted RNTPs by
measuring the conductance of each inserted channel. The
differences in peak positions in the histograms of current traces
were taken as single channel currents (Figures 2C, S4A(ii)).
The length of inserted RNTPs can be estimated from the
conductance of the channels using well-known analytical
equations.”* For example, in Figure 2B, the ionic current jumps
from 0.4 + 0.01 pA to 165 + 0.04 pA, when an RNTP of
conductance 1.64 nS is inserted (L ~ 5.5 nm). The inserted
RNTP length distribution (n = 257) is shown in Figure 2C.
We performed finite-element COMSOL simulations (Figure
SS) to further reinforce the conductance/length relationship in
these RNTPs.

Our results have shown that most of the inserted RNTPs are
short, less than 20 nm, and have a conductance of 1—2 nS
(Figure 2D), similar values to biological toxin channels and
other reported artificial channels.”'>">**** In more than 90%
of RNTP insertions, we observed stable and steady-state ionic
currents with noise spectra similar to the case of a-hemolysin
channels™ (Figure S6), and lower 1/f noise slopes than those
for solid-state nanopores,”””” suggesting that RNTPs are
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suitable for single-molecule sensing. In less than 10% of cases,
we observed unstable and highly stochastic ionic currents
(Figure S7), where the conductance state of the RNTP
fluctuates at different levels. We attribute this behavior to be
due to RNTP mis-assembly and/or mechanical instability of an
RNTP, akin to gating in biological channels and other
synthetic porins such as carbon nanotube porins
(CNTPs).”»** While in biological channels gating occurs
mostly due to conformational changes of proteins, in the case
of the RN'TPs, gating can in principle be due to various reasons
such as tilting in and out of the lipid bilayer (Figure S7(ii)).
We also observed a class of events where ionic current due to
the insertion of several RN'TPs decreased in a stepwise manner
(Figure S8(i)), as observed for DNA barrels in the lipid bilayer
and interpreted as distinct pore closure events.'* This effect
can also be due to tilting of an RNTP such that the
hydrophobic exterior of the RNTPs can be maximally exposed
to the lipid environment, as predicted from simulation (see SI:
section SS).28

We also explored the ion selectivity of RNTPs by measuring
ionic currents at different transmembrane voltages and salt
gradients (Figure 2E). As expected, the current—voltage
relationship for RNTPs showed ohmic behavior at all salt
conditions. Selectivity ratios (Px*/Pc~) were calculated at
different salt asymmetric conditions from the reversal
potentials using the Goldman—Hodgkin—Katz equation (SI:
section S9). As shown in Table 1, we found an ~2-fold
preference for cations over anions at low salt concentrations
(<100 mM) and virtually no selectivity at high salt
concentration.

Table 1. Reversal Potentials and Selectivity Ratios of
RNTPs Measured under Different KCl Concentration
Gradients (pH 7.5)

salt concn corrected Vy selectivity ratio
(cis/trans) (mV) permselectivity (K*/CI7)
0.01 M/1 M 37.9 0.35 2.03
0.1 M/1M 15.5 0.31 1.82
4 M/1 M =27 0.09 1.17

To understand the weak cation selectivity, we used
molecular dynamics'” to simulate an all-atom model of an
RNTP in a lipid bilayer and surrounded by electrolyte solution.
The 150 ns MD trajectory of the system revealed preferential
localization of K* ions at the center of the nanotube and the
CI” ion in the space between the GAC bases and porphyrin
moieties; see Figure 2F, G. Further analysis of the simulation
results (SI: section S10) reveals on average 750 water
molecules and 6 cations (either Na* or K*) within the 5 nm
long RNTP at steady state.

Finally, we investigated the potential of the RNTPs as robust
single-molecule sensors. Here, we employed a-cyclodextrins™’
(a-CD, 200 M) across the lipid bilayer containing RNTP and
observed transient blockades in ionic current. We find that the
frequency of ionic current blockades increases with increasing
a-CD concentrations (Figure 3A, B). A double exponential fit
of the interevent times distribution (Figure S11(i)) indicates
two distinct time constants. This suggests that the individual
current blockade events are due to either arrival of single a-CD
molecule from bulk to the RNTP or binding/rebinding of the
same @-CD to the RNTP. We also observed current blockades
at negative voltages (Figure 3D), suggesting that a-CD:RNTP

https://dx.doi.org/10.1021/jacs.9b10993
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Figure 3. Single-molecule sensing of a-cyclodextrin (a-CD) with
RNTP. (A) Trace of ionic current blockades induced by 200 uM a-
CD at 75 mV. (B) Trace of ionic current blockades induced 40 uM a-
CD at 75 mV. (C) Zoomed-in view of the trace in A, showing distinct
current blockades induced by the interaction of @-CD with an RNTP.
The lifetime 7, is the duration of time a-CD stays at the RNTP (“on”
state) before unbinding. The lifetime 7, represents the time that a-
CD takes to arrive and bind to the RNTP. (D) Trace showing ionic
current blockades for 40 uM a-CD at —75 mV. Current traces shown
in plots were recorded at 1 M KCl, 10 mM HEPES, pH 7.5, and low-
pass filtered at S kHz. (E) Histogram of 7 g times, n = 1752. Red
curves represent the fit of histogram with a double-peak Gaussian
function. (F) Peak positions of the histogram (7,4 and 7,4) as a
function of applied voltage. Error bars represent standard error
obtained in fitting with two peak Gaussian function. (G) Snapshots
from all-atom MD simulations of the three conformations (1, 2, and
3) of a-CD at the RNTP. The simulation results (see Figure 4) show
that conformation 3 has strongest interaction with the RNTP.
Blockade currents computed using the Steric Exclusion Model** (SI:
section S15) for the various conformations are 18%, 51%, and 51% of
the open pore value, consistent with our experimental data.

interactions are not voltage polarity dependent. The ionic
current blockade lifetime, 7.4 (Figure 3C), represents the a-
CD residence time on the RNTP. The histogram of 7,4 has a
bimodal distribution with two time constants, ~1 ms and ~5
ms, respectively, and are independent of the applied voltage
(Figure 3E, F). This is unlike a charged molecule, where
residence times at the pore typically changes with voltage.”” To
understand the observed two types of residence time, we
performed all-atom MD simulations of interaction between a-
CD and RNTP. The molecular architecture of a-CD is a
tapered cylindrical structure with outer diameters 1.46 and
1.37 nm, respectively (Figure 3G; SI: section S13). This
suggests that @-CD cannot translocate through the RNTP, but
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can interact with three specific orientations as shown in Figure
3G.

We computed the free energy between an a-CD molecule
and an RNTP for the approach of an a-CD molecule to an
RNTP in three different orientations (Figure 4). Looking at

O_
O 1+
=
=
= O Conf 1
o 3 -
e o Conf 2
-4} A Conf3 A
T T T T T
2 4 6 8 10 12

Distance from RNT (A)

Figure 4. Energetics of @-CD and RNTP interactions. Free energy as
a function of distance between the center-of-mass of @-CD and the
top layer of an RNTP for three specific conformations shown in 3G
(see text).

the depth of the free energy well near the RNT entrance, we
find that conformation 3 (see Figure 3G), in which the primary
carbon of the glucose moieties interacts with the RNT face, has
a higher affinity than the other two conformations.
Consequently, we attribute the time constant 7, in Figure
3E to a binding mode representing conformation 3 and 7. to
conformations 1 and/or 2.

Our results establish RNTPs as promising de novo porins
with predefined diameters. More work is needed to
demonstrate controllable chemical and physical properties, as
well as to improve porin lifetimes from several minutes to
hours of operation. In addition, we have demonstrated here
single-molecule sensing of a-CD, a chiral molecule, revealing
differential interaction times for both faces of the molecule
with the achiral RNTP face. We expect that RNTP
improvements could lead to new porins with enhanced ion
selectivity, which can pave the way to new directions for water
purification applications, industrial-scale separations, or flexible
reconfigurable nanofluidic circuits. For example, the inner
channel of RNTP can be functionalized with a variety of
hydrophobic, aromatic, or hydrophilic groups to further tune
the selectivity (work in progress). Moreover, inserting one or
two rings between the G and C faces of the GAC base®"**
should also allow for the design of transmembrane channel
structures with larger pore diameters (1.4 and 1.7 nm) that can
perhaps achieve single-file translocation and sequence-selective
sensing of biopolymers such as nucleic acids and proteins.”
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